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Thermal tracking of a ladle during production cycles

Fredrik Berntssona and Patrik Wikstr€omb

aLink€oping University, Link€oping, Sweden; bDepartment of Metallurgical Development, SSAB Europe, Luleå, Sweden

ABSTRACT
Temperature control is important for the steel making process. Knowledge of the amount of
thermal energy stored in the ladle allows for better predictions of the steel temperature
during the process. This has a potential to improve the quality of the steel. In this work, we
present a mathematical model of the heat transfer within a ladle during the production pro-
cess. The model can be used to compute the current, and also the future, thermal status of
the ladle. The model is simple and can be solved efficiently. We also present results from
numerical simulations intended to illustrate the model.
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1. Introduction

Temperature control is an important factor during the
steel production process in any steel plant. Knowledge of
the correct actual steel temperature is important to give
the correct treatment. The final steel temperature is
dependent on many factors, such as tapping tempera-
ture, de-oxidation, and alloying. However, knowledge of
the thermal condition of the ladle is also considered as
an important factor throughout the steel making process.

Cold refractory lining will consume unnecessary
energy from the steel and lower its temperature. Both
too low and too high steel temperatures impose prob-
lems that could seriously jeopardize the final steel
quality. Knowing which heats that need heating and
which do not is thus very important. One solution is
to monitor this through the use a tracking system that
follows the history of the ladle [1,2]. Knowing the
thermal status of the ladle makes it possible to adjust
the tapping temperature to production needs.

The aim of this work is to present a mathematical
model for the heat transfer that occurs in the ladle
during the production. This includes the energy trans-
fer from the molten steel into the ladle lining or to
the lid, see [3], and also the preheater. The goal is to
develop a numerical simulation code that allows us to
calculate both the current and future thermal states of
the ladle. Since the simulation software is intended to
be used together with a real-time production planning
system it is essential that the computation time is very

short. The demand for computation speed means that
a simple one-dimensional model is preferred.

The structure of our paper is as follows: In Section 2
we present our mathematical model of the ladle, includ-
ing all the different ladle configurations that need to be
considered. In Section 3 we show how to discretize the
equations and organize the computations. Next, in
Section 4 we perform numerical simulations intended
to illustrate the properties of our model. In particular,
we show the energy stored in the ladle during a realistic
production cycle. Finally, in Section 5 we discuss our
results and point out potential improvements.

2. The mathematical model of the ladle

In this section, we will describe our mathematical model
of the ladle. The model covers all the different states of the
ladle during a production cycle that starts with tapping, or
possibly preheating, and ends with casting. We also dis-
cuss the initial drying of the ladle before its taken into pro-
duction. In addition, we will discuss the assumptions, and
simplifications, that we use to derive the model.

For the heat conduction in the wall and in the floor
of the ladle, and also for the lid, we use the one-
dimensional heat equation. Thus we introduce three
different space variables xðjÞ, j ¼ 1, 2, 3, that describe
the position in the wall, the floor, and the lid, respect-
ively. In all cases xðjÞ ¼ 0 corresponds to the outside
surface and xðjÞ ¼ aj, see Figure 1, corresponds to the
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interior where the interaction between the ladle and
the molten steel occurs. The corresponding tempera-
ture profiles,

TðjÞðxðjÞ, tÞ, 0 � xðjÞ � aj, j ¼ 1, 2, 3, (1)

are assumed satisfy the one-dimensional heat equa-
tion, i.e.

@xðk@xTÞ ¼ qcp@tT, 0 < x < a, t > 0, (2)

where k ½W=m K� is the thermal conductivity,
cp ½J=kg K� is the specific heat capacity, and
q ½kg=m3� is the density.

Note that for our application the ladle is built using
several different materials and there is a large range of
temperatures involved. Thus the material properties
will depend on both position and temperature, e.g. k :
¼ kðx,TÞ: The material parameters for each of the
materials are supplied from the manufacturer in the
form of tables, e.g. ðTi, cpðTiÞÞ, and we use linear
interpolation to find the appropriate parameter values
to use when discretizing (2).

The molten steel is treated as a volume of constant
temperature. This is justified by the much higher ther-
mal conductivity of steel compared to the various cer-
amic materials that make up the ladle. Thus the
model also includes the temperature TðsÞðtÞ:

The assumption that the one-dimensional heat
equation accurately describes our situation can be jus-
tified as follows: The ladle wall consists of ceramic
materials with a much lower thermal conductivity
than the molten steel in the interior and the outer
steel shell. Thus for the time scales involved it is rea-
sonable to assume that both the shell and the molten
steel have a constant temperature at a given instance

of time. This means that the heat conduction in the
wall and floor will only depend on the distance from
the outer surface. This has also been verified, using
both 2D calculations and measurements, in [1], for a
similar case, see also [4].

We remark that by using the 1D assumption we
effectively think of the Ladle as a disk of radius r1 and
thickness a2, which represents the floor, that supports
a cylinder with inner radius r1, thickness a1, and
height b1, see Figure 1. This is the material where the
heat conduction takes place. In addition, we have the
lid which consists of a circular disk with radius r1 and
thickness a3: Thus the thermal energy content in the
ladle is approximated by

EðtÞ ¼ 2pb1
Ð a1
0 ðr1 þ xð1ÞÞ Ð Tð1Þðxð1Þ, tÞ

0 cpðxð1Þ,TÞqðxð1Þ,TÞdT
n o

dxð1Þ þ pr21

ða2
0

ðTð2Þðxð2Þ , tÞ

0
cpðxð2Þ,TÞqðxð2Þ,TÞdT

( )
dxð2Þ:

(3)

The energy can be computed rather efficiently by
introducing an energy density function,

QðTÞ ¼
ðT
0
cpðTÞqðTÞdT, (4)

for each of the different material types used in the
construction of the ladle. In our work, we construct a
table ðTi,QðTiÞÞ, by numerical integration, and evalu-
ate QðTÞ by linear interpolation. This means that the
energy (3) can be computed efficiently. The choice of
zero level for the thermal energy is of course rather
arbitrary and in this work we define EðtÞ ¼ 0 if the
Ladle is at 0 �C.

Figure 1. A full-sized ladle from SSAB (left). Also, a sketch showing the cross-section of the Ladle (right). The ladle is cylindrical
and consists of an outer steel shell and various types of ceramic bricks. The interior is filled with molten steel. The important
dimensions are the interior radius r1, the thickness of the wall a1, the thickness of the floor a2, and the height b1 which deter-
mines the volume of the molten steel in the interior. The lid has a thickness a3:
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2.1. Heat transfer coefficients

For each surface of the ladle, a boundary condition is
needed. In our work, we model the net-energy flux
across a surface and set a boundary condition of the
type

qðtÞ ¼ hðT1,T2ÞðT1 � T2Þ, (5)

where T1 is the temperature at the surface, and T2

either the ambient room temperature, typically
denoted by T1, or the temperature of another sur-
face. We consider both natural and forced convection,
and also radiative heat transfer.

In the case of radiation heat transfer, we assign an
emissivity c to each surface and model the interaction
with the background by [5]

qðtÞ ¼ hrðT1,T1ÞðT1 � T1Þ, hrðT1,T1Þ
¼ rc1ðT2

1 þ T2
1ÞðT1 þ T1Þ, (6)

where r is the Stefan-Boltzmann constant, and we
have used the conjugate rule twice, i.e. ða4 � b4Þ ¼
ða2 þ b2Þðaþ bÞða� bÞ, to obtain the desired func-
tional relationship (5). In the case of radiative heat
transfer between two surfaces, with emissivity c1 and
c2, respectively, we instead use

qðtÞ ¼ hrðT1,T2ÞðT1 � T2Þ, hrðT1,T2Þ

¼ rðT2
1 þ T2

2ÞðT1 þ T2Þ
c�1
1 þ c�1

2 � 1
: (7)

The geometrical orientation, and areas, of the sur-
faces are taken into account by modifying the emissiv-
ity by suitable view factors [6].

In the case of natural convection across a surface,
the situation is more complex. We compute both the
Reynolds number and the Nusselt’s number for the
surface. Then we use the formulas in [6] to estimate
the convection heat transfer coefficient hcðT1,T1Þ:
The combined heat transfer coefficient is
then h1 ¼ hc þ hr:

We illustrate the above by presenting the formulas
for the convection heat transfer coefficient of the
outer wall of the ladle. For the free convection, all
temperature-dependent properties of air are evaluated
at the temperature of the transition layer, i.e. Tf ¼
ðT1 þ T1Þ=2: First, we compute the Reynolds num-
ber,

ReL ¼ gbjT1 � T1jL3
a�

, (8)

where L ¼ b1 þ a2 is the characteristic length, b ¼
T�1
f is the thermal expansion coefficient for the air, g

is the gravitational constant, a is the thermal diffusiv-
ity, and � is the kinematic viscosity, see [6, Eq. 9.25].

The Nusselt’s number is then calculated by

NuL ¼ 0:825þ 0:387Re1=6L

ð1þ ð0:492=PrÞ9=16Þ8=27
 !2

, (9)

where Pr is the Prandtl number, and the expression is
valid for a vertical surface [6, Eq. 9.26]. The free con-
vection heat transfer coefficient is then calculated by

hcðT1,T1Þ ¼ NuLk
L

, (10)

where k is the thermal conductivity of the air.
The same formulas are used for the inner-wall sur-

face. A similar procedure, but using different formulas
[6, Eq. 9.26], are used for the horizontally oriented
surfaces, i.e. the lower and upper sides of the floor
and the lid, and also for the surface of the molten
steel contained in the ladle.

Example 2.1. To illustrate the above formulas we
compute the combined heat transfer coefficient of the
outer wall. During normal operation, the temperature
of the outer steel shell of the ladle is at �210 �C and
the ambient room temperature is assumed to be
18 �C. This gives us a temperature Tf ¼ 114 oC: We
recall that the above formulas are intended to be used
with temperatures measured in K. The dimensions of
the ladle we are modeling are such that the character-
istic length is L ¼ 3:0 m: The properties of the air are
taken from [6, Table A.4] and by inserting proper val-
ues in (8) we obtain the Reynolds number ReL ¼
1:46 � 1011: Inserting into (10) then gives the Nusselt’s
number NuL ¼ 591:9: Finally, the free convection heat
transfer coefficient is hc ¼ 6:46 W=m2 �

C:
For the radiation heat transfer coefficient, we

assume that the outer steel shell has an emissivity of
c ¼ 0:95: This gives the radiation heat transfer coeffi-
cient hr ¼ 13:27 W=m2 �

C: The combined heat trans-
fer coefficient for the outer wall is this
h ¼ 19:37 W=m2 �

C: This means that at a tempera-
ture of 210 �C, the radiation heat transfer contributes
the majority of the energy losses from the ladle.
However, the free convection is not negligible and
needs to be taken into account.

2.2. The slag model

The molten steel surface is not normally exposed to
the air. Instead, there is a layer of slag material pre-
sent [7,8]. The slag layer has thickness a4, the mater-
ial has a known thermal conductivity k1, and the slag
surface has a known emissivity cs: For our model, we
do not solve the heat equation numerically inside the
slag layer. Rather we use a simplified approach where
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it is assumed that the slag layer is always at a steady
state. This is justified by the fact that the slag layer is
relatively thin.

Let TðsÞ be the temperature of the molten steel and
let T1 be the surface temperature of the slag layer.
The steady state assumption means that the heat flux
in the interior of the slag is a constant. The surface
temperature of the slag can be computed by solving
an equation that balances the thermal energy con-
ducted through the slag against the energy flux from
the surface of the slag. In the case when the lid is
removed from the ladle we assume we have both radi-
ation and free convection heat transfer and we solve
the equation

gðT1Þ ¼ h1ðT1,T1ÞðT1 � T1Þ þ k1ðT1 � TðsÞÞ=a4,
(11)

where the combined heat transfer coefficient h1, at
the slag surface, is computed as described in Section
2.1 and T1 is the ambient room temperature.

If, instead the lid is attached to the ladle we assume
that there is only radiation heat transfer between the
lower surface of the lid and the slag. This means that
the heat transfer coefficient is given by (7), where T1

is the slag temperature and T2 is the surface tempera-
ture for the lid. Thus we again obtain an equation
similar to (11) to solve for the slag surface
temperature.

Example 2.2. The effect of the slag can be illustrated
by computing energy losses. First, for the case where
the molten steel is directly exposed to the surround-
ings, we apply (6). With the assumption that the steel
temperature is TðsÞ ¼ 1650 oC, the ambient room
temperature is 18 �C, and the emissivity is c ¼ 0:5,
while recalling that the formulas are intended for tem-
peratures in K, we obtain a radiation heat transfer
coefficient hr1 ¼ 237:49 W=m2 K: By using formulas
from [6] for the case of a circular and horizontal sur-
face we obtain a free convection heat transfer coeffi-
cient hc ¼ 1:25 W=m2K for the same surface. Thus at
these high temperatures, radiative heat transfer
dominates.

For the case when a slag layer, of thickness a4 ¼
50 mm and with a thermal conductivity k ¼
3:0 W=m K, is present we first solve Eq. (11) to
obtain the temperature T1 ¼ 557:0 oC on the surface
of the slag layer. This much lower, temperature is
then used to compute the radiative heat transfer coef-
ficient for the surface hr2 ¼ 40:5 W=m2 K:

The energy loss, for the molten steel, for the two
cases can be computed as

Q1 ¼ Ashr1ðTðsÞ � T1Þ ¼ 2:50 MW and

Q2 ¼ Ashr2ðT1 � T1Þ ¼ 0:14 MW,

where As ¼ 6:46 m2 is the surface area of the slag
layer. This is a substantial difference and demonstrates
that including a model of the slag layer is important,
see also [9] and [2, Section 4.2].

2.3. The molten steel model

The thermal conductivity of molten steel is relatively
high compared to the materials that make up the rest
of the ladle and the lid. Thus it is reasonable to treat
the molten steel as a volume of constant temperature.
For the interface between the molten steel and the
wall and floor of the ladle we assume that the interior
surface temperature of the ladle is the same as the
temperature of the steel. This gives us boundary con-
ditions,

TðjÞðaj, tÞ ¼ TðsÞðtÞ, j ¼ 1, 2: (12)

for the heat equation (2). The energy losses, by ther-
mal conduction into the wall and floor, are computed
by

qjðtÞ ¼ kjAj@xðjÞT
ðjÞðaj, tÞ, j ¼ 1, 2, (13)

where kj, j ¼ 1, 2, are the temperature-dependent
thermal conductivities at the surface of the wall and
floor, respectively, and Aj, j ¼ 1, 2, are the area of the
interior surfaces.

The energy loss through the upper surface of the
steel depends on if the slag, see Section 2.2, is present
or not. For the case when the slag is present we com-
pute the surface temperature, T1 of the slag, by for-
mula (11), and can estimate the energy conducted
through the slag layer by q3ðtÞ ¼ k3A2ðT1 � TðsÞÞ=a4:
If there is no slag layer we instead compute a heat
transfer coefficient, see Section 2.1, and estimate the
energy loss to either the background or to the lid.

2.4. The different states

We recall that the purpose of the model is to track
the thermal energy of the ladle during the production
process. The ladle appears in different configurations
that we need to model. We identify the following
states:

1. Empty with no Lid.
2. Full with no Lid.
3. Empty with active burner.
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4. Empty with Lid.
5. Full with Lid.
6. Tapping
7. Casting.

By making use of these states we can accurately
describe the entire production cycle.

For all configurations described above the tempera-
ture profiles in the interior of the wall, floor, and lid, are
assumed to satisfy the 1D heat equation. Also, the out-
side of the ladle and the upper side of the lid are always
exposed to the surroundings. Recall that our coordinate
systems are set up so that xðjÞ ¼ 0, j ¼ 1, 2, 3, corres-
pond to the outside surface. Thus the energy transfer
out from the Ladle, per unit area, can be written

qjðtÞ ¼ hjðTðjÞð0, tÞ � T1Þ, j ¼ 1, 2, 3, (14)

where the heat transfer coefficients hj, are tempera-
ture dependent and are computed as discussed in
Section 2.1.

The Empty/No Lid state is the simplest one. Here
we compute three heat transfer coefficients: for the
inner wall, the upper floor, and the lower lid. We also
compute suitable view factors that allow us to accur-
ately compute the net energy loss from these surfaces
to the surroundings. We remark that while the lid is
not attached to the ladle it is still part of the model.
Similarly, the temperature of the molten steel TðsÞðtÞ
is included in the model, and for the case of an empty
ladle we keep TðsÞðtÞ ¼ 0:

For the Full/No Lid state we have the energy loss
through thermal conduction from the steel into the
wall and floor of the ladle. We also assume that the
slag layer is present. By computing the slag tempera-
ture, as described in Section 2.2, we can compute the
total energy loss for the molten steel. Again the Lid is
included in the model and we compute an appropriate
heat transfer coefficient for the lower side of the lid.

The two states Empty/With Lid and Empty/With
Burner are very similar in the sense that for both
states the steel temperature is kept at TðsÞðtÞ ¼ 0 and
the steel does not interact with the rest of the ladle.
Also, we assume that the heat transfer between the
three surfaces (inner wall, upper floor, and lower lid)
is dominated by the radiation. We compute tempera-
ture-dependent, heat transfer coefficients hj, j ¼
1, 2, 3, and the necessary view factors, accordingly.
For our case, the view factors are taken from [6,
Problem 13.7]. In the case of an active burner, we add
an extra energy influx of the type qj ¼ hgðTðjÞ � TgÞ,
where Tg is the gas temperature and hg is a forced
convection heat transfer coefficient. The heat transfer

coefficient hg is not calculated using theoretical results
but rather selected experimentally so that the model
agrees with measured temperature curves. For a more
detailed study of the preheater see [10].

The Full/With Lid state consists of thermal conduc-
tion from the molten steel into the wall and floor of
the ladle. Again we compute the slag temperature Ts

by solving (11). This allows us to compute the energy
loss for the molten steel, and also the net influx into
the lid. The interaction between the slag layer and the
lower lid surface is assumed to be entirely due to radi-
ation heat transfer. There is no view factor used for
this state since the areas are identical and the lid is
positioned reasonably close to the molten steel.

The Tapping state is difficult to model accurately
using 1D heat conduction. In our work, the ladle is
filled instantly. The lid is not attached to the ladle
during the process. The difference compared to the
Full/No Lid state is that the slag layer is not yet pre-
sent. Instead, a radiation heat transfer coefficient is
computed for the upper surface of the molten steel.
This leads to much larger energy loss for the duration
of the tapping stage. Since the tapping stage is rela-
tively short in time we do not expect the errors intro-
duced here to influence the overall results.

Finally, the Casting stage is also difficult to model
accurately using a 1D model. In our model, this stage
is considered identical to the Full/With Lid state. The
slag is present, which limits the loss of thermal
energy. We do not know exactly at which rate the
ladle is emptied of liquid steel. Thus we cannot accur-
ately compute the temperature of the steel during this
stage. This will of course also introduce errors in the
temperature profiles of the ladle walls and floor. Since
the casting stage takes more time, compared to the
Tapping, there is a larger potential to introduce errors
here. This will be further discussed in Section 4,
where we present our numerical results.

3. The numerical model

The numerical method is based on the idea of treating
space and time discretization separately. First, we deal
with the space discretization. Introduce a step size Dx
and also three different uniform grids fxðjÞi g,
0 ¼ xðjÞ1 < xðjÞ2 < ::: < xðjÞnj ¼ aj, j ¼ 1, 2, 3, for the
wall, floor, and the lid. We also introduce the
unknown temperatures in the form of vectors,

TðjÞðtÞ ¼ ðTðjÞðxðjÞ1 , tÞ, :::,TðjÞðxðjÞnj , tÞÞT , j ¼ 1, 2, 3:

(15)
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In addition, we have the temperature of the mol-
ten steel, i.e. TðsÞðtÞ: The unknowns are collected in a
vector VðtÞ, i.e.

VðtÞ ¼ ðTð1ÞðtÞ, Tð2ÞðtÞ, Tð3ÞðtÞ, TðsÞðtÞÞT , (16)

of length n ¼ n1 þ n2 þ n3 þ 1: The goal of the space
discretization step is to write the time derivative of VðtÞ
in the form,

@tVðtÞ ¼ AVðtÞ þ b, (17)

where A :¼ AðVðtÞÞ is an n� n matrix that depends
on the current temperature distribution inside the
ladle, and b :¼ bðVðtÞÞ: In the next few subsections,
we describe in detail how the matrix A and the vector
b is to be computed.

The purpose of formulating the space discretization
in the form (17) is that we can use any standard time
stepping technique. In our work, we prioritize simpli-
city, and computational speed, and use the back-
wards-Euler scheme. Thus, we discretize the time
derivative as

1
Dt

VðtjÞ � Vðtj�1Þ
� � ¼ AVðtjÞ þ b, (18)

where the non-linearity is dealt with by computing
the matrix A, and the vector b, using the previous
thermal distribution Vðtj�1Þ of the ladle. Thus, we
need to solve a linear system of equations,

VðtjÞ ¼ ðI � DtAÞ�1ðVðtj�1Þ þ DtbÞ, (19)

for each time step tj: The time step Dt is selected so
the errors introduced by this approximation are negli-
gible compared to other modeling errors.

3.1. Interior points and the molten steel

The interior points inside the wall, floor, or lid, do
not depend on the state of the ladle. Thus all three
sets of variables, TðjÞðtÞ, j ¼ 1, 2, 3, are treated in the
same way. For simplicity, we drop the superscript ðjÞ
in the rest of this section.

Note that the variables Tðxnj , tÞ and Tðx1, tÞ,
located on the surfaces, do indeed depend on the
current state of the ladle and have to be left out
for now.

Firstly, we evaluate the material properties for
the current temperature distribution Tðxi, tÞ, and
obtain the thermal conductivity, density, and spe-
cific heat capacity at each grid point, e.g. ki :¼
kðxi,Tðxi, tÞÞ: At interior points the heat equation
(2) holds, and the standard symmetric finite differ-
ence approximation is,

ðqcpÞi@tTiðtÞ ¼
ki�1=2Ti�1ðtÞ � ðki�1=2 þ kiþ1=2ÞTiðtÞ þ kiþ1=2Tiþ1ðtÞ

Dx2
,

(20)

for i ¼ 2, 3, :::, nj � 1, and where half-index points are
calculated using linear interpolation.

The molten steel is treated as a uniform volume
with a constant temperature TðsÞðtÞ: The interaction
between the steel and the ladle happens at the boun-
daries, i.e. the inner wall and the upper floor. Here we
assume that the respective surfaces have the same
temperature as that of the molten steel, i.e.
TðjÞ
nj ðtÞ ¼ TðsÞðtÞ, j ¼ 1, 2: The corresponding energy

loss is computed by,

QjðtÞ ¼ Ajknj@xTðxnj , tÞ

	 Ajknj
3TnjðtÞ � 4Tnj�1ðtÞ þ Tnj�2ðtÞ

2Dx
, (21)

for j ¼ 1, 2, where Aj are the area of the inner wall
and the upper floor, respectively, and the knj are the
thermal conductivity at the surface grid point.

The energy loss at the upper surface of the steel
depends on if the slag layer is present or not. The
details are explained in Section 2.3. There are no fur-
ther numerical approximations for this surface and we
can compute the energy loss Q3ðtÞ across the upper
surface of the molten steel.

The combined energy loss is then used to the time
derivative of the steel temperature by

Vsqcp@tT
ðsÞðtÞ ¼ �Q1ðtÞ � Q2ðtÞ � Q3ðtÞ, (22)

where the density q and specific heat cp of the steel
are temperature-dependent and Vs is the volume of
the molten steel.

For the case when the ladle is empty we simply use
@tTðsÞðtÞ ¼ 0: The temperature of the steel is also set
at the beginning of the tapping phase and at the end
of the casting phase.

3.2. Implementation of boundary conditions

In the previous section, we discussed the interior points
in the wall, floor, and lid, and also the interface between
the ladle and the molten steel, for the case when the ladle
is full. We have also explained how to deal with the
upper surface of the molten steel. This leaves the surfaces
of the lid, the outer wall, lower floor, and, for the case of
an empty ladle, also the inner wall and upper floor. For
all these surfaces we have convection heat transfer.

We illustrate the implementation of a convection
boundary condition by considering the outer wall
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surface. The aim is to compute the time derivative of
the temperature at the surface grid point x1, i.e.
@tT1ðtÞ :¼ @tTðx1, tÞ: We consider the net energy
influx, per unit area and unit time, to a finite volume
of width Dx, located at the outer surface, and obtain

QðtÞ ¼ k1@xTðx1, tÞ � h1ðTðx1, tÞ � T1Þ, (23)

By discretizing the derivative using a one-sided dif-
ference quotient, we find that the change of tempera-
ture, per unit area, in the finite volume is

ðqcpÞ1@tT1ðtÞ 	

1
Dx

k1
�3T1ðtÞ þ 4T2ðtÞ � T3ðtÞ

2Dx
� h1ðT1ðtÞ � T1Þ

� �
,

(24)

where, as previously, the material properties q, cp,
and k, at the grid point x1, are temperature depend-
ent. The remaining surfaces are treated in a simi-
lar way.

4. Simulated numerical examples

In this section, we present numerical results obtained by
using our code. The ladle model contains too many
physical parameters to present in detail. The most
important ones are the inner radius r1 ¼ 1:43 m, the
wall thickness a1 ¼ 0:266 m, the wall height, b1 ¼
2:50 m, the floor thickness a2 ¼ 0:506 m, the thickness
of the lid a3 ¼ 0:150 m, and the thickness of the slag
layer a4 ¼ 5 cm: Also, for the preheater, e.g. the
Empty/With burner state, we assume a gas temperature
of 1250

�
C and a forced convection heat transfer coeffi-

cient hg ¼ 183 W=m2 �
C:

For all tests, we used the step size Dx ¼ 0:2 mm in
space and Dt ¼ 10 s in time. The computations were
carried out using Matlab.

Test 4.1

In our first test, we compute a steady state tempera-
ture distribution in the wall and the floor of the ladle.
This is done under the assumption that the ladle is
filled with steel, which is kept at a constant tempera-
ture TðsÞ ¼ 1650 oC: We display the results in Figure
2. In both cases, the temperature on the outside sur-
face is �200 �C. The larger thickness of the floor,
which should result in a lower surface temperature, is
counteracted by the smaller free convection heat
transfer coefficient due to the surface being horizontal.
We also compute the thermal energy contained in the
ladle by evaluating the formula (3) and obtain Es ¼

36:86 GJ: It is interesting to note that the temperature
is close to constant in the outer steel shell.

Test 4.2

In the second test, we illustrate the effect of the slag
layer. Starting from a situation where the ladle is at a
steady state, i.e. the temperature distribution seen in
Figure 2 we run a simulation with Tapping, for
5 min, followed by the Full/No Lid state for 45 min:
The results are shown in Figure 3. Here we have
implemented two versions of the Full/No Lid state:
with or without the slag layer. In both cases, we dis-
play the steel temperature TðsÞðtÞ: Note that for the
tapping state, there is no slag. The difference in the
final steel temperature between the two simulations is
about 72 �C. This clearly illustrates the insulating
properties of the slag.

Similar simulations using the Full/With Lid state
are also presented. For this case, the difference in the
steel temperature, at the end of the casting, is about
6 �C. We also display the corresponding temperatures
Tð3Þðxn3 , tÞ on the lower surface of the lid. For this
simulation, the initial temperature of the lid was con-
stant 18 �C. We see that including the slag layer in the
model has a significant impact on the temperature in
the lid.

For the next few tests, we introduce a realistic cycle
for the ladle during the production process. The cycle
is as follows: Initially, the ladle is in a waiting state
before its used in production. Here we assume that
the initial waiting period lasts for 70 min: The lid is
not necessarily attached during this period. Next, the
ladle is moved to a preheater for 15 min in prepar-
ation for the tapping, which lasts for 6 min: The lid is
attached directly after tapping and the ladle is trans-
ported to a treatment station, and on to casting. The
entire process, including waiting time, is about
90 min and the actual casting lasts for about 45 min:
After the casting the ladle returns to the initial waiting
stage. Here there is transport, waiting time, and pos-
sibly maintenance done on the ladle. The production
cycle is displayed in Table 1. The entire cycle lasts
for 246 min:

Test 4.3

For the third test, we started by running the preheater
for 8 h, starting from the ladle was at a constant
18 �C. After the initial preheater step the ladle has
18:1 GJ of thermal energy stored. Then we repeat
Cycle 1, see Table 1, until we reach a steady-state. For
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Figure 2. The steady-state temperature distribution in the wall (left graph) and the floor (right graph). In both cases, the steel is
kept at a constant 1650 �C. The different materials are illustrated by vertical lines (red dashed) that show where the material
changes. The material types in the wall are in order (left to right in the graph): outer steel shell, insulation cloth, insulation lining,
safety lining, and working lining. For the floor, it is an outer steel shell, insulation cloth, safety lining, and working lining.

Figure 3. The cooling of the steel TðsÞðtÞ for the case without the lid (top-left). We also show the steel temperature TðsÞðtÞ for the
case when the Lid is present (top-right) in the simulation. In both cases, we show the results with the slag layer (blue curves) and
without the slag (black curves). For the latter case, we also show the temperature Tð3Þðxn3 , tÞ, on the lower surface of the lid
(lower-right). We also show a photo of the ladle, without the lid, so that the hot slag layer is visible (lower-left).
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this experiment repeating the cycle 15 times is suffi-
cient. After having reached steady-state we run both
production cycles once each and display the results in
Figure 4. Note that the difference between the two
cycles is in the initial waiting, period before the tap-
ping, where the lid does reduce the thermal losses.

It is interesting to note that for the case when the
lid is attached, during the initial 70 min of waiting
time, the interior surfaces of the ladle are warmer
than the hot gas used by the preheater. Thus the ladle
is actually losing energy. The difference in stored ther-
mal energy between the two cases, at the start of tap-
ping is 2:2 GJ and the resulting difference in steel
temperature at the end of casting is 18 �C. This is a
significant difference.

Test 4.4

For the final test, we investigate how the final tem-
perature of the steel, at the end of the casting phase,
depends on the thermal energy stored in the ladle at
the start of the tapping phase. The simulation is car-
ried out as follows: A steady state temperature distri-
bution, for the ladle, is created by running the
preheater for 8 h, followed by Cycle 1, see Table 1, 15
times. Finally, we run both production cycles one
more time, but with the initial waiting time changed,
from 70 min, to between 0 and 540 min: The initial

waiting time determines the thermal energy stored in
the ladle at the start of tapping. This in turn influen-
ces the cooling rate for the molten steel. We recall
that the steel is always at 1650 �C at the beginning of
the tapping phase. The results are shown in Figure 5.

We remark that thermal energy is stored in the lid,
but this is not included in the energy calculation, see
(3), for the ladle. In our simulation model, the lid is
cooled by convection if it is not attached to the ladle.
This means that if the initial waiting period is without
the lid present, then it will have a lower temperature
when it is reattached after tapping. This means that
the lid will absorb more thermal energy from the mol-
ten steel by radiation heat transfer. This is seen in
Figure 5. The energy content in the lid is not insig-
nificant and influences the results.

5. Concluding remarks

In this paper, we have presented a mathematical
model of the energy transfer in a ladle, used for steel
production. The model is one-dimensional and calcu-
lates the time-dependent temperature distribution
inside the ladle wall and floor, and also inside the lid.

The purpose of our simulation model is to track
the thermal energy in the ladle. This is important
since the temperature distribution of the ladle influen-
ces the energy losses for the steel between the tapping
and casting steps. If the temperature of the ladle drops
below a certain threshold we can use the preheater, to
add thermal energy to the ladle, before tapping. Thus
we use our mathematical model in two ways: First to
compute the current temperature distribution of the
ladle, by taking into account its unique history, and

Figure 4. The simulation results for the simple production cycle. We display the thermal energy stored in the ladle in the two pro-
duction cycles (left). Also, we show the steel temperature TðsÞðtÞ, from the start of tapping to the end of casting (right). In both
cases we show the results for Cycle 1 (blue curves) and for Cycle 2 (black curves). The vertical lines (red-dashed) indicate the times
when the ladle configuration changes.

Table 1. The assumed production cycles for our numerical
simulation.
State/Cycle 1 E/NL E/B TAPP F/WL CAST E/WL
State/Cycle 2 E/WL E/B TAPP F/WL CAST E/WL
Time (min) 70 15 6 90 45 20
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also to predict a future thermal state for the ladle by
making assumptions about the ladles scheduled path
from tapping to casting. This way we can ensure a
desired temperature for the molten steel during the
casting. Also, the lid has an interior temperature dis-
tribution and thus stores thermal energy. In our
model, the lid is tracked together with the ladle.
However, in practice, it would make more sense to
track the ladles and the lids separately. This is also
something we will consider in the future.

The advantage of using a one-dimensional model is
computation speed. With grid parameters Dx ¼
0:2 mm and Dt ¼ 15 s our code requires �23.8 s of
runtime, per hour of simulation time, when using
Matlab on an HP Desktop, with an Intel Xeon
3.7GHz processor. Increasing the step size to Dx ¼
1 mm, which still gives very good accuracy, we
instead need 4.9 s for each hour of simulation time.
The computational efficiency is important since we
intend to use our model together with the production
control system at SSAB for real-time monitoring of
the different ladles that are in use.

The downside of using the one-dimensional heat
equation is that we cannot accurately model the tap-
ping or casting steps. The tapping state is relatively
short and isn’t likely to introduce any large errors, but
the casting lasts for a longer period of time and needs
further investigation. However, it is important to real-
ize that errors in our numerical model cannot accu-
mulate over time. This is because thermal energy is
only added to the system by the preheater, or with the
molten steel during the tapping. The temperatures
inside the ladle cannot exceed that of the molten steel.
Also, a too high, or too low, temperature in the ladle

will lead to larger, or smaller, thermal losses by con-
vection at the outer surfaces. This will automatically
compensate for errors in other parts of the
simulation.

In addition to the states identified, and described,
in Section 2.4 we have the Treatment of the steel.
This is similar to Full/With Lid but the treatment pro-
cess can add, or remove, thermal energy. A Treatment
state could be implemented in our model by adding a
term Q4ðtÞ to the energy balance equation (22) for the
molten steel. This is something we have not yet done.

The numerical simulations presented in this paper
show that the model works as expected, and the
results are realistic. We have also verified the results
by comparing them with finite element calculations. It
has proven difficult to make more detailed compari-
sons with other published work, e.g. [2,4]. This is
because our focus has been on implementing a model
of the specific ladle used by SSAB. Thus, results from
the literature are for different ladles. It has also
proved challenging to find realistic parameters for a
few of the materials in the model. In particular for the
insulation cloth used in the walls and the floor. The
data supplied by the manufacturer is likely not cor-
rect. In the future, we plan to make an experimental
study of the temperatures in a ladle during the pro-
duction process, in an actual steel mill, and use the
results to adjust the parameters of our model.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Figure 5. We display the final temperature of the molten steel at the end of the casting step, as a function of the time spent, in
the Empty/With Lid state, waiting for tapping to begin (left graph). We also show the final steel temperature as a function of the
thermal energy, stored in the ladle, when the tapping begins (right graph). As previously, the results for Cycle 1 (blue curves) and
for Cycle 2 (black curves) are shown.
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