
Linköping Studies in Science and Technology

Thesis No. 1361

Completing the Picture — Fragments and
Back Again

by

Martin Karresand

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2008

Completing the Picture — Fragments and Back
Again

by

Martin Karresand

May 2008
ISBN 978-91-7393-915-7

Linköping Studies in Science and Technology
Thesis No. 1361
ISSN 0280–7971

LiU–Tek–Lic–2008:19

ABSTRACT

Better methods and tools are needed in the fight against child pornography. This thesis presents a
method for file type categorisation of unknown data fragments, a method for reassembly of JPEG
fragments, and the requirements put on an artificial JPEG header for viewing reassembled images.
To enable empirical evaluation of the methods a number of tools based on the methods have been
implemented.

The file type categorisation method identifies JPEG fragments with a detection rate of 100% and a
false positives rate of 0.1%. The method uses three algorithms, Byte Frequency Distribution (BFD),
Rate of Change (RoC), and 2-grams. The algorithms are designed for different situations, depending
on the requirements at hand.

The reconnection method correctly reconnects 97% of a Restart (RST) marker enabled JPEG image,
fragmented into 4 KiB large pieces. When dealing with fragments from several images at once, the
method is able to correctly connect 70% of the fragments at the first iteration.

Two parameters in a JPEG header are crucial to the quality of the image; the size of the image and
the sampling factor (actually factors) of the image. The size can be found using brute force and the
sampling factors only take on three different values. Hence it is possible to use an artificial JPEG
header to view full of parts of an image. The only requirement is that the fragments contain RST
markers.

The results of the evaluations of the methods show that it is possible to find, reassemble, and view
JPEG image fragments with high certainty.

This work has been supported by The Swedish Defence Research Agency and the Swedish Armed Forces.

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Acknowledgements

This licentiate thesis would not have been written without the invaluable sup-
port of my supervisor Professor Nahid Shahmehri. I would like to thank her for
keeping me and my research on track and having faith in me when the going has
been tough. She is a good role model and always gives me support, encourage-
ment, and inspiration to bring my research forward.

Many thanks go to Helena A, Jocke, Jonas, uncle Lars, Limpan, Micke F,
Micke W, Mirko, and Mårten. Without hesitation you let me into your homes
through the lenses of your cameras. If a picture is worth a thousand words, I owe
your more than nine millions! I also owe a lot of words to Brittany Shahmehri.
Her prompt and thorough proof-reading has indeed increased the readability of
my thesis.

I would also like to thank my colleagues at the Swedish Defence Research
Agency (FOI), my friends at the National Laboratory of Forensic Science (SKL)
and the National Criminal Investigation Department (RKP), and my fellow PhD
students at the Laboratory for Intelligent Information Systems (IISLAB) and the
Division for Database and Information Techniques (ADIT). You inspired me to
embark on this journey. Thank you all, you know who you are!

And last but not least I would like to thank my beloved wife Helena and our
lovely newborn daughter. You bring happiness and joy to my life.

Finally I acknowledge the financial support by FOI and the Swedish Armed
Forces.

Martin Karresand

Linköping, 14th April 2008

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Formulation . 2
1.3 Contributions . 4
1.4 Scope . 5
1.5 Outline of Method . 6
1.6 Outline of Thesis . 6

2 Identifying Fragment Types 9
2.1 Common Algorithmic Features . 9

2.1.1 Centroid . 9
2.1.2 Length of data atoms . 10
2.1.3 Measuring Distance . 11

2.2 Byte Frequency Distribution . 11
2.3 Rate of Change . 14
2.4 2-Grams . 21
2.5 Evaluation . 22

2.5.1 Microsoft Windows PE files . 25
2.5.2 Encrypted files . 26
2.5.3 JPEG files . 27
2.5.4 MP3 files . 29
2.5.5 Zip files . 29
2.5.6 Algorithms . 30

2.6 Results . 30
2.6.1 Microsoft Windows PE files . 32
2.6.2 Encrypted files . 32
2.6.3 JPEG files . 33
2.6.4 MP3 files . 37
2.6.5 Zip files . 37
2.6.6 Algorithms . 40

i

3 Putting Fragments Together 43
3.1 Background . 43
3.2 Requirements . 46
3.3 Parameters Used . 47

3.3.1 Background . 47
3.3.2 Correct decoding . 49
3.3.3 Non-zero frequency values . 50
3.3.4 Luminance DC value chains 51

3.4 Evaluation . 52
3.4.1 Single image reconnection . 53
3.4.2 Multiple image reconnection 53

3.5 Result . 54
3.5.1 Single image reconnection . 54
3.5.2 Multiple image reconnection 57

4 Viewing Damaged JPEG Images 59
4.1 Start of Frame . 59
4.2 Define Quantization Table . 66
4.3 Define Huffman Table . 67
4.4 Define Restart Interval . 70
4.5 Start of Scan . 72
4.6 Combined Errors . 75
4.7 Using an Artificial JPEG Header . 75
4.8 Viewing Fragments . 76

5 Discussion 79
5.1 File Type Categorisation . 79
5.2 Fragment Reconnection . 81
5.3 Viewing Fragments . 82
5.4 Conclusion . 83

6 Related Work 85

7 Future Work 93
7.1 The File Type Categorisation Method 94
7.2 The Image Fragment Reconnection Method 95
7.3 Artificial JPEG Header . 95

Bibliography 97

A Acronyms 103

B Hard Disk Allocation Strategies 105

C Confusion Matrices 107

ii

List of Figures

2.1 Byte frequency distribution of .exe . 13
2.2 Byte frequency distribution of GPG 13
2.3 Byte frequency distribution of JPEG with RST 14
2.4 Byte frequency distribution of JPEG without RST 15
2.5 Byte frequency distribution of MP3 . 15
2.6 Byte frequency distribution of Zip . 16
2.7 Rate of Change frequency distribution for .exe 18
2.8 Rate of Change frequency distribution for GPG 18
2.9 Rate of Change frequency distribution for JPEG with RST 19
2.10 Rate of Change frequency distribution for MP3 20
2.11 Rate of Change frequency distribution for Zip 20
2.12 2-gram frequency distribution for .exe 22
2.13 Byte frequency distribution of GPG with CAST5 25
2.14 ROC curves for Windows PE files . 33
2.15 ROC curves for an AES encrypted file 34
2.16 ROC curves for files JPEG without RST 34
2.17 ROC curves for JPEG without RST; 2-gram algorithm 35
2.18 ROC curves for files JPEG with RST 36
2.19 ROC curves for MP3 files . 38
2.20 ROC curves for MP3 files; 0.5% false positives 38
2.21 ROC curves for Zip files . 39
2.22 Contour plot for a 2-gram Zip file centroid 40

3.1 The frequency domain of a data unit 45
3.2 The zig-zag ordering of a data unit traversal 46
3.3 The scan part binary format coding . 49

4.1 The original undamaged image . 60
4.2 The Start Of Frame (SOF) marker segment 60
4.3 Quantization tables with swapped sample rate 62
4.4 Luminance table with high sample rate 62
4.5 Luminance table with low sample rate 64
4.6 Swapped chrominance component identifiers 64
4.7 Swapped luminance and chrominance component identifiers . . . 65
4.8 Moderately wrong image width . 65

iii

4.9 The Define Quantization Table (DQT) marker segment 66
4.10 Luminance DC component set to 0xFF 68
4.11 Chrominance DC component set to 0xFF 68
4.12 The Define Huffman Table (DHT) marker segment 69
4.13 Image with foreign Huffman tables definition 71
4.14 The Define Restart Interval (DRI) marker segment 71
4.15 Short restart interval setting . 71
4.16 The Start Of Scan (SOS) marker segment 72
4.17 Luminance DC Huffman table set to chrominance ditto 74
4.18 Complete exchange of Huffman table pointers 74
4.19 A correct sequence of fragments . 78
4.20 An incorrect sequence of fragments . 78

5.1 Possible fragment parts . 82

iv

List of Tables

2.1 Camera make and models for JPEG with RST 28
2.2 Camera make and models for JPEG without RST 28
2.3 MP3 files and their encoding . 29
2.4 Algorithm base names used in evaluation 31
2.5 File type information entropy . 32
2.6 Centroid base names used in evaluation 41
2.7 2-gram algorithm confusion matrix . 41
2.8 Large GPG centroid 2-gram algorithm confusion matrix 42

3.1 Multiple image reconnection evaluation files 54
3.2 Results for the image fragment reconnection method; single images 55
3.3 Results for the image fragment reconnection method; multiple

images . 57

4.1 Relation between image width and height 66

B.1 Data unit allocation strategies . 106

C.1 Centroid base names used in evaluation 107
C.2 Confusion matrix: 2-gram algorithm 108
C.3 Confusion matrix: BFD with JPEG rule set 108
C.4 Confusion matrix: BFD and RoC with JPEG rule set 108
C.5 Confusion matrix: BFD and RoC with Manhattan dist. metric . . 108
C.6 Confusion matrix: BFD and RoC . 109
C.7 Confusion matrix: BFD . 109
C.8 Confusion matrix: BFD and RoC with JPEG rule set and signed

values . 109
C.9 Confusion matrix: BFD and RoC using signed values and Man-

hattan distance metric . 109
C.10 Confusion matrix: BFD and RoC using signed values 110
C.11 Confusion matrix: RoC with JPEG rule set and signed values . . 110
C.12 Confusion matrix: RoC using Manhattan distance metric and

signed values . 110
C.13 Confusion matrix: RoC using signed values 110
C.14 Confusion matrix: RoC with JPEG rule set 111

v

C.15 Confusion matrix: RoC using Manhattan distance metric 111
C.16 Confusion matrix: RoC . 111

vi

Chapter 1

Introduction

The work presented in this thesis is directed at categorising and reconnecting
Joint Photographic Experts Group (JPEG) image fragments, because these ca-
pabilities are important when searching for illegal material. In this chapter we
describe the motivation for our research, state the research problem and scope,
present the contributions of our work, and finally draw the outline of the thesis.

1.1 Motivation

In a paper from the US Department of Justice [1, p. 8] it is stated that

The Internet has escalated the problem of child pornography by in-
creasing the amount of material available, the efficiency of its distri-
bution, and the ease of its accessibility.

Due to the increasing amount of child pornography the police need the possi-
bility to scan hard disks and networks for potential illegal material more effi-
ciently [2, 3, 4]. Identifying the file type of fragments from the data itself makes
it unnecessary to have access to the complete file, which will speed up scanning.
The next requirement, then, is to make it possible to determine whether an im-
age fragment belongs to an illegal image, and to do that by viewing the partial
picture it represents. In this way the procedure becomes insensitive to image
modifications.

The fact that it is possible to make identical copies of digital material, some-
thing which cannot be done with physical entities, separates digital evidence
from physical evidence. The layer of abstraction introduced by the digitisation
of an image also simplifies concealment, for example by fragmenting a digital
image into small pieces hidden in other digital data. A criminal knowing where
to find the fragments and in which order they are stored can reconnect them. In
this way he or she can recreate the original image without loss of quality, which
is not true for a physical image.

1

CHAPTER 1. INTRODUCTION

The abstract nature of digital material makes it harder for the police to find
illegal images, as well as connect such images to a perpetrator. The police are
constantly trying to catch and prosecute the owners of illegal material, but are
fighting an “uphill battle” [5, 6]. The new technology makes it easier for the
criminals to create and distribute the material, and also provides a higher degree
of anonymity.

Consequently there is a need for tools that are able to work with fragmented
data, and especially digital image files, transported over a network or held on
some kind of storage media. Regarding the imminent problem of keeping the
amount of digital child pornography at bay the police need tools that are able to
discover image data in all possible situations, regardless of the state of the image
data, even at the lowest level of binary data fragments. Preferably the tools
should be able to quickly and accurately identify the file type of data fragments
and then combine any image fragments into (partial) pictures again.

1.2 Problem Formulation

The procedure for recovering lost data is called file carving and can be used in a
wide range of situations, for example, when storage media have been corrupted.
Depending on the amount of available file recovery metadata1 the task can be
very hard to accomplish. At the web page of the 2007 version of the annual
forensic challenge issued by the Digital Forensic Research Workshop (DFRWS)
it is stated that [7]:

Many of the scenarios in the challenge involved fragmented files
where fragments were sequential, out of order, or missing. Exist-
ing tools could not handle these scenarios and new techniques had
to be developed.

DFRWS reports that none of the submissions to the forensic challenge of year
2007 completely solve the problems presented.

The main characteristic of a fragmented data set is its lack of intuitive struc-
ture, i.e. the data pieces are randomly scattered. The structuring information
is held by the file metadata. The metadata of files on a hard disk come in the
form of a file system. The file system keeps track of the name and different time
stamps related to the use of a file. It also points to all hard disk sectors making
up a file. Since files often require the use of several sectors on a hard disk and
the size of a file often changes during its lifetime, files are not always stored in
consecutive sectors. Instead they become fragmented, even though current file
systems use algorithms that minimise the risk of fragmentation [8] (see also Ap-
pendix B). When a hard disk crashes and corrupts the file system, or even when
a file is deleted, the pointers to the sectors holding a file are lost, and hence the
fragments that moments before together formed a file now only are pieces of
random data.

1In this thesis we define file recovery metadata to be data indirectly supporting the file recovery
procedure by structuring the data to be recovered.

2

1.2. PROBLEM FORMULATION

In the case of network traffic the structuring information is often held by
the Transmission Control Protocol (TCP) header information, or possibly by
a protocol at a higher layer in the network stack. When monitoring network
traffic for illegal material a full TCP session is required to read a transferred file
and its content, but the hardware and different protocols used in a network often
fragments files. The routing in a network causes the packets to be transported
along different paths, which limits the amount of data that is possible to collect
at an arbitrary network node, because there is no guarantee that all fragments
of a file passes that particular node. If parts of a TCP session are encountered
it is possible to correctly order the network packets at hand, but parts of the
transferred data are lost and hence we have the same situation as for a corrupted
file system.

To the best of our knowledge current tools either use parts of a file system to
find files and categorise their content or use metadata in the form of header or
footer information. The tools are built on the assumption that files are stored in
consecutive hard disk sectors. When a tool has identified the start and probable
end of a file all hard disk sectors in between are extracted. In other words, the
tools are built on qualified guesses based on high level assumptions about how the
data would usually be structured, without really using the information residing
in the data itself.

A JPEG image is a typical example showing the structure of a file. The image
file consists of a file header containing image metadata and tables for decoding, a
section of compressed picture data, and a finalising file footer. The picture data
part consists of a stream of raw data corresponding to a horizontal and down-
wards traversal of the image pixels. To allow a JPEG image file to be correctly
decoded the picture data has to be properly ordered. Since existing file carving
tools are relying on file headers and that data is stored in consecutive order it is
currently not possible to reassemble a fragmented JPEG image.

The problems related to file carving of JPEG images give rise to the following
research questions:

• How can file fragments be categorised without access to any metadata?

• How can fragmented files be reassembled without access to any metadata?

• What techniques can be used to enable viewing of a reassembled JPEG
image?

– How much can be seen without access to a JPEG header?

– Can an artificial JPEG header be used?

– What requirements are there on a working JPEG header?

These research questions cover the process of identifying, reassembling and view-
ing fragmented JPEG images, without having access to anything but the frag-
ments themselves.

3

CHAPTER 1. INTRODUCTION

1.3 Contributions

The overall aims of our research are to explore what information can be extracted
from fragments of high entropy data2, what parameters govern the amount of
information gained, and finally to use the parameters found to develop effec-
tive, efficient and robust methods for extracting the information. The research
includes studies of the parameters needed to extract different amounts of infor-
mation, and at which level of abstraction that can be done. The ultimate goal is
to be able to reconnect any identified file fragments into the original file again, if
at all possible.

The main contributions of our work lie within the computer forensics and
data recovery area, exemplified by fragmented JPEG image files. We have devel-
oped and evaluated a method3 to categorise the file type of unknown digital data
fragments. The method currently comprises three algorithms, which are used
both as stand alone algorithms and in combination. The algorithms are based on
separate parameters found to increase the ability to find the file type of unknown
data fragments.

To supplement the file type categorisation algorithms, we have studied pa-
rameters that enable reconnection of fragments of a file, making it possible to
rebuild a fragmented image file. The method to reconnect fragments is accom-
panied by experimental results showing the importance of different parameters
in the JPEG header fields for the viewing of a restored image, or even a partial
image. This enables us to create generic JPEG file headers to be added to the
recovered images, if there are no proper header parts to be found among the
fragments.

The details of our contributions are as follows:

• We present two algorithms, Byte Frequency Distribution (BFD) [9] and
Rate of Change (RoC) [10], which are using parameters in the form of
statistical measures of single byte relations and frequencies to identify the
file type of unknown digital data fragments. The algorithms do not require
any metadata to function and executes in linear time. They are well suited
for file types without any clear structure, such as encrypted files.

• A third algorithm, called the 2-gram algorithm [11, 12], which is using pa-
rameters in the form of statistical properties of byte pairs to identify the
file type of unknown digital data fragments. The 2-gram algorithm is suit-
able for situations where a high detection rate in combination with a low
false positives rate is preferable, and a small footprint and fast execution
is of less importance. The algorithm does not need any metadata to func-
tion and is well suited for file types with some amount of structure. Its
high sensitivity to structure can be used to find hidden patterns within file
types.

2We define high entropy data to be binary files in the form of, for example, compiled source code,
compressed data, and encrypted information.

3The method is called “the Oscar method” in our previously published papers [9, 10, 11, 12].

4

1.4. SCOPE

• We introduce a method to find and calculate a value indicating the validity
of two JPEG data fragments being consecutive. Several parameters work
in tandem to achieve this, the most important parameter being the DC
luminance value chain of an image. The method is currently implemented
for JPEG data with Restart (RST) markers, which are used to resynchro-
nise the data stream and the decoder in case of an error in the data stream.
By using the method repeatedly digital JPEG image files can be rebuilt as
long as all fragments of the images are available. If only a sub-set of all
fragments of an image is available, the correct order of the fragments at
hand can be found in most cases.

• We explore what impact modifications to fields in a JPEG header have on
a displayed image. The results of these experiments can be used to create a
generic JPEG file header making it possible to view the result of the JPEG
image fragment reconnection method, even for only partially recovered
images.

The parameters the algorithms are built on are applied to fragmented JPEG
image files in this thesis, to help improve the police’s ability to search for child
pornography. The parameters and methodologies are generalisable and may be
applied to other file types as well with minor modifications. Our work therefore
indirectly contributes to a wide area of practical applications, not only to JPEG
images and child pornography scanning.

1.4 Scope

The scope of the work presented in this thesis covers identification of JPEG
image fragments and reconnection of JPEG image fragments containing RST
markers. The images used for the research are produced by digital cameras and
a scanner. None of the images are processed by any image manipulation appli-
cation or software, apart from the cameras’ internal functions and the scanner’s
software.

The set of images has been collected from friends and family and are typical
family photographs. The contributors have selected the images themselves and
approved them to be used in our research. We have allowed technical imperfec-
tions such as blur, extreme low and high key, and large monochrome areas to
help improve the robustness of the developed methods.

The cameras used for the research are typical consumer range digital cameras,
including one Single Lens Reflex (SLR) camera. The built-in automatic exposure
modes of the cameras have been used to a different extent; we have not taken any
possible anomalies originating from that fact into account.

The JPEG images used to develop the methods presented in the thesis are
of the non-differential Huffman entropy coded baseline sequential Discrete Co-
sine Transform (DCT) JPEG type. The images adhere to the International
Telegraph and Telephone Consultative Committee (CCITT) Recommendation
T.81 [13] standard, which is the same as the International Organization for

5

CHAPTER 1. INTRODUCTION

Standardization (ISO)/International Electrotechnical Commission (IEC) Inter-
national Standard 10918-1, and their accompanying extensions [14, 15, 16, 17].
Consequently the file type categorisation and fragment reassembly methods also
follow that standard, where applicable.

1.5 Outline of Method

The work in this thesis can be divided into three main parts:

• categorisation of the file type of unknown fragments,

• reassembly of JPEG image fragments, and

• the requirements put on an artificial JPEG image header.

The method comprised by the above mentioned steps can be compared to the
method used to piece together a large jigsaw puzzle. First the pieces are sorted
into groups of sky, grass, sea, buildings, etc. Then the individual features of the
pieces are used to decide how they should be fitted together. Lastly the wear and
tear of the pieces governs if it is possible to correctly fit them together.

The method for file type categorisation utilises the byte frequency distribu-
tion, the frequency distribution of the derivative of a sequence of bytes, and the
frequency distribution of byte pairs to categorise the file type of binary frag-
ments. A model representing a specific file type is compared to an unknown
fragment and the difference between the model and the fragment is measured
and weighted by the standard deviation of each frequency value. Several models
are compared to the unknown sample, which is then categorised as being of the
same file type as the closest model.

Successful reassembly of a set of JPEG image fragments is achieved by using
repetitions in the luminance DC value chain of an image. When two fragments
are correctly connected vertical lines are repeated at an interval equalling 1

8 of the
image width in pixels. The reassembly method also uses parameters related to
the decoding of the image data. By measuring the validity of a joint between two
fragments and then minimising the cost of a sequence of connected fragments, a
correct image can be rebuilt with high probability.

The third part identifies the parameters which are crucial to a proper decod-
ing of an image. These parameters are then used to form an artificial JPEG image
header. The effects of different kinds of manipulation of the header fields are also
explored.

1.6 Outline of Thesis

Chapter 1: The current chapter, motivating the research and outlining the re-
search problems, contributions, scope, outline of the work and organisa-
tion of the thesis.

6

1.6. OUTLINE OF THESIS

Chapter 2: Presents a method to identify the file type of unknown data frag-
ments. The three different algorithms used by the file type categorisation
method, BFD, RoC, and 2-grams, are presented and evaluated.

Chapter 3: The JPEG image fragment reconnection methodology for recon-
necting JPEG fragments is presented and evaluated.

Chapter 4: The possibility of viewing images damaged in some way is discussed.
The damage can come from erroneous header information or only parts
of the scan being reconnected, hence leading to a mismatch between the
header and scan parts.

Chapter 5: The research and results are discussed in this chapter, focusing on
alternative methods, limitations, problems and their (possible) solutions.

Chapter 6: This chapter gives an overview of the related work in the file carving
and fragmented image file reconstruction arenas. The chapter also covers
the similarities and differences between the related work and the research
presented in this thesis.

Chapter 7: Presents the conclusions to be drawn from the material presented in
the thesis, together with subjects left as future work.

7

CHAPTER 1. INTRODUCTION

8

Chapter 2

Identifying Fragment Types

This chapter presents three algorithms, Byte Frequency Distribution (BFD),
Rate of Change (RoC), and 2-grams, which are part of the method for file type
categorisation of data fragments. The algorithms are all based on statistical mea-
sures of frequency (mean and standard deviation). They are used to create mod-
els, here called centroids [18, p. 845], of different file types. The similarity be-
tween an unknown fragment and a centroid is measured using a weighted variant
of a quadratic distance metric. An unknown fragment is categorised as belonging
to the same type as the closest centroid. Alternatively a single centroid is used
together with a threshold; if the distance is below the threshold the fragment is
categorised as being of the same file type as the centroid represents.

Hard disks store data in sectors, which are typically 512 bytes long. The op-
erating system then combines several sectors into clusters, sometimes also called
blocks. Depending on the size of the partition on the hard disk, clusters can vary
in size, but currently the usual cluster size is 4 KiB, which is often also the size of
pages in Random Access Memory (RAM). The file type categorisation method
is currently set to use data blocks of 4 KiB, but this is not a requirement, the
method should be able to handle fragments as small as 512 B without becoming
unstable.

2.1 Common Algorithmic Features

The three algorithms share some basic features, which will be discussed in this
section. These features are the use of a centroid as a model of a specific file type,
small sized data atoms, and a weighted (quadratic) distance metric.

The BFD and RoC algorithms have been tested with some alternative fea-
tures. These features are presented together with each algorithm specification.

2.1.1 Centroid

The centroid is a model of a selection of characteristics of a specific file type
and contains statistical data unique to that file type. In our case the centroid

9

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

consists of two vectors representing the mean and standard deviation of each
byte’s or byte pair’s frequency distribution, or the frequency distribution of the
difference between two consecutive byte values.

To create a centroid for a specific file type we use a large amount of known
files of that type. The files are concatenated into one file. The resulting file is
then used to calculate the mean and standard deviation of the byte value count
for a 4 KiB large fragment. The 2-gram method uses 1 MiB large fragments and
the results are scaled down to fit a 4 KiB fragment.

The aim is to model a real world situation as closely as possible. We there-
fore collect all files used in the experiments from standard office computers, the
Internet, and private consumer digital cameras. Some files were cleaned of un-
wanted impurities in the form of other file types. This is described in detail in
the following sections.

2.1.2 Length of data atoms

An n-gram is an n-character long sequence where all characters belong to the
same alphabet of size s , in our case the American Standard Code for Information
Interchange (ASCII) alphabet giving s = 256. The byte frequency distribution
is derived by finding the frequency with which each unique n-gram appears in
a fragment. These frequencies then form a vector representing the sample to be
compared to a centroid. The data the file type categorisation method uses is in
the form of 1-grams and 2-grams, i.e. bytes and byte pairs.

The order of the bytes in the data is not taken into consideration when using
a 1-gram method. This fact gives such methods a higher risk of false positives
than methods using longer sequences of bytes. By considering the order of the
bytes we decrease the risk of false positives from disk clusters having the same
byte frequency distribution as the data type being sought, but a different struc-
ture. Using larger n-grams increases the amount of ordering taken into consid-
eration and is consequently a nice feature to use. However, when using larger
n-grams the number of possible unique grams, b , also increases. The size of b
depends on whether the n-grams have a uniform probability distribution or not.
The maximum value b = s n , is required when the distribution is uniform, be-
cause then all possible n-grams will be needed. Therefore the execution time and
memory footprint of the 2-gram algorithm is increased exponentially, compared
to the 1-gram BFD and RoC algorithms, for high entropy file types.

The BFD and RoC algorithms use a 256 character long alphabet, which is
well suited for 4 KiB large data fragments. Using 2-grams may require b = 65536,
otherwise not all possible 2-grams can be accounted for. Consequently training
on data blocks less than 64 KiB in size affects the quality of the 2-gram centroid.
We therefore use 1 MiB large data blocks when collecting the statistics for the
2-gram centroid. The mean and standard deviation values are then scaled down
to match a fragment size of 4 KiB. Since the scan part of a JPEG has a fairly even
byte frequency distribution this method gives a mean value close to 1 for most
of the 2-grams. Although the frequency count is incremented integer-wise, and
thus every hit will have a large impact on the calculations of the distance, the

10

2.2. BYTE FREQUENCY DISTRIBUTION

2-gram algorithm performs well for JPEG and MPEG 1, Audio Layer-3 (MP3)
file fragments.

2.1.3 Measuring Distance

The distance metric is the key to a good categorisation of the data. Therefore
we use a quadratic distance metric, which we extend by weighting the difference
of each individual byte frequency with the same byte’s standard deviation. In
this way we focus the algorithm on the less varying, and hence more important,
features of a centroid.

The metric measures the difference between the mean value vector, ~c , of the
centroid and the byte frequency vector,~s , of the sample. The standard deviation
of byte value i is represented by σi and to avoid division by zero when σi = 0 a
smoothing factor α= 0.000001 is used. The metric is described as

d
�

~s ,~c
�

=
n−1
∑

i=0

�

si − ci
�2 /
�

σi +α
�

. (2.1)

The advantage of using a more computationally heavy quadratic-based met-
ric over a simpler linear-based metric is the quadratic-based method’s ability to
strengthen the impact of a few large deviations over many small deviations. As-
suming the vector sums, ‖~c‖1 and ‖~s‖1, are constant, Equation (2.1) gives lower
distance values for two vectors separated by many small deviations, than for two
vectors separated by a few large deviations. A linear-based method gives the same
distance, regardless of the size of the individual deviations, as long as the vector
sums remain the same. Since we are using 4 KiB blocks of data the vector sums
‖~c‖1 = ‖~s‖1 = 4096 and consequently we have to use a quadratic distance metric
to achieve decent categorisation accuracy.

Some file types generate fairly similar histograms and it is therefore necessary
to know which byte codes are more static than others to discern the differences
in spectrum between, for example, an executable file and a JPEG image. We
therefore have to use the more complex method of looking at the mean and
standard deviation of individual byte codes, instead of calculating two single
values for the vector.

2.2 Byte Frequency Distribution

The byte frequency distribution algorithm counts the number of occurrences
of each byte value between 0 and 255 in a block of data. We use the mean and
standard deviation of each byte value count to model a file type. The mean values
are compared to the byte count of an unknown sample and the differences are
squared and weighted by the standard deviations of the byte counts in the model.
The sum of the differences is compared to a predefined threshold and the sample
is categorised as being of the same type as the modelled file if the sum of the
differences is less than the threshold.

11

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

The size of the data blocks are currently 4 KiB to match the commonly used
size of RAM pages and disc clusters. The method does not require any specific
data block size, but a block size of 512 bytes is recommended as a lower bound
to avoid instability in the algorithm.

A special JPEG extension is used together with the BFD and RoC algorithms.
This extension utilises some of the JPEG standard specifics regulating the use of
special marker segments in JPEG files. By counting the number of occurrences
of some markers we can significantly improve the detection rate and lower the
false alarm rate of the algorithm. The extension is implemented as a rule set to
keep track of marker sequences. If the algorithm finds any pair of bytes rep-
resenting a disallowed marker segment in a fragment, the fragment will not be
categorised as JPEG.

In Figures 2.1–2.6 the byte frequency distribution of the centroids of five dif-
ferent file types, Microsoft Windows Portable Executable (PE) files (.exe), GNU
Privacy Guard (GPG) encrypted files (GPG), JPEG images (JPEG), MP3 audio
files (MP3), and Zip compressed files (Zip), are shown. Please observe that the
JPEG histogram is based only on the data part of the files used for the centroid,
the other centroids are based on complete, although cleaned, files. Also note that
the scaling of the Y-axis differs between the figures. This is done to optimise read-
ability. As can be seen, the histogram of the executable files are different from
the compressed GPG, JPEG, MP3, and Zip files. Even though the histograms
of the compressed files are fairly similar, they still differ, with the most uniform
histogram belonging to the GPG type, then the Zip, MP3, and last the JPEG.

The executable files used to create this centroid were manually cleaned from
JPEG, Graphics Interchange Format (GIF), and Portable Network Graphics
(PNG) images and Figure 2.1 should therefore give an idea of what the executable
parts of Windows PE files look like. There are however both tables and string
parts left in the data used to create the centroid, which makes the centroid more
general and less exact. The significantly higher rates of 0x001 and 0xFF for
the executable file centroid is worth noticing. The printable ASCII characters
remaining in the compiled code can be seen in the byte value range of 32 to 126.
There is a segment with lower variation in the approximate byte value range of
145 to 190.

Figure 2.2 shows a diagram of the byte frequency distribution of an en-
crypted file. In this case the file is encrypted using GPG 1.4.6 and the Advanced
Encryption Standard (AES) algorithm with a 128 bit long key. The frequency
distribution is almost flat, which is an expected feature of an encrypted file.

The JPEG histogram in Figure 2.3 shows an increase in the number of 0xFF
bytes, because of the RST markers used. The JPEG centroid without RST mark-
ers in Figure 2.4 does not show the same increased frequency level at the highest
byte value as can be seen in Figure 2.3. There is also a noticeable larger amount
of 0x00 in both centroids. This is because of the zero value required to follow a
non-marker 0xFF. Hence the byte values are fairly evenly distributed in the raw

1Throughout the thesis hexadecimal values will be denoted as 0xYY, where YY is the hexadecimal
value of a byte.

12

2.2. BYTE FREQUENCY DISTRIBUTION

0 50 100 150 200 250
10

0

10
1

10
2

10
3

Byte Value

M
ea

n
F

re
qu

en
cy

Byte Frequency Distribution (histogram); Exe

Figure 2.1: The byte frequency distribution of a collection of executable Microsoft
Windows PE files. A logarithmic scale is used for the Y-axis and the frequency values
correspond to 4 KiB of data.

0 50 100 150 200 250

10
1.18

10
1.19

10
1.2

10
1.21

10
1.22

10
1.23

Byte Value

M
ea

n
F

re
qu

en
cy

Byte Frequency Distribution (histogram); GPG AES

Figure 2.2: The byte frequency distribution of a large file encrypted with GPG
using the AES algorithm with a 128 bit long key. A logarithmic scale is used for the
Y-axis and the frequency values correspond to 4 KiB of data.

13

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

0 50 100 150 200 250
10

0

10
1

10
2

Byte Value

M
ea

n
F

re
qu

en
cy

Byte Frequency Distribution (histogram); JPEG RSM

Figure 2.3: The byte frequency distribution of the data part of a collection of JPEG
images containing RST markers. A logarithmic scale is used for the Y-axis and the
frequency values correspond to 4 KiB of data.

JPEG coding and the extra zeroes added are clearly visible in a histogram.
The appearance of a MP3 file centroid can be seen in Figure 2.5. The byte

frequency distribution diagram was created from 12 MP3 files stripped of their
IDentify an MP3 (ID3) tags. The use of a logarithmic scale for the Y-axis en-
hances a slight saw tooth form of the curve.

The byte frequency diagram for a Zip file centroid, which can be seen in
Figure 2.6, has a clearly visible saw tooth form, which is enhanced by the scaling;
all values in the plot fit into the range between 14.3 and 18.6. The reason for the
saw tooth form might be the fact that the Huffman codes used for the DEFLATE
algorithm [19, p. 7] are given values in consecutive and increasing order. The
peaks in the plot lay at hexadecimal byte values ending in 0xF, i.e. a number
of consecutive 1s. The Huffman codes have different lengths, where shorter
are more probable, and our experience is that they more often combine into a
number of consecutive 1s rather than 0s.

2.3 Rate of Change

We define the Rate of Change (RoC) as the value of the difference between two
consecutive byte values in a data fragment. The term can also be defined as
the value of the derivative of a byte stream in the form of a data fragment. By
utilising the derivative of a byte stream, the ordering of the bytes is to some

14

2.3. RATE OF CHANGE

0 50 100 150 200 250
10

0

10
1

10
2

Byte Value

M
ea

n
F

re
qu

en
cy

Byte Frequency Distribution (histogram); JPEG No RSM

Figure 2.4: The byte frequency distribution of the data part of a collection of
JPEG images without RST markers. A logarithmic scale is used for the Y-axis and
the frequency values correspond to 4 KiB of data.

0 50 100 150 200 250
10

0

10
1

10
2

Byte Value

M
ea

n
F

re
qu

en
cy

Byte Frequency Distribution (histogram); MP3

Figure 2.5: The byte frequency distribution of a collection of MP3 files. A loga-
rithmic scale is used for the Y-axis and the frequency values correspond to 4 KiB of
data.

15

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

0 50 100 150 200 250
10

1

10
1.1

10
1.2

10
1.3

Byte Value

M
ea

n
F

re
qu

en
cy

Byte Frequency Distribution (histogram); Zip

Figure 2.6: The byte frequency distribution of a collection of compressed Zip files.
A logarithmic scale is used for the Y-axis and the frequency values correspond to 4
KiB of data.

extent taken into consideration, but the algorithm cannot tell what byte values
give a specific rate of change, apart from a rate of change of 255, of course.

The frequency distribution of the rate of change is used in the same way as
the byte frequency distribution in the BFD algorithm. A centroid is created,
containing a mean vector and a standard deviation vector. The centroid is then
compared to a sample vector by measuring the quadratic distance between the
sample and the centroid, weighted by the standard deviation vector of the cen-
troid, as described in Equation (2.1).

The original RoC algorithm [10] looks at the absolute values of the difference
in byte value between two consecutive bytes. Hence the algorithm cannot tell
whether the change is in a positive or negative direction, i.e. a positive or negative
derivative of the byte stream. The number of rate of change values of a model and
a sample are compared using the same weighted sum of squares distance metric
as the BFD algorithm uses (see Equation (2.1)). We also experiment with an
alternative distance metric using the 1-norm of the differences between a model
and a sample. We have further extended the RoC algorithm by using signed rate
of change values (difference values), as well as added the JPEG rule set extension
from the BFD algorithm (see Section 2.2).

The reason for originally using the absolute value of the byte value difference
and not a signed value is that since the difference value range is bounded, the sum
of the signed byte value differences will be equal to the difference between the
first and last byte in a sequence. By using the absolute value of the differences we

16

2.3. RATE OF CHANGE

get an unbounded sequence difference sum, and can in that way use the value as a
similarity measure, if needed. We therefore have made the decision that the loss
of resolution induced by the absolute value is acceptable. Another reason is that
the higher resolution of a signed value difference possibly affects the statistical
metrics used, because the statistics are based on half the amount of data. There
is also a risk of false negatives if the centroid becomes too specialised and strict.

To improve the detection ability of the RoC algorithm the standard devi-
ation of the centroid can be used. If we assume a data fragment with a fully
random and uniform byte distribution it would have a histogram described by
y = 256− x, where y is the number of rate of changes of a certain value x for
x = [1,2, . . . , 255]. When the byte distribution becomes ordered and less ran-
dom the histogram would become more disturbed, giving a standard deviation
σ larger than zero. Therefore the value of σ for the sample and centroid vectors
could be used as an extra measure of their similarity.

Figure 2.7 to Figure 2.11 shows the frequency distribution of the rate of
change for five different file types. As can be seen in the figures, there are differ-
ences between the curves of the compressed (JPEG, GPG, MP3 and Zip) files,
and the executable Windows PE files. It is also possible to see that the Zip file
has a smoother curve, i.e. lower standard deviation, than the JPEG file. The
reasons for the bell shaped curves are the logarithmic scale of the Y-axis together
with the fact that, assuming a fully random and uniform byte distribution, the
probability of difference x is described by

p(x) =
256− x
(256+1)·256

2

; x = [0,1, . . . , 255].

Hence there are more ways to get a difference value close to zero, than far from
zero. The sum of the negative RoC frequencies cannot differ from the sum of
the positive values by more than 255, i.e.

−255≤
255
∑

1

RoC−−
255
∑

1

RoC+ ≤ 255

Executable files contain padding where the same byte value is used repeatedly.
This can be seen in Figure 2.7 as the peak at RoC value 0. There are also two
noticeable large negative RoC values, which are mirrored to a lesser extent on the
positive side. The large positive value frequencies are more evenly spread over
the spectrum than the corresponding negative values, but otherwise the RoC
frequency plot is balanced.

The encrypted file RoC plot in Figure 2.8 shows a perfect bell curve, which
also is the expected result. Had there been any disturbances in the plot they had
been an indication of a weakness or bug in the implementation of the encryption
algorithm.

In Figure 2.9 we can see the large amount of 0xFF00 in a JPEG stream. The
plot shows a stream containing RST markers, which are indicated by the small
peak starting at -47 and ending at -40. The four peaks at the positive side are

17

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

-250 -200 -150 -100 -50 0 50 100 150 200 250
10

-2

10
-1

10
0

10
1

10
2

10
3

Rate of Change Value

M
ea

n
F

re
qu

en
cy

Rate of Change Frequency Distribution (histogram); Exe

Figure 2.7: The frequency distribution of the Rate of Change for a collection of
executable Windows PE files. The Y-axis is plotted with a logarithmic scale and the
frequency values correspond to 4 KiB of data.

-250 -200 -150 -100 -50 0 50 100 150 200 250
10

-2

10
-1

10
0

10
1

10
2

Rate of Change Value

M
ea

n
F

re
qu

en
cy

Rate of Change Frequency Distribution (histogram); GPG AES

Figure 2.8: The frequency distribution of the Rate of Change for a large file en-
crypted with GPG. The Y-axis is plotted with a logarithmic scale and the frequency
values correspond to 4 KiB of data.

18

2.3. RATE OF CHANGE

-250 -200 -150 -100 -50 0 50 100 150 200 250
10

-2

10
-1

10
0

10
1

10
2

Rate of Change Value

M
ea

n
F

re
qu

en
cy

Rate of Change Frequency Distribution (histogram); JPEG RSM

Figure 2.9: The frequency distribution of the Rate of Change for the data part of
a collection of JPEG images containing RST markers. The Y-axis is plotted with a
logarithmic scale and the frequency values correspond to 4 KiB of data.

indications of the bit padding of 1s preceding an 0xFF value. They give the
preceding byte a limited number of possible values and consequently there are
an increased amount of a number of RoC values.

The MP3 centroid in Figure 2.10 has significantly deviating RoC values in
positions -240, -192, -107, -48, -4, 0, 6, and 234. By manually checking the cen-
troid we found that the large RoC value at 0 is due to padding of the MP3 stream
with 0x00 and 0xFF. The value at -192 comes from the hexadecimal byte se-
quence 0xC000. Another common sequence is 0xFFFB9060, as is the sequence
0x0006F0. The first sequence gives the difference values -4, -107, and -48 and
the latter sequence has the difference values 6 and 234. Consequently the no-
ticeable RoC values are generated by a few byte sequences and are not evenly
distributed over all possible difference values.

The only noticeable variation in the RoC value plot of Zip files in Figure 2.11
is at position 0. Otherwise the curve is smooth, which is expected since the file
type is compressed.

The RoC algorithm is meant to be combined with the BFD algorithm used
by the file type categorisation method. It is possible to use the same quadratic
distance metric for both algorithms and in that way make the method simpler
and easier to control. The combination is made as a logical AND operation,
because our idea is to let the detection abilities of both algorithms complement
each other, thus cancelling out their individual weaknesses.

Depending on the similarity of the sets of positives of the two algorithms the

19

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

-250 -200 -150 -100 -50 0 50 100 150 200 250
10

-2

10
-1

10
0

10
1

10
2

Rate of Change Value

M
ea

n
F

re
qu

en
cy

Rate of Change Frequency Distribution (histogram); MP3

Figure 2.10: The frequency distribution of the Rate of Change for a collection of
MP3 files. The Y-axis is plotted with a logarithmic scale and the frequency values
correspond to 4 KiB of data.

-250 -200 -150 -100 -50 0 50 100 150 200 250
10

-2

10
-1

10
0

10
1

10
2

Rate of Change Value

M
ea

n
F

re
qu

en
cy

Rate of Change Frequency Distribution (histogram); Zip

Figure 2.11: The frequency distribution of the Rate of Change for a collection of
compressed Zip files. The Y-axis is plotted with a logarithmic scale and the fre-
quency values correspond to 4 KiB of data.

20

2.4. 2-GRAMS

improvement due to the combination will vary. The detection rate decreases if
one of the algorithms has a close to optimal positive set, i.e few false negatives
and false positives, while at the same time the positive set of the other algorithm
is less optimal. If we want to prioritise the detection rate we shall use a logical
OR operation instead.

2.4 2-Grams

The 2-gram algorithm was developed to explore the use of byte pairs for file type
categorisation. There are both advantages and disadvantages to using 2-grams.
The disadvantages come from the exponential increase of the centroid’s size,
which mainly affects the execution speed of the algorithm, but also the memory
footprint. In theory the effect is a 256-fold increase in process time and memory
footprint compared to the 1-gram algorithms.

The increase in size of the memory footprint of the 2-gram algorithm can be
ignored due to the amount of RAM used in modern computers; the requirement
of the current implementation is a few hundred KiB of RAM. The effect of the
increase in execution time of the algorithm can be lowered by optimisation of
the code, but the decrease is not bounded.

The main advantage of the algorithm is the automatic inclusion of the order
of the bytes into the file type categorisation method, signalling that an unknown
fragment does not conform to the specification of a specific file type and thus
should not be categorised as such. A typical example is the appearance of certain
JPEG header byte pairs disallowed in the data part. Another example is special
byte pairs never occurring in JPEG files created by a specific camera or software.

The centroid modelling a file type is created by counting the number of
unique 2-grams in a large number of 1 MiB blocks of data of the file type to iden-
tify. The data in each 1 MiB block are used to form a frequency distribution of
all 65536 possible 2-grams and the mean and standard deviation of the frequency
of each 2-gram is calculated and stored in two 256×256 matrices. The values are
then scaled down to correspond to a block size of 4 KiB.

The reason for using 1 MiB data blocks is to get a solid foundation for the
mean and standard deviation calculations. When using a block size less than the
possible number of unique 2-grams for creation of a centroid the calculations in-
evitably become unstable, because the low resolution of the incorporated values
creates round-off errors.

A typical 2-gram centroid can be seen in Figure 2.12. This particular centroid
represents a Windows PE file in the form of a contour plot with two levels. To
lessen the impact of large values the height of the contour has been scaled loga-
rithmically. It is possible to see the printable characters, as well as the padding of
0x00 and 0xFF in the lower left and upper right corners.

When the similarity between a sample fragment and a centroid is measured
the same type of quadratic distance metric as for the 1-gram file type categorisa-
tion method is used. Equation (2.2) describes the metric, where matrix S depicts
the sample 2-gram frequency distribution and C the mean value matrix of the

21

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

1st Byte Value

2n
d

B
yt

e
V

al
ue

2-Gram Contour Plot; Exe

50 100 150 200 250

50

100

150

200

250

Figure 2.12: A contour plot of the frequency distribution of the 2-gram algorithm
for a collection of Windows PE files (.exe). The Z-axis is plotted with a logarithmic
scale and the frequency values are scaled down to correspond to 4 KiB of data.

centroid. The standard deviation of 2-gram i j is represented by σi j . There is also
a smoothing factor α = 0.000001, which is used to avoid division by zero when
σi j = 0.

d (S,C) =
i= j=255
∑

i=0, j=0

�

si j − ci j

�2
/
�

σi j +α
�

. (2.2)

The reason for not using a more advanced distance metric is execution speed.
The current maximum size of a single hard disk is 750 GiB and hence a forensic
examination can involve a tremendous amount of data to scan.

2.5 Evaluation

To evaluate the detection rate versus the false positives rate of the different algo-
rithms for file type categorisation we use real world data in the form of files col-
lected from standard office computers and the Internet. If necessary the collected
files are concatenated end-to-end into a single large file, which is then manually
cleaned of foreign data, i.e. sections of data of other file types. The resulting files
will be called cleaned full size files or simply full files throughout the thesis.

The cleaned full files are truncated to the length of the shortest such file, in
this case 89 MiB, and used for the evaluation. We will call the evaluation files for
uniformly sized files or simply uni-files.

22

2.5. EVALUATION

The goal of the experiments is to measure the detection rate versus the false
positives rate of each of the algorithm and centroid combinations. There are 15
algorithms (variations on the three main algorithms) to be tested on 7 centroids
(of 5 main types). The following algorithms are used:

BFD The standard Byte Frequency Distribution algorithm with a quadratic dis-
tance metric.

BFD with JPEG rule set A variant of the standard BFD extended with a JPEG
specific rule set.

RoC The standard Rate of Change algorithm with a quadratic distance metric
and absolute valued rate of changes.

RoC with JPEG rule set A variant of the standard RoC algorithm extended
with a JPEG specific rule set.

RoC with Manhattan distance metric A variant of the standard RoC algorithm
where a simple Manhattan (1-norm) distance metric is used.

RoC with signed difference values A variant of the standard RoC algorithm
using signed values for the differences.

RoC with signed values and JPEG rule set A variant of the standard RoC al-
gorithm with signed difference values and extended with a JPEG rule set.

RoC with signed values and Manhattan distance A variant of the RoC algo-
rithm using signed difference values and a simple Manhattan distance met-
ric.

BFD and RoC combined A combination of the standard BFD and standard
RoC algorithms giving the intersection of their detected elements, i.e. per-
forming a logical AND operation.

BFD and RoC with Manhattan distance metric A combination of the stan-
dard BFD algorithm and the RoC algorithm using a Manhattan distance
metric.

BFD and RoC with JPEG rule set A combination of the BFD and RoC algo-
rithms using a JPEG specific rule set.

BFD and RoC with signed values A combination of the standard BFD algo-
rithm and the RoC algorithm using signed difference values.

BFD and RoC with signed values and JPEG rule set The BFD algorithm in
combination with the RoC algorithm using signed difference values and a
JPEG specific rule set.

BFD and RoC with signed values and Manhattan distance A combination of
the standard BFD algorithm and a RoC algorithm using signed difference
values and a Manhattan distance metric.

23

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

2-gram The 2-gram (byte pair) frequency distribution with a quadratic distance
metric.

The algorithm variants are combined with centroids for the following file
types. The creation of each centroid and its underlying files is described in the
coming subsections.

• Windows PE files

• Zip files

• AES encrypted file using GPG

• CAST5 encrypted file using GPG

• JPEG image data parts with RST markers

• JPEG image data parts without RST markers

• MP3 audio files without an ID3 tag

The reason for using two different encryption algorithms is the fact that
GPG uses packet lengths of 8191 bytes when using the older CAST5 algorithm.
This results in the 0xED value being repeated every 8192 bytes, giving rise to a
clearly visible deviation in the centroid, which can be seen in Figure 2.13. This
marker is also used for all available algorithms in GPG when it is possible to
compress the source file, or the size of the final encrypted file is not known in
advance [20, pp. 14–16].

A higher amount of 0xED in an encrypted file therefore indicates

1. an older algorithm being used, or

2. a compressible source file type, and

3. that GPG does not know the length of the encrypted file in advance.

Case 1 becomes trivial if the header is available and is therefore less important,
but cases 2 and 3 means that some information is leaking, although not very
much.

The JPEG images are divided into two groups according to whether they
come from cameras or applications using RST markers or not. This partitioning
is made to test if it is possible to enhance the detection rate for such images. The
RST markers are frequent and easy to detect, so there is no problem creating
clean image data to train and test on.

The files used for the evaluation are truncated to form equally sized data sets.
We do this to eliminate the risk of affecting the evaluation results by having
centroids based on different amounts of data. The truncation method does not
give rise to artificial byte combinations, which a method where non-consecutive
segments of a large file are joined together will do. This is important when the
algorithm is taking the ordering of the bytes into consideration.

24

2.5. EVALUATION

0 50 100 150 200 250

10
1.18

10
1.19

10
1.2

10
1.21

10
1.22

10
1.23

Byte Value

M
ea

n
F

re
qu

en
cy

Byte Frequency Distribution (histogram); GPG CAST5

Figure 2.13: The byte frequency distribution of a large file encrypted with GPG,
using the CAST5 algorithm. A logarithmic scale is used for the Y-axis and the
frequency values correspond to 4 KiB of data.

The downside of using a fixed amount of data from the first part of a large
file is that the composition of the data in the excluded part might differ from
the included part and in that way bias the centroid. When creating the full files,
which are used to make the uni-files, we try to make an evenly distributed mix
of the included files and to concatenate them in an acceptable order.

The evaluation of the detection rate uses half of the data from a uni-file for
creating a centroid and the other half to test on. The halves are then swapped
and the evaluation process is repeated. The reason for this is to avoid testing on
the same data as was used to create the centroid. Performing the evaluation twice
on different parts of the data also guarantees that the same amount of data is used
for evaluation of the detection rate and the false positives rate.

Unfortunately the splitting of files, giving a lower amount of data for cen-
troid creation, affects the quality of the centroids. For file types with an almost
uniform byte frequency distribution the decrease in quality is noticeable.

2.5.1 Microsoft Windows PE files

We use 219 files2 of Microsoft Windows PE format extracted from a computer
running Windows XP SP2. The file utility of Linux categorises the files into
three main groups:

2The raw data files and source code can be found at http://www.ida.liu.se/~iislab/
security/forensics/material/ or by contacting the author at g-makar@ida.liu.se

25

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

• MS-DOS executable PE for MS Windows (console) Intel 80386 32-bit

• MS-DOS executable PE for MS Windows (GUI) Intel 80386

• MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

The executable files are concatenated by issuing the command

cat *.exe > exes_new.1st

which treats the files in alphabetical order, no case-sensitivity. The resulting
exes_new.1st file is manually cleaned from JPEG, GIF, and PNG images
by searching for their magic numbers, keeping track of the look of the byte
stream and ending the search when an end marker is found. We check for em-
bedded thumbnail images to avoid ending our cleaning operation prematurely.
The GIF images are found by their starting strings “GIF87a” or “GIF89a”. They
end in 0x003B, which can also occur within the image data, consequently the
correct file end can be hard to find. We use common sense, there are often
a number of zeros around the hexadecimal sequence when it represents the
end of a GIF image. PNG images start with the hexadecimal byte sequence
0x89504E470D0A1A0A and are ended by the string “IEND”.

The cleaned full file is called exes_clean_full.raw and the final step
is to truncate the full file to form a 89 MiB long file. The new file is called
exes_clean_new.uni and is used for the evaluation.

2.5.2 Encrypted files

We create two encrypted files3 from the Zip full file using two symmetric en-
cryption algorithms, CAST5 and AES with 128 bit keys. Due to the discovery
of the 0xED feature in GPG, the CAST5 file is given a name related to its source
file, not the encryption algorithm name. The framework we use is GPG 1.4.6,
which is called by

gpg --cipher-algo=cast5 \
--passphrase=gpg_zips_full.raw \
--output=gpg_zips_full.raw -c zips_new_full.raw

and

gpg --cipher-algo=aes --passphrase=gpg_zips_full.raw \
--output=gpg_aes_full.raw -c zips_new_full.raw

The full file of the Zip type is used because it is not further compressible
and consequently the 0xED packet length marker is not used for AES or other
modern algorithms4.

3The raw data files and source code can be found at http://www.ida.liu.se/~iislab/
security/forensics/material/ or by contacting the author at g-makar@ida.liu.se

4The modern algorithms available in our version of the GPG software are AES, AES192, AES256,
and Twofish.

26

2.5. EVALUATION

The encrypted full files are truncated to form two 89 MiB long files called
gpg_aes_new.uni and gpg_zips_new.uni. These are then used for the
evaluation.

2.5.3 JPEG files

We create two centroids for the JPEG file type, one for images using RST mark-
ers and one for images without RST markers5. The data files are named accord-
ingly, jpegs_rsm_full.raw and jpegs_no_rsm_full.raw.

The images contained in the source files used for our research are taken from
our database of standard, private (amateur) JPEG images captured using con-
sumer grade cameras and in typical private life conditions. This selection of im-
ages is meant to give a broad and well balanced spectrum of images to work with.
We have not excluded any technically poor images, because our intention is to
keep the evaluation as close as we can to a real-life situation, without sacrificing
control of the test environment.

All image donors have approved the selection of images and given us oral
permission to use them in our research. The fact that we only use the data
part of the images, i.e. the header is stripped off, makes it harder to recreate the
images, or in other ways identify any objects in the images.

The jpeg_rsm_full.raw file consists of 343 images stripped of their
headers, together giving 466 MiB of data. In Table 2.1 the number of images
for each camera make, model and image size included in the file is shown. Im-
ages of portrait and landscape orientation are shown on separate lines, because
their image data is differently oriented. This should not affect the encoding at a
low level (byte level in the files), but at the pixel level it might matter.

The jpeg_rsm_full.raw file is made up of 272 images giving a total of
209 MiB. The images in this file do not contain any RST markers and come from
the camera makes and models given in Table 2.2.

The two full files are truncated to form two equally large (89 MiB) uni-files,
called jpegs_rsm_new.uni and jpegs_no_rsm_new.uni. These uni-files
are used in the evaluation.

The compression levels of the image files differ, which affects the centroid’s
ability to correctly model a generic JPEG image. The compression level depends
on the camera settings when the photograph was taken. A lower compression
level means that the level of detail retained in the image files are higher and there
are longer sequences of image code between each RST marker, if used. Longer
sequences slightly changes the byte frequency distribution, hence the centroid is
affected. We have not investigated to what extent the compression level affects
the centroid, but our experience is that the effect is negligible.

5The raw data files and source code can be found at http://www.ida.liu.se/~iislab/
security/forensics/material/ or by contacting the author at g-makar@ida.liu.se

27

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

Table 2.1: The number of images coming from different camera makes and models,
and their sizes in pixels. Portrait and landscape mode images are separated. All
images contain RST markers.

images Camera Image size
25 Canon DIGITAL IXUS 400 1600x1200
25 Canon DIGITAL IXUS v 1600x1200
25 Canon EOS 350D DIGITAL 3456x2304
25 Canon EOS 400D DIGITAL 3888x2592
4 Canon PowerShot A70 1536x2048
46 Canon PowerShot A70 2048x1536
25 CASIO COMPUTER CO.,LTD EX-Z40 2304x1728
25 Kodak CLAS Digital Film Scanner / HR200 1536x1024
24 Konica Digital Camera KD-310Z 1600x1200
1 Konica Digital Camera KD-310Z 2048x1536
11 KONICA MINOLTA DiMAGE G400 1704x2272
14 KONICA MINOLTA DiMAGE G400 2272x1704
25 NIKON D50 3008x2000
6 NIKON E3500 1536x2048
19 NIKON E3500 2048x1536
3 Panasonic DMC-FZ7 2112x2816
22 Panasonic DMC-FZ7 2816x2112
18 SONY DSC-P8 2048x1536

Table 2.2: The number of images coming from different camera makes and models,
and their sizes in pixels. Portrait and landscape mode images are separated. There
are no RST markers in the images.

images Camera Image size
73 FUJIFILM FinePix2400Zoom 1280x960
9 FUJIFILM FinePix2400Zoom 640x480
95 FUJIFILM FinePix E550 2848x2136
73 OLYMPUS IMAGING CORP. uD600,S600 1600x1200
2 1 OLYMPUS IMAGING CORP. uD600,S600 2816x2112
1 OLYMPUS IMAGING CORP. uD600,S600 640x480

28

2.5. EVALUATION

Table 2.3: The MP3 files included in mp3_no_id3_full.raw. The individual encoding
parameters are shown for each file.

File name Bitrate Encoder
01_petra_ostergren_8A6F_no_id3.mp3 variable iTunes v7.1.1.5
02_david_eberhard_192DE_no_id3.mp3 variable iTunes v7.1.1.5
03_boris_benulic_30DF_no_id3.mp3 variable iTunes v7.1.1.5
04_dick_kling_81F0_no_id3.mp3 variable iTunes v7.1.1.5
05_maria_ludvigsson_3A96_no_id3.mp3 variable iTunes v7.2.0.34
06_hakan_tribell_C59F_no_id3.mp3 variable iTunes v7.1.1.5
07_anders_johnson_0558_no_id3.mp3 variable iTunes v7.1.1.5
08_marie_soderqvist_4B92_no_id3.mp3 variable iTunes v7.1.1.5
09_erik_zsiga_D020_no_id3.mp3 128 KiB/s -
10_carl_rudbeck_F7CB_no_id3.mp3 variable iTunes v7.1.1.5
11_nuri_kino_7CFA_no_id3.mp3 112 KiB/s -
12_johan_norberg_4F96_no_id3.mp3 112 KiB/s -

2.5.4 MP3 files

We use 12 MP3 files6 featuring a pod radio show in the evaluation. The files
contain ID3 tags [21], which are deleted using the Linux tool id3v2 0.1.11. We
use a script to clean the files and then check each file manually to verify the
cleaning. The resulting files are then concatenated and saved in a file called
mp3_no_id3_full.raw, in the order shown in Table 2.3. The resulting full
file is truncated to a size of 89 MiB and called mp3_no_id3_new.uni. All
included files are MP3 version 1 files. They are all sampled at 44.1 kHz as Joint
Stereo. Their individual encoding can be seen in Table 2.3.

The reason for deleting the ID3 tags is that they contain extra information.
There is for example a field for attaching pictures [22, Sect. 4.15]. It is even
possible to attach any type of data using a label called “General encapsulated
object” [22, Sect. 4.16], hence a MP3 file can contain executable code. Since we
want to use nothing but the audio stream in our evaluation we have to delete the
ID3 tag.

2.5.5 Zip files

The file zips_new_full.raw, consists of 198 zipped text files7 from the
Gutenberg project [23]. Among them is a zipped version of the Swedish bible
from 1917 in the form a 1.5 MiB compressed file. All files from the Gutenberg
project are compressed with Zip version 2 or above. The text in the files is ISO-
8859-1 encoded. We also include a zipped .iso (ReactOS-0.3.1-REL-live.zip) and

6The raw data files and source code can be found at http://www.ida.liu.se/~iislab/
security/forensics/material/ or by contacting the author at g-makar@ida.liu.se

7The raw data files and source code can be found at http://www.ida.liu.se/~iislab/
security/forensics/material/ or by contacting the author at g-makar@ida.liu.se

29

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

a zipped Preboot Execution Environment (PXE) network XWin edition of the
Recovery Is Possible (RIP) 3.4 Linux rescue system (zipped with a software ver-
sion ≥ 1.0). The files are concatenated, sorted by file name in ascending order
with the text files first, then the ReactOS, RIP, and finally a zipped version of
the exes_clean_full.raw file. The full file is added to extend the amount
of data for the creation of the encrypted file centroid (see Section 2.5.2). The
original executable file collection is 89 MiB unzipped and 41 MiB zipped and is
compressed using Linux Zip 2.32.

The zips_new_full.raw. file is truncated to a 89 MiB long file, which is
used for the evaluation. The new file is called zips_new_new.uni.

2.5.6 Algorithms

We test the amount of false positives and the detection ability of each algorithm
by creating a centroid for each file type and then measuring the distance between
the centroid and every fragment of each file type. The uni-files are used as test
files, the distances are sorted and the test file giving the lowest distance is recorded
for each combination of fragment, centroid and algorithm.

When measuring the detection rate of the centroids, i.e. having them detect
fragments of their own type, we partition the uni-files in two and use one for
training and the other for testing. We perform each test twice, swapping the
roles of the file parts.

Because of the quality decrease of centroids based on smaller amounts of
data, especially for almost uniformly distributed file types (see Section 2.6.6), we
make a small extra evaluation using an alternative data source for the encrypted
file type centroids. The data comes from a 644 MiB large CD iso file, which is
downloaded from one of the Debian mirror sites [24]. The file is compressed
using Zip and then two encrypted files are created in same way as described in
Section 2.5.2, one using AES and one using CAST5. The results are then used to
create a confusion matrix.

2.6 Results

The results of the evaluation will be presented using Receiver Operating Charac-
teristic (ROC) curves [25]. A ROC curve plots the true positives against the false
positives while the detection threshold is varied.

There is little meaning in plotting detection rate values below 50%, or false
positives values above 50%, because outside those boundaries the results are get-
ting close to guessing. Strictly speaking that happens when the ROC curve falls
below the diagonal where the false positives rate equals the detection rate. There-
fore we have limited the plots to the upper left quarter of the ROC curve plotting
range area, although the consequence might be that some results are not shown

30

2.6. RESULTS

Table 2.4: The following base names, possibly together with a prefix or suffix, are
used in the evaluation. The corresponding algorithm names are given as a transla-
tion.

Base name Algorithm
2-gram_ny 2-gram
map-bf BFD
map-bf_jpeg_spec BFD with JPEG rule set
map-bf_n_roc BFD and RoC combined
map-bf_n_roc_jpeg_spec BFD and RoC with JPEG rule set
map-bf_n_roc_norm BFD and RoC with Manhattan distance

metric
map-roc RoC
map-roc_jpeg_spec RoC with JPEG rule set
map-roc_norm RoC with Manhattan distance metric
map_noabs-bf_n_roc BFD and RoC with signed values
map_noabs-bf_n_roc_jpeg_spec BFD and RoC with signed values and

JPEG rule set
map_noabs-bf_n_roc_norm BFD and RoC with signed values and

Manhattan distance
map_noabs-roc RoC with signed difference values
map_noabs-roc_jpeg_spec RoC with signed values and JPEG rule

set
map_noabs-roc_norm RoC with signed values and Manhattan

distance

in the figures. What we miss are the conservative8 and liberal9 parts of the curves
in the graphs.

The algorithm ROC curves for each centroid used in the evaluation will be
presented in the following sections, one for each file type. We choose to present
the results from the centroid point of view because in that way the algorithms
can easily be compared against each other. The legend of each ROC curve plot
contains algorithm base names, which are given together with the corresponding
algorithm name in Table 2.4.

The file type categorisation method and its algorithms are generalisable, which
the evaluation shows. It is applicable to different types of compressed or en-
crypted files, which have a high amount of entropy. Information entropy is a
measure of the uncertainty of a signal or stream of bytes. It can be calculated
using Equation (2.3), where X is a discrete random variable existing in the set
Ω, with the probability function f (x). The symbol “2 log” means the base 2

8Defined as giving few positives, neither true nor false. They are conservative in the sense that
they need strong evidence to give a positive categorisation. [25]

9Defined as giving many positives, both true and false. They are liberal in the sense that they
need only weak evidence to give a positive categorisation. [25]

31

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

Table 2.5: The information entropy values for some file types.

File type Entropy [bits]
Windows PE 6.581
MP3 7.938
JPEG w. RST 7.971
Zip 7.998
GPG AES 8.000

logarithm, which gives H (X) the unit bit. [26]

H (X) =−
∑

x∈Ω
f (x)(2log f (x)) (2.3)

The entropy values for some of the file types included in the evaluation can be
found in Table 2.5. They are calculated using Equation (2.3) and the values for
the mean byte frequency of the centroids. The executable file differs from the
other files by its approximately 17% lower value, but all values are close to the
size of a byte, rendering their byte streams nearly random in appearance.

2.6.1 Microsoft Windows PE files

The only algorithm able to properly detect Windows PE files is the 2-gram algo-
rithm. The ROC curve can be seen in Figure 2.14 and starts to level out at 60%
detection rate and a false positives rate of 0.05%. It then slowly increases towards
a new plateau at 75% detection rate and 10% false positives rate.

The reason for the non-smooth curve is probably the fact that executable files
can be divided into several sub-parts, where the main parts are machine code and
tables. Tables are very structured and easy to categorise manually, while machine
code looks more random and unstructured. But machine code contain specific
byte pairs that are more frequent than others, and that is detected by the 2-gram
algorithm. The tables does not necessarily have a small number of more frequent
byte pairs, and hence is not detected until the detection threshold is considerably
higher than for machine code. We have not confirmed this experimentally, we
have yet only formed a hypothesis.

2.6.2 Encrypted files

We use two different centroids for the encrypted file experiments, because we
found a deviation of the frequency of byte 0xED in some cases (see Section 2.5
and Figure 2.13). This deviation is too small to be seen in the ROC curves
without a high magnification. Therefore we only show the results for the AES
encrypted file centroid.

Figure 2.15 shows the results, where four clusters of algorithms are visible.
At the 50% detection rate level the clusters are, from left to right:

32

2.6. RESULTS

0 5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100

False Positives Rate [%]

D
et

ec
tio

n
R

at
e

[%
]

Detection Rate vs. False Positives Rate (ROC); exes-clean-new

2-gram-ny

Figure 2.14: The results for the Windows PE files centroid for algorithms scoring
above 50% detection rate and below 50% false positives rate.

1. BFD, and BFD and RoC, at 11% false positives.

2. RoC with a quadratic distance metric, at 15% false positives.

3. RoC with a Manhattan distance metric, at 21% false positives.

4. 2-gram, at 29% false positives.

As can be seen in Figure 2.15 the 2-gram algorithm has the steepest inclina-
tion, but the best algorithms are still the BFD, and the BFD and RoC combina-
tion, reaching 100% detection rate at between 31.4% and 34.9% false positives.
The 2-gram algorithm is a close second (or maybe more correctly, a close sixth)
at 35.4% false positives.

The difference in results between the centroids for the AES encrypted file and
the CAST5 encrypted file is greatest at 50% detection rate. The best algorithm is
the BFD in both cases, for CAST5 the false positives rate is 10.5% and for AES
it is 10.8%.

2.6.3 JPEG files

The ROC curve for JPEG files without RST markers in Figure 2.16 is clustered
into three curve areas, with a fourth area just touching the bottom right corner.
The fourth cluster is not visible in the plot, but is there. It has a false positives
rate of approximately 49.7%.

33

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

0 5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100

False Positives Rate [%]

D
et

ec
tio

n
R

at
e

[%
]

Detection Rate vs. False Positives Rate (ROC); gpg-aes-new

2-gram-ny
map-bf-n-roc-norm
map-bf-n-roc
map-bf
map-noabs-bf-n-roc-norm
map-noabs-bf-n-roc
map-noabs-roc-norm
map-noabs-roc
map-roc-norm
map-roc

Figure 2.15: The results for the AES encrypted file centroid for algorithms scoring
above 50% detection rate and below 50% false positives rate.

0 5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100

False Positives Rate [%]

D
et

ec
tio

n
R

at
e

[%
]

Detection Rate vs. False Positives Rate (ROC); jpegs-no-rsm-new

2-gram-ny
map-bf-n-roc
map-noabs-bf-n-roc-jpeg-spec
map-noabs-bf-n-roc
map-noabs-roc-jpeg-spec
map-noabs-roc-norm
map-noabs-roc
map-roc-jpeg-spec
map-roc-norm
map-roc

Figure 2.16: The results for the centroid for JPEG without RST markers for algo-
rithms scoring above 50% detection rate and below 50% false positives rate.

34

2.6. RESULTS

0 0.05 0.1 0.15
50

55

60

65

70

75

80

85

90

95

100

False Positives Rate [%]

D
et

ec
tio

n
R

at
e

[%
]

Detection Rate vs. False Positives Rate (ROC); jpegs-no-rsm-new

2-gram-ny

Figure 2.17: The results for the centroid for JPEG without RST markers for the
2-gram algorithm.

The clustered areas are related to the following algorithms, with the given
false positives rate at a detection rate of 50%, counting from left to right:

1. 2-gram, false positives rate 0%

2. RoC with signed difference values, false positives rate 26%

3. RoC with absolute difference values, false positives rate 31%

4. BFD and RoC with quadratic distance metric, false positives rate 50%

The BFD and RoC combinations with a simple Manhattan distance metric,
as well as the single BFD algorithm, give false positives rates higher than 50%
and are not shown in the figure.

The 2-gram algorithm gives outstanding results compared to the other algo-
rithms. The centroid for JPEG images lacking RST markers used together with
the 2-gram algorithm give a 100% detection rate at a false positives rate of less
than 0.12%, as can be seen in Figure 2.17. For detection rates below 67.6% there
are no false positives. Please observe the logarithmic scale of the (false positives)
X-axis.

The centroid for JPEG images with RST markers, which can be seen in Fig-
ure 2.18, does not give results as good as the previous JPEG centroid. The best
results are achieved together with the BFD and RoC combinations, and the sin-
gle BFD algorithms. All these algorithms give a false positives rate of less than
1% at a detection rate of 50%. Best, from a false positives rate point of view, is

35

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

0 5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100

False Positives Rate [%]

D
et

ec
tio

n
R

at
e

[%
]

Detection Rate vs. False Positives Rate (ROC); jpegs-rsm-new

2-gram-ny
map-bf-jpeg-spec
map-bf-n-roc-jpeg-spec
map-bf-n-roc-norm
map-bf-n-roc
map-bf
map-noabs-bf-n-roc-jpeg-spec
map-noabs-bf-n-roc-norm
map-noabs-bf-n-roc
map-noabs-roc-jpeg-spec
map-noabs-roc-norm
map-noabs-roc
map-roc-jpeg-spec
map-roc-norm
map-roc

Figure 2.18: The results for the centroid for JPEG with RST markers for algorithms
scoring above 50% detection rate and below 50% false positives rate.

the BFD and RoC combination using signed difference values, a quadratic dis-
tance metric, and a JPEG specific rule set. This algorithm reaches a detection
rate of 83.8% at a false detection rate of 6%. It then levels out and eventually
reach a 100% detection rate at 95.7% false positives rate. The 2-gram algorithm
is the first to reach a detection rate of 100% at a false positives rate of 16.8%. It
starts at a false positives rate of 5.1% at 50% detection rate.

The clusters of algorithms that can be seen in Figure 2.18 comprise the fol-
lowing algorithms, from left to right at 80% detection rate:

1. BFD and RoC with signed difference values, absolute valued BFD an RoC
(except for the JPEG specific rule set algorithm), and the BFD algorithms,
4% false positives.

2. BFD and RoC with absolute difference values and a JPEG specific rule set,
8% false positives.

3. 2-gram algorithm, 16% false positives.

4. RoC with signed difference values and quadratic distance metric, 20% false
positives.

5. RoC with signed difference values and Manhattan distance metric, 23%
false positives.

6. RoC with absolute difference values and quadratic distance metric, 27%
false positives.

36

2.6. RESULTS

7. RoC with absolute difference values and Manhattan distance metric, 29%
false positives.

Since the centroid for JPEG images with RST markers does not require, only
allow, RST markers in a data fragment, it is more prone to false positives than the
other JPEG centroid. This explains the differences in the results for the 2-gram
algorithm, which is especially good at utilising fixed parameters that are required
by a file type.

2.6.4 MP3 files

The results for the MP3 file centroid are shown in Figure 2.19. The 2-gram
algorithm is the best and is accompanied by three clusters at 85% detection rate.
The clusters are, from left to right:

1. 2-gram, 0.1% false positives.

2. BFD and RoC combinations, the signed difference valued slightly to the
right, 2% false positives.

3. RoC, 7% false positives.

4. BFD, 10% false positives.

Even though the RoC algorithm with a quadratic distance metric is above
the 2-gram algorithm curve when reaching false positive levels of 40% or higher
in Figure 2.19, the 2-gram algorithm is the first to reach a 100% detection rate,
with a false positives rate of 86%. The second best is actually the BFD algorithm,
but it reaches 100% detection at 99.3% false positives.

The detailed results, presented for a maximum false positives rate of 0.5%,
can be seen in Figure 2.20. The result of the 2-gram algorithm is levelling out
at a detection rate of 94% at 0.24% false positives. The BFD and RoC combi-
nations level out at approximately 70% detection rate, with the BFD and RoC
combination using a Manhattan distance metric a few percent above the other
three.

2.6.5 Zip files

In Figure 2.21 the results of the Zip file centroid can be seen. The straighter
curves belong to the RoC algorithms and the S-shaped curves belong to the BFD
and RoC combination algorithms, plus the single BFD algorithm. The clusters
of curves shown in the figure belong to, from left to right at the 65% detection
rate level, the following algorithms:

1. RoC with quadratic distance metric and signed difference values, 29.8%
false positives rate.

2. RoC with quadratic distance metric and absolute difference values, 31.9%
false positives rate.

37

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

0 5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100

False Positives Rate [%]

D
et

ec
tio

n
R

at
e

[%
]

Detection Rate vs. False Positives Rate (ROC); mp3s-no-id3-new

2-gram-ny
map-bf-n-roc-norm
map-bf-n-roc
map-bf
map-noabs-bf-n-roc-norm
map-noabs-bf-n-roc
map-noabs-roc-norm
map-noabs-roc
map-roc-norm
map-roc

Figure 2.19: The results for the MP3 file centroid for algorithms scoring above 50%
detection rate and below 50% false positives rate.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
50

55

60

65

70

75

80

85

90

95

100

False Positives Rate [%]

D
et

ec
tio

n
R

at
e

[%
]

Detection Rate vs. False Positives Rate (ROC); mp3s-no-id3-new

2-gram-ny
map-bf-n-roc-norm
map-bf-n-roc
map-bf
map-noabs-bf-n-roc-norm
map-noabs-bf-n-roc
map-noabs-roc-norm
map-roc-norm

Figure 2.20: The results for the MP3 file centroid for algorithms scoring above 50%
detection rate and below 0.5% false positives rate.

38

2.6. RESULTS

0 5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100

False Positives Rate [%]

D
et

ec
tio

n
R

at
e

[%
]

Detection Rate vs. False Positives Rate (ROC); zips-new-new

map-bf-n-roc-norm
map-bf-n-roc
map-bf
map-noabs-bf-n-roc-norm
map-noabs-bf-n-roc
map-noabs-roc-norm
map-noabs-roc
map-roc-norm
map-roc

Figure 2.21: The results for the Zip files centroid for algorithms scoring above 50%
detection rate and below 50% false positives rate.

3. BFD and RoC combinations with quadratic distance metric, 33.8% false
positives rate.

4. BFD, and BFD and RoC combinations with Manhattan distance metric,
35% false positives rate.

5. RoC with Manhattan distance metric and signed difference values, 42.9%
false positives rate.

6. RoC with Manhattan distance metric and absolute difference values, 44.5%
false positives rate.

Worth noticing is that the 2-gram algorithm is not included in Figure 2.21.
At a detection rate of 50% it has 68% false positives, and reaches 100% detection
at 99% false positives. This might depend on the regular patterns, which makes
the centroid resemble a structured file type, in an otherwise almost uniform dis-
tribution. The regular patterns can be seen in Figure 2.22. The figure shows that
the 2-gram frequencies are slowly increasing towards higher byte pairs. There is
one line corresponding to similarly valued 2-grams, and two lines representing
byte pairs where one of the byte values is twice the value of the other, i.e. x = 2y
or 2x = y. There is also a pattern of squares of bytes either starting or ending
with 0xF.

39

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

1st Byte Value

2n
d

B
yt

e
V

al
ue

2-Gram Contour Plot; zip

50 100 150 200 250

50

100

150

200

250

Figure 2.22: A contour plot for a Zip file centroid of 2-grams. The almost evenly
distributed centroid has clearly visible patterns.

2.6.6 Algorithms

One way to represent the performance of a categorisation algorithm is to use a
confusion matrix. In our case the matrix shows the number of fragments cat-
egorised as different file types when using a specific centroid. Hence the rows
represent different centroids, the actual classes, and the columns represent cate-
gorisations by the algorithms, meaning the predicted classes.

The short form of the centroid names used in the confusion matrices can be
found in Table 2.6.

The best results are achieved using the 2-gram algorithm, but in some of our
tests other algorithms performed better than the 2-gram algorithm. Table 2.7
presents the confusion matrix of the 2-gram algorithm. The confusion matrices
of the rest of the algorithms can be found in Appendix C.

As can be seen the two centroids representing encrypted information are
better at categorising each other than themselves. This phenomena can be traced
back to the smaller data sets used to create the centroids for the detection rate
evaluation (see Section 2.5). A smaller data sub-set (of a larger data set) gives
a standard deviation less or equal to the standard deviation of the full data set.
Therefore the distance metric used (see Equation (2.2)) gives slightly higher dis-
tance values for the sub-sets than for the full data set.

The variations in the data between the encrypted file types are smaller than
the difference in the mean standard deviation between the full data and the sub-
set data centroids. Consequently the full data set centroids are better at cate-

40

2.6. RESULTS

Table 2.6: The following short names are used for the confusion matrices.

Short name Centroid
exe Windows PE files
cast5 CAST5 encrypted GPG file
aes AES encrypted GPG file
no rst JPEG images without RST markers
rst JPEG images with RST markers
mp3 MP3 audio files without an ID3 tag
zip Files compressed using Zip

Table 2.7: The confusion matrix of the 2-gram algorithm.

exe aes cast5 no rst rst mp3 zip
exe 15332 8 10 12 15 7247 56
aes 100 402 16450 3 0 0 5725

cast5 107 16614 339 0 0 0 5620
no rst 10 0 0 22667 0 0 3

rst 0 0 0 9677 13003 0 0
mp3 60 371 276 3 6 21882 82

zip 113 5699 5650 4 0 0 11214

gorising almost-similar data types than the small centroids are at categorising
their own data type. The mean standard deviations of the four sub-set centroids
are approximately 1.5% lower than the mean standard deviations of the full data
set centroids, thus increasing the distance measurements by the same amount for
the sub-set centroids.

The effect of the smaller amount of data on the detection rate is only no-
ticeable for the encrypted file types, and then only between different encryption
algorithms. The small extra amount of 0xED in the CAST5 encrypted file is
hidden by the difference in the mean standard deviation values between the full
data set and the sub-set centroids.

To verify that a centroid created from a larger data set would improve the
detection rate of the centroid’s file type, we performed a limited test where we
used a 604 MiB compressed file to create two GPG centroids, one using the AES
encryption algorithm and one using CAST5. The testing files were the same as
we used in the evaluation (see Section 2.5.2). The resulting confusion matrix can
be seen in Table 2.8

The centroids created using the 604 MiB file have a mean standard devia-
tion approximately 1.2% higher than the centroids created from the 94 MiB
zips_new_new.uni file. As can be seen when comparing Table 2.7 and Ta-
ble 2.8 the detection ability of the AES and CAST5 centroids has increased sig-
nificantly. The AES centroid now actually detects its own file type better than

41

CHAPTER 2. IDENTIFYING FRAGMENT TYPES

Table 2.8: The confusion matrix of the 2-gram algorithm using a 604 MiB com-
pressed file to create the GPG AES and GPG CAST5 centroids.

exe aes cast5 no rst rst mp3 zip
aes 56 9720 9609 0 0 0 3295

cast5 55 9682 9641 0 0 0 3302

any other, although the difference to the CAST5 file type is only 111 fragments,
or 1.2%. The amount of false positives for all file types included in the test have
decreased, with a 45% decrease for exe files and a 42% decrease for the zip files.

42

Chapter 3

Putting Fragments Together

When a number of data fragments of a specific file type have successfully been
recovered using the file type categorisation method, the next step is to try to
reconnect them in the right order to recreate the original file. This chapter will
present a method to do that for JPEG images having RST markers. The basic idea
behind the JPEG image fragment reconnection method is outlined in Section 1.5.

The term fragment joint validity will be used to represent the validity of two
fragments being properly joined together into a correct pair, and as such being
part of a correct JPEG image.

The parameters we judge as being important when decoding a JPEG scan
have been tested during the development of the image fragment reconnection
method. The parameters represent different logical layers of a JPEG image, start-
ing at the bottom with the raw byte stream and ending at the DC frequency pixel
level. The evaluation and the results of that method are presented in Section 3.4
and Section 3.5.

For the first round of tests we used image for all tests. We extracted the
picture data and divided it into 381 4 KiB large fragments, which were then used
for the reconnection experiments. A brute-force attempt to put together the
original image from these fragment pairs would give 381! sequences to test for
the correct combination. For the next round of experiments we used images
from several different cameras. This is explained in more detail in Section 3.4.

3.1 Background

A JPEG file is made up of a header section and a data section, which is called scan.
A header consists of some markers containing tables and other information, and
compressed pixel data in the scan. The raw pixel data is divided into data units
of 8× 8 pixels. The pixels are often coded as Red Green Blue (RGB) colours.

The majority of the markers can be found in the header section, but there are
markers which may appear in the scan too. All markers start with the byte 0xFF
and then one byte identifying the marker type. Most of the markers are followed

43

CHAPTER 3. PUTTING FRAGMENTS TOGETHER

by a two byte long value indicating the length of the marker, excluding the two
first bytes. A JPEG file always starts with the Start-Of-Image (SOI) marker,
0xFFD8, and ends with an End Of Image (EOI) marker, 0xFFD9. The scan
is compressed in several ways, one of them being an entropy encoding, usually
Huffman.

The Start of Image (SOI) marker should always be the first two bytes of a
JPEG image. Its hexadecimal value is 0xFFD8 and it stands alone, i.e. is not
followed by a two-byte length value. This marker is often used by file carving
tools to identify JPEG files. Any JPEG coded image is preceded by this marker.
This means that there can be several markers in one image file, because if there is
a thumbnail version of the image embedded in the header section the thumbnail
will also start with a SOI.

The EOI marker is denoted by 0xFFD9 and marks the end of a scan. There-
fore it is not followed by any length value. Since embedded thumbnails are small
images in themselves there can be several EOIs in one image file. This marker is
used by file carving tools to stop the carving when dealing with JPEG images.
Since an image file can be fragmented this is an inexact way of extracting JPEG
image files; there is a high risk of non-JPEG data being included in the extracted
data. There is also a risk of missing the real image and only carve a thumbnail
version of it if the carving algorithm is not set to require a large enough amount
of data to be included in an image before allowing the appearance of an EOI.

Colour baseline sequential JPEG images do not use the RGB scheme, instead
they use a luminance and chrominance colour coding scheme. The luminance
represents the black and white nuances of the image and the chrominance the
colours, often taken from a two-dimensional palette. A common colour coding
scheme used for JPEG images is the YCbCr scheme, where Y represents the
luminance, Cb represents the blue hues and Cr represents the red hues of an
image. Each of the Y, Cb, and Cr are called components of the image. There
are other colour coding schemes possible to use, e.g. YIQ, YUV, and CMYK,
but they are all variants of the luminance and chrominance coding scheme. The
reason for not using the RGB colour coding scheme is the fact that it is easier to
compress images using a luminance and chrominance coding scheme.

One of the compression steps utilised in JPEG images uses the Discrete Co-
sine Transform (DCT) to convert from the amplitude domain to the frequency
domain. Performing calculations in the frequency domain allows lossy compres-
sion to be applied to an image by zeroing out higher frequencies. The higher
frequencies hold the tiny details of an image and can be omitted without much
loss of quality. This can be seen in Figure 3.1, which shows the frequency coeffi-
cients of a JPEG image data unit.

The JPEG coding algorithms are applied to blocks of one to four data units at
a time, starting at the upper-left corner of an image and traversing it horizontally.
Since the luminance is more important for the perceived quality of an image
further compression is sometimes achieved by extracting the chrominance for
larger areas of an image. This is done by using pixel pairs for the chrominance,
either horizontally, vertically, or both. Hence sometimes two or four data units

44

3.1. BACKGROUND

Figure 3.1: The 64 frequencies resulting from a DCT of a JPEG data unit. The DC
coefficient is in the upper-left corner. The image is copied from Wikipedia [27].

45

CHAPTER 3. PUTTING FRAGMENTS TOGETHER

DC AC
1

AC
35

AC
63

AC
28

AC
9

AC
54

AC
49

AC
14

Figure 3.2: The zig-zag order in which a data unit in the frequency domain is
traversed to form a 64 items long vector. The DC coefficient is in the upper-left
corner. The AC coefficients are traversed in increasing frequency order.

are used at the same time, the standard stipulates that this can be done for any
component, as long as the total sum of data units used is less than 11, counting
the data units for each component separately.

The block of frequencies resulting from the DCT is traversed in zig-zag order
(see Figure 3.2) to form a 64 item long vector. The first item is the DC coeffi-
cient, having zero frequency both horizontally and vertically. The rest of the
coefficients are called AC coefficients.

The smallest unit to be put into the scan part of a JPEG image is a Minimum
Coded Unit (MCU). It contains at least one of each components of a data unit.
If the scan part of an image does not contain a discrete number of MCUs it is
corrupt. Hence the quality and structure of the MCUs in the scan part of an
image file is a good thing to check when working with JPEG fragments.

3.2 Requirements

To be able to reconnect fragments we need a method that does not require any, or
very little, post-processing. To be usable the method has to be able to correctly
point out a significant amount of the correct fragment pairs at once by ordering

46

3.3. PARAMETERS USED

them based on their fragment joint validity. The validity measurements should
clearly differentiate between a correct pair and a false pair.

The method should scale well and be able to handle fragments from different
images at the same time. This also requires the method to be able to separate
fragments belonging to images with different restart intervals1 and MCU sizes.
The method should also be able to handle black-and-white and colour image
fragments at the same time, which means fragments with different amounts of
image components in a frame.

It is important to be able to find the starting fragment of a scan, since we
then can base the rest of the processing on that information. Having access to
the starting fragments in a collection we get a lower bound on the number of
possible images to recreate.

When looking at the connection between two fragments the most probable
connection point is in the middle of a MCU. Either the joint cuts through a
Huffman code, a value code, or through the boundary between them. These
types of joints are trivial to handle and can be used for calculating the fragment
joint validity. There are however situations where the joint cuts through, or
occurs at the beginning or end of, a marker segment. These types of joints are
harder to handle and depending on the abstraction level we are working at, such a
joint may give very little or no information regarding the fragment joint validity.

The method used for reconnection of image fragments should be able to
correctly handle all types of joints.

3.3 Parameters Used

This section presents the parameters that have been tested for their ability to
help in reconnecting JPEG image fragments. Results are included even for the
parameters that do not meet the requirements specified in Section 3.2. For each
experiment involving a specific parameter we tried to falsify the hypothesis that
a specific parameter was good enough to fulfil the specified requirements.

3.3.1 Background

The coding of a JPEG image is more complex than what will be described in
this section. We have chosen to exclude details that are not relevant to the un-
derstanding of our work and focus on the overall process, to be able to clearly
explain our ideas. Our algorithms, tools and experiments are all compliant to the
original JPEG standard from 1992 [13], with extensions. A full description of the
coding process can be found in Annex F of the JPEG standard [13, pp. 87–118].

The scan contains the compressed pixel data from the light sensors of the
camera. As mentioned earlier the data are first converted to a luminance and
chrominance colour scheme, often having three components. The components
are transformed into the frequency domain with the help of the Discrete Cosine

1The distance in MCUs between two RST markers. More information is available in Section 4.4.

47

CHAPTER 3. PUTTING FRAGMENTS TOGETHER

Transform, giving a vector with amplitude values for 64 frequencies in increasing
order.

The frequency vectors are compressed using a quantization table, which gives
a reduction factor for each frequency. The higher frequencies are usually reduced
to a higher degree since they hold less important information for the overall
quality of the image. The integer part of the resulting quantized values are used,
hence values less than 1 are set to 0, giving a lossy compression.

In Figure 3.3 we can see how the coding of the DC coefficients is based on
the difference of two consecutive DC values for components of the same type.
The length of the signed difference value is Huffman coded and the value itself
follows immediately after the Huffman code. The longest representation, i.e. the
largest difference to be coded, is 11 bytes long. The first DC value of a scan, or
in the case of RST markers being used, the first DC of a new restart interval, is
set to the actual luminance value2 of that data unit. Since both the length of the
Huffman code and the following value can vary in size there is no guarantee that
Huffman codes or value representations start at byte boundaries.

Figure 3.3 also shows the AC value coding. The AC values of the frequency
vector of a component often holds sequences of consecutive zeros. Therefore the
AC values are zero run length coded to further compress the scan data. This is
done by letting the first nibble3 in a byte represent the number of consecutive
zeroes since the last non-zero value in the AC part of the vector, and the second
nibble4 hold the bit length of the next non-zero value.

The length value for the number of consecutive zeroes is restricted to 15. The
value for the number of bits used to represent a non-zero value is restricted to
10 for baseline sequential JPEGs. The resulting byte is Huffman coded, put into
the scan and immediately followed by the signed non-zero value represented by
the number of bits given in the Huffman coded byte. As for the DC component
coding, this means that there is no guarantee for the AC component Huffman
codes or value representations to be byte aligned.

The scan part might contain markers too. If RST markers are used the scan
is interrupted at regular5 intervals by a marker 0xFFDx, where xi+1 = (xi +
1)mod8; x0 = 0. The marker is not followed by any length value bytes. If RST
markers are used in the scan the JPEG file header will contain a DRI marker,
0xFFDD, containing a value larger than zero, indicating the number of MCUs
between each RST marker (see also Section 4.4).

Sometimes the encoding of the image may lead to situations where a byte
value of 0xFF will be used in the scan without signifying a header segment. In
those cases the JPEG standard stipulates that the 0xFF value should be converted
to 0xFF00. The extra zeros should be ignored when decoding the scan.

Any value other than 0x00 or 0xD0 to 0xD7 following a 0xFF value is
forbidden and should generate a decoding error. This requirement can be utilised

2The algorithm uses 0 as a starting value, giving DC 0− 0 as the first difference value.
3The first four bits of a byte.
4The last four bits of a byte.
5The intervals are regular relative to the number of MCUs, the number of bytes between two

RST markers may vary.

48

3.3. PARAMETERS USED

MCU
X

Cb CrY
1

Y
2

DC AC DC AC DC AC DC AC

Huffman
DC

value

Huffman Huffman Huffman Huffman

value value value value

Huffman
DC

value

011 11 11010 10101 1011 1011 100 010 11010 01011

0 zeros
2 bits

3
(3-0)

0 zeros
5 bits

21

0 zeros
4 bits

0 zeros
3 bits

0 zeros
5 bits

11 -5 -20

101 1011

0 zeros
4 bits

13
(16-3)

Figure 3.3: The scan part in binary format showing the DC and AC component
encodings for a MCU. The DC values are given as the difference between two
consecutive DC components. This is the first MCU after a restart marker, hence
the DC value 3− 0. The Huffman codes contain the number of consecutive zeros
and the number of bits needed to encode the non-zero value.

to increase the precision when creating file type models.

3.3.2 Correct decoding

An obvious way of checking if two fragments can be joined together into a larger
JPEG fragment is to look at the sequence of RST markers. We then use the
requirement that for two consecutive fragments, i and i + 1, containing RST
markers, the expression

RSTF i r s t
i+1 = (RSTLas t

i + 1) mod 8

should be true.
There is a problem if the joint cuts through the FFDx pair. The 0xFF might

belong to a 0xFF00 marker, or the Dx might be just an ordinary part of the data
stream, not the second half of a marker. We therefore have to include fragments
ending in 0xFF and fragments starting with 0xD0 to 0xD7, and 0x00. The
amount of extra fragment pairs to check after such an inclusion is manageable.

Using a requirement of a correct RST marker sequence our test image gives
us 18012 possible fragment pairs. 190 of the pairs are correct and can be joined to-
gether into a full image. The set of fragment pairs includes pairs where the joint
cuts through a marker. The method of using correct RST markers sequences
cannot give the fragment joint validity, thus we have to test every possible com-
bination to find the correct one. If we assume there are an equal amount of
possible fragment pairs sharing the same start fragment, we still need to test
more than (18012/381)380 > 47380 combinations to recreate the original image.

49

CHAPTER 3. PUTTING FRAGMENTS TOGETHER

This is much better than the 381! fragment combinations to be tested using a
brute force method, but not good enough.

Decoding the actual data stream, starting at the last known RST marker in
the potential first fragment of a pair, will help us tell whether the 0xFF belong
to a 0x00 or is part of a RST marker. If the decoding ends in a proper way, it
is a RST part, if the decoding fails at the 0xFF it belongs to a 0x00. We need
not use the embedded amplitude values nor take care of more than the length
information6 in the Huffman code. The decoding has to check for the correct
number of MCUs per DRI, and that each MCU is correctly built. This assumes
we know these features in advance, but the possible number of allowed values
are low, hence we can test for each of them.

The full decoding strategy can also be used to check if any fragment pair is a
proper one. If a pre-selection of possible fragments has been done using the RST
markers, the full decoding strategy will decrease the amount of possible fragment
pairs to 3118 for our test image. This amounts to more than (3118/381)380 > 8381

combinations to test, which is too many. Since the method can only tell whether
a certain fragment pair is possible or not, we cannot get any measurements of
the fragment joint validity and consequently have to test every combination.

3.3.3 Non-zero frequency values

The embedded amplitude values in the stream can be used to measure the frag-
ment joint validity. We define the length of a luminance or chrominance am-
plitude value vector as the index of the highest frequency non-zero amplitude,
starting at the DC frequency. To get a value of the fragment joint validity we
measure the luminance and chrominance vectors’ average lengths for a MCU
and compare them to average values calculated over several hundred megabytes
of data.

The length of the luminance vector(s) of a MCU is related to the length of
the chrominance vectors, because they all represent the same collection of pixels.
The same quantization tables are used for all vectors of the same type throughout
the image, thus the relation of the lengths of the luminance and chrominance
vectors should be fairly constant, at least compared to the actual differences.
This is true even when the amount of details encoded in each MCU varies. We
therefore used the relation between the luminance and chrominance vectors as
an alternative measurement of the fragment joint validity.

We also tested a variant of the average difference value luminance and chromi-
nance relation measurement. Instead of using a single average value, we measured
the probability of a certain vector length. The measurements were made over the
same amount of image data as for the average measurements. The probabilities
for each MCU, as well as the sum of the probabilities over a restart interval was
used to calculate the fragment joint validity.

A third method that we tested was to code the luminance and chrominance
vectors as 8 byte sequences where each bit position indicated if the corresponding

6The second nibble of the decoded Huffman value.

50

3.3. PARAMETERS USED

vector value was non-zero. We then calculated the probability for each vector
pattern. To lower the amount of required data storage we truncated the 8 byte
sequences and kept only the upper 4 bytes (the 32 lowest frequencies in each
vector). The byte sequences were used to calculate the sum of the probabilities
of each vector for every MCU, and all MCUs in a restart interval. We also
calculated the combined probability of the luminance and chrominance vectors
to be able to use only one value for the measurements.

Finally we created a matrix containing the frequencies of each vector posi-
tion and amplitude value of the luminance and chrominance vectors. We then
calculated the mean and standard deviation of the frequency values. This method
become too slow and complicated to be useful, and we therefore did not proceed
with any further tests.

None of the methods described in this section did fulfilled the requirements
specified in Section 3.2.

3.3.4 Luminance DC value chains

The DC luminance value is the most important factor for the quality of a JPEG
image. It can be used to show a low-resolution, grey-scale version of the original
image. Consequently it contains the outlines of the objects in the image. Assum-
ing there is at least one vertically oriented line in the image, the luminance DC
values can be used to correctly rebuild the image. The vertically oriented line
need not be perpendicular to the horizontal edge of the image, but the closer,
the better. Since most of the objects in an image have smooth outlines, this
method will work for a large set of images. The use of the DC values puts this
method at the pixel level in the coding model of a JPEG image.

The method builds on the fact that the scan of a JPEG image is started at the
top-left corner and proceeds one horizontal line at a time downwards. Therefore
the vertically oriented lines will be reflected as a high rate of change of the DC
values in a limited area. If we use two sliding windows that move through the DC
value chain and calculate the difference between the DC values in the windows
we get a measurement of similarity of the DC sub-chains.

The method consists of several steps:

1. Process all available image fragments, check for correct RST marker se-
quences and fully decode all restart intervals.

2. Identify the area with the highest rate of change and the distance to its
closest match using a sliding window approach.

3. Use the distance values to calculate the most probable width (distance be-
tween two high rate of changes) of the image.

4. Rerun the algorithm with the calculated value for most probable width as
a fixed distance value for all fragments and calculate the area between the
DC curves of the high rate of change windows.

51

CHAPTER 3. PUTTING FRAGMENTS TOGETHER

5. Use the area value as the fragment joint validity, the smaller the area the
higher the validity.

The size of the sliding window can change automatically and will be shown
together with the fragment joint validity value, because the window size affects
the confidence of the validity value. Larger window sizes gives higher confidence,
but requires larger fragments. We also give a weighted fragment joint validity
value where the original validity is divided by the window size.

The rate of change of the similarity values calculated when the two sliding
windows move in parallel indicate whether the fragment pair is correctly con-
nected or not. A low rate of change shows that the distance between the sliding
windows is close, or equal, to the width of the image, and hence the pair is cor-
rect. However, if the DC values are static the rate of change of the similarity
values will also be low. We therefore also measure the rate of change of the DC
sub-chain in a sliding window. To get a picture of the rate of change for the
whole fragment pair we measure the rate of change of the rate of change val-
ues. A higher overall rate of change indicates that the fragment pair holds both
smoother areas and more rapidly changing areas. This is typical for parts of
proper images.

Depending on the compression rate of the image and the fragment size used
the method can handle images of different sizes with different rates of success.
Generally the use of 4 KiB fragments give a maximum image width of approxi-
mately 2000 pixels. The compression rates in our data set gives a range between
1700 and 4200 pixels for a 4 KiB fragment. If the level of detail is high, the
compression level is low, and the maximum image width the image fragment re-
connection method can handle is decreased. Of course the opposite situation is
also true.

The DC value chain algorithm will give the fragment joint validity of all
possibly correct fragment pairs. Each fragment can be part of two pairs, one as
the first member of the pair and one as the second member. Thus it is possible
to piece the pairs resulting from an iteration of the algorithm into a complete
image, if all fragments of the image are present. Identifying the end fragment is
trivial, the possible start fragments are detected by the algorithm.

3.4 Evaluation

This section presents how the evaluations of the image fragment reconnection
method was set up. We evaluated the method using both a large amount of single
images, as well as using fragments from six images at the same time, due to an
unfortunate duplication of seven images.

Please observe that the images used in the evaluation are named and refer-
enced as being 240, but only 233 are used in reality.

52

3.4. EVALUATION

3.4.1 Single image reconnection

The DC value chain algorithm was evaluated using 233 images from 3 cameras
using RST markers in our database. We included 40 of the largest image files
from each camera to account for low compression rates and high levels of detail.
We also included 40 of the smallest image files from each camera to incorporate
technically bad images, featuring blur, significant low key or high key, and other
extreme conditions. Due to a mistake 7 of the Fuji FinePix 240Z images in the
small image group was duplicated from the large image group, consequently in
reality we only used 113 small images. The tests are however still numbered as
being 240, not 233. The reason for the selection of images7 was to test the limits
of the method.

The evaluation was performed by first splitting each image into 4 KiB frag-
ments. The largest image file gave 446 fragments and the smallest file was split
into 57 fragments. The compression rates varied between 3.32 and 8.16.

The fragments were combined into pairs with the help of their first and last
RST markers, as described in Section 3.3.2. Then a first run of the DC value
chain algorithm was made and the image width in DC values was calculated. The
next run of the algorithm used the width and measured the fragment joint valid-
ity of each fragment pair. Finally the fragment joint validity values were sorted
and the number of correct pairs at first to fifteenth place were counted. We also
noted the number of pairs that were missing, i.e. not properly categorised, and
the reasons why.

The reasons for the missing fragment pairs are:

Missing: the algorithm can not correctly decode the fragment pair, for miscel-
laneous reasons (excluding the following reasons),

Short loop: the pair is too short to fit even the first algorithm run,

Short 2nd: the second fragment is too short,

DC 0 seq: all DC values are zero, and

Short total: too few DC values in the pair to fill the image width.

All missing fragments have been manually checked to find out the reason
for why the algorithm could not properly categorise them. The reasons are
presented in Section 3.5.

3.4.2 Multiple image reconnection

We also tested the algorithm’s ability to handle fragments from several images at
the same time. To do this we fragmented six images into 4 KiB fragments, giving
a total of 1331 fragments. The images came from the set of 233 images used for
the other reconnection evaluation and can be found in Table 3.1.

7The raw data files and source code can be found at http://www.ida.liu.se/~iislab/
security/forensics/material/ or by contacting the author at g-makar@ida.liu.se

53

CHAPTER 3. PUTTING FRAGMENTS TOGETHER

Table 3.1: The images used for the multiple image reconnection evaluation. The
files are taken from the set of 233 images used for the single-file reconnection evalu-
ation.

Corr. Est.
Test File name Size Pixels Comp. width width
116 jocke_fuji_257 296003 1280x960 4.15 160 320
83 jocke_fuji_283 314698 1280x960 3.90 160 320
43 lars_olympus_p9020199 1347595 2816x2112 4.41 352 352

123 lars_olympus_p9090233 308676 1600x1200 6.22 200 400
163 micke_fuji_0730 1451003 2848x2136 4.19 356 356
23 micke_fuji_1535 1719515 2848x2136 3.53 356 356

The 1331 fragments were processed in the same way as was done for the
single-file reconnection evaluation. The images were selected to represent one
high compression rate image and one low compression rate image from the three
cameras using RST markers in our data set.

3.5 Result

In this section the results of the two evaluations are presented, together with
comments on the results. The images used in the evaluation are referenced as
being 240, although there are only 233 unique images used in reality. Because of
a mistake 7 images were duplicated. The duplicates are excluded from the results
and tables.

3.5.1 Single image reconnection

The results8 of the reconnection evaluation using 233 images are given in Ta-
ble 3.2. We have calculated the percentages of fragments in each category relative
to the total number of fragments, and also relative to the sum of fragments that
the algorithm should have categorised. To avoid incorrect pairing of fragments
due to an insufficient amount of data the algorithm is set to exclude fragments
categorised as too short, i.e. not a full image width in length, or where all lumi-
nance DC values are 0.

The results show that the fragment joint validity value is highest for the
proper image fragment pair in 96.8% of the cases. If we also include the second
highest fragment joint validity we cover 98.8% of the proper pairs. From third
to fifteenth place the number of proper pairs at each level decreases by a factor
of approximately 2.

For 64 of the 233 images the algorithm correctly connected all fragment pairs.
Thus an image can theoretically be fully restored in 27.5% of all cases. For 47

8The raw data files and source code can be found at http://www.ida.liu.se/~iislab/
security/forensics/material/ or by contacting the author at g-makar@ida.liu.se

54

3.5. RESULT

Table 3.2: The results of the reconnection evaluation using 233 images. The first
percentage column is calculated relative to the total, and the second relative to the
sum of fragments excluding the short and DC 0 sequences.

Connection Number Fragments Fragments
validity of including excluding
rank fragments short [%] short [%]
1: 42884 85.130 96.821
2: 864 1.715 1.951
3: 235 0.466 0.531
4: 106 0.210 0.239
5: 59 0.117 0.133
6: 42 0.083 0.095
7: 26 0.052 0.059
8: 11 0.022 0.025
9: 12 0.024 0.027
10: 5 0.010 0.011
11: 0 0 0
12: 2 0.004 0.004
13: 0 0 0
14: 1 0.002 0.002
15: 1 0.002 0.002
Missing: 44 0.087 0.099
Short loop: 2 0.004 -
Short 2nd: 0 0 -
DC 0 seq: 7 0.014 -
Short total: 6074 12.058 -
Total: 50375 100.000 100.000

55

CHAPTER 3. PUTTING FRAGMENTS TOGETHER

of the remaining 169 images in the evaluation the algorithm gave the correct
pairs the highest and second highest fragment joint validity. Consequently a
brute force reconnection using the two highest fragment joint validities of each
starting fragment in a possible pair would give a fully correct image scan part in
more than 52.4% of the cases.

There was a total of 44 missing fragments, spread over 10 images. Only one
image gave rise to more than one missed fragment. The reasons for the missed
fragments were:

Test 43, 63, 91, 105, 162, 169, 209, 210, 231: The last fragment is too short to
contain any RST marker. Hence the first check of the RST marker se-
quence is too strict and omits the fragment.

Test 153: The width of the image was wrongly detected to be 600 MCUs. The
correct value was 200. Consequently the fragment was not included in the
final set of probable fragment pairs.

There is really only one reason for all the missed fragments, and that is that
we have put constraints that are too strict on the algorithm. We have done so
because we want to keep the amount of false positives down. If we happen to
miss one correct pair it matters less than having many incorrect fragment pairs
to waste time on. Knowing we can trust the algorithm to give a low degree of
false positives lets us use the algorithm repeatedly, having only a small amount
of possible fragment pairs to deal with in each iteration.

The problem with the short last fragment, lacking a RST marker, can be
helped by a more intelligent pre-screening of the fragments. Since we have used
the file type categorisation method to extract the fragments we know that they
are most probably JPEG fragments. We can therefore look for all fragments
with the EOI marker and include them in the process even though they do not
contain any RST markers. Should they not belong to the image we want to
recreate, we will probably get an error. Missing the last fragment of an image
containing RST markers does not do any serious harm, the image will be correct
apart from the last restart interval, i.e. the lower right corner of the image.

The image width problem originates in the fact that some highly compressed
fragments can actually contain more than a full image width of DC values. Since
the algorithm is set to compare the two fragments, it starts the second sliding
window at the border of the fragments, in the second fragment. Therefore the
distance between the sliding windows has to be a multiple of the image width.
As long as there are good vertical lines without any disruptions in the image
there is no real problem, the algorithm can still correlate the two sequences.

The problem with the incorrect image width is manageable. We can man-
ually see that a size of 600 MCUs is not probable9. The fact is that the image
fragment reconnection method identified the width to be 400 or 600, not 200 as
it should be, for all but one of the images for that camera and resolution. One

9Currently the standard cameras have a maximum resolution of about 12 M pixels. A width of
600 MCUs for such a camera would be equal to at least 15 M pixels.

56

3.5. RESULT

Table 3.3: The results of the reconnection evaluation using 6 images at once. The
first percentage column is calculated relative to the total, and the second relative to
the sum of fragments excluding the short and DC 0 sequences.

Connection Number Fragments Fragments
validity of including excluding
rank fragments short [%] short [%]
1: 748 56.241 70.433
2: 77 5.790 7.250
3: 39 2.932 3.672
4: 25 1.880 2.354
5: 16 1.203 1.507
6: 23 1.729 2.166
7: 15 1.128 1.412
8: 13 0.977 1.224
9: 14 1.053 1.318
10: 10 0.752 0.942
11: 8 0.602 0.753
12: 6 0.451 0.565
13: 13 0.977 1.224
14: 6 0.451 0.565
15: 3 0.226 0.282
>15: 40 3.008 3.766
Missing: 6 0.451 0.565
Short loop: 0 0 -
Short 2nd: 0 0 -
DC 0 seq: 0 0 -
Short total: 268 20.150 -
Total: 50375 100.000 100.000

of the images was identified as being 599 MCUs wide. Still only one of the 40
images was affected by the bad width estimation. We can therefore conclude that
the image fragment reconnection method is robust and handles noise well.

3.5.2 Multiple image reconnection

The multiple image reconnection evaluation used 1331 fragments from 6 images,
giving a total number of 219200 possible fragment pairs. These were reduced to
a total of 32515 possible fragment pairs after setting the image width to 356 DC
values in the DC value chain algorithm. The final result is given in Table 3.3.

The 40 fragment pairs that were given fragment joint validity values placing
them at 16th place or worse comes from the use of the wrong image width.
The width that was used originates from the majority of the fragments. When
these are removed another size would be estimated, and related to the new most

57

CHAPTER 3. PUTTING FRAGMENTS TOGETHER

probable image width, possibly fitting the 40 fragment pairs better. In this way
the set of fragments can be iterated through and eventually all fragment pairs are
correctly connected.

Five of the six missing fragment pairs are related to the last and first fragments
of different images. Hence they cannot be connected. By manually examining
them we can easily find the start and end fragments of the involved images, which
helps us identify the number of images in our data set. This will in the end allow
us to recreate any image where we have access to all fragments.

The remaining missing fragment pair, which does not contain an image start
and end fragment, is missing because its second fragment is too short to contain
a RST marker. It is the end fragment of an image and is only 11 bytes long, hence
it does not contain a full restart interval, or even a complete MCU.

Although the multiple image reconnection ability of the image fragment re-
connection method is lower than for single images, the method is still able to
correctly identify the majority of the fragment pairs. By using it repeatedly
and removing fragment pairs that have been correctly joined, any number of
fragment pairs and images should be possible to handle. The execution time
increases linearly with the number of potential fragment pairs. Therefore, it is
important to use pre-selection using the RST markers to decrease the number of
fragment pairs to be checked.

58

Chapter 4

Viewing Damaged JPEG Images

This chapter will explore the effects of missing or erroneous JPEG image header
tables. If the image fragment reconnection method does not have access to all
fragments of an image, or for some other reason cannot connect all fragments
into the original image, the same problems arise as when we have a missing or
damaged JPEG header. But when the header is missing completely, it is in some
situations still possible to view the image.

The most important header marker segments and tables will be presented
in separate sections. The presentation is not meant to be exhaustive, only to
show some of the more significant errors and their effects on the image. The
image used to show the effects of the manipulations we have made is shown in
its original undamaged state in Figure 4.1.

4.1 Start of Frame

There are 13 different SOF markers, but our work only concerns the first one
(SOF0), which is used for non-differential baseline sequential DCT Huffman
coded images.

The SOF marker contains the following information, which can be seen in
Figure 4.2:

Start Of Frame (SOF) Marks the beginning of the Start of Frame marker seg-
ment, indicated by the hexadecimal value of 0xFFC0.

Frame header length (Lf) The length of the marker segment, excluding the
first two marker bytes. The formula used to calculate the length is 8+
3×Nf.

Sample precision (P) The number of bits used for the samples of the compo-
nents in the image. Should always be 8 for baseline sequential DCT JPEGs.

Number of lines (Y) The height of the image, can be 0 to 65535 lines.

59

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

Figure 4.1: This is the original undamaged image used to show the effects of differ-
ent manipulations of the JPEG header.

SOF Lf P Y X Nf C

Start of frame

i
H

i
V

i
Tq

i

Figure 4.2: The Start Of Frame (SOF) marker segment

60

4.1. START OF FRAME

Number of samples per line (X) The width of the image, can be 1 to 65535
samples per line.

Number of image components in frame (Nf) Number of components used to
encode a pixel in the image. A grey-scaled image has one component, a
colour image has three or four components depending on the colour cod-
ing system used. The valid values lay in the range of 1 to 255 for baseline
sequential DCT JPEGs.

Component identifier (Ci) A unique label used to identify component i in an
image. The label can be 0 to 255.

Horizontal sampling factor (Hi) Specifies the number of horizontal data units
of component i in each MCU, ranging between 1 and 4.

Vertical sampling factor (Vi) Specifies the number of vertical data units of com-
ponent i in each MCU, ranging between 1 and 4.

Quantization table destination selector (Tqi) Defines which quantization ta-
ble to use for component i of up to four possible, for baseline sequential
DCT JPEGs.

The SOF header section contains several parameters affecting the quality of
the image. The number of data units in each MCU can be changed in many ways,
leading to a number of effects appearing in the image. If any of the chrominance
quantization tables get a high (or erroneous) sample factor (Hi), the result will
be a discolouring of the image, together with single MCUs creating specks. This
is not very probable, though, since the common case is to repeat the luminance
quantization table several times to compensate for the lower resolution specified
for the chrominance, especially horizontally. If we retain the sum of the sam-
ple factors in the image, i.e. move the factor from the luminance quantization
table H1 to one of the chrominance tables, we get the effect that can be seen in
Figure 4.3. In this specific case it is the Cr (H2) table that is affected.

The luminance quantization table is more important than the chrominance
dittos for the overall quality of the image. This becomes apparent when the
luminance table gets the wrong sample factor. In our case the original image has
two-to-one pixels horizontally and one-to-one vertically, i.e. H1 = 2 and V1 = 1.
If we increase that to two-to-one vertically (V1 = 2) we get the effect that can be
seen in Figure 4.4. The image is stretched out vertically to twice its height and
the colours are almost gone. Areas that have thin colour in the original image are
nearly perfectly decoded into a grey scale, but coloured areas are heavily affected.

If we instead decrease the sampling factor for the luminance quantization
table into one-to-one both horizontally and vertically, i.e. H1 = 1 and V1 = 1,
the effect is that the image gets rendered as one fourth of its original size. Since
the original image has a two-to-one horizontal sample factor the image is repeated
twice horizontally. The effect is shown in Figure 4.5.

When the component identifiers Ci of an image are swapped, the effect is
clearly visible. Swapping the two chrominance components results in heavy

61

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

Figure 4.3: The effect on a JPEG image having the horizontal sample rate H1 of
the luminance quantization tables exchanged with the Cr chrominance table (H2),
retaining the sum of the sample factors for the image.

Figure 4.4: The effect on a JPEG image having the sample rate V1 of the luminance
table set too high.

62

4.1. START OF FRAME

discolouring of the image. The effect comes from swapping the red and blue hues
in the image, and typically human skin turns significantly blue. An example of
that can be seen in Figure 4.6.

If the component identifier of the luminance is swapped with one of the
chrominance components, the result is an almost unrecognisable image. This
clearly shows the importance of the luminance for the overall quality of the
image. Since the luminance is often reduced less by the quantization step of the
JPEG process, the effect of the swap is a decreased contrast and a more intense
red or blue colour, compared to the original image.

An image having the luminance component identifier swapped with the blue,
Cb, chrominance component can be seen in Figure 4.7. The disproportionate
red colour comes from the non-affected red Cr chrominance table and values in
the scan. The reason for the discolouring is that the values in the luminance
quantization table are lower than the chrominance table values, therefore the
affected chrominance table will not properly restore the full colouring of its
corresponding hue.

When the width of the image is wrong, the image will be symmetrically
distorted in either left or right direction. If the image width is very wrong the
pattern will be almost horizontal. An example of a moderately distorted image,
with the width increased by 16 pixels, can be seen in Figure 4.8. The diagonals
from the lower left corner to the upper right corner are typical for images where
the image width, the number of samples per line X , is n×width≤ X < 1.5n×
width, where n = 0,1,2, If the width instead is 1.5n×width≤X < n×width
the diagonals are oriented from the upper left corner to the lower right corner.

An increase of the image width in intervals of the original correct image
width will generate a fully viewable image, which is repeated horizontally a
number of times. Even changes of the image’s width to one half the original
width keeps enough of the image to make it easily recognisable. If we convert all
images in our database to landscape format, the most common relation between
the width w and the height h of the images is 1.333, i.e. w = 4

3 × h. The sizes,
width and height relations, and number of images of each size can be found in
Table 4.1. The image sizes were extracted using the Linux exif application.

Since the relation between the width and the height of an image in reality
only take on a few values, it is easy to guess the correct width or height of an
image. The light sensors of digital cameras often come in a few known sizes,
which makes the guessing even easier. To further simplify the matter, there are
only a few manufacturers of light sensors for cameras in the world, hence there
is a high probability of the same sensor make in different cameras.

Changes of the image height will only affect the number of lines of the image
shown, incremented in steps of 8 or 16 pixels per line depending on the vertical
sampling factor. If the height is set too high, the bottom of the image will be
extended by a grey area.

63

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

Figure 4.5: The effect on a JPEG image having the sample rate of the luminance
table set too low, i.e. H1 = 1 and V1 = 1.

Figure 4.6: The effect on a JPEG image having the identifiers of the two chromi-
nance components swapped.

64

4.1. START OF FRAME

Figure 4.7: The effect on a JPEG image having the component identifiers of the
luminance swapped with one of the chrominance identifiers, in this case the blue
Cb component.

Figure 4.8: The effect on a JPEG image with the image width, the number of
samples per line, being set too high (increased 16 pixels in this case).

65

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

Table 4.1: The relation between the image width and height of the images in our
data base. All images sizes have been converted to landscape format.

Width Height Relation # of images
640 480 1.333 110

1280 960 1.333 73
1397 931 1.500 1
1536 1024 1.500 685
1600 1200 1.333 1528
1888 1259 1.499 1
2048 1365 1.500 2
2048 1536 1.333 3594
2272 1704 1.333 298
2304 1728 1.333 216
2816 2112 1.333 1257
2848 2136 1.333 1211
2883 1922 1.500 1
3008 2000 1.504 178
3456 2304 1.500 262
3658 2439 1.499 1
3888 2592 1.500 402

DQT Lq Pq Tq Q . . .

Repeated n times

Define quantization table

0
Q

1
Q

63

Figure 4.9: The Define Quantization Table (DQT) marker segment. The last 65
bytes in the marker segment are repeated n times, where n is the number of quanti-
zation tables used.

4.2 Define Quantization Table

The Define Quantization Table (DQT) marker segment has the hexadecimal
value 0xFFDB as its first two bytes. The tables are used to compress the image by
putting weights on the 64 frequencies from the discrete cosine transformation.
The amplitude of each frequency is divided by a value in the table. Higher
frequencies are less important for the perceived quality of the image and thus get
a higher value in the table.

The outline of the segment can be seen in Figure 4.9 and contains the follow-
ing information:

Define Quantization Table (DQT) Marks the beginning of the Define Quan-
tization Table marker segment. The marker segment is indicated by the
hexadecimal value 0xFFDB.

66

4.3. DEFINE HUFFMAN TABLE

Quantization table definition length (Lq) The length of the marker segment,
excluding the first two marker bytes. The length value for baseline sequen-
tial DCT JPEGs is calculated as 2 + n × 65, where n is the number of
quantization tables used.

Quantization table element precision (Pq) This value is always 0 for baseline
sequential DCT JPEGs, meaning 8 bit precision.

Quantization table destination identifier (Tq) Specifies one of four destina-
tions for the quantization table when decoding an image. Valid values
are 0 to 3.

Quantization table element (Qk) Gives the k t h value, in order of increasing
frequency, to use for the quantization step when coding and decoding an
image. For 8 bit precision the values should be in the range of 1 to 255. To
achieve the specific ordering of the elements an 8×8 block of pixels in the
frequency domain is traversed in zig-zag, beginning at the top-left corner
and the next step being horizontal (see Figure 3.2).

Errors in the quantization tables, defined in the Define Quantization Table
header segment, affects the contrast and the colours of an image. The biggest
effect is achieved when the DC component in the luminance quantization table
is wrong. Usually the quantization factor for the DC component is low. We have
found empirically that 4 is a common value for the luminance DC component,
as well as the chrominance DC components. If the luminance DC component
is high, the contrast of the image becomes higher. In Figure 4.10 the luminance
DC component is set to 0xFF, i.e. 255.

If instead the luminance quantization table DC component is set to 0x00
the result is a flat, low contrast image. The quality is higher than for the value
0xFF, but this is not surprising since the original value is 0x04.

The DC component of the chrominance quantization table greatly affects
the colouring of the image. The Cb and Cr quantization tables affect different
colours, but otherwise the effect of setting any of their DC values to 0xFF is the
same for both tables. Figure 4.11 shows the effect of the red, Cr, chrominance
DC component being set to 0xFF.

Figures 4.10 and 4.11 show the maximum effect on an image an error in a
quantization table will have. If the highest frequency is affected the effect on
the image is not visible. Even if we set the second lowest frequency to 0xFF
the effect on the image is much lower than for the DC component. We can
therefore conclude that as long as the quantization tables have the correct length
and format, their effect on the quality of the image is limited, although on the
border of severe in the case of the luminance DC component.

4.3 Define Huffman Table

The DHT marker segment contain the Huffman tables used for compression of
the image. The JPEG standard allows the use of arithmetic entropy coding too,

67

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

Figure 4.10: The effect on a JPEG image of setting the luminance quantization
table DC component to 0xFF.

Figure 4.11: The effect on a JPEG image of setting the chrominance quantization
table DC component to 0xFF.

68

4.3. DEFINE HUFFMAN TABLE

DHT Lh Tc Th L . . .

Repeated n times

Define Huffman table segment

Symbol-length
assignment

Symbol-length assignment parameters

1
L

2
L

16

. V
16,L16

V
1,1

V
1,2

V
1,L1

V
2,1

V
2,2

V
2,L2

V
16,1

V
16,2

Figure 4.12: The DHT marker segment. The last bytes in the marker segment are
repeated n times, where n is the number of Huffman tables used.

but our work only concerns non-differential Huffman entropy coded images.
When coding an image the standard does not specify any particular Huffman
tables to use, but in reality we have found that all cameras included in our work
use the same Huffman tables, which are the example tables [13, pp. 149–157]
from the standard.

The outline of the segment can be seen in Figure 4.12 and contains the fol-
lowing information:

Define Huffman Table (DHT) Marks the beginning of the Define Huffman
Table marker segment, indicated by the hexadecimal value of 0xFFC4.

Huffman table definition length (Lh) The length of the DHT marker segment,
excluding the first two bytes. The formula 2+

∑n
t=1(17+mt) is used to

calculate the length parameter, where mt =
∑16

i=1 Li is the number of pa-
rameters following the 16 Li values for table t .

Table class (Tc) Specifies whether this is a DC table, indicated by value 0, or an
AC table, indicated by 1.

Huffman table destination identifier (Th) Indicates which table this is, out of
two possible for baseline sequential DCT JPEGs.

Number of Huffman codes of length i (Li) Specifies the number of Huffman
codes for each of the 16 possible lengths allowed by the standard [13]. The
allowed values lie in the range of 0 to 255.

Value associated with each Huffman code (Vi , j) Gives the value associated with
each Huffman code of length i . The Huffman coding model determines
the meaning of each value. The values range between 0 to 255.

The Huffman tables definition is sensitive to errors, but if the format is cor-
rect and the standard is followed, it is still possible to change the definition with-
out corrupting the image. If the maximum number of possible Huffman codes
of a specific length is not exceeded, it is possible to redistribute the number of
Huffman codes of length i specifications. It is also possible to change the values
associated with each Huffman code, as long as they allow the scan to be decoded.

69

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

To illustrate the effect of an error in a Huffman table the image in Figure 4.13
has been given new Huffman table definitions taken from a different image with
a completely different Huffman tables definition. The two images are not re-
lated, one is captured by a Fuji digital camera and the other is professionally
scanned from a film negative. In our database all cameras used the same Huff-
man table definition, which is taken from the JPEG standard [13, pp. 149–157].

The two Huffman tables definitions1 differ in many positions, but the image
is still not corrupted beyond decoding. Due to the change of the tables the
decoder reports 17 extraneous bytes before the EOI marker, but still shows the
image. This can be done because of the sequential decoding of the scan used in
baseline sequential DCT JPEG images.

4.4 Define Restart Interval

The Define Restart Interval (DRI) marker segment should always be 2+ 4 bytes
long. Figure 4.14 specifies the DRI marker segment and the information held in
the marker segment has the following meaning:

Define Restart Interval (DRI) Marks the beginning of the Define Restart In-
terval marker segment, indicated by the hexadecimal value of 0xFFDD.

Define restart interval segment length (Lr) The length of the marker segment,
excluding the first two marker bytes. The value should always be 4.

Restart interval (Ri) Gives the number of MCUs in each restart interval. There
can be 0 to 65535 MCUs in a restart interval, but there should always be
the same number of MCUs in each interval, except in the interval ending
the image. The ending interval can have any number of full MCUs, which
in reality means up to Ri MCUs.

The existence of this header marker segment, having a non-zero restart inter-
val value, indicates the use of RST markers in the scan. For every Rith MCU in
the scan there should be a marker 0xFFDx, where xi+1 = (xi+1)mod8, starting
at 0xFFD0.

The definition of the restart interval also affects the quality of an image. This
is a short restart marker segment, which only contains one value. If we set the
restart interval too low, the decoder uses that number of MCUs after each restart
marker and skips the rest until the next restart marker in the scan. This gives the
effect shown in Figure 4.15 where the original 4 MCU long restart interval has
been reset to 3.

Since not all the data in the scan is used, the image is shortened by the amount
of skipped MCUs. This can be seen in Figure 4.15, which is 75% of its original
height.

1The raw data files and source code can be found at http://www.ida.liu.se/~iislab/
security/forensics/material/ or by contacting the author at g-makar@ida.liu.se

70

4.4. DEFINE RESTART INTERVAL

Figure 4.13: The effect on a JPEG image having its original Huffman tables defini-
tion exchanged by the definition of a different image.

DRI Lr Ri

Define restart interval

Figure 4.14: The DRI marker segment

Figure 4.15: The effect on a JPEG image having its original restart interval defini-
tion shortened from 4 MCUs to 3.

71

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

SOS Ls Ns

Start of scan

Component-specification
parameters

Ss Se Ah Al

. . .
Scan component-specification parameters

Cs
1

Td
1

Ta
1

Td
2

Ta
2

Td
Ns

Ta
Ns

Cs
2

Cs
Ns

Figure 4.16: The Start Of Scan (SOS) marker segment. There can be 1, 3, or 4 scan
component specifications in an image.

If instead the restart interval definition value is set too high the image gets
specks at repeated intervals, coming from the missing extra MCUs the decoder
tries to decode. These two types of errors are easy to spot, but not very likely,
since it is trivial to find the correct restart interval definition from the scan.

Even though the multi-layered coding of the scan, using Huffman codes and
values interleaved, is easily corrupted, the use of restart markers improves the
robustness of the scan. The level of robustness is connected to the restart marker
interval; the shorter the interval, the more robust the decoding of the scan. De-
pending on the decoder the extra spurious bytes at the end of the scan, before
the EOI, resulting from the wrong restart interval definition, will be reported.
It is still possible to decode the image, possibly lacking the pixels of some of the
last MCUs.

4.5 Start of Scan

The SOS marker segment precedes the scan of an image and connects the com-
ponents of the image to the quantization and Huffman tables specified earlier in
the header section. The components are interleaved if there is more than one
component in the image, i.e. it is a colour image.

The outline of the segment can be seen in Figure 4.16 and contains the fol-
lowing information:

Start Of Scan (SOS) Marks the beginning of the Start of Scan marker segment,
indicated by the hexadecimal value of 0xFFDA.

Scan header length (Ls) The length of the SOS marker segment, excluding the
first two bytes. The formula 6+ 2×N s is used to calculate the length of
the segment.

Number of image components in scan (Ns) Defines how many source image
components there are in the scan. The number of components given by
Ns should match the number of Cs j , Td j , and Ta j there are. Valid values
are in the range 1 to 4.

72

4.5. START OF SCAN

Scan component selector (Cs j) Uniquely identifies and orders the Nf compo-
nents in the image. Each Cs j shall match a Ci in the SOF header, and
follow the same order. If there is more than one image component, the
components should be interleaved in the MCUs, in increasing order of j .
The following restriction applies if Nf> 1

N s
∑

j=1

H j ×V j ≤ 10,

where H j and V j are the horizontal and vertical scan rates, specified in the
SOF header. The marker parameter can have a value between 0 and 255,
but should be part of the set of Ci specified in the SOF header.

DC entropy coding table destination selector (Td j) Specifies which of the two
possible DC Huffman tables to use when decoding component Cs j . Valid
values are 0 and 1.

AC entropy coding table destination selector (Ta j) Specifies which of the two
possible AC Huffman tables to use when decoding component Cs j . Valid
values are 0 and 1.

Start of spectral or predictor selection (Ss) This parameter holds the index of
the first DCT coefficient in the zig-zag order to be used when coding an
image. For baseline sequential DCT JPEGs it should be set to 0.

End of spectral selection (Se) This parameter holds the index of the last DCT
coefficient in the zig-zag order to be used when coding an image. For
baseline sequential DCT JPEGs it should be set to 63.

Successive approximation bit position high (Ah) This parameter should be set
to 0.

Successive approximation bit position low (Al) The parameter has no mean-
ing for baseline sequential DCT JPEGs and should be set to 0.

The information that can be changed in the start of scan header segment is the
Huffman tables’ connections to the luminance and chrominance components. It
is only possible to exchange a luminance DC or AC table with the corresponding
table for the chrominance. Since the DC table for the luminance has the greatest
effect on the image quality, Figure 4.17 shows what happens when the luminance
DC Huffman table is set to point to the chrominance DC table.

If we set one of the chrominance components’ DC table to point to the lumi-
nance DC Huffman table, the colours are affected, with a pattern of corrupted
MCUs. The quality of the image is still good and it is possible to recognise the
subjects in the image. A complete exchange of all Huffman tables gives the result
shown in Figure 4.18.

73

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

Figure 4.17: The effect on a JPEG image where the luminance DC Huffman table
is set to use the chrominance DC Huffman table.

Figure 4.18: The effect on a JPEG image where all Huffman table pointers in the
Start of Scan header segment are wrong.

74

4.6. COMBINED ERRORS

The start of scan header segment is static for all 9958 valid colour baseline se-
quential DCT JPEG images in our database. The formal specification of the start
of scan header marker only allows a few different alternatives for baseline sequen-
tial DCT JPEG images. Consequently the marker’s position as the last header
marker segment before the scan, together with its static appearance, makes it
suitable to use as an indicator of the first fragment of an image. Even if the start
of scan segment is not complete, it should be possible to use as a signature of the
start of a JPEG image scan. For a colour baseline sequential DCT JPEG image
the header segment’s typical hexadecimal byte sequence is

FF DA 00 0C 03 01 00 02 11 03 11 00 3F 00.

4.6 Combined Errors

The errors described in the previous sections can be combined in many ways.
Some combinations will even cancel out each other, as for example a change of
the Huffman table indices in the start of scan header segment can be reversed by
changes to the Huffman table definition segment. In other situations the effects
will enforce each other and render the image almost unrecognisable.

There are however only a limited number of unique effects, although their
level of severity may vary. It is therefore possible to recognise and separate their
effects even in cases where several errors are combined. In severe cases it might
be possible to perform brute force searches for the factors in the combined effect.

4.7 Using an Artificial JPEG Header

It is possible to use an artificial JPEG header, preferably taken from another
image captured by the same digital camera or created by the same application.
An important factor is the Huffman code definitions, but as can be seen in Sec-
tion 4.3, it is possible to exchange the Huffman tables of an image with the tables
from a completely different image, as long as the new tables are valid Huffman
tables.

However, all cameras in our database use the same Huffman tables definition,
which happens to be the example tables [13, pp. 149–157] given in the JPEG
standard. The scanner uses its own Huffman table definitions, but they are the
same for all images. The thumbnail images embedded in the scanner images’
headers use the standard tables, though.

A possible reason for the cameras using the standard Huffman tables is exe-
cution speed and low power consumption. It is costly both in time and power
consumption to let the camera calculate unique Huffman tables for every im-
age. The downside is an increased file size, but since the consumer has to pay
separately for the storage media, the camera manufacturers do not have any in-
centive to keep the file sizes down. It might therefore be safe to assume that all
(consumer grade) cameras use the same standard Huffman tables.

75

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

The effect of using the wrong quantization tables is not that severe, especially
as the values in the tables are often found in the hexadecimal range of 0x00 to
0x20. The lower values often appear at the top of the table and then slowly
increase towards the end. It is therefore possible to create completely artificial
quantization tables giving acceptable results, even though using tables from other
images is probably safer.

Some cameras create two quantization table definitions, one for the lumi-
nance table and one for the chrominance tables. Their lengths are the same,
though. Consequently it does not matter if one single definition header segment
is used in the artificial header, even for images having split definitions from the
beginning.

The restart interval definition header segment is not always used. All im-
ages using restart markers in our database use the interval 4. But our database
only contains images from three cameras using RST markers and the value may
therefore very well be different for other cameras.

The horizontal and vertical sampling factors can vary. Each parameter can
either have the value 1 or 2. For all images in our database only the luminance
settings vary, not the chrominance ditto, which keeps the number of possible
settings down. The sum of the sampling factors should always be between 2
and 4. It is therefore possible to use a brute force model, simply trying three
different combinations. Most of the images in our database have a horizontal
sampling factor of 2, and a vertical factor of 1.

The settings for the number of lines and the number of samples per line of
an image can vary and finding the correct setting for them may require some
work. As shown in Table 4.1 the width and height of the images in our database
either relate to each other as 3

2 or 4
3 , or the inverses thereof. This fact, combined

with knowledge of the common number of pixels in cameras, can be a help in
finding the proper image width. The height is less important; as long as there is
enough data (pixels) in the scan it is enough to test a few settings, the image will
not be distorted. The decoder will give an error reporting too few scan lines if
the height is too large.

The conclusion to be made is that artificial headers will give acceptable results
in most cases, although perhaps not give the original image back. From our
experiments we have found that there are only a few crucial parameters that
change between images, regardless of the camera make.

4.8 Viewing Fragments

If there are restart markers embedded in the scan part of an image it is possible
to use an artificial header with properly adjusted height to view the fragment.
The hardest part is to collect a large enough amount of consecutive fragments,
since a 8 KiB fragment covers approximately 3000× 8 pixels, i.e. one line in the
scan. To be able to see a large enough part of an image we need around 10 scan
lines.

76

4.8. VIEWING FRAGMENTS

Figure 4.19 shows an image made from fragments 146 to 301 of our test im-
age, resulting in a 624 KiB file. We have used an artificial (but correct) header
and found the height to be 880 pixels by trial and error. Otherwise there are no
adjustments. The first fragment gives a few corrupted MCUs in the upper left
corner of the image. They come from the last part of the restart interval that was
cut in half when the fragment was created. Since the first restart marker in frag-
ment 146 is 0xFFD1 the image is wrapping around, i.e. horizontally displaced.

If the sequence of fragments joined together is not correct the result is an
image made up of patches of the original image, or the images included in the set
of fragments. It is easily recognisable from the sharp horizontal borders between
the different fragment sequences. A typical example can be seen in Figure 4.20.

The fragments used in Figure 4.20 come from three sequences of fragments
from the test image. The sequences are from top to bottom; fragments 310–360,
fragments 146–201, and fragments 15–66. As can be seen they all give different
horizontal displacements of the image.

77

CHAPTER 4. VIEWING DAMAGED JPEG IMAGES

Figure 4.19: A correct sequence of fragments with an artificial header adjusted to
fit the height of the resulting image.

Figure 4.20: An incorrect sequence of fragments with an artificial header adjusted to
fit the height of the resulting image. The typical sharp horizontal borders between
the different fragment sequences are clearly visible.

78

Chapter 5

Discussion

In this chapter we discuss the research and the results presented in the previous
chapters. We end the chapter with some conclusions drawn from our research.

5.1 File Type Categorisation

The results indicate that the file type categorisation method and its algorithms
are well suited for high information entropy file types. One reason might be
the fact that some lower information entropy files contain sub-parts of different
data types. A typical example is the Windows PE files, which often contain
machine code, tables and possibly text strings in different parts of a file. By
using a complete Windows PE file for training we include all of these sorts of
data into the centroid, making the centroid more general. It might therefore
generate false positives for any of the sub-part data types.

The partitioning of files is clearly a problem, but might possibly be fixed by
treating the sub-parts of a file as separate entities. This approach will however
require the parts of a specific file type to be found and isolated in advance when
a centroid is to be created. To be able to make the partitioning of the file type
data we have to find the exact borders of the sub-parts before we can proceed.

If all sub-parts of a file can be found an isolated, we then have to decide how
the sub-part centroids should be combined into a metacentroid of the file type
in question. A solution might be to give each sub-part centroid a weight based
on its share of the total amount of bytes used for centroid creation. Another
possible solution is to modify the file type categorisation method to use a sliding
window approach, where the size of the window equals the smallest possible
unique sub-part of a file.

The 2-gram algorithm is the only algorithm able to detect executable files
with a higher detection rate than simply guessing the correct file type. The
results for the Windows PE files are better than the results presented in [12],
because we have cleaned the files used to create the centroid. The previous ex-
ecutable file centroid contained both JPEG, PNG and GIF images, these were

79

CHAPTER 5. DISCUSSION

removed this time.
By cleaning the executable files, i.e. using (partially) artificial data, we get a

more exact model of pure executable code, but at the same time we dissociate the
centroid from a real world situation. This duality burdens all file types where
there might be other file types embedded in the binary data. For example Zip
files may contain JPEG images, because the algorithm does not try to compress
already compressed files. If we remove this embedded data, we get more homoge-
neous file type data to create our centroids from, but once again, what we might
then face in a real life situation may not be what we have trained our detectors
to handle. A large set of centroids to use for categorisation will to some extent
compensate for this.

The main difference in the performance of the 2-gram algorithm for differ-
ent file types may possibly be explained by its ability to capture regularities in
files. For example, JPEG images without RST markers should not contain any
2-grams starting with 0xFF, except for 0xFF00 and 0xFFD9. This is a strong
regularity and consequently the results from running the 2-gram algorithm on
that file type are very good indeed. For the JPEG with RST marker file type
the results are not that good. This file type allows, but does not require, some
occurrences of 2-grams between 0xFFD0 and 0xFFD7. This relaxes the 2-gram
algorithm, and its performance degrades.

Another feature that affects the performance of the 2-gram algorithm is the
necessary scaling of the size of the centroid creation blocks relative to the size
of the detection fragments. Since we use 1 MiB blocks to create the centroid,
but 4 KiB fragments for categorisation, we introduce instability into the process.
Every deviation from the centroid by a sample produces a disproportional effect
on the distance metric. As long as the standard deviation for a specific 2-gram is
low, its effect on the distance measurement is decreased, but for 2-grams with a
high standard deviation the effect can be considerable.

The use of a file type specific rule set in combination with 1-grams only
improves the results for the stand-alone algorithms, i.e. when the BFD or RoC
are not combined. The signed difference value extension of the RoC algorithm
affects the results more than the rule set extension does. The file type of the
centroid has a remarkable effect on the results. The 2-gram algorithm is good
at detecting fragments of JPEG images lacking RST markers and MP3 file frag-
ments. When it comes to other file types the results are worse, it has the highest
level of false positives at the 50% detection level for AES encrypted GPG files
and is not even included on the ROC curve plot for Zip files. The 1-gram algo-
rithms and their corresponding centroids seem to be better at describing a file
type without any specific regularities, while the 2-gram algorithm is overly sensi-
tive to a lack of regularities. However, the 2-gram algorithm is much better than
all the 1-gram algorithms when dealing with files containing strict regularities,
such as JPEG images lacking RST markers.

Consequently, if we have specific and known features related to a certain file
type, we should preferably use the 2-gram algorithm. If we need to work with
less regular and featureless file types, we should go for a 1-gram algorithm.

80

5.2. FRAGMENT RECONNECTION

5.2 Fragment Reconnection

The image fragment reconnection method depends heavily on the existence of
RST markers in the scan part of an image. Without the RST markers it is hard
to synchronise the decoder with the stream, especially as the Huffman codes and
embedded amplitude values often can be decoded incorrectly for quite long se-
quences. However, the probability of incorrectly decoding a full 4 KiB fragment
is very low, based on our empirical evaluations. Important features to be used
for decreasing the false positives rate of the decoding are the sampling factor, the
relation between the length of the luminance and chrominance non-zero value
vectors, and the probability of a certain non-zero vector pattern. Also the actual
values of the vectors can be used; small variations of the low frequency ampli-
tudes are more probable than high variations, in normal, every-day images at
least.

By varying the sampling factors and the starting bit of a fragment a brute
force model of synchronising the decoder with the scan might be achievable
even for scan parts of images without RST markers. To do this the maximum
decoding length for each iteration has to be recorded together with the non-
zero amplitude value vector parameters. These parameters then can be used to
find the most probable starting point of the first MCU in the fragment. If we
know where the first MCU starts we can use a slightly modified image fragment
reconnection method; the checking of the length of the RST intervals should be
abolished. There is no need to calculate the differences between consecutive DC
values, since they are already given as delta values.

Since the image fragment reconnection method relies on finding the start of
a MCU, i.e. the first DC luminance Huffman code, to work, every bit position
starting from the beginning of a fragment needs to be processed to see whether it
is the first in a MCU or not. The first bits of a fragment can represent different
attributes in the JPEG scan. Figure 5.1 illustrates this. For JPEGs without RST
markers each bit may belong to a Huffman code, its accompanying amplitude
value, or a zero byte padding after a 0xFF byte value. The Huffman codes can
either be part of a luminance table, there can be one, two, or four tables in a row,
or it can be coming from one of two chrominance tables. The codes in the tables
can in turn belong to a DC or an AC table, where AC codes are up to 63 times
more frequent than DC values.

To find a bound on the performance penalty introduced by the iterative
search for the start of the first MCU, we use the longest possible Huffman codes
that represent no consecutive zeros and the longest possible amplitude value rep-
resentation. In this way we find the maximum theoretical length of a MCU
to be 1820 bytes, or 14560 bits. Each bit position needs to be tested with one,
two or four luminance tables, thus the maximum number of iterations before a
modified image fragment reconnection method has found the start of an MCU
is 14560× 3 = 43680. Consequently it should be possible to use the proposed
method on any standard JPEG image fragment, without any severe performance
degradation.

The real iteration limit is lower than 43680, because it is not possible to use

81

CHAPTER 5. DISCUSSION

...0011010...

value

DC AC

Huffman

DC AC

lum chr

DC AC

pos
2

pos
64

pos
2

pos
64

... ...

m n

padding

Figure 5.1: The possible functions of the starting bits of a non-RST marker JPEG
fragment. There are one, two, or four luminance tables and two chrominance tables.

only the maximum positive value for the DC frequency. The DC tables give the
delta value from the previous DC value of the same component1. By using the
maximum possible positive value once, the next DC value will be out of range if
we once again use a maximum positive delta value for the same component.

The image fragment reconnection method can handle fragments as single en-
tities without any order known in advance. In reality, file systems will store
parts of files in consecutive order, although possibly wrapping over the end of
the hard disk. This simplifies matters a lot, since we then only need to find the
first fragment and then can build from there. The situation is similar for net-
work TCP packets, where we have packet header fields giving the ordering of
the packets. The image fragment reconnection method might appear as unnec-
essarily advanced for such situations, but if the ordering is lost for some reason,
it can still reconnect the fragments.

The description of the modified image fragment reconnection method to be
used for image fragments lacking RST markers is a theoretical idea of one way
to generalise the method. We have not performed any tests or other empirical
evaluations of the modifications, hence what we suggest is only a proposal for a
method.

5.3 Viewing Fragments

The possibility to view (parts of) the original image is heavily dependent on
the amount of data it is possible to collect. Even though it is enough with as
little as one MCU worth of data, the resulting image is too small to give much
viewable information. Still, the smaller the image, the larger the amount of
image information in each MCU. Since the size of images is a limiting factor
on the Internet, because of the relatively small size of the current computer
displays, a single network packet payload can still contain enough image data to
render it viewable. Thus the difference between a network packet and a hard
disk fragment is not as big as the difference in size might indicate.

1Luminance or one of the two chrominance tables, that is.

82

5.4. CONCLUSION

The use of an artificial JPEG header makes it possible to view one version
of the original image. The question is if the loss of quality disqualifies the image
from being used as evidence in a court of law. What we can recreate is an image
where the main objects in the image are visible and correct, with a varying degree
of noise. There is however a risk that the noise gives errors in the details of the
image, and therefore decreases the evidence value of the image.

An alternative to trying to recreate as much of an image as possible, with the
negative effects of increased noise and potential errors in the image details, is to
recreate the image using only the DC luminance values. This method also avoids
the use of a full artificial header, the only thing needed is a Huffman table for
the decoding of the values. We need only to know the length of the AC values
interleaved in the data stream, we do not need to decode them. Such an image
will show the outlines of the objects in the image. The requirements on the
viewer application is not high, it is enough that it can display a surface plot of a
matrix, thus any 3D-plotting software is enough.

5.4 Conclusion

This work can be divided into three sub-parts logically describing the work
flow of finding and reconnecting data fragments, especially of baseline sequential
DCT JPEG images. It is possible to use the sub-parts individually, but they are
meant to work together.

The first part describes how the file type can be found from fragments, with-
out access to any metadata. To do this our method for categorisation of the file
type of data fragments is presented. The fragments can be taken from a crashed
hard disk, a network packet, a RAM dump, or any other situation where there
is a lot of unknown data to be processed. The file type categorisation method
works very well for JPEG images, but also satisfactory for handling other file
types.

The file type categorisation method comprises three algorithms that should
be chosen differently depending on the aim of the application. When robust
function and fast execution is important, and the detection rate can be sacrificed,
the BFD and RoC algorithms are suitable. When JPEG images are to be found
the 2-gram algorithm is the best. The BFD and RoC algorithms are better at
categorising file types without any clear structure; the 2-gram algorithm may be
too sensitive for file types having byte frequency distributions with high standard
deviation rates.

The second part describes how to reassemble fragmented baseline sequential
JPEG images having RST markers in the scan. The image fragment reconnection
method uses the internal structure of fragments at the DC luminance amplitude
value level to form fragment pairs, measuring their fragment joint validity. By
sorting the pairs in fragment joint validity order, approximately 97% of an image
can be restored automatically, if all fragments are available. Repeated use of
the image fragment reconnection method on the remaining fragments should
quickly restore the full image.

83

CHAPTER 5. DISCUSSION

When there are fragments from several images to be reconnected the first it-
eration of the image fragment reconnection method correctly combines approx-
imately 70% of the pairs. Even in this case the method is to be used iteratively.

The third part presents techniques to enable viewing of reassembled JPEG
images, the important JPEG header marker segments and how errors in them
affect an image. There are in reality only two parameters that are crucial for the
decoding of an individual image. These are the size of the image and its sampling
rate. For all other parameters artificial data can be used, preferably a header from
another image, but even fully artificial constructions are possible. This gives us
the ability to view fractions of images, where not all fragments are found, or
where a full reconnection of the fragments for some reason is not possible.

An important factor for the ability to view image fragments is the use of RST
markers in the scan. The first few MCUs in the reconnected fragments may be
corrupt, but when the decoder encounters the first RST marker it can correctly
decode the following MCUs. If the height setting in the header is too large the
decoder will fail, but by starting at a low setting and iteratively increasing the
image height the setting can be optimised for the partial image.

Consequently it is possible to identify, reconnect, and view a fragmented
JPEG image, as long as it uses RST markers. This ability is crucial to the police
and will help them in their search for child pornography. The methods and tools
make it possible to scan even heavily fragmented hard disks and network traffic
for remnants of illegal images. The remnants then can be used to recreate parts
of an image, which can be equipped with an artificial header to allow the image
parts to be displayed.

84

Chapter 6

Related Work

The PAYLoad-based anomaly detector for intrusion detection (PAYL) [28, 29] is
related to our file type categorisation method through the use of a byte frequency
distribution algorithm. The system uses a distance metric called the simplified
Mahalanobis distance to measure the similarity between a sample and a centroid.
The metric is based on two vectors, called x and y, representing the sample and
the centroid respectively, and the standard deviation, σi , of each byte i in the
centroid. A smoothing factor α is used to avoid division by zero when σi = 0.
As can be seen in Equation (6.1) this is similar to a linear-based distance metric
between the sample and a model, weighted by the standard deviation of the byte
frequency distribution.

d
�

~x,~y
�

=
n−1
∑

i=0

�

|xi − yi |/
�

σi +α
��

. (6.1)

PAYL has been implemented using different approaches for how to handle
the centroid creation. The later implementations use k-means clustering in two
steps to reduce the memory requirements and increase the modelling accuracy.

The main differences between the file type categorisation method and PAYL
are the modelling of the data, the distance metric, and the centroid creation
process. PAYL is based on the byte frequency distribution of the data stream,
which does not take the ordering of the bytes into consideration. The file type
categorisation RoC algorithm measures the rate of change in the data stream
and can therefore distinguish between data blocks having similar byte frequency
distributions, but different ordering of the bytes.

The simplified Mahalanobis distance metric used by the PAYL intrusion de-
tector suffers from an inability to separate samples having a few large deviations
measured against the centroid from samples having several smaller deviations, in
cases where the mean and standard deviation values of the centroid are almost
uniform. This is the case when dealing with compressed or encrypted data, for
example JPEG or .zip files. The file type categorisation method uses a quadratic

85

CHAPTER 6. RELATED WORK

distance metric which is better at handling almost uniform byte frequency distri-
butions. Due to the weaknesses of the distance metric the PAYL method has to
use a more complex and computationally heavy centroid creation process than
the file type categorisation method.

The anomaly based intrusion detector Anagram [30] has evolved from PAYL
and uses higher order (n > 1) n-grams to detect malicious content in network
traffic. The creators of Anagram use both normal and malicious traffic to detect
intrusion attempts. To minimise the memory requirements two Bloom filters
are used to store the n-grams, one for each traffic type. The n-grams appearing
in the malicious Bloom filter are weighted by a factor 5 when the anomaly score
is calculated. To increase the resistance to mimicry attacks Anagram is suited
with a randomised testing function, which chooses several, possibly interleaved,
sub-parts of a packet payload for anomaly testing. The reported results are very
good with a detection rate of 100% at a false positives rate of less than 0.03%. The
metric used to calculate the anomaly score of a packet counts the number of new
n-grams, Nne w , and the total number of n-grams, T , giving: Score=Nne w/T .

The main difference between our file categorisation method and Anagram
is the latter method’s use of high-order n-grams. In our experiments with the
2-gram algorithm we noticed that it had problems categorising encrypted file
types. Anagram is currently only applied to text and executable code, which
have a lower entropy than compressed and encrypted files. It would therefore be
interesting to see how well Anagram can handle high entropy file types. Since
we have not seen any such evaluations we cannot judge its efficiency compared
to our file type categorisation method.

A system called Statistical PARSEr (SPARSE) [31, 32], created by the research
group which invented PAYL and Anagram, is used to detect malware hidden
in Microsoft Word documents. SPARSE incorporates Anagram as one of its
detectors. Documents to be scanned are parsed and data objects are extracted.
These are then fed to a static detector (Anagram). If the static detector labels a
object as negative the object is given to a dynamic detector executing the object
and looking for malicious system events. If any of the detectors report a positive
finding a “malcode locator” searches each parsed section for the malicious code.

SPARSE is focused on Word documents and use of multi-n-gram algorithms
through Anagram. The incorporation of Anagram gives SPARSE the same de-
tection characteristics as Anagram, thus also the same differences compared to
our file categorisation method.

The group that created PAYL and Anagram has also used the byte frequency
distribution algorithm for creating fileprints [33, 34, 35], which are used to deter-
mine the file type of unknown files, in the same manner as the first version [9] of
the file type categorisation method. The fileprint method has borrowed its base
from the byte frequency distribution of PAYL, together with the simplified Ma-
halanobis distance metric. The method is further improved by more advanced
centroid creation methods, of which the two-layer method of PAYL is one. Fur-
thermore the authors experiment with truncating the files to be categorised by
the fileprint method. They find that by using only a few hundred bytes from

86

the beginning of the files they get higher detection rates than when applying the
method to full-length files.

Since the fileprint method and PAYL were developed in parallel these two
methods also share their main differences relative to our file type categorisation
method. In addition to the differences in the modelling of the data, the distance
metric, and the centroid creation process, the fileprint method also differs from
the file type categorisation method in the previous method’s implicit dependence
on file headers through the truncation of files to be categorised.

Our file type categorisation method is meant to do what the current tools
cannot do, namely categorise data fragments without having to rely on header
data and file blocks being stored consecutively. In other words our file type
categorisation method can work regardless of the state of the file system or degree
of fragmentation. By using only the first few hundred bytes of a file the fileprint
method in reality becomes a reinvention of the Unix file command.

McDaniel and Heydari [36] use the concept of n-grams in a file type categori-
sation method. They use different statistical metrics applied to single bytes in
files to make fingerprints of files. McDaniel and Heydari’s main source of data
is the header and footer parts of files. They try to consider the ordering of the
bytes in files through the use of what they call byte frequency cross-correlation.
One example of bytes with high byte frequency cross-correlation is the Hyper-
Text Markup Language (HTML) tag markers “<” and “>”. The McDaniel and
Heydari method differs from the 2-gram method through the use of single bytes,
as well as their method’s dependence on file header and footer data.

Yet another n-gram based method is presented in a paper by Shanmugasun-
daram and Memon [37]. They use a sliding window algorithm for fragmented
file reassembly using n-gram frequency statistics. They let the window pass over
the edges of the fragments and then combine those fragments having the highest
probability of being consecutive based on the frequency of the n-grams found in
the window. Their use of n-grams frequency statistics is similar to the 2-gram
method, but they apply the method in another way and require all fragments of
a file to be known in advance.

Shamir and Someren [38] use the entropy of hard disk data fragments to lo-
cate the cryptographic keys stored on disk. They use a sliding window of 64
bytes and count the number of unique byte values in the window. A crypto-
graphic key will generate a higher entropy than other binary data and in that
way it is possible to differentiate keys from other data.

The Shamir and Someren method differs from the file type categorisation
method in that their method uses smaller data blocks and does not need any
centroid to measure new, unknown samples against. Also the area of usage dif-
fers, although the file type categorisation method could be used for similar tasks.
On the other hand, the Shamir and Someren method cannot be used for identi-
fying the file type of an unknown data fragment and is specialised at detecting
cryptographic keys.

Garfinkel [39] presents a method called Bifragment Gap Carving (BGC),
which can reconnect a file fragmented into two fragments separated by one

87

CHAPTER 6. RELATED WORK

or more junk hard disk sectors. The algorithm requires that the fragments are
stored in order and the start and end of the fragmented file can be found. The
algorithm runs in quadratic time for single object carving and O(n4) time if all
bi-fragmented files of a specific type is to be carved.

To verify that a file is appropriately carved Garfinkel has developed a plug-
gable validator framework, implementing each validator as a C++ class. The
framework has several return values, apart from the standard accept or reject.

The BGC method relates to the file type categorisation and image fragment
reconnection methods in combination. A drawback of the BGC method is that
it, as the name implies, can only handle files fragmented into two parts. The
main idea behind the algorithm gives it a high complexity, which makes it scale
badly. The file type categorisation method can find all fragments of a specific
type in linear time, and then the image fragment reconnection method can be
used to reconnect them in much less than O(n2) time. If we assume ordered frag-
ments, the reconnection can be done in linear time. The file type categorisation
and image fragment reconnection methods do not need access to any headers or
footers to work, hence they have a more generic application area than the BGC
method.

Cohen [40] describes two semantic carvers for Portable Document Format
(PDF) and Zip files. The carvers utilise the internal structure of the two file types
to identify and reassemble fragments. For text based file types, such as PDF, this
is straightforward, but for binary file types there might be large sequences of
uniformly distributed byte values. Cohen does not explain how fragments not
containing any header-related information can be identified. The article implies
that the fragments need to be consecutively stored and possibly the number of
other fragments need to be low. A file type specific discriminator should be used
to find the correct sequence of fragments for each file, taken from a set of possible
sequences of fragments.

The method Cohen proposes uses only information related to the headers
and internal structure. Therefore the method in reality is limited to ordered
structures and low fragmentation environments. The file type categorisation
and image fragment reconnection methods are designed to work in any circum-
stances and environment. They therefore do not make any assumptions about
the surrounding fragments, and only need information that can be retrieved from
the fragments themselves to work.

Erbacher and Mulholland [41] have studied the problem of basic stegonog-
raphy, where complete and unencrypted files are hidden within other files. To
do this they use 13 different statistical measures calculated over a sliding win-
dow to detect deviations in files of various formats. They also experiment with
varying sizes of the sliding window. The best results are given by the byte value
average, kurtosis, distribution of averages, standard deviation, and distribution
of standard deviations, using sliding window sizes between 256 and 1024 bytes.
The results Erbacher and Mulholland get show that files are not homogeneous
streams of data, but instead vary significantly throughout and have clearly visible
subsections.

88

The work by Erbacher and Mulholland have a slightly different approach
than our work and do not aim at recognising file types, but to see deviations
within files. The statistical metrics used by Erbacher and Mulholland are related
to the BFD and RoC algorithms of the file type categorisation method, but the
smaller sliding window size used by Erbacher and Mulholland, and the fact that
they do not really model the file types, separate the two methods from each
other.

Memon and his research group [42, 37, 43, 44] have looked at how to re-
assemble fragmented bitmap images. To do this they have assigned weights to
each possible fragment pair and used different path optimising algorithms to
find the correct fragment pair sequence. They assume each fragment contains
at least an image width of data, and that all fragments are available. The header
fragments provide their weight-assigning algorithms with needed information on
image width and resolution. The weights are calculated for each possible image
width. Memon and Pal say that with some additional steps of decompression,
denormalization, and inverse DCT their method can handle JPEG images, but
they do not prove it.

The image fragment reconnection method is similar to Memon’s and Pal’s
method at a high level, both of the methods assign weights to fragment pairs
and optimise the sum of the fragment chains. There are differences between
the methods too; the image fragment reconnection method does not need to
have a header fragment to be able to determine the width of an image. It is
also successfully applied to JPEG images, and is more efficient, since it uses pre-
processing to decrease the set of possible fragment pairs needed to be assigned
weights and optimised.

Memon and his group have developed a network abuse detection system,
called Nabs [45], that can identify whether the payload of a network packet is
uncompressed, compressed, or encrypted. They used statistical measures from
the time domain, the frequency domain, and some higher order statistics and
applied a Sequential Forward Feature Selection (SFFS) algorithm to find the best
parameters. The parameters are, in order of decreasing importance, entropy,
power in the 0–π8 frequency band, mean, variance, and mean and variance in the
π
2 –π frequency band. These parameters give an accuracy of approximately 84%,
where the accuracy is calculated as the number of correctly categorised samples
divided by the total number of samples.

The Nabs detection system shows that the important features are not the
most complex, hence the aim of the file type categorisation method to use simple,
fast and robust algorithms for detection is in line with the research by Memon
and his group. The important parameters presented by Memon and colleagues
would be interesting to test with the file type categorisation method. The dif-
ference between the two methods is that Nabs only tries to identify whether a
fragment is compressed or not, or encrypted, while the file type categorisation
method is meant to identify the exact file type of a fragment.

Shannon [46] uses entropy and the proportion of human readable ASCII
characters to identify the type of files. The calculations are performed on com-

89

CHAPTER 6. RELATED WORK

plete files, not fragments. The work is interesting, even though it is not directed
at categorisation of data fragments. The main difference between this method
and the file type categorisation method is the latter method’s focus on a lower
abstraction level through data fragments.

Hall and Davis [47] use the compressibility and entropy calculated over a 90
byte large sliding window and collect samples at 100 points in a file, to identify
the file type of fragments. Their text implies that the sliding window is moved
one window size at a time, in reality making it a fixed window used to create sam-
ples. The standard deviation of the average measurement of each sample point
is calculated and used to indicate the level of confidence of each point. They
use all parts of a file, including the header, which is deductible from the plots
of their results. Hall and Davis also claim their method can be used to link un-
encrypted files to their resulting encrypted files by their entropy measurements.
The plots of the preliminary results show a remarkable similarity between the
encrypted files and their source files. According to Davis [48] the reason is that
they used Electronic Code Book (ECB) mode, which does not properly hide
the underlying structure of the source file [49]. Due to this fact ECB mode is
not used in modern encryption applications, hence decreasing the importance of
their preliminary results.

The work by Hall and Davis clearly shows how files are often possible to
divide into subsections with completely different properties. This is interesting
and we will use their ideas in our future work. The main difference between
the file type categorisation method and the work by Hall and Davis is the latter
method’s use of complete files, although divided into 90 byte large windows,
while the file type categorisation method is applied to data fragments, although
averaged over complete files. Hall and Davis also use more complex metrics to
calculate their statistics, by their use of entropy and compressibility. The file
type categorisation method is meant to be simple to lower the execution time of
the algorithms.

Veenman [50] presents an alternative way to identify the file type of a data
fragment. The method uses histograms, similar to the BFD algorithm, entropy
measurements, and algorithmic complexity to find the file type of an unknown
fragment. Unlike the file type categorisation method Veenman does not use any
threshold to do the categorisation. For the applicable file types the results are all
worse than for the 2-gram algorithm of the file type categorisation method. To
improve the recognition performance Veenman incorporates preceding and con-
secutive fragments in the calculations. This may be useful in a non-fragmented
environment, but for unordered fragment environments the recognition perfor-
mance may very well decrease. Veenman reports that for text based file types the
recognition performance is improved, but for binary file types, such as JPEG
and bitmap (BMP), the performance is degenerated, even in an non-fragmented
environment.

The main differences between Veenman’s work and the file type categorisa-
tion method are the metrics used and especially the way Veenman incorporates
surrounding fragments in the calculations. The file type categorisation method

90

is mainly intended to be used for binary, high entropy file types, and is therefore
not tested on text based file types. Hence some of the results of Veenman’s work
are not possible to compare to the results of the file type categorisation method
reported in this thesis.

Richard et al [51] have studied what they call in-place file carving, which is a
method to reduce the requirements for hard disk space during file carving. They
utilise a virtual file system separated from the computer to be analysed, and use
it to map interesting blocks of a corrupted hard disk together with a file carver.
In this way it is possible to view the prospective files found during carving as if
they existed on the hard disk. Since prospective files are not real files they can
easily be deleted without actually touching the corrupt hard disk.

The work by Richard et al is related to the work in this thesis because the file
type categorisation method can be used for in-line file carving too. By repeatedly
using the file type categorisation method with different centroids the contents
of a hard disk can be mapped and stored as for example lists of disk clusters
belonging to a specific file type.

Scalpel [52] is a file carving tool developed by Richard and colleagues. It
shares some code with the Foremost 0.69 tool [53], and is aimed at fast execution.
The main idea is to perform two passes through a disk image. The first pass
identifies all file headers and stores their positions. The next pass identifies all file
footers found within a pre-set distance from the headers and stores the footers’
positions. The tool then uses the positions to carve all possible files of different
types.

Since the Scalpel tool uses file header and footer information to find files,
it cannot perform file carving in a unordered disk image, which the file type
categorisation method can. Richard and colleagues plan to extend the header and
footer identification capability, but the difference in file categorisation capability
from our file type categorisation method will still remain.

Haggerty and Taylor [54] have taken on the problem of matching unknown
samples of a file to the original file. Their solution is called forsigs and is meant
to be faster and harder to defeat than using hash checksums. Forsigs uses one
or more signature blocks from the original file and searches a suspect’s hard disk
for any hits. 16 byte positions from one or more randomly chosen blocks from
the original file are used as a signature. If needed the 16 byte positions can also
be randomly chosen. The randomness is used to make it harder for a suspect to
defeat forsigs by simply changing a few bytes in the file. Forsigs enables specific
files to be identified with high certainty without the need for a file system.

Forsigs is used to identify specific and known files, whilst the file type cate-
gorisation method is used to identify the file type of fragments. This is definitely
a difference between the two methods, but they complement each other. Both
are independent of any file system and by including the image fragment recon-
nection method in the process we get an efficient way of searching for malicious
material. We first run forsigs on a hard disk to look for known malicious files.
Then we let the file type categorisation method identify all fragments of the same
type(s) as the malicious files. Finally we use the image fragment reconnection

91

CHAPTER 6. RELATED WORK

method to reconnect the found fragments. Depending on the circumstances we
may stop at only checking the reconnected files containing fragments matched
by forsigs.

92

Chapter 7

Future Work

This chapter presents areas and questions left as future work. Some of the ma-
terial has already been discussed in Chapter 5, but this chapter more specifically
points out our intended future research path.

The overall direction of our research will move from classical storage media
file carving to realtime applications such as network monitoring and live system
forensics. The focus will be on parameters that govern the level of success in
dire circumstances, where no metadata is available, but applied to different areas
where binary data is stored, transferred, or modified. We will continue to work
our way through the abstraction layers of a computer system eventually covering
all abstraction layers and main application areas for binary data in a computer
system.

Practical use of our future work can be found in many computer security
areas covering, for example:

• computer forensics,

• data rescue,

• intrusion detection systems,

• rootkit protection,

• anti-virus scanners,

• intrusion analysis, and

• network management.

An interesting area for possible use of our research is efficient network com-
munication in asymmetric channels. This falls outside of the computer security
scope of our work, but may offer the possibility of synergy effects where both
research fields will benefit. We will conduct a pilot study to further evaluate the
applicability of the idea and therefore have left it as future work at the moment.

93

CHAPTER 7. FUTURE WORK

7.1 The File Type Categorisation Method

An outstanding issue that has to be dealt with in the near future is the fact that
the results of the experiments using the file type categorisation method for the
Windows PE file type can still be improved. Since the ability to detect executable
code is a key feature to many computer security services, for example intrusion
detection systems or anti-virus scanners, any further improvements of the detec-
tion ability of the file type categorisation method would be of high value to the
computer security field.

We have already improved the file type categorisation method’s detection
rate regarding executable code from below 50% to 70% by erasing all GIF, JPEG,
and PNG images from the files used to create the centroid. The simplicity of the
solution in combination with the drastic improvement of the detection rate has
inspired us and we will therefore test an approach where we divide the executable
files into smaller parts and sort them into sub-groups. Each group would then get
its own centroid, which hopefully will have a high detection rate for its specific
part. The sub-division of the centroid creation files may also result in a lower
need for cleaning the files before a centroid is created.

We will explore a new algorithm related to the RoC algorithm, where we
check the distance between similar byte values. This new algorithm would take
regularities in a byte stream into account, such as tables in an executable file,
without adding the instability of the 2-gram algorithm. In this way we would
get the fast execution and small footprint of the 1-gram algorithms and the higher
detection ability of the 2-gram algorithm. The new algorithm is currently being
implemented and we hope to be able to report any results in the near future.

The important parameters presented in the Nabs [45] paper are partially simi-
lar to the parameters used in the file type categorisation method. The parameters
mentioned in the Nabs paper that are currently not used by the file type categori-
sation method will be evaluated for possible inclusion in the method. We will
therefore study the Nabs approach more closely and follow up on its current
status.

The Anagram [30] intrusion detector uses interesting techniques to achieve
very good results. The key features of the detector will be tested in our file cat-
egorisation method. We are especially interested in the use of Bloom filters and
the benefits of longer n-grams. We will evaluate the Anagram’s ability to handle
high entropy file types. We will also investigate the stability of the Anagram
approach when subject to data fragments of different sizes.

The quadratic distance metric used in the file type categorisation method
will possibly be exchanged. Our idea for a new metric is to calculate the angle
between the centroid vectors and the vectors of an unknown sample. The advan-
tages of such an approach are that it is well-founded in mathematics and can be
efficiently implemented in certain computer architectures. There are also other
similarity metrics that might be interesting to test in the future.

It is possible to decide whether the camera was used to capture a specific
image or not [55, 56, 57, 58]. This fact has inspired us to briefly study [11, 12]
the possibility of identifying the camera make used to capture an image from a

94

7.2. THE IMAGE FRAGMENT RECONNECTION METHOD

fragment of the image file. Our preliminary results indicate that it is not possible.
In light of our new ideas for algorithms to improve the file type categorisation
method, we will re-initiate the camera recognition study. Since there are only
a few manufacturers of light sensors on the market, minimally we may be able
to distinguish between cameras using different light sensors. Any positive result
within this field would extend the capabilities of the police and help them capture
child molesters. We will therefore run the camera recognition experiments in
parallel with our current file detection research.

Depending on the results from the re-initiated camera recognition experi-
ments, we might also look at identification of image manipulation software. The
problem is harder to solve, since computer software is not subject to the same
physical limitations as camera light sensors. Hence software can be adjusted and
patched to compensate for any positive results from our research.

7.2 The Image Fragment Reconnection Method

An important issue we will address in the near future is the fact that the image
fragment reconnection method currently only handles JPEG images containing
RST markers. By adding the ability to also reconnect fragments lacking RST
markers the method will be usable even in live situations, not only in testing en-
vironments. We already have a theoretical idea of how to extend the capabilities
of the image fragment reconnection method and will implement and test it in
the near future. In a more distant future we plan to try to explore the possibility
to generalise the image fragment reconnection method, giving the ability to re-
assemble any type of file. This is partly dependent on the progress of the file type
categorisation algorithm development, hence the timing of the generalisation of
the image fragment reconnection method is not yet clear.

The near future work on the image fragment reconnection method includes
continued experiments using fragments from several images, to confirm the re-
sults we present in this thesis. The experiments should also include a complete
reassembly of a file to find the number of iterations needed to correctly recon-
nect all fragments in our test set. The results from these experiments can be used
to improve the image fragment reconnection method and help in finding any
yet unknown weaknesses in the algorithms. This work is planned to be done
in parallel with the implementation of the fully JPEG capable image fragment
reconnection method.

7.3 Artificial JPEG Header

Our research on the use of artificial JPEG headers has been performed using an
image containing RST markers. This has biased the results in a positive direction,
possibly leading to a higher level of success than if we had used an image without
RST markers. All example images containing small discoloured horizontal bars
are subject to the bias. The bars end at the border of an restart interval; if there
had been no RST markers the first bar to appear would have continued to the end

95

CHAPTER 7. FUTURE WORK

of the image. We therefore have to re-evaluate the effects of changes to the sample
rates, the component identifiers, and Huffman table definitions and pointers in
a non-RST marker JPEG image.

An open issue to address regarding the use of artificial JPEG headers is whether
it is possible to use a fully generic Huffman table definition. Our current re-
search indicates that almost identical Huffman table definitions are exchangeable,
but what happens when the definitions differ to a higher degree? Will the image
be possible to decode at all?

All cameras in our database use the same Huffman table definitions, but we
need to know whether the same is true for any digital camera. If there are only
a few different definitions used, a brute force model where all possible Huffman
table definitions are tried on an image would be feasible. This would possibly
also lead to the identification of the camera make used to capture the image.

The principle of Huffman coding is that frequent symbols get shorter codes
than less frequent symbols, and shorter codes mean fewer possible combina-
tions. Thus the set of short Huffman codes is small and should theoretically be
frequently used, hence are there any theoretical or practical structures governing
how the symbols get coded in a JPEG Huffman table definition? If any struc-
tures exist, will they cause similarities between two independent Huffman table
definitions and if that is the case, in what parts of the definitions?

96

Bibliography

[1] R. Wortley and S. Smallbone, “Child pornography on the internet,” in
Problem-Oriented Guides for Police, ser. Problem-Specific Guides Series. US
Department of Justice, May 2006, no. 41, accessed 2008-03-15.

[2] J. Ruscitti, “Child porn fight merits police resources,” http://www.
crime-research.org/news/16.02.2008/3201/, Feb. 2008, accessed 2008-03-
14.

[3] A. McCue, “Online child porn investigation costs police £15m,” http://
management.silicon.com/government/0,39024677,39128445,00.htm, Mar.
2005, accessed 2008-03-14.

[4] BBC News, “Child porn fight ’lacks funding’,” http://news.bbc.co.uk/go/
pr/fr/-/1/hi/technology/3972763.stm, Nov. 2004, accessed 2008-03-14.

[5] ——, “BT acts against child porn sites,” http://news.bbc.co.uk/1/hi/
technology/3786527.stm, June 2004, accessed 2008-03-17.

[6] Yahoo News Canada, “Police arrest 22 in Ontario as part of massive child
porn bust,” http://ca.news.yahoo.com/s/capress/080212/national/child_
porn_raids_7, Feb. 2008, accessed 2008-04-01.

[7] “DFRWS 2007 forensics challenge results,” http://www.dfrws.org/2007/
challenge/results.shtml, 2007, accessed 2008-03-15.

[8] B. Carrier, File System Forensic Analysis. Addison-Wesley, 2005.

[9] M. Karresand and N. Shahmehri, “Oscar – file type identification of binary
data in disk clusters and RAM pages,” in Proceedings of IFIP International
Information Security Conference: Security and Privacy in Dynamic Environ-
ments (SEC2006), ser. Lecture Notes in Computer Science, 2006, pp. 413–
424.

[10] ——, “File type identification of data fragments by their binary structure,”
in Proceedings from the Seventh Annual IEEE Systems, Man and Cybernetics
(SMC) Information Assurance Workshop, 2006. Piscataway, NJ, USA: IEEE,
2006, pp. 140–147.

97

BIBLIOGRAPHY

[11] ——, “Oscar – file type and camera identification using the structure of
binary data fragments,” in Proceedings of the 1st Conference on Advances in
Computer Security and Forensics, ACSF, J. Haggerty and M. Merabti, Eds.
Liverpool, UK: The School of Computing and Mathematical Sciences, John
Moores University, July 2006, pp. 11–20.

[12] ——, “Oscar – using byte pairs to find file type and camera make of data
fragments,” in Proceedings of the 2nd European Conference on Computer Net-
work Defence, in conjunction with the First Workshop on Digital Forensics and
Incident Analysis (EC2ND 2006), A. Blyth and I. Sutherland, Eds. Springer
Verlag, 2007, pp. 85–94.

[13] The International Telegraph and Telephone Consultative Committee
(CCITT), “Recommendation T.81 — Information Technology – Digital
Compession and Coding of Contiuous-Tone Still Images – Requirements
and Guidelines,” Sept. 1992, also published as ISO/IEC International Stan-
dard 10918-1.

[14] E. Hamilton, “JPEG File Interchange Format – version 1.02,” Sept. 1992.

[15] International Telecommunication Union (ITU-T), “Annex F of ITU-T Rec-
ommendation T.84 | ISO/IEC IS 10918-3, Digital Compression and Cod-
ing of Continuous-Tone Still Images – Extensions,” 1996, ITU-T was previ-
ously known as CCITT.

[16] Japan Electronics and Information Technology Industries Association
(JEITA), “Exchangeable image file format for digital still cameras: Exif Ver-
sion 2.2,” Apr. 2002, JEITA CP-3451.

[17] Japan Electronic Industry Development Association (JEIDA), “Digital Still
Camera Image File Format Standard (Exchangeable image file format for
Digital Still Cameras: Exif – Version 2.1),” June 1998, earlier versions pub-
lished 1996 (v. 1.0), and 1997 (v. 1.1).

[18] M. Damashek, “Gauging similarity with n-grams: Language-independent
categorization of text,” Science, vol. 267, no. 5199, pp. 843–848, Feb. 1995.

[19] P. Deutsch, “RFC1951: DEFLATE compressed data format specification
version 1.3,” http://www.ietf.org/rfc/rfc1951.txt, May 1996, last accessed
2007-11-20.

[20] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “RFC
4880: OpenPGP message format,” http://tools.ietf.org/rfc/rfc4880.txt,
Nov. 2007, last accessed 2007-11-26.

[21] D. O’Neill, “ID3v2 — the audience is informed,” http://www.id3.org/
Home, July 2007, last accessed 2007-11-27.

[22] M. Nilsson, D. Mahoney, and J. Sundström, “ID3 tag version 2.3.0,” http:
//www.id3.org/id3v2.3.0, Feb. 1999, last accessed 2007-11-27.

98

BIBLIOGRAPHY

[23] The Gutenberg Project, “Project Gutenberg,” http://www.gutenberg.org/
wiki/Main_Page, July 2007, last accessed 2007-11-26.

[24] “Debian Etch r2 XFce CD iso file from the SUNET FTP site,”
ftp://ftp.sunet.se/pub/Linux/distributions/debian-cd/current/i386/
iso-cd/debian-40r2-i386-xfce-CD-1.iso, Feb. 2008, accessed 2008-02-05.

[25] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters,
vol. 27, no. 8, pp. 861–874, June 2006.

[26] L. Råde and B. Westergren, Mathematics Handbook for Science and Engineer-
ing, 4th ed. Studentlitteratur, 1998.

[27] FelixH and Stephantom, “Image:Dctjpeg.png,” http://upload.wikimedia.
org/wikipedia/commons/2/23/Dctjpeg.png, Jan. 2008, accessed 2008-03-
29.

[28] K. Wang and S. Stolfo, “Anomalous payload-based network intrusion detec-
tion,” in Recent Advances in Intrusion Detection (RAID) 2004, ser. Lecture
Notes in Computer Science, E. Jonsson el al., Ed., vol. 3224. Springer-
Verlag, July 2004, pp. 203–222.

[29] K. Wang, G. Cretu, and S. Stolfo, “Anomalous payload-based worm detec-
tion and signature generation,” in 8th International Symposium on Recent
Advances in Intrusion Detection, RAID 2005, ser. Lecture Notes in Com-
puter Science, A. Valdes and D. Zamboni, Eds., vol. 3858. Springer-Verlag,
2006, pp. 227–246.

[30] K. Wang, J. Parekh, and S. Stolfo, “Anagram: A content anomaly detec-
tor resistant to mimicry attacks,” in 9th International Symposium Recent
Advances in Intrusion Detection (RAID), ser. Lecture Notes in Computer
Science, D. Zamboni and C. Kruegel, Eds., vol. 4219. Springer Berlin /
Heidelberg, 2006, pp. 226–248, DOI: 10.1007/11856214_12.

[31] W.-J. Li, S. Stolfo, A. Stavrou, E. Androulaki, and A. Keromytis, “A study
of malcode-bearing documents,” in Proceedings of the 4t h International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA 2007), ser. Lecture Notes in Computer Science (LNCS), B. Häm-
merli and R. Sommer, Eds., vol. 4579. Springer Verlag, 2007, pp. 231–250.

[32] W.-J. Li and S. Stolfo, “SPARSE: a hybrid system to detect malcode-bearing
documents,” http://www1.cs.columbia.edu/ids/publications/cucs-006-08.
pdf, Dept. of Computer Science, Columbia University, USA, Tech. Rep.
cucs-006-08, Jan. 2008, accessed 2008-04-01.

[33] W.-J. Li, K. Wang, S. Stolfo, and B. Herzog, “Fileprints: Identifying file
types by n-gram analysis,” in Proceedings from the sixth IEEE Sytems, Man
and Cybernetics Information Assurance Workshop, June 2005, pp. 64–71.

99

BIBLIOGRAPHY

[34] S. Stolfo, K. Wang, and W.-J. Li, “Fileprint analysis for malware detec-
tion,” Computer Science Department, Columbia University, New York,
NY, USA, Tech. Rep., 2005, review draft.

[35] ——, Malware Detection, ser. Advances in Information Security. Springer
US, 2007, vol. 27, no. IV, ch. Towards Stealthy Malware Detection, pp.
231–249.

[36] M. McDaniel and H. Heydari, “Content based file type detection algo-
rithms,” in HICSS ’03: Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03) - Track 9. Washington, DC, USA:
IEEE Computer Society, 2003, p. 332.1.

[37] K. Shanmugasundaram and N. Memon, “Automatic reassembly of doc-
ument fragments via context based statistical models,” in Proceedings of
the 19th Annual Computer Security Applications Conference, 2003, http:
//www.acsac.org/2003/papers/97.pdf, accessed at 2006-04-30.

[38] A. Shamir and N. van Someren, “Playing ‘hide and seek’ with stored keys,”
in Financial Cryptography: Third International Conference, FC’99, ser. Lec-
ture Notes in Computer Science, M. Franklin, Ed., vol. 1648. Springer-
Verlag, 1999, pp. 118–124.

[39] S. Garfinkel, “Carving contiguous and fragmented files with fast object vali-
dation,” Digital Investigation, vol. 4, no. Supplement 1, pp. 2–12, Sept. 2007,
DOI:http://dx.doi.org/10.1016/j.diin.2007.06.017.

[40] M. Cohen, “Advanced carving techniques,” Digital Investigation, 2007, in
press, DOI:http://dx.doi.org/10.1016/j.diin.2007.10.001.

[41] R. Erbacher and J. Mulholland, “Identification and localization of data
types within large-scale file systems,” in SADFE ’07: Proceedings of the Sec-
ond International Workshop on Systematic Approaches to Digital Forensic En-
gineering. Washington, DC, USA: IEEE Computer Society, 2007, pp.
55–70, DOI:http://dx.doi.org/10.1109/SADFE.2007.12.

[42] K. Shanmugasundaram and N. Memon, “Automatic reassembly of
document fragments via data compression,” in Digital Forensic Re-
search Workshop, 2002, http://isis.poly.edu/memon/publications/pdf/
2002_Automatic_Reassembly_of_Document_Fragments_via_Data_
Compression.pdf, last accessed 2008-01-14.

[43] A. Pal, K. Shanmugasundaram, and N. Memon, “Automated reassembly of
fragmented images,” in ICME ’03: Proceedings of the 2003 International Con-
ference on Multimedia and Expo. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 625–628.

[44] N. Memon and A. Pal, “Automated reassembly of file fragmented images
using greedy algorithms,” IEEE Transactions on Image Processing, vol. 15,
no. 2, pp. 385–393, Feb. 2006.

100

BIBLIOGRAPHY

[45] K. Shanmugasundaram, M. Kharrazi, and N. Memon, “Nabs: A system
for detecting resource abuses via characterization of flow content type,” in
Proceedings of 20th Annual Computer Security Applications Conference, 2004.

[46] M. Shannon, “Forensic relative strength scoring: ASCII and entropy
scoring,” International Journal of Digital Evidence, vol. 2, no. 4, 2004,
http://www.utica.edu/academic/institutes/ecii/publications/articles/
A0B3DC9E-F145-4A89-36F7462B629759FE.pdf, last accessed 2007-12-21.

[47] G. Hall and W. Davis, “Sliding window measurement
for file type identification,” http://www.mantechcfia.com/
SlidingWindowMeasurementforFileTypeIdentification.pdf, 2007, last
accessed 2007-12-10.

[48] W. Davis, “Re: Fw: Questions on "sliding window measurement for file
type identification" paper,” Mail conversation, Jan. 2008.

[49] A. Menezes, P. Oorschot, and S. Vanstone, Handbook of Applied Cryptogra-
phy. Boca Raton, 1997.

[50] C. Veenman, “Statistical disk cluster classification for file carving,” in Pro-
ceedings of the Third International Symposium on Information Assurance and
Security, 2007 (IAS 2007), N. Zhang, A. Abraham, Q. Shi, and J. Thomas,
Eds. IEEE Computer Society, 2007, pp. 393–398, DOI:http://dx.doi.org/
10.1109/ISIAS.2007.4299805.

[51] G. Richard III, V. Roussev, and L. Marziale, “In-place file carving,” in Ad-
vances in Digital Forensics III, ser. IFIP International Federation for Infor-
mation Processing, P. Craiger and S. Shenoi, Eds., vol. 242/2007. Springer
Boston, 2007, pp. 217–230.

[52] G. Richard III and V. Roussev, “Scalpel: A frugal, high performance file
carver,” in Proceedings of the 5th Annual Digital Forensics Research Workshop
(DFRWS 2005), 2005.

[53] K. Kendall, J. Kornblum, and N. Mikus, “Foremost - latest version 1.5.3,”
http://foremost.sourceforge.net/, 2007, accessed 2008-04-14.

[54] J. Haggerty and M. Taylor, “FORSIGS: forensic signature analysis of the
hard drive for multimedia file fingerprints,” in New Approaches for Security,
Privacy and Trust in Complex Environments, ser. IFIP International Federa-
tion for Information Processing, vol. 232. Springer Boston, 2007, pp. 1–12,
DOI: 10.1007/978-0-387-72367-9_1.

[55] J. Luká̌s, J. Fridrich, and M. Goljan, “Determining digital image origin us-
ing sensor imperfections,” in Proceedings of SPIE Electronic Imaging, Image
and Video Communication and Processing, 2005, pp. 249–260.

[56] ——, “Digital bullet scratches for images,” in Proceedings of ICIP 2005, 2005.

101

BIBLIOGRAPHY

[57] G. Glover, “Binghamton University research links digital images and cam-
eras,” http://www.eurekalert.org/pub_releases/2006-04/bu-bur041806.
php, Apr. 2006, accessed 2006-04-28.

[58] J. Lukáš, J. Fridrich, and M. Goljan, “Digital camera identification from
sensor pattern noise,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 1, no. Summer 2, pp. 205–214, 2006.

102

Appendix A

Acronyms

ADIT Division for Database and Information Techniques

AES Advanced Encryption Standard

ASCII American Standard Code for Information Interchange

BFD Byte Frequency Distribution

BGC Bifragment Gap Carving

BMP bitmap

CCITT International Telegraph and Telephone Consultative Committee

DCT Discrete Cosine Transform

DFRWS Digital Forensic Research Workshop

DHT Define Huffman Table

DRI Define Restart Interval

ECB Electronic Code Book

EOI End Of Image

FAT File Allocation Table

FOI Swedish Defence Research Agency

GIF Graphics Interchange Format

GPG GNU Privacy Guard

HTML HyperText Markup Language

ID3 IDentify an MP3

103

APPENDIX A. ACRONYMS

IEC International Electrotechnical Commission

IISLAB Laboratory for Intelligent Information Systems

ISO International Organization for Standardization

JPEG Joint Photographic Experts Group

MCU Minimum Coded Unit

MP3 MPEG 1, Audio Layer-3

NTFS New Technologies File System

PAYL PAYLoad-based anomaly detector for intrusion detection

PDF Portable Document Format

PE Portable Executable

PNG Portable Network Graphics

PXE Preboot Execution Environment

RAM Random Access Memory

RGB Red Green Blue

RIP Recovery Is Possible

RKP National Criminal Investigation Department

RoC Rate of Change

ROC Receiver Operating Characteristic

RST Restart

SFFS Sequential Forward Feature Selection

SKL National Laboratory of Forensic Science

SOF Start Of Frame

SOS Start Of Scan

SPARSE Statistical PARSEr

TCP Transmission Control Protocol

104

Appendix B

Hard Disk Allocation Strategies

When an operating system allocates hard disk data units to the file system, several
different strategies can be used. A simple strategy is to start from the beginning
of the hard disk and allocate the first available data unit. This strategy is logically
called first available. The result is often that files are fragmented and that data
units close to the end of the hard disk are more seldomly allocated. The Linux
second and third extended (ext2/ext3) file systems use a first available allocation
strategy. [8, p. 179]

Another allocation strategy similar to the first available strategy is the next
available strategy. When this is used the operating system starts looking for free
data units from the position of the last allocated data unit. In this way the hard
disk surface is more evenly utilised, but the risk of fragmentation is still high.
The possibility to recover deleted files is increased relative to the first available
strategy, since the new allocation point is moved in a round-robin fashion. The
File Allocation Table (FAT) file system typically uses this allocation strategy. [8,
p. 180].

A third allocation strategy is the best fit strategy, where the operating system
searches for a set of consecutive unallocated data units large enough to hold the
new file in its entirety. This strategy cannot handle all situations; if there is not
any large enough available unallocated area the operating system will have to
resort to a first available or next available strategy. If a file grows in size the best
fit allocation strategy might still lead to fragmentation, if an application opens
the original file and updates it. If the application instead makes a copy of the file,
updates it and writes it to a new location on disk the risk of fragmentation is
decreased. The behaviour is application specific, so any file system can become
fragmented. An example of a file system using the best fit allocation strategy is
the New Technologies File System (NTFS) file system. [8, p. 180]

The actual allocation strategy used by an operating system may vary, but
the most probable strategy has been empirically examined by Carrier [8]. The
results can be seen in Table B.1.

The Linux file systems ext2 and ext3 divide the hard disk into a number of

105

APPENDIX B. HARD DISK ALLOCATION STRATEGIES

Table B.1: Data unit allocation strategies for different operating systems and file
systems, as reported by Carrier [8].

Operating System File System Strategy
MS Windows 9x FAT Next available
MS Windows XP FAT Next available
MS Windows XP NTFS Best fit
Linux ext2/3 First and next available

groups containing blocks of hard disk sectors. The strategy is to keep the seek
time to a minimum by allocating metadata and data units of a file to the same
group, if possible. Therefore the file systems will use a first available strategy
when allocating data units to a new file, and a next available strategy when a file
is enlarged. [8, p. 410]

Regardless of which of the three allocation strategies an operating system
uses, the data units will be allocated in a sequential order, although possibly in
a round-robin fashion. If the allocation address of the first data unit of a file
is not known, it is possible to perform a brute force search to locate it. This
will simplify an attempt to reconnect the fragments (data units) of a file found
on a hard disk. By locating every fragment of a certain file type it is possible to
reconnect them into the original files simply by using their relative positions and
a method to calculate the connection validity of each fragment. The final step is
then to test each of them as the starting fragment. Since we know the ordering
of the fragments we only have to separate fragments belonging to different files
to be able to reconnect them.

106

Appendix C

Confusion Matrices

This appendix contains the confusion matrices of the different algorithms used
in the testing. The rows in the tables represent the centroids and the columns
represent the testing files. This should be seen as the centroid representing the
correct categorisation, the actual class, and the testing files representing the pre-
dicted classes.

The short form of the centroid names used in the confusion matrices can be
found in Table C.1. The matrices can be found in Tables C.2–C.16.

To increase the readability the table for the 2-gram algorithm is repeated in
the appendix. It can also be found in Section 2.6.6, together with a short analysis
of the results shown in the table.

Table C.1: The following short names are used for the confusion matrices.

Short name Centroid
exe Windows PE files
cast5 CAST5 encrypted GPG file
aes AES encrypted GPG file
no rst JPEG images without RST markers
rst JPEG images with RST markers
mp3 MP3 audio files without an ID3 tag
zip Files compressed using Zip

107

APPENDIX C. CONFUSION MATRICES

Table C.2: The confusion matrix of the 2-gram algorithm.

exe aes cast5 no rst rst mp3 zip
exe 15332 8 10 12 15 7247 56
aes 100 402 16450 3 0 0 5725

cast5 107 16614 339 0 0 0 5620
no rst 10 0 0 22667 0 0 3

rst 0 0 0 9677 13003 0 0
mp3 60 371 276 3 6 21882 82

zip 113 5699 5650 4 0 0 11214

Table C.3: The confusion matrix of the Byte Frequency Distribution algorithm
having the JPEG rules set extension.

exe aes cast5 no rst rst mp3 zip
no rst 96 4332 4425 2716 8260 1 2850

rst 33 956 1034 1884 18454 18 301

Table C.4: The confusion matrix of the combination of the Byte Frequency Distri-
bution algorithm with the JPEG rule set extension and the Rate of Change (RoC)
algorithm.

exe aes cast5 no rst rst mp3 zip
no rst 145 5155 5253 2100 7123 0 2904

rst 49 1480 1518 1487 17713 1 432

Table C.5: The confusion matrix of the Byte Frequency Distribution algorithm
combined with the Rate of Change algorithm using a Manhattan distance metric.

exe aes cast5 no rst rst mp3 zip
exe 5480 209 181 26 0 16635 149
aes 52 10213 10116 1 0 0 2298

cast5 51 10261 10077 1 0 0 2290
no rst 86 4576 4660 3023 7513 2 2820

rst 26 890 878 1715 18850 14 307
mp3 18 832 858 1 3 20659 309

zip 87 8987 8963 0 1 0 4642

108

Table C.6: The confusion matrix of the Byte Frequency Distribution algorithm
combined with the Rate of Change algorithm.

exe aes cast5 no rst rst mp3 zip
exe 3547 252 251 20 0 18380 230
aes 64 10027 10003 0 0 0 2586

cast5 65 10057 9966 0 0 0 2592
no rst 87 4752 4782 3180 7004 1 2874

rst 31 941 933 1688 18727 4 356
mp3 16 785 804 0 2 20740 333

zip 101 8727 8750 0 0 0 5102

Table C.7: The confusion matrix of the Byte Frequency Distribution algorithm.

exe aes cast5 no rst rst mp3 zip
exe 5717 312 299 38 0 16147 167
aes 35 10211 10325 0 1 0 2108

cast5 36 10204 10321 0 1 0 2118
no rst 96 4332 4425 2716 8260 1 2850

rst 33 956 1034 1884 18454 18 301
mp3 19 1762 1785 0 0 18704 410

zip 76 8781 8749 0 2 0 5072

Table C.8: The confusion matrix of the combination of the Byte Frequency Distri-
bution algorithm having a JPEG rule set and the Rate of Change algorithm using
signed values.

exe aes cast5 no rst rst mp3 zip
no rst 63 4430 4455 3377 7590 1 2764

rst 19 809 817 1673 19078 5 279

Table C.9: The confusion matrix of the Byte Frequency Distribution algorithm
with a JPEG rule set and the Rate of Change algorithm using signed values and a
Manhattan distance metric.

exe aes cast5 no rst rst mp3 zip
exe 4891 214 191 22 0 17206 156
aes 40 10172 10175 1 0 0 2292

cast5 39 10183 10152 1 0 0 2305
no rst 79 4342 4387 3177 7925 0 2770

rst 18 816 851 1730 18999 8 258
mp3 20 976 1026 1 0 20336 321

zip 70 8949 8846 0 1 0 4814

109

APPENDIX C. CONFUSION MATRICES

Table C.10: The confusion matrix of the Byte Frequency Distribution algorithm
combined with the Rate of Change algorithm using signed values.

exe aes cast5 no rst rst mp3 zip
exe 2671 310 274 23 1 19167 234
aes 52 10080 10104 0 0 0 2444

cast5 51 10112 10076 0 0 0 2441
no rst 63 4430 4455 3377 7590 1 2764

rst 19 809 817 1673 19078 5 279
mp3 15 861 914 0 1 20558 331

zip 77 8749 8579 0 0 0 5275

Table C.11: The confusion matrix of the Rate of Change algorithm using a JPEG
rule set and signed values.

exe aes cast5 no rst rst mp3 zip
no rst 120 4609 4513 6355 3694 87 3302

rst 55 1915 1906 3398 13962 33 1411

Table C.12: The confusion matrix of the Rate of Change algorithm with Manhattan
distance metric and signed values.

exe aes cast5 no rst rst mp3 zip
exe 3473 678 635 1338 261 14979 1316
aes 182 7189 7156 2242 1056 147 4708

cast5 182 7323 7180 2148 1011 119 4717
no rst 133 4605 4580 6280 3659 151 3272

rst 68 2164 2175 3724 13016 55 1478
mp3 65 799 771 554 234 19240 1017

zip 179 7055 6999 2461 1083 190 4713

Table C.13: The confusion matrix of the Rate of Change algorithm using signed
values.

exe aes cast5 no rst rst mp3 zip
exe 1002 1054 979 2232 314 15242 1857
aes 200 8411 8270 133 99 66 5501

cast5 198 8427 8274 120 94 66 5501
no rst 120 4609 4513 6355 3694 87 3302

rst 55 1915 1906 3398 13962 33 1411
mp3 67 1071 1024 53 47 19178 1240

zip 205 8089 7958 120 100 153 6055

110

Table C.14: The confusion matrix of the Rate of Change algorithm using a JPEG
rule set.

exe aes cast5 no rst rst mp3 zip
no rst 150 5056 4924 5125 3763 99 3563

rst 84 2727 2716 3370 11777 52 1954

Table C.15: The confusion matrix of the Rate of Change algorithm using a Man-
hattan distance metric.

exe aes cast5 no rst rst mp3 zip
exe 5268 431 421 1651 192 13689 1028
aes 211 7134 6932 2470 1318 97 4518

cast5 209 7119 6952 2430 1358 87 4525
no rst 164 5086 5004 5230 3521 161 3514

rst 91 2869 2838 3486 11327 100 1969
mp3 60 561 608 635 431 19469 916

zip 209 7040 6748 2674 1337 135 4537

Table C.16: The confusion matrix of the Rate of Change algorithm.

exe aes cast5 no rst rst mp3 zip
exe 2213 570 542 1491 107 16534 1223
aes 205 8366 8226 211 245 67 5360

cast5 204 8382 8210 206 241 66 5371
no rst 150 5056 4924 5125 3763 99 3563

rst 84 2727 2716 3370 11777 52 1954
mp3 64 937 935 173 277 18942 1352

zip 229 8055 7911 257 298 137 5793

111

APPENDIX C. CONFUSION MATRICES

112

Avdelning, Institution
Division, Department

Datum
Date

Språk

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Linköping Studies in Science and Technology

Thesis No. 1361

Titel
Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

Better methods and tools are needed in the fight against child pornography. This thesis presents a method
for file type categorisation of unknown data fragments, a method for reassembly of JPEG fragments, and the
requirements put on an artificial JPEG header for viewing reassembled images. To enable empirical evaluation
of the methods a number of tools based on the methods have been implemented.

The file type categorisation method identifies JPEG fragments with a detection rate of 100% and a false pos-
itives rate of 0.1%. The method uses three algorithms, Byte Frequency Distribution (BFD), Rate of Change
(RoC), and 2-grams. The algorithms are designed for different situations, depending on the requirements at
hand.

The reconnection method correctly reconnects 97% of a Restart (RST) marker enabled JPEG image, frag-
mented into 4 KiB large pieces. When dealing with fragments from several images at once, the method is able
to correctly connect 70% of the fragments at the first iteration.

Two parameters in a JPEG header are crucial to the quality of the image; the size of the image and the
sampling factor (actually factors) of the image. The size can be found using brute force and the sampling
factors only take on three different values. Hence it is possible to use an artificial JPEG header to view full of
parts of an image. The only requirement is that the fragments contain RST markers.

The results of the evaluations of the methods show that it is possible to find, reassemble, and view JPEG
image fragments with high certainty.

Institutionen för datavetenskap

Department of Computer
and Information Science

2008-05-20

978-91-7393-915-7

LiU-Tek-Lic–2008:19

0280–7971

2008-05-20

Completing the Picture — Fragments and Back Again

Martin Karresand

×
×

computer security, computer forensics, file carving

Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-

puter Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-

tems, 1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-

Bases, 1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm

for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotatio-

nal Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,

1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-

tat och samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-

rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,

1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-

betssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-

on, 1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap

och metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,

1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska fö-

retag. 1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,

1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-

ring och vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-

dering av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-

ling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling

av partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt

i personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,

1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder

och leverantörer på producentmarknader,1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie

ur ett agentteoretiskt perspektiv, 2000.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter

från ett FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B

e-procurement, 2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,

2001.
FiF-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer: Informationssystemarki-

tektur och aktörssamverkan som förutsättningar för affärsprocesser, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet

som stöd för beslut om anskaffning av JAS 1982, 2002.
FiF-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
FiF-a-51 Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,

2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-

mited liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
FiF-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,

2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for

Irregular Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,

2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.

No 1024 Aleksandra Tešanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.
No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
FiF-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
FiF-a 71 Emma Eliason: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,

2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the

sick leave process: an Activity Theoretical perspective, 2005.
FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.
No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.
No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie

baserad på trafikinformationstjänsten RDS-TMC, 2005.
No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.
FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i trans-

aktionsintensiva verksamheter, 2005.
No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution,

2005.
No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging

Industry, 2005.
No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting

Data, 2005.
No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered

Approach, 2005
No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.
No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.
No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.
No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implemen-

tation Methodology, 2006.
No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.
No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation-

What are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.
No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.

No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.
No 1283 Håkan Hasewinkel: A Blueprint for Using Commercial Games off the Shelf in Defence Training, Education

and Research Simulations, 2006.
FiF-a 91 Hanna Broberg: Verksamhetsanpassade IT-stöd - Designteori och metod, 2006.
No 1286 Robert Kaminski: Towards an XML Document Restructuring Framework, 2006
No 1293 Jiri Trnka: Prerequisites for data sharing in emergency management, 2007.
No 1302 Björn Hägglund: A Framework for Designing Constraint Stores, 2007.
No 1303 Daniel Andreasson: Slack-Time Aware Dynamic Routing Schemes for On-Chip Networks, 2007.
No 1305 Magnus Ingmarsson: Modelling User Tasks and Intentions for Service Discovery in Ubiquitous Computing,

2007.
No 1306 Gustaf Svedjemo: Ontology as Conceptual Schema when Modelling Historical Maps for Database Storage,

2007.
No 1307 Gianpaolo Conte: Navigation Functionalities for an Autonomous UAV Helicopter, 2007.
No 1309 Ola Leifler: User-Centric Critiquing in Command and Control: The DKExpert and ComPlan Approaches,

2007.
No 1312 Henrik Svensson: Embodied simulation as off-line representation, 2007.
No 1313 Zhiyuan He: System-on-Chip Test Scheduling with Defect-Probability and Temperature Considerations,

2007.
No 1317 Jonas Elmqvist: Components, Safety Interfaces and Compositional Analysis, 2007.
No 1320 Håkan Sundblad: Question Classification in Question Answering Systems, 2007.
No 1323 Magnus Lundqvist: Information Demand and Use: Improving Information Flow within Small-scale Business

Contexts, 2007.
No 1329 Martin Magnusson: Deductive Planning and Composite Actions in Temporal Action Logic, 2007.
No 1331 Mikael Asplund: Restoring Consistency after Network Partitions, 2007.
No 1332 Martin Fransson: Towards Individualized Drug Dosage - General Methods and Case Studies, 2007.
No 1333 Karin Camara: A Visual Query Language Served by a Multi-sensor Environment, 2007.
No 1337 David Broman: Safety, Security, and Semantic Aspects of Equation-Based Object-Oriented Languages and

Environments, 2007.
No 1339 Mikhail Chalabine: Invasive Interactive Parallelization, 2007.
No 1351 Susanna Nilsson: A Holistic Approach to Usability Evaluations of Mixed Reality Systems, 2008.
No 1353 Shanai Ardi: A Model and Implementation of a Security Plug-in for the Software Life Cycle, 2008.
No 1356 Erik Kuiper: Mobility and Routing in a Delay-tolerant Network of Unmanned Aerial Vehicles, 2008.
No 1359 Jana Rambusch: Situated Play, 2008.
No 1361 Martin Karresand: Completing the Picture - Fragments and Back Again, 2008.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'improved'

 4

 D:20070221161557
 680.3150
 S-5
 Blank
 467.7165

 Tall
 1
 0
 Full
 460
 279
 None
 Left
 127.5591
 0.0000

 Both
 13
 AllDoc
 92

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 35
 132
 131
 132

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.890 x 9.843 inches / 175.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070320125831
 708.6614
 S5-utfall
 Blank
 496.0630

 Tall
 0
 0
 No
 635
 395
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 132
 131
 132

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 14.17 points
 Bleed area is outside visible: no

 0.0000
 0
 0.0000
 14.1732
 0
 0
 581
 343
 0.0000
 Fixed

 Both
 AllDoc

 PDDoc

 0.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 132
 131
 132

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 5.67, distance 14.17 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 0 down, columns 0 across
 Align: centre

 0.0000
 14.1732
 5.6693
 1
 Corners
 0.2999
 ToFit
 0
 0
 0.7000
 0
 0
 0
 0.0000
 0

 D:20071003103129
 841.8898
 a4
 Blank
 595.2756

 Tall
 589
 352
 0.0000
 C
 0

 PDDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070330093304
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 169
 523

 None
 Right
 0.5669
 0.0000

 Both
 97
 AllDoc
 114

 CurrentAVDoc

 Uniform
 595.2756
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 70
 132
 131
 132

 1

 HistoryList_V1
 qi2base

