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Abstract 

ROBOT MANUFACTURERS, like many other manufacturers, are experiencing 
increasing competition in a global market where one way to confront the challenge is by 
making the development process more efficient. One way to speed up the time to mar-
ket for new products is to take advantage of design optimization based on simulation 
models. By optimizing performance with the help of dynamic simulation, an immense 
amount of both time and money may be saved.  

In this thesis, design optimization strategies for industrial robot design are studied.  
Often, the trade-offs between performance, cost and quality are essential for design de-
cisions. These trade-offs can be investigated with the help of simulation models. Gener-
ating the trade-offs can be both cumbersome and time-consuming, but the process may 
be partly automated with the help of optimization algorithms. How the optimization 
problem needs to be formulated to generate the trade-off is discussed in this thesis.  

Robot design problems usually consist of a mixture of deciding continuous parame-
ters as well as selecting components from catalogs and databases. Hence, there is a need 
for optimization algorithms which can handle variables of both a discrete and a continu-
ous nature. A new method has been developed to address this problem. The method has 
also been improved by adding adaptive characteristics for further efficient design opti-
mization. 

The ideas in this thesis have been applied to both simulation models of conceptual 
degrees of elaboration as well as simulation models of complete robot systems. An op-
timization procedure which shows how optimization can be used in the early phases of a 
development process is developed. The objective of the optimization is to determine 
optimal gearboxes and arm lengths from an acceleration capability perspective. An op-
timization based design method for robot drive trains is also presented. For further effi-
cient use of already installed robots the concept of application adapted performance 
optimization is introduced. This means that the robot control is optimized with respect 
to thermal and fatigue load for the specific program that the robot performs. The motion 
program itself, i.e. the path planning, can be optimized at the same time in order to get 
the most out of the robot. 
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1 
Introduction 

ROBOT MANUFACTURERS, like many other manufacturers, are today experienc-
ing ever increasing competition in a global market. For many of the robot manufactur-
ers' customers, a key component in their strategy for greater efficiency has been robot 
automation. This is not case for the robot manufacturers themselves, who traditionally 
have little in-house production and an assembly process where merely marginal savings 
can be made through robot automation. Another way to improve the odds of being one 
of the fittest in this struggle for survival is instead to speed up the time to market for 
new products by shortening lead times in the development process [71]. This should of 
course be achieved without lowering any requirements with regard to quality and per-
formance. However, stricter requirements often increase the cost and a key factor for 
success is finding the most profitable balance between quality, performance, and cost. 

Different computer based tools have been used as one means of achieving this in in-
dustry for quite some time. The most familiar tool is Computer Aided Design (CAD). 
Bringing CAD into play has led to substantial time and cost savings as well as new pos-
sibilities [62]. In the area of solid mechanics finite element analysis (FEM) is used by 
many product developers, for example [52] describes how FEM is used to support prod-
uct development in crashworthiness design. In addition, in order to analyze the behavior 
and performance of complex mechanical systems, multi-body dynamic simulation 
(MBS) are also used. How MBS can be used in the development process is discussed in 
[35] and [38]. Additionally, Cederfeldt [10] discusses how computer tools in general 
can be used in a structured way for efficient design automation.  

According to Ryan [57], when they developed the Camry model, Toyota began the 
development process with multi-body simulations in order to optimize performance and 
function before generating any detailed geometry. These changes led to a factor of three 
in development cost reduction and a factor of four in time savings. This indicates that 
significant gains may be made if the trade-offs between performance, cost, and quality 
can be investigated early on and throughout the whole design process with the help of 
simulation models. Generating the trade-offs can be both cumbersome and time con-
suming, but the process may be partly automated by using optimization algorithms. 
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As is widely recognized, engineering design is an iterative process where new design 
proposals are generated and evaluated, see [14], [49], [55], and [64]. According to 
Roosenburg and Eekels [55] the iterative part of the design process consists of synthe-
sis, simulation, evaluation, and decision. As early as 1967, Simon [60] stated that this 
description can be seen as an optimization process. If the design problems are formal-
ized the optimization can be, if not totally, to some extent closed by mathematical opti-
mization algorithms. Parts of the design process can thereby be automated, and savings 
in development time are possible. It is also the author’s belief that the process of formu-
lating the design problem as an optimization problem helps the designer gain insight 
about the problem at hand. Since the design process is seldom a one way street and the 
designer often has to return to earlier activities and reconsider, optimization may speed 
up these feedback loops (and avoid situations where dead ends appear too late in the 
design process). A central part of this thesis is thus to formalize the engineering design 
problem as an optimization problem incorporating the simulation programs used within 
the development process. 

1.1 Contributions 
This thesis focuses on questions that arise when using optimization together with simu-
lation models as a means of effective robot design. As stated by Pahl and Beitz [49], the 
iterations of improvement follow the whole process from clarifying the task and finding 
the objectives to the detailed design phase. Design optimization can thus be applied in 
all phases of the development process. It is, however, important to keep in mind that the 
questions asked (objective function formulations) should suit the simulation model. In 
the conceptual phase, it is unnecessary to create too elaborate models since the whole 
situation is characterized by uncertainties and assumptions. Nevertheless, if suitable 
models are established and the concepts are optimized towards sustainable performance 
indices which are viable throughout the process into the detailed phase, great savings 
can be achieved. In paper [I] it is shown how a closed form mathematical model of the 
dynamics of a robot can be utilized together with optimization in the conceptual design 
phase in order to help the designer to make decisions on requirements such as payload 
and reach.  

The second issue focuses on how the simulation-based optimization loop can be used 
for the purpose of generating trade-offs between cost, performance, and lifetime when 
designing robot drive trains. In paper [III] optimization is used to determine which 
gearboxes to use and in paper [VII] both the motors and gearboxes are considered. In 
both cases an in-house simulation code with a trajectory generator identical to the one in 
real ABB robot systems is used. In paper [IV] a component based design approach for 
modular drive train design is presented. The simulation model of the complete robot 
system including mechanics, electronics and software systems used in paper [IV] is de-
veloped in Dymola [19].  

For further efficient use of already installed robots the concept of application adapted 
performance optimization is introduced in paper [V]. This means that the robot control 
is optimized with respect to thermal and fatigue load for the specific program that the 
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robot performs. The motion program itself, i.e. the path planning, can be optimized at 
the same time in order to get the most out of the robot. 

Robot design problems usually consist of a mixture of deciding continuous parame-
ters as well as selecting components from catalogs and databases. There is therefore a 
need for optimization algorithms which can handle variables of both discrete and con-
tinuous character. A new method has been developed to address this problem see paper 
[II] and section 4.2.5. The method has also been improved by adding adaptive character-
istics for further efficient design optimization, see paper [VI] and section 4.2.7. 

The contributions mentioned above can summarized as: 
• Methods for industrial robot design optimization in the conceptual design 

phase. 
• Methods for industrial robot drive train design in the detail design phase, in-

cluding trade-off analysis of cost, performance, and expected lifetime. 
• Methods for adaptive performance of already installed robots at end users, 

as a tool for customer tailored optimal performance.  
• A modification of the Complex algorithm for mixed variable design prob-

lems. 
• Adaptive Complex algorithm for efficient and robust design optimization. 

 





 

2 
Industrial robotics 

INDUSTRIAL ROBOTS HAVE been around since the sixties and are today widely 
used in industry. An industrial robot is a machine with significant characteristics of 
adaptability, agility and flexibility. According to the widely accepted definition of the 
Robotics Institute of America, “a robot is a re-programmable multi-functional manipula-
tor designed to move material, parts, tools, or specialized devices, through variable pro-
grammable motions for the performance of a variety of tasks”. The word manipulator 
refers to a mechanism which consists of a series of segments jointed to one another, for 
the purpose of grasping and moving objects, pieces or tools in several degrees of free-
dom. The segments that make up the mechanism are called links and the joints which 
connect them can be of several different types. The two most common ones for indus-
trial robots are revolute joints which permit two paired elements to rotate in relation to 
each other, and prismatic joints which allow paired elements to slide in relation to each 
other.  

The mechanism is made up of a kinematic chain which is called closed loop if every 
link is connected to every other link by at least two distinct paths, and open loop if 
every link is connected to every other link by one and only one path. In the figure be-
low, a robot with a closed kinematic loop and one with an open kinematic loop are 
shown. 
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Figure 2.1 On the left, an ABB IRB 140, which is an articulated robot with an open kinematic 
chain. On the right, an ABB Flexpicker robot, which is a parallel robot consisting of closed kine-
matic loops.  

Mechanisms are often classified by their degrees of freedom (DOF), which are the num-
ber of independent parameters or inputs needed to specify the configuration of the ki-
nematic chains completely. In the case of open loop robots like the IRB 140 in Figure 
2.1, the number of manipulated degrees of freedom equals the number of actuated 
joints, in this case six. The end effector is designed according to the task the robot is to 
execute. For material handling tasks, the end effector is a gripper. For other tasks, the 
end effector may for instance be represented by a welding torch, a drill or a spray gun. 
The volume made up of all the positions reachable by the end-effector is called the work 
space or task space and the motion the robot performs during operation is called its 
working cycle.  

2.1 The robot system  
A typical joint actuating system for an industrial robot is shown in Figure 2.2. The joint 
actuating system in robots generally consists of a power supply, a servo amplifier, a 
servomotor, and a transmission.  
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Figure 2.2 The drive system of industrial robots. 

 
The task of the power supply is to supply the servo amplifier with the voltage and cur-
rent needed to operate the actuating system. The power supply consists of a transformer 
and a typically uncontrolled bridge rectifier (also exists without a transformer). These 
allow the alternating voltage available from the distribution to be converted into direct 
voltage of suitable magnitude which is required to feed the servo amplifier. The servo 
amplifiers (drive units) have the mission of modulating, under the action of a control 
signal, the power flow to the actuators for the execution of the desired motion. In other 
words, the amplifier takes a fraction of the power available at the source which is pro-
portional to the control signal and transmits it to the motor.  

The electric motors need to be supplied with a voltage and current of suitable form. 
Voltage is direct for permanent-magnet DC servomotors and alternating for brushless 
DC motors (sometimes also named AC servomotors). Brushless DC motors are today 
more or less standard in industrial robots. The main reason for using a brushless DC 
motor is to eliminate the problems caused by mechanical commutation of the brushes in 
a DC motor. The inversion between the functions of stator and rotor compared to per-
manent-magnet DC motors also has other advantages. The presence of a winding on the 
stator instead of the rotor facilitates heat dispersal. The absence of a rotor winding, to-
gether with the possibility to use rare-earth permanent magnets allows more compact 
rotors to be designed which are in turn characterized by a low moment of inertia [59]. 

The choice of transmission depends on the power requirements, the kind of motion, 
the allocation of the motor with respect to the joint and, of course, cost. Typical quality 
requirements for robot gears are: very small backlash, high efficiency, large reduction in 
few steps, low inertia, low friction, high torsional stiffness, high power density and low 
weight. All these requirements cannot be fulfilled simultaneously. For example, the 
minimization of backlash requires pretensioned gear teeth, which on the other hand 
leads to higher friction and, as a consequence, to reduced efficiency. The following 
transmissions are typically used in revolute joints for industrial robots: 
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• Spur gears  
• Planetary gears 
• Harmonic drives 
• Planocentric reduction mechanisms (Cycloid) 
 

Spur gears are commonly used for robot wrist axes and typical properties include low 
price and high efficiency. Planetary gears are characterized by high efficiency and used 
for the robot base axes. For more information about spur gears and planetary gears in 
mechatronic applications see [53]. Harmonic drives [25] are commonly used for wrist 
axes and have very high reduction in one gear stage. Cycloid gearing, see for example 
[44], has high efficiency and is able to handle high torques and is therefore used for 
robot base axes. 

To transform the output from the motor into a linear motion of the joint, lead screws 
are commonly used. Mechanical linkages or timing belts may be used to locate the mo-
tor remotely from the actuated joint. By mounting some of the motors to the base of the 
robot the static and dynamic properties of the manipulator may be improved by decreas-
ing the total weight and thereby increasing the power to weight ratio. In the Figure 2.3 , 
a design is shown where the motor for axis three is mounted on the stand of the robot 
and then connected to axis three through a linkage called a parallel rod (p-rod). This 
reduces the inertia of the main joints since no actuator is needed to be mounted on joint 
three and since the inertia of joint two with respect to the upper arm, wrist and load will 
be independent of the joint three angle. 

 

Figure 2.3 ABB IRB 4400. 

2.1.1 Modeling  
The relation between position, velocity, and acceleration of the end effector and the 
joints is analyzed using kinematics. Kinematics deals with aspects of motion without 
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regard to the forces and/or torques that cause it. There are two types of kinematic prob-
lem: direct and inverse kinematics. In the programming of a robot manipulator, typically 
a set of desired positions and orientations and its time derivates of the end effector are 
specified in work space. The problem is to find all possible sets of actuated joint vari-
ables and their corresponding time derivatives which will bring the end-effector to the 
set of desired positions and orientations with the desired motion characteristics. This is 
known as inverse kinematics. The direct kinematics problem is to find the end effector 
position and orientation and their time derivatives when the position and velocity of the 
joints are known. The velocity (differential) kinematics gives the relationship between 
the joint velocities and the corresponding end effector linear and angular velocities. The 
velocity kinematics can be written as 

,= =
⎡ ⎤
⎢ ⎥⎣ ⎦

v
x J(q) × q

ω
��  (2.1) 

 

where J(q) is the manipulator Jacobian, and x�  represents the linear and angular veloci-
ties of the end effector with respect to the robot base frame and ,q q�  represent vectors 
of joint positions and velocities.   

Furthermore, dynamics deals with the forces and torques that cause the motion of a 
system of bodies. Analogously to direct and inverse kinematics analysis, there is direct 
and inverse dynamic analysis. The equations of motion for a multibody system can be 
derived, for example with recursive Newton-Euler, Kane or Lagrangian formulations.  
The Newton-Euler formulation incorporates all the forces acting on the individual links 
in a robot arm. These forces of constraint are useful for sizing the links and bearings 
during the design stage. The method consists of a forward computation of accelerations 
and velocities and then a backward computation of the torques and forces in each joint. 
This method is commonly implemented in robot simulation programs.  

Formulating the equation of motion using a set of independent generalized coordi-
nates (i.e. the joint variables) leads to Lagrangian equations of the second type. Unlike 
the Lagrangian equation of the first type and the Newton-Euler formulation, the second 
type does not need any forces of constraint between adjacent links, i.e. non redundant 
variables. The Lagrangian function is defined as the difference between the kinetic (K) 
and potential energy (U) of a mechanical system: 

.L K U= −  (2.2) 

The Lagrange’s equations of motion are then formulated in terms of the Lagrangian 
function 

,d L L Qidt q qi i

⎛ ⎞∂ ∂⎜ ⎟− =
⎜ ⎟∂ ∂
⎝ ⎠
�

 (2.3) 
 

where q is a vector consisting of the generalized coordinates. Q does not necessarily 
mean force, but the product Q times q always has the dimension of work. By placing 
the coordinate systems for each link according to the Denavit-Hartenberg convention 
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[17], it is easy and straightforward to write the transformation and rotation matrices 
between the different link frames. Together with the inertia matrices for every link and 
the Jacobian for the manipulator, it is now possible to rewrite the equation of motion as: 

( ) ( , ) ( ) ( ),= ⋅ + + +Q M q q V q q G q B q�� � �  (2.4) 

 
where M is the inertia matrix, V is the vector of Coriolis and centrifugal forces, G is a 
vector of gravity forces and B is a vector of viscous friction forces. Q is the vector of 
forces or torques at the joints. This equation is called the general form of dynamical 
equations. The manipulator inertia matrix M is symmetric and positive definite and 
therefore always invertible. The off-diagonal elements of M represent acceleration cou-
pling effects between joints. For more information on how mathematical models of ma-
nipulators are derived, see for example [1] and [63]. The dynamic model is essential for 
industrial robots in many ways and is very useful for mechanical design of the structure, 
choice of motors and gears, determination of control strategies, computer simulations of 
manipulator motions and real time control.  

Traditionally, the dynamic model for robot control has been constituted by a rigid 
model of the structure and elastic model of the robot joints. However, a trend in robotics 
today is to design lightweight robots, which have a higher load-to-mass ratio. The mo-
tive for lightweight robots are cost reduction, reduced power consumption and safety 
issues. A lighter robot will result in a weaker mechanical structure and hence enhanced 
elastic effects of the material. Therefore, dynamic models including the elastics of the 
structure have become more important. For more details on dynamic models including 
structural flexibilities, see [42] and [70].  

2.1.2 Control  
A robot is either programmed online in the robot controller system directly or offline by 
using a simulation model of the robot system. The action of programming the motion of 
the robot is often a manual process performed by the operator. In material handling 
tasks it is sufficient to assign only the pick-up and release locations, whereas in e.g. 
machining tasks the end-effector has to follow a specified path. The goal of the trajec-
tory planning is to generate the time laws for the relevant variables (joint or end effec-
tor) starting from a description of the desired motion given by the operator (motion 
planning). The trajectories must be feasible, i.e. the manipulator must always be able to 
execute the desired motion. The robot dynamics and kinematics must be taken into ac-
count, as do various constraints related to the maximum capacity of the actuators and 
the robot structure. The trajectory planning is crucial for the performance of the robot 
and is further explained in section 3.2.  

The motion control system ensures that the reference signal given by the trajectory 
generator is executed. There are many control techniques that can be applied to the con-
trol of manipulators. A standard procedure is to measure only the motor angular position 
and a common architecture for the robot controller is to use both feedback and feedfor-
ward control. If the generated trajectories are feasible then will the feedforward control-
ler ideally give zero tracking error on the motor side. Nevertheless, it still requires the 
use of error contributions between the desired and the actual trajectory. This is due to 
the considered dynamic model, even though a quite complex one is anyhow an idealiza-
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tion of reality. A common choice for the feedforward controller is to use computed 
torque [61], which in principle means the inverse of the robot dynamics. This leads to 
very complicated expressions that must be evaluated at high sampling rate. Therefore 
these expressions are often simplified by updating slowly varying parts less frequently 
e.g. configuration dependent parts of Coriolis and centrifugal terms. These are instead 
handled by the feedback controller. For further reading about robot control, see [13], 
[59] and [61].  

2.2 The design process  
As in any design process, the main goal in robot design is to develop optimal solutions 
based on the robot’s functional specifications. In Figure 2.4, a stepwise development 
process for robot design according to Wahrnecke et al. [69] is illustrated. A more gen-
eral design process model can be found in [14],[49] or [64]. The product planning and 
the system analysis phases include all the steps in the process from an initial product 
idea to a specification that includes performance data, anticipated cost, quantities, and 
project development time and cost.  
 

Intermediate result Robot design activity Design phase

Market and product research

Product planning and specification

Conceptual design
Critical functions specification

Concept evaluation and detailing

Design in hardware, software,
manufacturing and integration

Redesign

Large scale trials 
Redesign

Product planning

System analysis

System design    

System redesign

Product

Product idea

Functional 
Specification

System concept

Technical 
specification

Prototype

Pre-series product

Series product  
Figure 2.4 Industrial robot design process according to Wahrnecke et al. [69]. 

The system design phase (conceptual and embodiment design phases according to Pahl 
and Beitz [49], see Figure 2.5 ) includes a final functional specification, concept genera-
tion, and detailed design of both hardware and software. The conceptual phase includes 
selection of kinematic structure and estimation of link and joint parameters. An example 
of another activity in the conceptual design phase is investigation of transmission prin-
ciple and its components. 
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Figure 2.5 Design process according to Pahl and Beitz [49].  

After the conceptual phase, one starts to optimize the link and joint parameters and the 
kinetic performance i.e. motion times. Components for the drive system such as motors, 
gears, bearings, and couplings are also selected. Cabling, material selection, and dimen-
sioning of axes, housing, base etc are other activities in the detailing phase of system 
design. Design of an industrial robot is a very complex process involving extensive 
modeling and simulation efforts. Figure 2.6  shows all the activities involved in robot 
design according to Ölvander et al. [73]. 

 

Figure 2.6 Workflow for the robot design process according to Ölvander et al. [73]. 
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This loop is iterated throughout the design process, from the conceptual phase to detail-
ing. Even though all activities in Figure 2.6 are carried out throughout the process, most 
of the kinematic design activities belong in the early phases of robot design. 

The outcome from the system design phase in Figure 2.4 is a complete documenta-
tion for the manufacture, assembly, operation, and maintenance of the robot. The system 
design phase ends with an experimental verification of the robot prototype. Typical ac-
tivities towards the end of the system design phase are defining the construction layout 
and preparing preliminary production and assembly documents. The last phase in the 
development process in Figure 2.4 is redesign, which covers all activities to improve the 
robot system on the basis of detected deficits, quality, performance, cost potentials, re-
quested modifications, and planned product variants. 

Many design methods which are applicable to robot design exist in academic litera-
ture. It is outside the scope of this thesis to give a detailed outline of the whole body of 
literature but a few examples will be given. Since the design of robot manipulators be-
gins with dimensioning its various links to meet performance specifications, most of 
them stress the kinematic layout and its optimization. 

The concept of manipulability was introduced by Yoshikawa [67] as a means to 
measure the ability of robotic mechanisms in positioning and orienting end effectors. 
Asada [4] introduced the generalized inertia ellipsoid as a tool to measure the capability 
of changing the velocity of the end effector. Furthermore, Graettinger and Krogh [23] 
developed the acceleration radius. The acceleration radius is a global generalization of 
the point wise local measures of dynamic responsiveness proposed by other researchers 
such as Yoshikwa [67]. The acceleration radius is a uniform lower bound on the magni-
tude of the acceleration that can be achieved at the end effector from any state (joint 
position and velocity) in the operating region. Furthermore, Bowling presents a thor-
ough analysis of robotic manipulator dynamic performance in [6].  

Ma and Angeles [37] showed how the architecture of a manipulator is optimized un-
der dynamic isotropy conditions. Here, the design strategy is to render the generalized 
inertia matrix of a manipulator as close to dynamic isotropy and hence achieve optimum 
dynamic performance. In recent years, Angeles has put forward methods which focus on 
the kineostatic optimization of manipulators [29]. These methods rely on the minimiza-
tion of a condition number of the Jacobian matrix over the architectural parameters and 
the posture variables of the manipulator. The minimization of the condition number of 
the Jacobian has been put forward by others [58], but Angeles introduced the character-
istic length in order to cope with matrices which have entries that bear different units 
since these matrices have singular values of disparate dimensions, which prevents the 
evaluation of any version of the condition number. However, this concept has been slow 
in finding acceptance within the robotics community, probably because it lacks a direct 
geometric interpretation according to Angeles. In [29], the concept is revisited and put 
forward from a different point of view. The concept of homogeneous space is intro-
duced in order to relieve the designer from the concept of characteristic length. Within 
this space the link lengths are obtained as ratios, their optimum values as well as those 
of all angles involved being obtained by minimizing a condition number of the dimen-
sionally homogeneous Jacobian.  

A more straightforward kinematic measure, normally used by industrial robot manu-
facturers, is based on the maximum reach (see Figure 2.7) of a robot manipulator. Other 



24  Design Optimization in Industrial Robotics 

kinematic performance measures used by industrial manufacturers that affect the shape 
of the workspace is the so called stroke. The stroke is defined as the offset between 
maximum reach and minimum reach of the end effector of a robot. 

 

Figure 2.7 Shape, reach, and stroke of the workspace of an ABB IRB6640-185/2.8 robot. 

However, kinematic conditioning is not the only criterion for robot design. Additional 
criteria based on payload, structural behaviour, actuation methods, manufacturing, etc., 
must be brought into play. These criteria are not addressed in any of the methods men-
tioned above.  

The robot configuration, structure components, and drive train components are pre-
liminarily designed based on either cycle time (time required to execute working cycles) 
or speed and acceleration requirements. The mass data is obtained based on an initial 
design. Drive train components, consisting of motors and gears, are dimensioned based 
on this mass data. The mass data of the initial design is critical for the drive-train di-
mensioning. Design variables here are gear ratio, rated torque and speed of gears, rated 
torque and speed of motors, as well as some electrical properties of motors.  

End effector linear acceleration or axis rotational speed and acceleration at a large 
number of predefined points in robot workspace, are normally used as design criteria. 
This is an iterative process, meaning that the mass data of drive train components are 
updated while the drive-train dimensioning is in progress. Once the drive train compo-
nents are correctly dimensioned, structure stress analysis for ultimate strength and fa-
tigue lifetime is conducted. Modifications of structure components proposed by the 
stress analysis will result in changes in the mass property of the structure components, 
which in turn requires a new iterative design process of drive train components.  

Upon completion of the conceptual design, the data describing the robot manipulator 
is sufficient for a concurrent mechanical, drive train and controller design in a mecha-
tronic simulation environment. Normally, a large number of robot motion programs, or 
robot cycles, are used in this phase of the design to ensure the representative robot usage 
in some dedicated robot applications. This approach is normally referred to as task-, 
application- or working cycle based robot design. 
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When it comes to the design of the mechanical components of the drive train for 
mechatronic products, the way the problem is approached in literature, according to 
Roos [54], is in general to reduce the problem to selection of the optimal gear ratio for a 
given electric machine. Pash and Seering [51] derive the gear ratio that optimizes the 
actuator’s output torque for the single axis case with a pure inertial load. The method 
finds the gear ratio which minimizes the sum of the torques required to drive the inertia 
of the load and the torques required to drive the inertia of the motor’s rotor and the 
transmission. The method is only applicable if the inertia of the load is constant. In an 
industrial robot, the inertia varies with the configuration (posture) of the robot and 
therefore this method is not directly applicable to robot design. 

Van de Straete et al. [65] and [66] propose a general method for servo drive selection 
and optimization when selecting the components from a discrete set of already existing 
components. Chedmail [11] presents a method for optimum choice of robot actuators 
for a given trajectory. The optimum actuator set is that which corresponds to the mini-
mization of the global mass of all actuators with respect to maximum pulse torque and 
the maximum temperature constraints for each one. The method focuses on the motors 
and considers neither the mass of the gears nor the transmission ratios. 

Roos [54] presents a method for optimal selection of electric machine and gearbox, 
but instead of choosing from a set of alternatives the methodology aims at solving the 
problem of finding the optimal weight, size and other physical properties of the con-
stituent components, without being limited to already existing components.  

The methods mentioned above have been modified and further developed in order to 
suit the design of robot drive trains as put forward in this thesis. The method is outlined 
in the next chapter. 





 

3 
Drive train design 

IN THIS CHAPTER an approach to drive train design for robot manipulators is de-
scribed. In order to give the reader an overview of robot drive train design, a scheme for 
computation of the drive train according to Wahrnecke et al. [69] is shown in Figure 
3.1. Once a set of components are selected and the mass data of the manipulator exists 
the performance of the robot is evaluated. If the design does not meet all performance 
requirements there are two courses of action: choose a better (and often more expen-
sive) design or decrease the performance requirements.  
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Figure 3.1 Scheme for computation of drive train according to Wahrnecke et al. [69]. 
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The selection of gearboxes and motors is an iterative process where the starting point is 
chosen based on experience and rules of thumb. If the performance of the pre-selected 
motor and gearbox does not meet the desired manipulator performance, there are, as 
mentioned above, two methods of adaptation: 
 

1. Increase motor and gearbox performance 
2. Decrease manipulator performance 

 
Motor performance is increased by modifying an existing one, for instance by adding a 
fan, or by selecting a better/larger – and thus more expensive –motor. Gearbox perform-
ance is increased simply by selecting a more expensive one. Manipulator performance 
may be decreased in many different ways. For instance, reduced payload or a smaller 
reach lightens the demands on the actuators. Likewise running the robot at a slower 
pace means an easier situation for the actuators to cope with. The reference signal to the 
robot’s actuators controls the desired performance in terms of speed and acceleration 
and is created by the trajectory generator. Decreasing manipulator performance in terms 
of cycle time (time required to execute a specific working cycle) means decreasing the 
speed and acceleration of the manipulator along the path. This may be done directly by 
decreasing the maximum speed and acceleration of the joints or indirectly by decreasing 
for example the maximum torque generated from the actuators. We will use the latter 
approach here. For further details about the trajectory generator, see chapter 3.2.  

After the joint torques have been calculated in the scheme in Figure 3.1, the peak 
torque and equivalent torque requirements for the gearboxes are checked. The peak 
torque requirement refers to the maximum allowed acceleration/deceleration torque of 
the gearbox stated by the manufacturer. The equivalent torque is a function of speed, 
joint torques, and time proportion of working cycle. The equivalent torque, together 
with the rated torque, is then used for lifetime prediction of the gearbox, see equation 
(3.4). Lifetime is the most important design criterion for gearboxes, but in some cases 
with high intermittence also temperature must be considered. 

The next step is to validate the motor selection. The peak torque requirements of the 
motor are the sum of the acceleration/deceleration torques of the gearbox plus the 
torques required to accelerate/decelerate the rotating parts of the motor and the gearbox 
as well as torque needed to overcome friction. The peak torque of the motor depends on 
the maximum current of the power supply system and the torque constant of the motor 
Kt. The maximum speed of the motor depends on the back emf. constant Ke and the 
maximum voltage of the power supply system. The peak torque requirement prevents 
the permanent magnets from being demagnetized. The continuous torque requirement 
for the motor prevents the armature from burnout during operation. The continuous 
torque is often measured as the root mean square (rms) torque for the working cycle. 
This torque is compared with the rated torque of the selected motor in order to see if 
overheating is at risk. Unlike the situation for gearboxes, heat generation is the most 
critical problem for electric motors and depends on thermal characteristic of the mount-
ing of the motors.  

Before outlining the explicit design method used in this thesis, the characteristics of 
servomotors and cycloid gears are further explained together with a more detailed out-
line about trajectory generation.  
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3.1 Characteristics of servomotors and gearboxes in 
industrial robots 

This section provides some general information about common motors and gearboxes in 
industrial robots.  

3.1.1 Electric servo motors  
Brushless DC motors are today more or less standard for industrial robots. The main 
reason for using brushless DC motor is to eliminate the problems due to mechanical 
commutation of the brushes in a DC motor. The relation between torque and current for 
a brush less direct-current permanent-magnet motor is  

,m tT i K= ⋅  (3.1) 
 

where tK is called the torque constant and i is the current. There is also a corresponding 
relation between voltage and rotational speed  

,ee K ω= ⋅  (3.2) 

 
where eK is called back emf constant or voltage constant. The relation between applied 
voltage, back emf and current is hence given by: 

.eu R i Kω= ⋅ +  (3.3) 
 

 
From (3.3) one can see that the current, i, will decrease with increasing speed due to the 
back emf for a constant voltage, u. Hence the available torque Tm will also decrease 
with increasing speed. The torque constant is manipulated by changing the windings of 
the motor, but changing the windings will also influence the back emf constant by an 
equivalent magnitude.  
There are several losses in a brushless DC motors. Some of the losses depend on the 
speed of the motor: 

• Friction losses in bearings, sealing etc are proportional to the rotational speed. 
There are also losses due to air drag of the rotor which increase with the square 
of the speed.  

• Eddy currents. It is not possible to achieve perfect magnetic flux. Occasionally 
magnetic fields in the wrong direction will occur and generate currents through 
rotor and stator laminate. Increases with both rpm and load.  

There is also a purely electrical loss which is not dependent on the speed but is never-
theless the largest loss: 

• Ohmic loss is the resistance times the square of the current and hence increases 
with the square of the current. 
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In the Figure 3.2 the characteristics of any electric machine are shown in a graph.  
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Figure 3.2 Efficiency, current, and speed as functions of torque in an electric motor.  

In the graph in the figure above one can see that the current is linearly proportional to 
the torque and the speed is reciprocally proportional to the torque. The efficiency is low 
at low loads due to large mechanical friction losses, but as the load increases efficiency 
improves. After reaching an optimum, efficiency then decreases due to large ohmic 
losses. 

In the Figure 3.3 the intermittent maximum speed-torque characteristics of a brush-
less DC motor is illustrated. The maximum torque is either limited by maximum ampli-
fier current Imax_ampl, or maximum current of the motor without irreversible magnetiza-
tion Imax. The maximum motor speed is limited by the maximum voltage supplied from 
the amplifier. The inclination of the maximum torque is due to increased back emf with 
increased motor speed.  
 



Drive train design  31 
 

   

Motor speed

Torque

Limited by Imax_ampl or Imax

Limited by maximum amplifier voltage

 

Figure 3.3 Illustration of the intermittent maximum speed-torque characteristics of a 
brushless DC motor 

There is also a corresponding thermal speed-torque curve for brushless DC motors. This 
curve has lower values of the maximum torque (smaller area under the curve) and limits 
the torque for use of the motor for an infinite period of time.  

3.1.2 Gearboxes  
Some of the requirements with regard to robot gears are large reduction in few steps, 
low inertia, low friction, zero backlash, high stiffness, low lost motion and low weight. 
Compact speed reducers based on cycloid gearing are therefore an attractive alternative 
for robot manufacturers [44]. Speed reducers based on cycloid gearing are specified by 
a rated torque which corresponds to the stamina of the speed reducer, i.e. the larger the 
rated torque the longer the lifetime under constant load conditions. Together with the 
rated torque, a rated speed is also included in the equation for predicting lifetime.  

 
The equation for prediction of lifetime is derived by the manufacturer [44]. The manu-
facturer also states a maximum allowed acceleration/deceleration torque (~2-2.5 times 
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the rated torque) as well as maximum allowed speed on output shaft. A momentary 
maximum torque for emergency situations is also stated.  

3.2 Trajectory generator 
The planning of optimal dynamic motion is a generic optimal control problem. It can be 
transformed into a parametric optimization problem by expressing the joint variables as 
a function of a set of parameters [72]. We assume that the desired path is given in a pa-
rameterized form in the task space.  
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(3.5) 

 
Where ( )f i is a n-dimensional (n is the number of DOFs of the robot) vector function 
and s is a scalar path parameter. The notation 'f is used for differentiation with respect 
to s, d

ds
=' ff and f� for differentiation with respect to time, d

dt
=

ff� . It is assumed that ( )sf is 

continuous for all s and that s is strictly increasing. A good candidate for s is the path 
length. In this case s is the natural path parameter and hence 'f is a unit vector tangent to 
the path and ''f is a vector of magnitude 1

ρ
normal to the path, ρ being the radius of path 

curvature. 
The task space coordinates x can be described with respect to the joint coordinates q 

according to the following equations: 

( ) ( , ) ,= +

x = p(q)
x = J(q)q

x J q q J q q q

��
��� � ���

 

 
 

(3.6) 
 

where x is an n-dimensional (n is 6 for a 6 DOF robot) vector of task positions, p is n-
dimensional vector function representing the direct kinematics, J  is the Jacobian matrix 
and J�   its time derivative. Combining (3.5) and (3.6) yields the path in joint coordi-
nates, 
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(3.7) 
 

The motion of the manipulator is often constrained. The constraints are of two types: the 
system constraints imposed by the manipulator itself due for example to limits in actua-
tor torque and task constraints given by the task (geometric constraints, path velocity 
and acceleration, obstacle avoidance etc.). The objective of trajectory planning is to find 
feasible (and optimal with respect to some objective) trajectories for a given path with 
simultaneous utilization of the maximal capabilities of the manipulator and without vio-
lating any task or system constraints.  
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A path denotes the locus of points in the joint space or operational space, which the 
manipulator has to follow. Hence, one can say that a path is merely a geometric repre-
sentation of motion. A trajectory, on the other hand, is a path on which a time law has 
been specified, for instance in terms of velocities and/or acceleration in every point. 

 The motion of a rigid manipulator can be described by 
( ) ( , ) ( ) ( ),= ⋅ + + +Q M q q V q q G q B q�� � �  (3.8) 

 
where M is the inertia matrix, V is the vector of Coriolis and centrifugal forces, G is a 
vector of gravity forces and B is a vector of viscous friction forces. Q is the vector of 
forces or torques at the joints. Using (3.7) in (3.8) the equation of motion along the path 
becomes 

2
1 2 3 4( ) ( ) ( ) ( ),s s s s s s s= + + +Q a a a a�� � �  (3.9) 
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Note that M, J, J-1 and G are functions of q and therefore also of s. As a result of the 
parameterization, there are only two state variables  [ , ]s s�  and (n+1) equations. Hence 
the problem is reduced to a two-state optimization problem.  
When solving the optimization problem a cost function is required. The cost function 
for time-optimal motion is the time to execute the motion, tf and the optimization for-
mulation for time-optimal motion can be written as:  
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where s0 and sf are the initial and the final points on the path, respectively. Observing 
the cost function in (3.11), it is obvious that the path velocity should be as large as pos-
sible at every time instant without violating any system constraints. The constraints are 
here stated symmetrically but may be different in different directions, i.e. acceleration 
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and deceleration. The first two system constraints are limits in motor torque and gear 
torque. The gear torque refers to the output shaft torque and limits the maximal load on 
gearboxes. The constraints on motor torque and gear torque are speed dependent, where 
a higher torque is usually allowed at low speed. The constraints on cut torques and cut 
forces limit the load on the manipulator structure at sensitive parts and components such 
as bearings. 

The equation of motion described in (3.9) is used to estimate the required gear 
torques and motor torques.  If the required torques are larger than the system constraints 
admit, the trajectories are suitably time scaled, so that the speed and acceleration de-
pendent torque becomes smaller [59]. Typically the so called shooting methods con-
struct the time optimal velocity profile by forward and backward integration in the ( ,s s� ) 
plane using maximal possible acceleration maxs��  to increase the velocity and maximal 
deceleration mins��  to decrease it [72]. Actually the problem is solved by connecting a 
number of curves inside the admissible region of ( ,s s� ) which is bounded by the system 
and task constraints. The curves in the ( ,s s� ) plane represent alternately the segments 
with maximal acceleration / deceleration or with maximal allowable velocity. To see 
how this is made in detail, see for example [46].  

3.3 Design method 
Designing drive trains for industrial robots is a complex task where a holistic mecha-
tronic approach is necessary in order to avoid sub-optimization. The goal is to derive 
parametric models where all interesting properties are functions of some design vari-
ables. For instance a motor model is derived where all its properties of interest are func-
tions of the length and the radius of the motor’s rotor. 

In order to dimension the components of the drive train it is necessary to analyze the 
torques acting on the gear and on the motor. Assuming a stiff connection between gear-
box and motor, the torque Tm required by the motor to follow a given load profile is   

0( ) l
m m g l fric

TT J J J q i T
i

= + + ⋅ + +��  
(3.12) 

where Jm represents the inertia of the rotor of the motor, Jg is the inertia of the gearbox 
at the motor side of the gear and J0 represents all the other inertias on the motor side 
(brake, resolver, shafts etc.) lq��  is the acceleration of the output gear shaft and i is the 
gear ratio. Tl is the load torque on the output gear shaft and Tfric is the torque required to 
overcome the friction in the gearbox and the motor. The torque required to overcome 
the friction is modeled with coulomb friction and a speed dependent viscous friction as 
shown in the equation (3.13). If the viscous friction compensation is included here it has 
to be removed from the equation of motion as it is described in equation (3.8). The static 
and Stribeck effects are ignored. For more information about friction models see [3], 
[15] and [68]. 

( )m visc mfric coloumbT sign q c c q= ⋅ + ⋅� �  (3.13) 
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The parameters in the friction model are identified by comparison with efficiency charts 
and no-load running torque charts of the gear boxes. The output shaft of the gearbox is 
directly connected to the load. Assuming a stiff coupling between the load and the gear-
box, gives that the gear output torque, Tg equals the load torque Tl. 

3.3.1 Motor model  
This chapter outlines how the motor is designed. The goal is a parametric model where 
all necessary properties of the motor can be derived from the length and the radius of 
the rotor. 

The power losses in the motor are assumed to be dominated by copper losses. The 
iron losses are therefore ignored and the friction losses are included in Tfric as shown 
above. Selecting electric motors implies that three important criteria must be investi-
gated. First, the continuous torque requirement which prevents the armature from burn-
out during operation. The continuous torque rating for the motor has to be higher than 
the rms torque for the working cycle. Furthermore, the maximum torque of the load 
profile has to be lower or equal to the motor’s peak torque rating. Finally, the speed 
limit of the machine has to be higher or equal to the top speed required by the load pro-
file. The root mean square of the required motor torque is given by, 

2
,

0

1
m rms mT T dt

τ

τ
= ∫  (3.14) 

 
where τ represents the time in order to complete the load cycle. By combining (3.12) 
with (3.14) the following constraint for the rated torque of the motor is obtained: 

2
, 0

0

1 (( ) ) .l
m rated m g l fric

TT J J J q i T dt
i

τ

τ
≥ + + ⋅ + +∫ ��  (3.15) 

The second constraint implies that the maximum torque during the load cycle is lower 
than the peak torque rating of the motor Tm,peak. 

, 0max ( ) l
m peak m g l fric

TT J J J q i T
i

≥ + + ⋅ + +��  (3.16) 
 

In addition the maximum allowed speed of the motor, ωm,peak has to be higher than or 
equal to the maximum speed during the load cycle.    

, maxm peak lq iω ≥ �  (3.17) 

We also need to express the parameters of an electric motor as function of its size. Roos 
[54] presents models based on a scaling approach where data from existing motors is 
scaled to retrieve data for fictive motors of the same type but of different sizes. We will 
use the same models here with the constants adjusted against existing motors used in 
robotics. The rated torque of the motor is modeled as a function of the rotor radius rm 
and rotor length lm, 

2.5
,m rated m m mT C l r=  (3.18) 
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where Cm is constant for a specific motor type and for the same cooling conditions. 
Most of the time it is the risk of overheating the motor during continuous motion that 
determines the size of the motor, but for load cycles with short periods of large loads 
and long periods of low loads the peak torque capabilities of the motor may be dimen-
sioning. The model for peak torque offered by Roos is based on the electromagnetic 
properties of the motor and is merely a linear combination of the rated continuous 
torque, 

, ,m peak pt m ratedT C T=  (3.19) 

where Cpt usually lies between 3 and 6 for permanent magnet machines, assuming pas-
sive cooling. Using cooling results in a lower value. The limit of the motor’s peak speed 
is set to a constant value:  

, .m peak Cωω =  (3.20) 

The inertia of the rotor depends on the length and radius of the rotor according to 
4

0 ,m mj m mJ C l r J= +  (3.21) 

where Cmj is again constant for a specific motor type and is adjusted against data of ex-
isting motors in robotics. The weight of the motor, mm is approximated to 

2 ,m m m mm r lπ ρ=  (3.22) 

where mρ  is the average mass density, a realistic value may be 6000 -7000 kg/m3. 

3.3.2 Gear box model 
The gearboxes addressed in this thesis are RV-reduction gears [44], which use a plano-
centric reduction gear mechanism (cycloid). These are chosen discretely from a list. 
Each gearbox is modeled as a point mass with transmission inertia and friction. The 
most important criterion for the gearboxes is the number of possible cycles before they 
break down. The equation for predicting the number of cycles is provided by the manu-
facturer [44], and is given in (3.4). Every gearbox also comes with a price tag. Even 
though the gearbox size is chosen discreetly, the gear ratio can be modified continu-
ously for each gearbox. The relation between gear ratio and transmission inertia for the 
RV-reduction gears is  

,p
g inertiaJ C i −= ⋅  (3.23) 

 
where the constants Cinertia and p are unique for every gear box size. The gearboxes are 
chosen discreetly, but it is possible to develop similar parametric models, as described 
above for motors, for the RV-reduction gears and thereby use continues variables in the 
design optimization.  

Finally we will introduce some parameters which implicitly affect the shape of the 
load cycle. As described in (3.11) there is a system constraint which controls the load on 
the gear box when generating trajectories. Since the gear torque is the same as the load 
torque Tl,, changing this constraint will directly affect the shape of the load cycle. There 
are three parameters which generate the gear torque constraints implemented as a speed-
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torque curve. These are Tlow speed, permitted torque at low speed, Thigh speed, permitted 
torque at high speed and ωmax, maximum permitted speed on the output side of the gear-
box. There is also two parameters which decide the boundary between high speed and 
low speed wlow_speed  and whigh_speed, these parameters are however not included in the 
optimizations. An illustration of the speed-torque curve is shown in Figure 3.4. The way 
the constraint on gearbox load is parameterized is inherited from the gearbox manufac-
turers. 

Motor speed

Torque

Thigh_speed

Tlow_speed

Wlow_speed

Whigh_speed

ωmax

 

Figure 3.4 Illustration of the speed-torque curve for output side of the gearboxes, i.e. 
the constraint on maximum torque on the gearboxes in the trajectory planner.  

How the method described above can be formalized in an optimization formulation and 
solved with optimization algorithms is shown in section 5.3.  

3.4 Simulation programs  
In order to simulate the behavior of the robot the equations described above need to be 
implemented in a software environment. The optimization strategies presented in this 
thesis have been applied to simulation models from several different software programs. 
In paper [I] the simulation model is developed in the symbolic math package Mathe-
matica [40]. The simulation code used in papers [III], [V] and [VII] is developed by 
ABB Robotics and has a trajectory planner identical to the planner in the real robot sys-
tem. The trajectory planner creates references (position, speed, acceleration) based on 
both kinematic and dynamic constraints as discussed earlier. These references are used 
as inputs to the simulation program which simulates the behavior and performance of 
the robot. In paper [IV] the complete robot system is modeled in Dymola [19]. Dymola 
is a commercial simulation package based on the Modelica language. For more informa-
tion about Modelica see [21] and [43]. 
 





 

4 
Optimization 

OPTIMIZATION MEANS FINDING the best solution for a problem under given 
circumstances. Mathematical optimization means that the problem at hand is formalized 
in a stringent mathematical way and the best solution under the given circumstances is 
found by using mathematical algorithms. When it comes to design optimization, Pa-
palambros et al. give the following definition in [50]: 
“Informally, but rigorously, we can say that design optimization involves:  

1. The selection of a set of variables to describe the design alternatives. 
2. The selection of an objective (criterion), expressed in terms of the design vari-

ables, which we seek to minimize or maximize. 
3. The determination of a set of constraints, expressed in terms of the design vari-

ables, which must be satisfied by an acceptable design.  
4.  The determination of a set of values for the design variables, which minimize 

(or maximize) the objective, while satisfying all the constraints.” 
Design variables are in this thesis also called optimization variables when they are used 
in optimization formulations. With this viewpoint, one may regard design optimization 
as a way of thinking and a way of approaching the tasks during the whole design proc-
ess in any situation where analysis and synthesis is needed.  

4.1 Characteristics of objective functions for design 
optimization based on robot simulations 
The characteristics of the objective function and constraints decide which optimization 
algorithm that is most suitable. For continuous and differentiable functions classical 
nonlinear methods based on gradients are the most efficient. Optimization as it is em-
ployed here is based on computer simulations. A serious problem that arises in optimi-
zation using simulations is that the associated functions are not expressed in algebraic or 
analytical form and the computed results may be non-smooth and noisy.  

The objective function shown in the plot in Figure 4.1 is from the optimization prob-
lem described in chapter 5.3. One source for the discrete and noisy behavior originates 
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from the trajectory generator used in the simulation program. The two plots (a) and (b) 
are from running the simulation program with different trajectory generators. The trajec-
tory used in plot (a) has best performance and is used in robots today. The noise is less 
in plot (b) but the plateaus are wider (due to less frequent sampling times). Also notice 
how the steps in the “stairway” are inclined away from the optimum (minimum). It is 
widely appreciated in the simulation-based optimization community that the results of 
complex calculations like those shown in Figure 4.1 may fail to have the level of preci-
sion necessary for a reliable finite-difference approximation to the gradient, ruling out 
an off-the-shelf finite-difference quasi-Newton code [32]. In this example, derivative 
estimates with a small finite-difference interval are wildly inaccurate. 

 
   (a) 
 

 
   (b) 
 

Figure 4.1 Objective function from the problem stated in paper [VII] as a function of one of its 
variables for two different trajectory generators. 

One way to improve the quality of the derivative approximations is to have optimized 
finite difference procedures for different variables. It is also possible to filter some of 
the characteristics from the simulation which give rise to the noise. However, a major 
downside with “tailor made” finite differences and post processing of simulation results 
is of course that the effort needed to obtain the derivatives for the simulation based 
problems would be even more substantial.  

This is one reason for applying non-gradient methods such as the Complex method. 
Another reason is that these methods are more robust in locating the global optima in 
multi-modal search spaces. These methods could be applied to a wide range of problems 
without any modifications to the algorithms. The disadvantages with direct search 
methods are sometimes a low convergence rate and a limited size of the problem, i.e. 
the number of optimization variables (design variables). However, the term convergence 
rate may be investigated from different perspectives. Gradient based methods such as 
steepest descent have a faster asymptotic convergence rate than direct search methods. 
Nonetheless, asymptotic convergence rates do not tell the whole story, especially in the 
context of the problems to which direct search methods are most applicable.  

Another aspect, which is also highlighted by Koda et al. [32], concerning “slowness”, 
is whether this means only the elapsed time for the computer to solve the optimization 
problem, or the total time from the first formulation of the problem to the point where 
the designer has obtained a satisfactory result. In many engineering problems, the latter 
is the most significant. 
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4.2 Optimization algorithms 
There are many different optimization algorithms used in engineering design. The algo-
rithms can be divided into gradient based and non-gradient based methods. The gradient 
based methods have been thoroughly researched and a considerable body of literature is 
available on the subject, see for example [45], [48] and [56]. The gradient methods are 
widely used and are suitable for problems where the gradient of the objective function 
can be calculated or accurately approximated with a finite difference method at each 
point. The non-gradient methods on the other hand do not rely explicitly on gradient 
information in each point. They are therefore of more general use since gradient infor-
mation is not generally available for engineering design problems. A large number of 
different non-gradient methods exist.  

Direct search methods are one example of algorithms which do not calculate deriva-
tives. Examples of direct search methods include the Nelder-Mead simplex method 
[47], Box’s Complex method [7], the Hooke and Jeeves pattern search [27], and the 
Dennis and Torczon parallel direct search algorithm (PDS) [18]. A thorough review of 
direct search methods can be found in [32]. Other non-gradient methods are stochastic 
methods such as Genetic algorithms (GA) [28] and are comprehensively studied in [24]. 
Simulated annealing was developed by Kirkpatrick [31] in the early 1980s. More recent 
methods include Tabu search, developed by Glover [22], response surface approxima-
tions [39], Taguchi methods [12], and Particle Swarm (PS) [30]. 

Since gradient based quasi-Newton methods and Genetic algorithms have been used 
for benchmark material in this dissertation (paper [II] and paper [VI]) a short descrip-
tion of the nature of the algorithms will be given before presenting a detailed outline of 
the Complex algorithm.  

4.2.1 Gradient based algorithms 
All gradient based search methods start with an initial estimate for the optimum point 
and iteratively improve it until a solution is found. The gradient based methods are suit-
able for problems with continuous variables and differentiable functions since they op-
erate with gradients of the problem functions. If this is the case or if the gradients can be 
approximated accurately by finite differences, gradient based methods can be very effi-
cient to use. One of the most effective methods for nonlinearly constrained optimization 
generates steps by solving quadratic subproblems (QP). This sequential quadratic pro-
gramming (SQP) approach can be used in line search and trust region frameworks. In 
the line search strategy, the algorithm chooses a direction pk and searches along this 
direction from the current iterate xk for a new iterate with lower function value. The 
distance to move along pk can be found by approximately solving the following one-
dimensional minimization problem to find a step length α.  

0
min ( )k kf x p
α

α
>

+  (4.1) 

The search direction often has the form  
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1
k k kp B f−= − ∇  (4.2) 

where Bk is a symmetric and nonsingular matrix. In the steepest descent method (move 
in the direction in which f changes the most) Bk is simply the identity matrix I, while in 
Newton’s method Bk is the exact Hessian 2 ( )k kf x∇ . In quasi-Newton methods, Bk is an 
approximation to the Hessian that is updated at every iteration by means of a low-rank 
formula. Line search methods and trust region methods both generate steps with the 
help of a quadratic model of the objective function, but they use this model in different 
ways. In the trust region, the information collected about f is used to construct a model 
function mk,  

1( ) ,
2

T T
k k k k km x p f p f p B p+ = + ∇ +  (4.3) 

 
for which the behavior near the current point xk is similar to that of the actual objective 
function f. Because the model mk  may not be a good approximation of f when x is far 
from xk, one restricts the search for a minimizer of mk to some region (trust region) 
around xk. In effect, one chooses the direction and the length of the step simultaneously. 
If a step is not acceptable, the size of the region is reduced and a new minimizer is 
found. In general, the step direction changes whenever the size of the trust region is 
altered.  

The general constrained optimization problem can be stated as 

min ( )

( ) 0, ,
( ) 0, ,

. .
nx R

i

i

f x

x i
c x i

s t c ε
∈

= ∈
≥ ∈Ι

 (4.4) 
 
 

where the objective function f and the constraint functions ci are all smooth, real-valued 
functions on a subset of n\ and Ι and ε  are finite index sets of inequality and equality 
constraints, respectively. The optimization problem can be solved with different ap-
proaches. One approach is to combine the objective function and the constraints into a 
penalty function and solve the problem by a sequence of unconstrained problems.  For 
example if only equality constraints are present in (4.4), one can define the penalty 
function as  

21( ) ( )
2 i

i
x c xf

εμ ∈

+ ∑  (4.5) 

where µ > 0 is referred to as a penalty parameter. This unconstrained function is then 
minimized for a series of increasing value of µ, until a solution of the constrained prob-
lem is identified to sufficient accuracy. In the augmented Lagrangian methods a func-
tion which combines the properties of the Lagrangian function, 

( , ) ( ) ( ),i i
i I

x f x c x
ε

λ λ
∈

= − ∑
∪

L  (4.6) 
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and the quadratic penalty function (4.5). This so-called augmented Lagrangian function 
has the following form, when only equality constraints are present in the problem stated 
in (4.4): 

21( , ) ( ) ( ) ( ).
2A i i i

i i
x f x c x c x

ε ε
λ λ

μ∈ ∈

= − +∑ ∑L  (4.7) 
 

In sequential quadratic programming methods a QP subproblem is solved to find search 
directions and a line search or trust region approach is then used to calculate the step 
size in that direction. More specially in the case of equality constraints in (4.4), the 
search direction pk at the iterate (xk,λk) is given by the solution of 

 
The objective in this subproblem is an approximation of the Lagrangian function and 
the constraints are linearizations of the constraints in (4.4).  

4.2.2 Genetic algorithms 
Genetic algorithm (GA) is a search algorithm based on the hypothesis of natural selec-
tion and genetics. In the methods, each optimization variable is encoded by a gene using 
an appropriate representation. The corresponding genes for all parameters form a chro-
mosome (or point) capable of describing an individual design solution. A finite length 
string, such as a binary string of zeros and ones is usually used to represent each chro-
mosome. Today real value chromosomes are common, whereas original GAs used bi-
nary representations of the optimization variables. A set of alternative points (called 
population) at an iteration (called generation) is used to generate a new set of points. In 
this process, combinations of the most desirable characteristics of the current members 
(individuals) of the population are used to generate new populations better than the cur-
rent ones.  

When comparing different points the term fitness is used. Fitness is defined using the 
objective function or the penalty function for constrained problems. The fitness value is 
calculated for each member of the population, such that the fittest individuals are the 
ones with the highest likelihood of survival. 

The Genetic Algorithm starts with a set of randomly generated individuals (points). 
Three operators are then needed to implement the algorithm: (i) selection; (ii) crossover; 
and (iii) mutation. Selection is an operator where an old string (point) is copied into the 
new population according to its fitness. Individuals with higher fitness are more likely 
to produce offspring. The crossover operator corresponds to allowing the selected indi-
viduals to exchange characteristics among themselves. Crossover entails selection of 
starting and ending positions on a pair of mating strings at random and simply exchang-
ing the strings of zeros and ones between these positions. Mutation corresponds to se-
lection of a few individuals of the population, determining a location on the string at 
random and switching the 0 to 1 or vice versa. The foregoing three steps are repeated 

1min
2

. . 0.

T
k kp

k k

p W p f p

s t A p c

+∇

+ =
 (4.8) 
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for successive generations of the population until no further improvement in the fitness 
is possible, or the number of generation reaches a specified limit. The individual in this 
last generation with the best fitness value is taken as the optimum.  

4.2.3 The Complex algorithm 
The modified version of the original Complex method developed by Box [7] in 1965 is 
an easy-to-use direct search method. This method has been used to a large extent in this 
work and an outline will be given here followed by a description of a modified version 
for discrete variables. 

The Complex algorithm progresses between each iteration by manipulating a set of 
points. The number of points m in the complex must be such that m >= n + 1, where n is 
the number of design variables. The number of points m used, however, is often more 
than n+1. The geometrical figure in Rn with m >= n + 1 points is referred to as a com-
plex, see Figure 4.2. 
The starting values at each point, q, are generated using random numbers.  

1,..., ; 1,...,( - ); = == +l u l
ij i ij i iq n j mx R x x i  (4.9) 

Here j is an index that indicates a point in the complex and i an index that indicates a 
variable. Rij is a random number in the interval [0,1]. If the implicit constraints are not 
fulfilled, a new point is generated until the implicit constraints are fulfilled.  
The objective function is evaluated at each point. The method progresses by replacing 
the worst point by a new point obtained by reflecting the worst point through the cen-
troid qc of the remaining points by a factorα  

( - ).new c c worstα= +q q q q  (4.10) 
 

The centroid qc, is calculated as: 

1

1 ; 1,..., .
1

m

c ij ij worst
j

q q i n
m =

=

⎛ ⎞⎛ ⎞= − =∑⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
q  (4.11) 
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qc

 

Figure 4.2 Reflection of the worst point through the centroid of the remaining points. 

 
Box recommends α= 1.3. If a point repeats as the lowest value in consecutive trials, it is 
moved one half the distance towards the centroid of the remaining points 

´ ( ).
2

new c
new c

−
= +

q q
q q  (4.12) 

 

4.2.4 The Complex-RF 
The Complex-RF optimization method is a modified version of the Complex method 
developed by Krus [34]. It is modified by introducing some randomization into the 
search in order to avoid premature collapse of the method 

´ ( ) ,
2

new c
new c

−
= + +

q q
q q r  (4.13) 

 
where r is calculated according to: 

( )( )0.5 , 1, , .fac
u lr x x R i ni i= ⋅Δ ⋅ − − =r …  (4.14) 

 
rfac is a randomization factor, xl and xu the variable limits, Δ represents the maximum 
relative spread in the current complex, and is calculated as:  

max( ) min( )
max ∈∈

∈

⎛ ⎞−
⎜ ⎟Δ = ⎜ ⎟⎜ ⎟−⎝ ⎠

ij ijj Jj J

i I

q q

u lx xi i

. (4.15) 
 

R is a random variable in the interval [0,1]. This formulation implies that the noise 
added is a function of the convergence Δ, and the shape of the original design space, i.e. 
the variable limits.  
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Furthermore, the formulation makes it possible for the complex to maintain diversity 
and also regain lost dimensionality. Since the noise is a function of the maximum 
spread, perturbations could be added to dimensions in which the complex has already 
converged. This facilitates avoidance of local optima. The randomization factor thus 
makes the method more robust in finding the global optimum at a cost of somewhat 
slower convergence. Experiments have shown that a randomization factor of 0.3 is a 
good compromise between convergence speed and performance [33]. 

If a local minimum is located at the centroid, the method will continue to move new 
points towards the centroid, where the whole complex will collapse at one point. In or-
der to avoid this, the new point could gradually be moved towards the best point [33]. 
This could be expressed as: 

( )( )´
1(1 ) .
2new c best newa a= − + +q q q q  (4.16) 

 
Where qbest is the best point and 

1
rk

ba e
−

= −  (4.17) 

where kr is the number of times the point has repeated as the worst and b is a constant 
that equals to 4. Thus, the more times the point repeats as the worst, the larger a be-
comes and the new points are moved towards the best point.  

It is also possible to include a forgetting factor, which ensures that the complex is 
made up predominantly of recent parameter sets. This is necessary if the objective func-
tion varies over time. In that case, old objective function values become increasingly 
unreliable and should be replaced by new ones. This is particularly true if the optimiza-
tion is to be used to optimize parameters in a real process. In this case there may be drift 
in the parameters of the physical system. Introducing a forgetting factor has also been 
found to improve the success rate in other situations as well. One of these situations is 
when the function space consists of plateaus where the complex runs a risk of getting 
stuck. By introducing a forgetting factor, these plateaus are inclined which helps the 
complex to “slip off” the plateaus. The forgetting factor is explained in detail in Krus et 
al. [33]. The suffix “-RF “ is short for randomization factor and forgetting factor. 

4.2.5 Complex-RD – A modified version for discrete variables 
Many real design problems include a mixture of determining continuous parameters as 
well as selecting components from catalogs and databases. Discrete problems such as 
selecting components from a database can be handled by introducing explicit relations 
between the properties of the different components. The optimization thus works with 
continuous variables and after the optimization is completed the closest valid alterna-
tives are chosen. However, changing every variable to its closest integer alternative after 
the optimization has converged may move the solution away from optimum due to de-
pendencies between variables. For instance the choice of gearbox on axis three in a se-
rial manipulator influences the torque requirements of joint two. In Figure 4.3, the fea-
sible area and the feasible points of a discrete optimization problem are marked. 



Optimization  47 
 

   

x1

x2

1 2 3 4 5 6

1

2

3

4

5

6 X*
LP

X*
DP

Feasible discrete points

 

Figure 4.3 Example of feasible area in a discrete optimization problem [36]. 

The discrete problem has an optimum at X*
DP = (4, 3). If we remove the constraint on 

discrete variables we get a linear programming problem, an LP-problem, of continuous 
variables. The optimum to this problem is at X*

LP = (5.9, 5.3).  
Deriving the explicit relations between the properties of the components may also be 

a cumbersome task. For example, if two types of gearboxes, planetary gears and har-
monic drives, are available, a common explicit relation between e.g. cost and mass can 
be hard to derive. 

Another way of handling component selection in design optimization is to introduce 
some function within the objective function which merely takes the integer part of con-
tinuous numbers, thus ensuring that the optimization always works with valid alterna-
tives. Unfortunately, this gives rise to plateaus in the objective function space which is 
troublesome for the optimization algorithm. A function with plateaus due to this is 
shown in Figure 4.4 
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Figure 4.4 Graphic representation of (4.18). 
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(4.18) 
 

where n=4 and a⎢ ⎥⎣ ⎦  denotes the integer part of a. 
The main idea when solving problems of a discrete character with the Complex-RF is 

to take advantage of the forgetting factor. Since the forgetting factor gradually reduces 
the value of old solutions, the points in the complex will not have the same values even 
if they are all on the same plateau. The complex will thus keep moving and is therefore 
capable of jumping to the next plateau. The forgetting factor can thus be seen as an in-
troduction of a virtual gradient of the objective function. How the forgetting factor and 
the randomization factor can be optimized for objective functions with plateaus is dis-
cussed in [33].  

A way to get around the plateaus in the objective function is to have the Complex 
always contain valid discrete alternatives. This can be done by moving the “rounding 
off procedure” within the optimization algorithm. The allowable points for the Com-
plex-RF are made discrete by simply rounding off the values of the discrete variables 
after every move in the solution space. Consider a problem with n design variables 
where the first p variables are discrete. The reflection move in (4.10) could then be ex-
pressed according to equation (4.19), where Int(x) is function that returns the integer 
closes to x.  
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A schematic representation of the rounding off can be seen as putting a grid on the solu-
tion space in those dimensions where the variables are discrete and the feasible region is 
made up of the points of intersection in the grid, see Figure 4.5. In [26], Hague shows 
how a similar modification of the complex algorithm can handle the discrete variables 
when designing civil engineering structures.  
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Figure 4.5 Visualization of a reflection move in the discrete complex method. 

The modified algorithm, according to (4.19), for discrete problems is called Complex-
RD where R stands for randomization factor and D for discrete. The forgetting factor is 
unnecessary because the plateaus become vertices when the rounding off procedure is 
within the optimization algorithm.  In paper [II], an optimization was performed of both 
the Complex-RF and the Complex-RD for problems of discrete character. The algo-
rithms were also evaluated against each other, together with a genetic algorithm, on a 
problem of discrete character based on robot simulations. The Complex-RD proved to 
be 20 times as effective as the Complex-RF and 60% more effective than a genetic algo-
rithm. However, the GA was used without optimized settings (crossover, mutation) and 
might have been more effective after some fine tuning. 

4.2.6 Complex-RFD – An optimization algorithm for mixed 
variables 

It is easy and straightforward to combine the Complex-RF and the Complex-RD into an 
algorithm for mixed variable problems. This is done by dividing the variables into two 
groups, one with continuous variables and one of variables of discrete character. A 
Complex-RF algorithm with optimum settings for continuous problems works with the 
continuous part and a Complex-RD with optimum settings for discrete problems works 
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with the discrete variables. How the Complex-RFD can be applied to robot design is 
presented in paper [III], [IV] and [VII]. 

4.2.7 Adaptive Complex method 
In the Complex method the number of points must be at least one plus the number of 
variables. However, in order to avoid premature termination and increase the likelihood 
of finding the global optimum more points are often used at the expense of the required 
number of evaluations. Nevertheless, the efficiency can be increased if points are re-
moved gradually during the optimization. By gradually removing points as the Complex 
method converges, the required number of function evaluations is reduced while the 
likelihood of finding the global optimum is maintained. The pace at which points are 
removed is determined by how fast the spread (see equation (4.15)) of the complex 
shrinks. The number of points is eventually reduced to a minimum, i.e. n+1. Paper [VI] 
shows how this is done in detail. The proposed method shows encouraging results when 
compared to the Complex method with a fixed number of points and a quasi-Newton 
method. 

4.2.8 Conclusions 
Both the Complex-RD and the Complex-RF can handle discrete problems, but the 
Complex-RD is better suited for the task. An optimization of the optimization method 
was performed in order to find the most suitable settings of the modified algorithm. The 
methods were then evaluated against each other on two different discrete problem for-
mulations using a global performance index, see paper [II]. The comparison showed that 
Complex-RD is the most efficient method. When solving a component based design 
problem for an industrial robot based on simulation, Complex-RD proved to be about 20 
times as effective as Complex-RF. Complex-RD has also been compared to a genetic 
algorithm and it has proven to be at least 60% more effective than the GA in both the 
mathematical test problem and the robot design problem. 

By gradually removing points as the Complex method converges the required num-
ber of function evaluations is reduced while the likelihood of finding the global opti-
mum is maintained. Hence, the adaptive complex method outperforms the original 
complex method in all problems studied in paper [VI]. In a simulation based optimiza-
tion problem the adaptive complex algorithm also outperforms the gradient based quasi-
Newton method both in terms of finding a better solution and in the number of simula-
tion calls needed.  

One difficulty when using the off-the-shelf finite difference quasi-Newton code to-
gether with simulation is to estimate the derivatives accurately. The gradient methods 
often need extensive parameter tuning in order to work at all. When using a direct 
search methods such as the Complex method this is avoided and hence the time from 
formulating the problem until a satisfactory solution is found is reduced.  
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4.3 Optimization loop 
A schematic illustration of the simulation based optimization loop used in this work is 
shown in Figure 4.6. If a system model in the form of a simulation model is defined, it 
is possible to use optimization based on simulation. 

System
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System
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(and constraint violation)

Requirements
& desirables

 

Figure 4.6 Optimization based on simulation. 

Using this method, the system is simulated using different sets of system parameters xsp, 
e.g. mass and rated torque of gearboxes. From each system evaluation, a set of system 
characteristics ysc, e.g. cycle time and life time, is obtained and using these, an objective 
function is formulated. In general the simulation v is used to obtain the performance 
characteristics of the system. 

( ).sc spv=y x  (4.20) 
 

In the general case, many explicit relations exist between parameters in the system. In 
fact, in manual design, great efforts are made to obtain explicit design relations and 
there are many cases where system parameters are coupled and cannot be chosen inde-
pendently of each other. It is therefore appropriate to define a layer of explicit design 
relations where relatively few independent design variables are expanded to the full set 
of system parameters, see Figure 4.7. In Design exampled B and C in the next chapter 
the gearboxes are chosen discretely from various existing alternatives. There are several 
properties associated with each gearbox alternative. Hence a change of a gearbox corre-
sponds to several changes in the system parameters such as mass, inertia, cost and rated 
torque 
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Figure 4.7 Optimization based on simulation with a layer of explicit design relations. 

The explicit design relations can be written as: 

( ),sp u=x x  (4.21) 
 

where x is the vector of design variables.  
The optimization algorithm starts from an initial point (given by the user or based on 

a random guess). Before running the simulation the model is updated. For instance, in 
design example C, the motors are considered and one of the design variables is the 
length of the motor’s rotor. The weight of the motor is calculated based on this parame-
ter, i.e. a explicit design relation. The mass of the motor is then updated in a model of 
the dynamics of the mechanism. When all parameters have been updated a trajectory is 
generated and a simulation is executed in order to investigate the performance of the 
design. The objective function, f, is then calculated as a function of the system charac-
teristics e.g. cycle time and life time. 

( ).scf f= y  (4.22) 
 

Based on the value of the objective function, a new solution, i.e. a new set of design 
variables, is generated and the loop is closed and new iterates generated until certain 
convergence criteria are fulfilled. The whole optimization problem can then be written 
as: 

In this thesis, the general optimization problem will be stated in following way: The 
design variables are denoted by x, and all n design variables are represented by the vec-
tor x.  

1[ ,..., ]nx x=x  (4.24) 
 

The objective function is denoted by f. Both objective and the ε equality constraints 
and the I inequality constraints are functions, explicitly or implicitly, of the design vari-
ables. The general optimization problem could be described in mathematical terms as: 

min ( ( ( ))).f f v u= x  (4.23) 
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The problem described in (4.25) should be read as follows: Find the x that minimizes 
f(x) subject to the inequality constraints and the equality constraints and where all n 
design variables are within their lower (xl) and upper (xu) bounds. 
 





 

5 
Design examples 

THIS SECTION WILL outline how the presented methods and algorithms have been 
implemented at different stages in the development of industrial robots, from concept to 
end user. The first design example belongs to the conceptual design phase, see Figure 
2.4, of industrial robots where characteristics such as link dimensions, payload and 
reach are considered. The next two examples focus on drive train design in industrial 
robots. Drive train components are considered throughout the system design phase, as it 
is described by Wahrnecke (see section 2.2), from concept to detail design. However, 
these examples incorporate properties such as lifetime, and cycle times, which are as-
pects that are normally considered after the conceptual phases. Finally, it is shown how 
the ideas in this thesis can be applied to application adapted performance optimization 
for industrial robots. The means that the robot control is optimized with respect to the 
thermal and fatigue load on the robot for the programs that the robot performs during 
repetitive production, i.e. after the robot has been sold and is operated by the end user.  

5.1 Design example A 
In this example the focus is on the conceptual design stage and on how rather simple 
mathematical models could be applied together with optimization techniques in order to 
support the designer. The objective is to determine the size of the gearboxes and arm 
lengths from an acceleration capability perspective. The object of the study is a three 
degree of freedom robot modeled in the Mathematica program [40] and optimized using 
the Complex optimization algorithm. The arm lengths are treated as continuous vari-
ables whereas the gearboxes are selected from a list of available units. For more infor-
mation about how the optimization problem is solved in detail, see paper [I]. With the 
help of the presented techniques the designer can investigate different conceptual de-
signs and evaluate how changing requirements affect the optimal design.  

The optimization problem is formulated so as to minimize the weight of the gear-
boxes, by choosing different discrete gearboxes, and changing the lengths of the arms 
continuously, subjected to a few requirements on reach, acceleration, and payload ca-
pacity. The acceleration should be achieved in the x, y, and z direction of the base 
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frame. The acceleration requirement is set to 7.35 m/s2 (0.75 g) at the predefined points 
in the workspace see Figure 5.1. 

300 mm

300 mm

 

Figure 5.1 Pre-defined points in workspace for performance evaluation. 

Furthermore, the robot should have a payload capacity of 100 kg and a minimum reach 
of 2.5 meters. The available gearboxes for the application are chosen from a list of al-
ternatives. All the gearboxes are from the same manufacturer and are of the same type. 
In order to handle an increase in output torque, a larger gearbox is thus needed and 
hence mass increases.  

Example of a possible trade-off study with this approach is shown in Figure 5.2. The 
payload requirement is gradually decreased in order to investigate at which point the 
change in payload has an effect on size of the gearbox and hence the objective function. 
As the gearboxes represent discrete selections, the sensitivities remain zero until it is 
possible to change to a smaller gearbox, and then the sensitivity is infinitely large in-
stead. As can be seen in Figure 5.2, gearbox 1 can be changed from 47 kg to 28 kg if the 
payload requirement were to be decreased to 60 kg. Gearbox 2 can be changed at a pay-
load of 55 kg.  
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 Figure 5.2 The correlation between decreasing payload and size of gearbox. 

5.2 Design example B 
The design mission here is to select gearboxes for a 4 DOF palletizing ABB-robot, see 
Figure 5.3. 

 

Figure 5.3 Palletizing robot IRB 660. 

The gearboxes are major contributors to the overall cost of typical articulated industrial 
robots. Hence, there is often a desire to decrease the cost, i.e. size, of the gearboxes in 
order to reduce the overall cost without lowering the requirements with regard to life-
time and performance. Even though the design method focuses on choosing the gear-
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boxes, the motors are also included in the simulations. They are, however, not treated as 
variables. There are twelve design variables in the optimization. Four of them corre-
spond to gearbox alternatives, one for each axis. The other variables generate the speed-
torque curve, two variables for every curve and one curve for each axis gives eight vari-
ables. There are several properties associated with each gearbox alternative. Hence, a 
change of gearbox corresponds to several changes in the system parameters such as 
mass, inertia, cost, and rated torque. Mass and inertia properties affect the dynamics of 
the mechanism. For example, changing to a heavier gearbox on axis four will increase 
the mass of the mechanism upstream of the other three axes and hence influence their 
drive chains. Bigger gearbox inertia means that a larger portion of the torque from the 
motor will be used to accelerate the rotating parts of the gearbox itself instead of accel-
erating the load. A change of gearbox means that the dynamic models used in the trajec-
tory generator need to be updated before running the simulation.  

We assume there are 20 alternative gearboxes for axes one to three. For the fourth 
axis we assume there are nine alternatives. This leads to an overall possibility of 72000 
combinations. The two variables generating the speed-torque curve on the other hand 
are handled as continuous variables. Situations may of course occur when components 
other than the gearboxes limit performance, such as saturation of motor capacity or the 
power supply. In Figure 5.4a, one can see the torque exerted on the gearbox on axis one 
during a small part of the cycle for two different torque-speed curves. In Figure 5.4b, 
the position in radians as a function of time for the two scenarios is shown. Notice how 
a more limiting speed-torque curve leads to lower torque usage, i.e. a trajectory with 
less aggressive references (the lower of the two curves in Figure 5.4a) and hence a 
longer cycle-time, i.e. the curve in Figure 5.4b is shifted rightwards. 

 

Figure 5.4  (a): Difference in exerted torque on axis one due to different speed-torque curves. 
(b): Difference in position of joint one due to different speed-torque curves. 

We will here use the optimization approach based on running robot paths. Unlike the 
approach of evaluating the speed and acceleration capability of a manipulator we will 
here run actual working cycles. The approach is called cycle based optimization [20]. 
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The objective function is formulated as the sum of the cost of the gearboxes. There are 
also some constraints: The life time of the gearboxes should exceed 35,000 hours and 
the time to execute the working cycle (cycle time) should be less than 42 seconds. Op-
timization variables x1 to x4 refer to gearbox choices and are handled as discrete vari-
ables. The last eight variables x5 to  x12 refer to speed-torque curves for the gearboxes. 
The optimization problem is solved with the Complex-RFD algorithm.  
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In Figure 5.5 one can see how the gearbox choices change during the optimization for 
axes 1 through 3. Here the gearbox alternatives converged to alternatives 17, 12, and 5 
for axes 1 through 3 respectively. Note that only discrete alternatives for the gearboxes 
are considered. In Figure 5.6, the values of the speed-torque parameters for axis 1 are 
shown. These are examples of real value parameters. 
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Figure 5.5 Convergence of gearbox alternatives for axis 1, 2 and 3 as functions of the number of 
iterations. 
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Figure 5.6 Convergence of the parameters controlling the speed-torque curve as functions of the 
number of iterations. 

In order to provide the designer with reliable decision-making information, the con-
straints on lifetime and cycle-time in (5.1) can be varied. The requirement with regard to 
cycle-time, for example, can be slowly relaxed and for each relaxation a new optimiza-
tion problem is solved. This would give information about how the cost of the gear-
boxes could be decreased with increasing cycle-time. By doing this, the designer can get 
a feeling for the correlation between gearbox cost, manipulator performance and life-
time over the entire solution space. With this approach, a set of optimizations has to be 
performed in order to obtain a trade-off diagram. An alternative method would be to 
formulate the problem as a multi-objective optimization problem and solve it using for 
example a multiobjective genetic algorithm as described in Deb [16]. The trade-off dia-
gram below was created by optimizing the problem stated in (5.1) for different con-
straints on cycle-time and lifetime. The performance in cycle-time has been relaxed in 
ten discrete steps for constant values of the lifetime constraint. The lifetime requirement 
has been kept constant on three levels. These levels are 30,000h, 35,000h and 40,000 h. 
Thus, the curves shown in Figure 5.7 were created based on 30 different optimizations.  
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Figure 5.7 Cost of the gearboxes as a function of cycle time. The three different curves corre-
spond to different expected lifetimes of the gearboxes. 

By moving horizontally in the diagram in Figure 5.7, one can see how much perform-
ance is lowered if one wishes to increase lifetime at constant cost. In the vertical direc-
tion, one can investigate how much the cost is increased if one wishes to increase life-
time at constant performance. For more details see paper [III]. 
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5.3 Design example C 
In this example the gearboxes and the motors are considered. The design example is 
based on the design method described in chapter 3.3. In order to illustrate the method 
we will design the drive trains for axis one and axis two of a six-axis serial manipulator, 
with a size corresponding to the ABB IRB 6600 shown in Figure 5.8 .  

Axis 1

Axis 2

 
Figure 5.8 ABB robot IRB 6600 

We will use the optimization approach based on running robot paths here as well. The 
cycle time requirements will affect the torque, acceleration, and speed capabilities of the 
actuators. For the cycle-based approach it is important that the motion programs include 
all design aspects of interest. How the motion programs could be chosen is not further 
investigated here but Feng et al. penetrate the question in [20].  

We will use a design for cost for the optimization formulation. This refers to a con-
scious use of engineering resources to ensure that the design process leads to the most 
economical solution and is modeled by incorporating the cost function, c(x), as an ob-
jective in the basic formulation of the design optimization. In this case the cost function 
consists of the sum of the normalized masses (proportional to the price) of the motors 
and the normalized price of the gear boxes. The formulation is complemented with a 
constraint on performance, here using cycle time as a figure of merit, see constraint (I) 
in (5.2). For each drive train there are another four constraints. The first three originate 
from the motors’ continuous torque, peak torque, and speed requirements, see (II) to 
(IV) in (5.2). The maximum speed of the motors is set to 420 rad/s (constraint (IV)). 
The maximum speed of the motors is for simplicity reasons not variable. Constraint (V) 
exists in order to guarantee a certain lifetime, measured in millions of cycles for the 
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gearboxes. In this example the lower limit is 20 million cycles. Furthermore there are 
upper and lower bounds on the design variables (VI). There are six variables for each 
axis and two axes involved in the optimization which results in 12 design variables. The 
first three design variables manipulate the admissible torque and speed of the gearboxes 
i.e. the speed-torque curve. The values on the upper and lower bounds for the speed-
torque curve are normalized values. The radius of the rotor, rm, is fixed in the optimiza-
tion, only the length of the rotor, lm, controls the size of the motors, and i is the gear 
ratio. By increasing the admissible torque and speed for the gearboxes, the load cycle 
will be tougher, leading to larger motors in order to avoid conflict with constraints (II) 
and (III) in (5.2) and gearboxes with higher rated torque due to the constraint on life 
time (V). The gearboxes are chosen discretely from a list of alternatives. 
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(5.2) 
 
 
 

Before every function call in the optimization the simulation model is updated. The cur-
rent lengths of the motor’s rotor give the current masses according to (3.22). Both the 
mass of the motors and the mass of the gearboxes are then updated in a model of the 
dynamics of the mechanism. When all parameters have been updated a trajectory is 
generated and a simulation is executed in order to investigate the performance of the 
design. The constraints and the objective function are then evaluated, for instance the 
rated values of the motors are assessed against the rms values from running the current 
working cycle (constraint (II)).The constraints are implemented as penalty functions and 
will affect the objective function value if violated.  

The objective of the design optimization is to find suitable motors and gears for dif-
ferent levels of performance. The designer states the level of performance in terms of 
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cycle time and lifetime. The optimization finds the cheapest possible motors and gear 
boxes which fulfill the stated requirements. In the figures below the progress of differ-
ent design variables during the optimization is shown. The motion program is in this 
case designed for evaluating axes one and two, but the optimization method can be used 
for any kind of motion programs, i.e. paths. The payload in the motion program is 150 
kg, but can of course be varied. 

In Figure 5.9 one can see how the motor’s rated torque and rms torque change during 
the optimization. Due to constraint (II) in (5.2) the optimization will find a motor with a 
rated torque that matches the rms torque.  
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Figure 5.9 Values of the rms torque and rated torque of the motor on axis one during the optimi-
zation.  

Figure 5.10 shows how the predicted lifetime L10 changes for each function evaluation 
during the optimization. 
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Figure 5.10 Predicted lifetime L10 for each function evaluation during the optimization. 

In Figure 5.11 the length of the rotor of motor 1 is shown for each evaluation in the 
optimization. The length of the rotor determines in turn the size of the motor. The upper 
and lower bounds on the length of the rotor are 0.33 and 0.11 m respectively. 
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Figure 5.11 Length of rotor for each function evaluation during the optimization. 

How the gear ratio converges to an optimal value of 205 is shown in Figure 5.13. How-
ever, a larger gear ratio is desirable from a motor size perspective since the rms torque 
would be lower with an even higher ratio, see Figure 5.12. But since the maximum 
speed of the motors is 420 rad/s (kept constant) and the required speed of the arm, opti-
mization variable maxω , is 2.04 rad /s (in order to meet requirement on cycle time) a 
higher ratio than 205 is not possible in this case.  
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Figure 5.12 Rms motor torque and required max speed of motor as a function of transmission 
ratio.  
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Figure 5.13 Gear ratio for each function evaluation during the optimization. 

In Figure 5.14 the total cost of the drive trains for axes 1 and 2 are shown for different 
levels of performance improvement, i.e. decrease in cycle time. The cost of the motors 
is calculated from a price per weight ratio and the gearboxes have three different prices. 
Every point on the graph is an optimal solution from solving the problem stated in (5.2). 
In order to generate the trade-offs this has been done several times for different re-
quirements on cycle time. The cycle time requirement has been relaxed in seven discrete 
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steps while the lifetime constraint is kept at 20 million cycles. Furthermore, the optimi-
zations have been carried out for several different payloads.  
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Figure 5.14 Total drive train cost vs. performance for axes one and two.   

This optimization problem contains twelve optimization variables and the Complex 
algorithm requires approximately 700 evaluations in order to solve it. Each evaluation 
takes about 0.5 seconds on a standard lap top (1.6 GHz). One optimization therefore 
takes approximately 5 minutes. Fore more details see paper [VII]. 
 

5.4 Application adapted performance optimization.  
For further efficient use of already installed robots, application adapted performance 
optimization may be used. This means that the robot control is optimized with respect to 
the thermal and fatigue load on the robot for the programs that the robot performs dur-
ing repetitive production. The application adapted performance optimization is based 
upon the work of Brogårdh et al. in [9].  

Another area of potential improvement of robot performance is the motion program 
itself. Robots have a complex and highly non-linear behavior which makes finding the 
time optimal program difficult and non-intuitive. Bobrow discussed time optimal path 
planning for a two link planar motion more than 15 years ago [5]. Here we will use 
similar ideas on a six axis robot and combine this technique with the application adapted 
performance optimization concept  

By finding the time optimal robot program for a specific application and adapting the 
drive system parameters, i.e. the system constraints of the trajectory generator to the 
specific task with the help of simulation based optimization, a tailor-made control con-
figuration may be achieved which optimally uses its assets. In order to investigate the 
potential of application adapted performance optimization we have tested the idea on a 
typical press tending application with an ABB IRB 6650 robot. The optimization of the 
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motion program will be referred to as path optimization, and optimization of the con-
straints of the trajectory planner, will be referred to as drive system optimization. The 
first optimization finds the time optimal path between two presses and the second opti-
mization adapts the robot with regard to thermal and fatigue load to the program that the 
robot performs.  

In Figure 5.15 a scheme of the optimization process is shown. Before starting the op-
timization the robot is simulated with the original motion program and the default set-
tings of the drive system configuration parameters. The optimization is then made in 
two steps. As the first step a path parameters optimization is performed to minimize the 
cycle time, i.e. a search is made for the fastest path for the robot movements. The sec-
ond step is to optimize the drive system parameters for the robot movements optimized 
in the first step. In the drive system optimization the fatigue and thermal loads are not 
allowed to be higher than in the original case.  

 
 

Figure 5.15 Optimization scheme for application adapted performance optimization 

In this press tending application, the robot moves metal sheets from one press to the 
other at the same time as it rotates the sheets 180 degrees. In the original motion pro-
gram only axes one and six are used for moving the sheets between the presses. For the 
path optimization the program is made with three via points as shown in Figure 5.16.  
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Figure 5.16 Schematic graph of the movement between the presses 

 
There are 12 optimization variables in the path optimization. At the first point all six 
axes are variables (indexes 1 to 6 in (5.3)), together with one variable for the size of the 
path zone. (index 7 in (5.3)) of the via point. Path zones exist around the intersection 
points of every two adjacent path segments in order to make a path smooth in Cartesian 
space. Within such a zone, the path is allowed to deviate from the segments as long as 
the path does not leave the zone. For more information about zones in path generation 
see [46]. Due to symmetry approximations axes one and six are forced to be half way to 
the end position at the midpoint. Hence only axes 2,3,4 and 5 (index 8 to 11 in (5.3)) are 
variables at the midpoint together with a variable corresponding to the size of the zone 
(index 12 in (5.3)). The third point is a reflection of the first point. There are some geo-
metrical constraints: at the beginning of the motion one has to avoid the press and at the 
midpoint one has to avoid a collision between the metal sheet or the gripper and the 
robot itself. The objective is to minimize the cycle time.  
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(5.3) 
 

 
When the program is executed the trajectory planner generates trajectories based on the 
programmed path. The trajectory planner calculates trajectories without breaking any 
constraints, such those as stated in (3.11). These constraints are usually established in 
the design process and are not adapted exclusively for every application but rather for a 
large number of different scenarios. There is thus a possibility to gain cycle time by 
adapting the constraints on motor torque, motor speed etc. to the specific press tending 
application. In the original case axes one and six are heavily loaded and both the tem-
perature of the motors and the fatigue life of the gearboxes of these axes limit the cycle 
time. Hence there are constraints in the original optimization of the drive system pa-
rameters that prevent the critical axes from being loaded more. 

The formulation of the drive system parameter optimization is found in (5.4). 
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The life time constraints for axes one and two are set to be the same as the original life-
time constraint for axis one. The life time constraints for the other axes are based on the 
lifetime of axis six in the original cycle. The thermal constraints are given by the maxi-
mum allowed motor temperature and the maximum allowed gearbox oil temperature. 
The motor temperature constraint prevents burn out of the windings. The temperature 
constraint on the oil in the gearbox prevents situations with too poor lubrication. The 
ambient temperature is 20˚C in the simulations. The constraints in the optimization 
problem are handled as penalty terms in the objective function, where each penalty term 
is proportional to the square of the constraint violation.  

There are 18 variables in the optimization problem. These variables correspond to the 
constraints on permissible motor torque, motor speed and gearbox output shaft torque. 
The limits of the optimization variables are normalized based on the original drive sys-
tem parameters.  

Figure 5.17 shows how the two optimization steps influence the speed of axis six. 
Notice how the optimizations have increased the acceleration (steeper speed profile). 
Also notice that the acceleration is reduced at higher speed, which is due to the speed 
dependence of the motor torque and hence the trajectory planner is forced to reduce the 
acceleration torque to be able to stay on the path. It is also evident that the maximum 
speed has been reduced, which allows more motor torque to be used for acceleration, 
gaining more area under the speed curve during the acceleration phase.  
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Figure 5.17 Speed of axis six before (blue) and after the path (red) and drive system (green) 
optimization. 

The path optimization contributed to a cycle time reduction of 3.7%. After the drive 
system parameters were optimized with regard to thermal and fatigue load the cycle 
time was further reduced by 5.8% without increasing the load on critical components. 
For more details and results see paper [V].  
 
 



 

6 
Concluding 

remarks 

IN THE ACADEMIC world there exist a vast number of different optimization algo-
rithms. Which is most applicable to design optimization depends to a large extent upon 
the problem in question. This thesis discusses optimization techniques suitable for robot 
design based on simulations. A new method has been developed for handling problem 
with both continuous and discrete variables. The method has also been improved by 
adding adaptive characteristics for further efficient design optimization. The proposed 
optimization methods have been applied to several real engineering problems in order to 
evaluate the practical use. Robot design itself is investigated and a method for drive 
train design by running robot paths has been put forward.  

During the development process of robots the problem formulations change. In the 
conceptual phase, questions regarding the outer structure (kinematics) are in focus. As 
the concepts are developed, one gradually moves from the robot’s outer structure to its 
inner structure (drive train). Common throughout the process, however, is a mixture of 
problems of a discrete nature such as selecting gearboxes and bearings and others of a 
continuous nature such as determining link geometry and tuning control system parame-
ters. Since many problems in robot design are defined by mixed variables a new modi-
fied version of the non-gradient Complex-RF method, called Complex-RD, was devel-
oped. The Complex-RD is adapted to handling variables of discrete character and can 
work together with a Complex-RF on problems with mixed variables. The Complex-RD 
has also been compared to a genetic algorithm and proved to be at least 60% more ef-
fective than the GA when solving a robot design problem of a discrete nature. The com-
bination of the Complex-RF and Complex-RD methods has been used in a real engi-
neering design problem for industrial robots.  

For the problems addressed in this thesis, the Complex method needs approximately 
50-200 function evaluations per optimization variable in order to converge, depending 
on the problem and convergence criteria. Several different simulation models have been 
used in this thesis and different simulation environments have different execution times. 
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The simulation model used in paper [VII] takes about 0.5 seconds to execute and a 
problem of 12 optimization variables takes about 5 minutes to solve on a standard lap-
top (1.6 GHz). It is the authors’ belief that in order to make design optimization effi-
cient it is important to keep the response as quick as possible since most of the time the 
designer needs several trials before the optimization works satisfactory. If the response 
time is too long the work of tuning objective functions, convergence criteria etc in order 
to get a satisfactory result becomes too cumbersome. 

Even though direct search methods have been used successfully in problems with a 
few hundred variables (e.g. [41]), limitations on the size of problems is a setback for 
direct search methods such as the Complex. For the problem addressed in paper [III], 
paper [V] and paper [VII], it is the author’s experience that 20-25 optimization variables 
is the upper limit for the Complex algorithm and still be able to maintain satisfactory 
convergence performance. 

Another issue with the direct search algorithm is slow asymptotic convergence rate 
compared to gradient methods. However, in the context of the problems addressed here, 
direct search methods may be more efficient. For functions such as illustrated in Figure 
4.1 it is quite possible that a quasi-Newton method with finite-difference gradients may 
converge quickly, but only to one of the many local minimizers, thus returning a mean-
ingless solution. A further point to be considered regarding slowness is, as stated by 
Kolda et al. in [32], whether this means only the time needed for the computer to run or 
the whole time that elapses between formulating the problem, writing the code, and ob-
taining a satisfactory result. In most engineering design problems the latter is the most 
important. A common situation in practice is also that the designer wants improvements 
rather than full-blown optimality. This is often due to the designer only needing one or 
two correct digits, either because that is sufficient for the application or because the 
values that can be obtained from the objective function are so inaccurate that seeking 
higher accuracy would be pointless. 

When using numerical simulation and optimization one can always question whether 
the true optimum is really found. However, from an engineering perspective, the main 
contribution is not always to identify the global minimizer, but to obtain a foundation 
for decision making. It is the author’s belief that optimization, as it is described here, 
presents a structured and efficient way of addressing an engineering problem where 
much insight is gained during the iterative process of solving the optimization problem. 

Design often involves finding the most suitable trade-offs between different require-
ments. This thesis shows how optimization techniques can be used to generate trade-off 
curves for robot design. By solving the optimization problem with different settings for 
the constraints, trade-off curves for cost, performance, and lifetime are achieved. By 
studying these trade-off curves vital insight could be gained about the nature of the 
problem. These types of curves thus constitute vital support for engineering decision 
making. For example, it could be seen how higher performance drives the need for lar-
ger gearboxes and motors, or how a requirement for longer lifetime also requires larger 
and more expensive gearboxes. 

One of the most critical areas when using design optimization is how to choose a 
proper evaluation criterion. This is very much the case for industrial robots since it is in 
their nature to cope with a larger spectrum of tasks. Robot performance may be evalu-
ated in many different ways where different criteria suit different stages during the de-



Concluding remarks  75 
 

   

velopment process. In this thesis robots are evaluated both by investigating acceleration 
capabilities as well as running robot paths. In the case of running robot paths, the path 
itself will have a substantial impact on the result. It is therefore important that the paths 
include the type of tasks the robot will be used for. In paper [III] the gearboxes are cho-
sen for a robot dedicated for palletizing and a comprehensive palletizing cycle has been 
used. One should, however, keep in mind that if the robot is evaluated by running paths 
it is only optimal for the path used during the optimization. The choice of evaluation 
path is therefore vital to the success of the optimization. How robot paths should be 
chosen has not been covered in this work but it is a topic for future research to investi-
gate which performance criteria are optimal for industrial robot design at different 
stages throughout the development process. 

The methods developed for drive train design in this thesis are based on stiff system 
models. Roos concludes in [54] that flexibilities, backlash and controller gains influence 
both the control performance and the system’s torque requirements. How flexibilities 
and backlash influence the required motor torque is a topic for future research. Further-
more, in order to reach the true system optimum it is necessary to iterate between physi-
cal system design and control system design. It is also a goal for future research to in-
clude control system design in the optimization loop. If one wishes to minimize 
characteristics such as energy consumption or the total cost of the robot system it is also 
important that all components (drive units, transformers, control etc) and their losses are 
included in the optimization. 

Finally, robot control is a key competence for robot manufacturers and is very impor-
tant in order to get as much performance as possible out of a robot. However, even with 
the most accurate control the robot’s performance cannot surpass the fatigue limits of 
the robot structure and its mechanical components and the torque, current, and tempera-
ture limits of the drive system. Thus, to go further in the optimal use of industrial robots 
these limits must be tuned to the tasks of the individual robots [8]. One scenario for this 
is to introduce application adapted robot performance. This means that the controller 
automatically tunes the drive system parameters to optimize the robot performance for 
the robot programs that are running. For this, thermal and mechanical fatigue models 
must be executed together with the dynamic robot models in real time to estimate tem-
perature and mechanical stress in critical components and structures. An offline tech-
nique based on this is shown in paper [V]. This adaptation will result in better use of the 
installed robot and will also make the robot’s design more efficient since it will not be 
critically dependent on worst case movements. It is therefore the author’s belief that 
components should be chosen rapidly by using automated design techniques as de-
scribed here and the potential performance of the robot for a specific application then 
pushed towards its limits by using adaptive performance techniques. 
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