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Abstract

We study the local list number of graphs introduced by Lennerstad and Eriksson.
A labelling of a graph on n vertices is a bijection from vertex set to the set
{1, . . . , n}. Given such a labelling c a vertex u is distance consistent if for all
vertices v and w |c(u) − c(v)| = |c(u) − c(w)| + 1 implies d(u,w) ≤ d(u, v). A
graph G is k-distance consistent if there is a labelling with k distance-consistent
vertices. The local list number of a graph G is the largest k such that G is
k-distance consistent. We determine the local list number of cycles, complete
bipartite graphs and some trees as well as prove bounds for some families of
trees. We show that the local list number of even cycles is two, and of odd
cycles is three. We also show that, if k, l ≥ 3, the complete bipartite graph Kk,l

has local list number one, the star graph Sn = K1,n has local list number 3, and
K2,k has local list number 2. Finally, we show that for each n ≥ 3 and each k
such that 3 ≤ k ≤ n there is a tree with local list number k.
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Sammanfattning

Vi studerar det lokala listtalet introducerat av Lennerstad och Eriksson. En
märkning av en graf på n hörn är en bijektion från hörnmängden till mängden
{1, . . . , n}. Givet en sådan märkning c är ett hörn u avståndskonsistent om
för alla hörn v och w |c(u) − c(v)| = |c(u) − c(w)| = 1 implicerar d(u,w) ≤
d(u, v). En graf G är k-avståndskonsistent om det �nns en märkning med k
avståndskonsistenta hörn. Det lokala listtalet av en graf G är det största k
sådan attG är k-avståndskonsistent. Vi bestämmer den lokala listtalet av cykler,
kompletta bipartita grafer och vissa träd och visar som gränser för några familjer
av träd. Vi visar att det lokla listtalet av jämna cykler är två, och av udda cykler
är tre. Vi visar också att, om k, l ≥ 3, den kompletta bipartita grafen Kk,l har
lokalt listtal ett, stjärngrafen Sn = K1,n har lokalt listtal 3, och K2,k har lokalt
listtal 2. Slutligen, visar vi att för varje n ≥ 3 och varje k sådant att 3 ≤ k ≤ n
�nns ett träd med lokalt listtal k.
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URL för elektronisk version:

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-199624

Henricsson, 2023. v

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-199624




Acknowledgements

I would like to thank my supervisor Carl Johan Casselgren for providing me
with his notes on distance-consistent labellings, which were the starting point
for this bachelor thesis, and for helping me throughout this project.

Henricsson, 2023. vii





Nomenclature

Unless otherwise stated all graphs are simple, undirected and connected.
G Graph
V (G) Vertex set of graph G
E(G) Edge set of graph G
G[A] Induced subgraph of G with vertex set A.
dG(v) The degree of v ∈ V (G).
diam(G) Diameter (longest shortest path between any pair of ver-

tices) of graph G
Sn Star graph with n leaves
Sk,l Double star with leaf sets of size k and l.
Kk,l Complete bipartite graph with partite sets of size k and l.
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Chapter 1

Introduction

One way of adding information to a graph is by labelling its vertices. In our
context a vertex labelling c of a graph G = (V (G), E(G)) is a bijection c :
V (G) → {1, 2, . . . , |V (G)|}. Several authors have studied vertex labellings that
encode some information about the graph, see [6].

A vertex labeling c gives rise to a distance c(u, v) = |c(u) − c(v)|. This
distance is called the list distance as the vertex labeling gives a way to list
vertices and can be interpreted as a "distance" between lists of vertices. A
natural question is how closely this label-distance can be made to agree with
the usual distance d(u, v) between vertices u and v in a graph, that is, the length
of a shortest path between u and v. Lennerstad & Eriksson studied labellings
which minimize

∑
u,v∈V (G)(c(u, v)− d(u, v))2 in [8].

Clearly we have d(u, v) = c(u, v) for all vertices u and v in a graph G
if and only if G is a path. We also have d(u, v) = c(u, v) for all vertices u
and v if and only if d(u1, v1) < d(u2, v2) =⇒ c(u1, v1) < c(u2, v2) for all
vertices u1, u2, v1, v2. A slight relaxation of this criterion is that d(u1, v1) <
d(u2, v2) =⇒ c(u1, v1) ≤ c(u2, v2) for all u1, u2, v1, v2 ∈ V (G). We call this
criterion the list criterion and graphs satisfying it list graphs. Lennerstad
& Eriksson studied list graphs in [8] and found examples of list graphs for all

|V (G)| and |E(G)| such that |V (G)| − 1 ≤ |E(G)| ≤
(
|E(G)|

2

)
. They also

established some properties of list graphs.
A further relaxation of the list criterion is the local list criterion which is

that |d(u,w) ≤ d(u, v)| for all vertices u, v, w ∈ V (G) satisfying |c(u)− c(v)| =
|c(u) − c(w)| + 1. This criterion is the main focus of this bachelors thesis.
Speci�cally we aim to answer the question: for a graph G let c be a labelling that
maximizes the number of vertices u satisfying the local list criterion: d(u,w) ≤
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2 Chapter 1. Introduction

d(u, v)∀v, w ∈ V (G) satisfying |c(u) − c(v)| = |c(u) − c(w)| + 1, what is the
number of such vertices? We call this number the local list number.

We �nd that the local list number of even cycles is 2, and of odd cycles is
3. For k, l ≥ 3 we show that the complete bipartite graph Kk,l has local list
number 1. Furthermore we show that K2,k has local list number 2 and K1,n

(which is also the star graph Sn) has local list number 3. We show that all trees
are 2-distance-consistent, and that for each n ≥ 3 and k such that 3 ≤ k ≤ n
there is a tree with local list number k. We show that the local list number of
the double star Sk,l is 3 if and only if max{k, l} ≥ 3. We also �nd the local list
number of all trees on 9 or fewer vertices by computer calculation. We �nd one
such tree with local list number 2.



Chapter 2

Prerequisites

2.1 Some de�nitions

The following are some basic de�nitions of graph theory, as well as some de�-
nitions of some less commonly used concepts that are pertinent to this thesis.
For more information on basic graph theory see for example [5].

A graph G is a pair (V (G), E(G)) of sets where the elements of E(G) are
2-element subsets of V (G). The set V (G) is called the vertex set and its
elements vertices. E(G) is called the edge set and its elements edges. We
will usually write the edge e = {x, y} ∈ E(G) as xy. Two vertices x and y are
said to be adjacent if xy ∈ E(G).

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
If H contains all edges of G with both endpoints in V (H) then H is an induced
subgraph of G.

If H is a graph, x ∈ V (G), y ∈ V (G), and e = xy then G = H + e is the
graph (V (H), E(H) ∪ e).

A path is an ordered list of vertices where each vertex in the list is adjacent
to the vertex preceding it. The path Pn is a graph on the form V (Pn) =
{x1, . . . xn}, E(Pn) = {x1x2, x2x3 . . . xn−1xn}. If u and v are vertices in on a
path P uPv is the subpath of P with endpoints u and v.

A graph G is connected if for any pair of vertices x and y there is a path
in G with endpoints x and y.

In this thesis we will assume all graphs to be connected.
The distance between two vertices u and v is the length of a shortest path

between them and is denoted by d(u, v). Two vertices u and v are called neigh-
bours if d(u, v) = 1. The degree dG(v) of a vertex v is the number of neigh-
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4 Chapter 2. Prerequisites

bours of v.

Let n ≥ 3 and let P = v1 . . . vn be a path on n vertices. The graph Cn :=
P +v1vn is called a cycle. A graph which does not have a cycle as a subgraph is
called acyclic, or a forest. A connected acyclic graph is called a tree. Vertices
of trees of degree one are called leaves while vertices of degree greater than one
are called internal vertices.

A graph G is complete if all possible edges are present, that is if vu ∈ E(G)
for all pairs of distinct vertices (u, v) ∈ V (G)2. Kn denotes a complete graph
on n vertices.

A graph G is called bipartite if there are two disjoint subsets X and Y of
V (G) such that V (G) = X ∪ Y and each edge has one end in X and one end in
Y . X and Y are called partite sets. A bipartite graph G with partite sets X
and Y is called complete if for all x ∈ X and y ∈ Y xy ∈ E(G). Kn,m denotes
a complete bipartite graph with partite sets of size n and m. A Star graph Sn

is a complete bipartite graph with one vertex in one partite set and n vertices
in the other partite set.

A vertex labeling of a graph G is a bijective function
c : V (G) → {1, 2, . . . , |V (G)|}. We call the function c(u, v) = |c(u) − c(v)|
the label distance given by the labeling c.

We move on to some more uncommon de�nitions that have importance to
this thesis. These concepts were introduced in [8], [7], and [4].

A graphG is a list graph if there is a vertex labeling c such that ∀u1, u2, v1, v2 ∈
V (G) d(u1, v1) < d(u2, v2) implies c(u1, v2) ≤ c(u2, v2). Such a labeling is called
list-distance consistent or distance-consistent. This condition is called the
weak list condition.

The following de�nition was �rst introduced by Lennerstad in [7]. A graph
G is a local list graph if there is a vertex labeling c such that d(u,w) ≤ d(u, v)
holds for all u, v, w ∈ V (G) satisfying c(u, v) = c(u,w) + 1. Such a labeling is
called a local list labeling.

The following de�nitions are due to [4].

A vertex labeling c is k-distance consistent if there are k vertices u which
satisfy d(u,w) ≤ d(u, v) for all vertices v, w satisfying c(u, v) = c(u,w) + 1.
Given a labeling a vertex u is said to be distance-consistent if it satis�es
this condition. A graph G is said to be k-distance-consistent if there is a
k-distance-consistent labeling of G.

The local list number of G, denoted by dc(G), is the largest k such that
there is a k-distance consistent vertex labeling of G.
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2.2 Background

Lennerstad and Eriksson introduced the concept of distance-consistence in [8].
Their approach of studying labellings where the list distance is close to the usual
distance was novel. They hoped that this approach might help in describing
structure for very large graphs and that it might �nd applications in graph
theory and its applications.

A prior approach which is somewhat similar is to study adjacency labellings.
These are "labellings" where it is possible to tell whether two vertices are adja-
cent only by their labels. Unlike our labellings the labels used in these schemes
are binary codes and thus they are not labellings by our de�nition. These were
studied in [9] where an algorithm for creating such a labelling using labels of
|V (G)|/2 + O(1) bits was shown. Prior to [9] results regarding the existence
and length of particular kinds of such "labellings" were found in 1966 by M.A.
Breuer [1]. A graph is said to be T -codable if there exists a particular kind of
adjacency labelling where two vertices are adjacent i� the Hamming distance
of their labels is less than or equal to T . In [2] Breuer shows the unexpected
result that if a graph G is T ′-codable for an even T ′ then G is T ′-codable for
all T ≥ T ′; however if T ′ is odd then G is not necessarily (T ′ + 1)-codable.

Another approach is distance-labellings (also known as proximity-preserving
labellings). Such a "labeling" allows one to compute the distance between any
two vertices exactly. In [3] minimum lengths for such labellings of various classes
of graphs are presented. These are (in general) not labellings by our de�nition
as labels other than 1, 2, . . . , V |(G)| are typically needed to achieve this.

In [8] Lennerstad and Eriksson studied labellings c that minimize∑
u,v∈V (G)(c(u, v) − d(u, v))2, as well as the weak list condition. They called

such labellings distance-consistent. To avoid confusion we shall instead call
such labellings distance-minimizing. They found an algorithm for �nding
such labellings.

Lennerstad and Eriksson proved the existence of list graphs with n vertices
and k edges given that n− 1 ≤ k ≤ n(n− 1)/2[8]. In addition they proved the
following proprieties of list graphs (theorem 3.2 in [8]).

Theorem 2.2.1. 1. G is not a list graph if it contains a cycle graph Cn for
any n ≥ 4 as an induced subgraph.

2. G is not a list graph if it contains a star graph Sn for any n ≥ 3 as an
induced subgraph.

3. G is not a list graph if it contains three vertices of degree one.
4. If G is a list graph and has two vertices u and v of degree one, then

c(u) = 1 and c(v) = n, or c(u) = n and c(v) = 1.
5. If G is a list graph, it has a Hamiltonian path. [8]
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Note that condition 4. implies that G has at most two vertices of degree
one: a property shared with path graphs. Condition 5. was proved by showing
that the list labeling gives a hamlitonian path.

In [7] Lennerstad further proved that list labellings are distance-minimizing.
Lennerstad continued the research into distance-minimizing labellings in [7]

using qualitative and quantitative characterizations.
In [7] local list graphs are �rst de�ned and some properties of local list graphs

are proved. Casselgren characterized local list graphs in [4], and provided a proof
sketch. Here we shall �esh out his proof, but �rst we prove a useful proposition:

Proposition 2.2.2. Let c be a vertex labeling of a graph G. If u ∈ V (G) is
distance-consistent then u must have a neighbour labeled c(u)− 1 or c(u) + 1.

Proof. Assume u ∈ V (G) is distance-consistent but has no neighbour labeled
c(u) + 1 or c(u) − 1. Let v be a neighbour of u and let w1 = c−1(c(u) − 1)
and w2 = c−1(c(u) + 1), if they exist (at least one of w1 and w2 must exist
if |V (G)| > 1). We either have c(u,w1) < c(u, v) or c(u,w2) < c(u, v), but
d(u,w1) > d(u, v) = 1 and d(u,w2) > d(u, v) = 1, contradicting that u is
distance-consistent under c.

Theorem 2.2.3. A graph G is a local list graph i� it has a hamiltonian path
P where if two vertices u and v are adjacent then the subgraph induced by the
vertices on uPv is a clique. [4]

Proof. Based on a proof sketch in [4]. Let c be a local list labeling of G.
First we show that for any i ∈ {1, . . . , |V (G)| − 1} ui := c−1(i) is adjacent to
ui+1 := c−1(i + 1). To �nd a contradiction assume that ui and ui+1 are not
adjacent. Since G is connected there is a path Pi from ui to ui+1. Let wi

be the vertex after ui on Pi. c(wi) ̸≥ i + 2 because d(ui, wi) < d(ui, ui+1).
But we also have c(wi) ̸≤ i − 1 because c(ui+1, wi) ≥ 2 ≥ c(ui+1, ui) = 1 if
c(wi) ≤ i − 1, but d(ui+1, wi) < d(ui, ui+1). Thus w cannot have any label,
which is a contradiction.

Let P = c−1(1)c−1(2) . . . c−1(|V (G)|). Note that P is hamiltonian. Let u
and v be adjacent. The vertices on uPv are labeled c(u), c(u)+1, . . . c(v). Take
w ∈ V (uPv). Since u is adjacent to v and c(u,w) < c(u, v) w must also be
adjacent to u. Similarly a vertex u′ adjacent to u on uPv must be adjacent to
all vertices in u′Pv. The same applies to a vertex adjacent to u′ on u′Pv, and
so on. Thus all possible edges in G[uPv] are present, and therefore G[uPv] is a
clique.



Chapter 3

The Local List Number

3.1 Some observations

Unlike the list criterion which is global and deals with vertex quadruples the
local list criterion deals with vertex triples deals with vertex triples.

The following proposition gives an equivalent de�nition of distance-consistency
of vertices.

Proposition 3.1.1. Let c be a labelling of a graph G and take u ∈ V (G).
Then u is distance-consistent i� c(u,w) < c(u, v) =⇒ d(u,w) ≤ d(u, v) for all
vertices v and w.

Proof. Let u, v and w be vertices and let u be distance-consistent and
c(u,w) < c(u, v). If c(u, v) = c(u,w)+1 we must have d(u,w) ≤ d(u, v) because
u is distance-consistent. Otherwise, if c(u, v) − c(u,w) := n > 1, create a list
of vertices w1, w2, . . . wn such that c(u,wi) = i for all i ≤ n. For all such i we
must have d(u,wi) ≤ d(u,wi+1), as otherwise u,wi and wi+1 would contradict
the local list criterion. Thus d(u,w) ≤ d(u, v).

To show su�ciency assume u ∈ V (G) is such that c(u,w) < c(u, v) =⇒
d(u,w) ≤ d(u, v) for all vertices v and w. u is distance-consistent as c(u, v) =
c(u,w) + 1 =⇒ d(u,w) < d(u, v).

The perspective on distance-consistency of vertices provided by this propo-
sition will be of great use.

The following proposition was proved by Casselgren in [4].

Proposition 3.1.2. All graphs are 1-distance-consistent. Moreover, for any
vertex u there is a labelling such that u is distance-consistent.

Henricsson, 2023. 7



8 Chapter 3. The Local List Number

Proof. Pick a vertex u and label it 1. Let v1, . . . v|V (G)| be such that d(u, vi) ≤
d(u, vj) if i ≤ j and let c(vi) = i for all i. u is distance-consistent with respect
to c.

Lemma 3.1.3. Let u be a vertex which is adjacent to all other vertices in V (G).
Given any labelling c of G u is distance-consistent. Thus a non-complete graph
with k such vertices is (k + 1)-distance-consistent, as there is vertex v which
is not adjacent to all other vertices and a labeling c such that v is distance-
consistent with respect to c.

Proof. Since d(u,w) = 1 ≤ d(u, v) for any vertex v, u must be distance-
consistent.

When checking if a vertex u is distance-consistent, that is if d(u,w) ≤ d(u, v)
for all vertices v and w satisfying c(u, v) = c(u,w) + 1, it is not necessary to
check the case v = u since there is no w satisfying 0 = c(u, v) = c(u,w) + 1.
Neither is it necessary to check the case w = u since 0 = d(u,w) ≤ d(u, v) for
all v.

Proposition 3.1.4. If u is distance-consistent then one vertex at the maximum
distance from u must be at maximum list distance from u, that is one vertex at
maximum distances from u must be labelled 1 or |V (G)|.

Proof. Let u be distance-consistent and let v be the vertex furthest from
u. v must be labelled 1 or |V (G)| as otherwise either c(u, v) < c(u, c−1(1))
or c(u, v) < c(u, c−1(|V (G)|)) despite d(u, v) > d(u, c−1(1)) and d(u, v) >
d(u, c−1(|V (G)|)), which would be a contradiction to proposition 3.1.1.

3.2 Cycles

The case of cycles is simple in that dc(Cn) only depends on the parity of n.

Theorem 3.2.1. dc(C2n) = 2

Proof. In an even cycle there is only one vertex at maximum distance from
a given vertex w. Therefore, by Proposition 3.1.4 and the pigeonhole principle,
there can be at most two distance-consistent vertices in any labelling of C2n.

Let c be a labelling where the vertex labelled 1 is adjacent to vertex labelled
2, 2 is adjacent to 3 and so on (see �gure 3.1a). Take v ∈ V (G). For both u1 =
c−1(n) and u2 = c−1(n+ 1) we have d(u1, v) = c(u1, v) and d(u1, v) = c(u2, v),
therefore both u1 and u2 are distance-consistent.

Theorem 3.2.2. dc(C2n+1) = 3
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1

2

...

n

n+ 1

n+ 2

...

2n

(a) dc(C2n) = 2. The vertices labelled n
and n+ 1 are distance-consistent.

1

2

...

n

n+ 1

n+ 2

...

2n+ 1

(b) dc(C2n+1) = 3. The vertices labelled n,
n+ 1 and n+ 2 are distance-consistent.

Proof. Let c be a labelling where the vertex labelled 1 is adjacent to the
vertex labelled 2, the vertex labelled 2 is adjacent to the verex labelled 3 and so
on (see �gure 3.1b). u := c−1(n+1) satis�es d(u, v) = c(u, v) for all vertices u, v,
and therefore u is distance-consistent. Furthermore the vertices at distance n+1
from the vertex labelled n are labelled 2n and 2n+ 1, and vertices at distance
k < n + 1 from c−1(n) are labelled n − k and n + k respectively. Thus c−1(n)
is distance-consistent. Similarly the vertices at distance n + 1 from the vertex
labelled n + 2 are labelled 1 and 2, and vertices at distance k < n + 1 from
c−1(n + 2) are labelled (n + 2 − k) and n + 2 + k. Thus c−1(n + 2) is also
distance-consistent, and dc(C2n+1) ≥ 3.

Assume there is a 4-distance-consistent labelling c of C2n+1. By Proposition
3.1.4 the two vertices which are at distance n from c−1(1) must be distance-
consistent and the two vertices at distance n from c−1(2n+1) must be distance-
consistent. Furthermore c−1(1) and c−1(2n + 1) are not adjacent. Let u1 and
u2 be the vertices at distance n from c−1(1). The vertex at distance n from u1

not labelled 1 must be labelled 2 since it cannot be labelled 2n+1. But so must
the vertex at distance n from u2 not labelled 1. So both neighbours of c−1(1)
must be labelled 2 which is impossible, so dc(C2n+1) ≤ 3.

3.3 Trees

For trees we shall establish bounds for the local list number and examine some
interesting types of trees.
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Proposition 3.3.1. The only trees which are (local) list graphs are paths and
conversely all paths are (local) list graphs. If T is a tree then dc(T ) = |V (T )| if
T is a path, otherwise dc(T ) ≤ |V (T )| − 1.

Proof. This follows from the characterization of local list graphs in theorem
2.2.3.

An example of a graph tree with dc(T ) = |V (T )| − 1 is S3: the star graph
with 3 leaves.

There is a simple lower bound for the local list number of trees.

Proposition 3.3.2. All non-trivial trees are 2-distance-consistent.

Proof. Choose a leaf and label it 1 and its neighbor 2. Then go through the
vertices at distance 2, then 3 and so on and give each vertex the lowest available
label. The resulting labelling is 2-distance-consistent.

A natural question then is if there is a tree which is not 3-distance-consistent.
First we show some useful results.

Proposition 3.3.3. Let T be a tree and let c be a labelling of T . Assume
u ∈ V (T ) is a distance-consistent internal vertex. If c(u) ̸∈ {1, |V (T )|} then
two neighbours of u must be labelled c(u)− 1 and c(u) + 1.

Proof. Since u is an internal vertex it has at least two neighbours. If u has
a neighbour v which has c(v) ̸∈ {c(u)− 1, c(u) + 1} then either d(u, c−1(c(u) +
1)) > 1 = d(u, v) or d(u, c−1(c(u)− 1)) > 1 = d(u, v) despite c(u, c−1(u+ 1)) =
1 = c(u, c−1(u)−1) < c(u, v). Thus u is not distance-consistent, a contradiction.

Proposition 3.3.4. Let c be a vertex labelling of a graph G. Let c′ be the
labelling de�ned by c′(v) = |V (G)| + 1 − c(v) for all vertices v ∈ V (G). Then
u ∈ V (G) is distance-consistent with respect to c′ if and only if u is distance-
consistent with respect to c.

Proof. For all vertices v1, v2 we have c(v1, v2) = c′(v1, v2). Therefore u, v,
and w satisfy c(u, v) = c(u,w) + 1 if and only if c′(u, v) = c(u,w) + 1, thus u is
distance-consistent with respect to c if and only if u is distance-consistent with
respect to c′.

Now we show that there is a tree which is not 3-distance-consistent.

Theorem 3.3.5. Start with the star graph S4. For each leaf v in S4 add another
vertex v′ and an edge vv′. The resulting graph T (see �gure 3.2 ) is 2-distance-
consistent but not 3-distance-consistent.
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12 3

4

5

6

7

8

9

Figure 3.2: Tree with dc = 2. The labelling is 2-distance-consistent. Vertices 1
and 2 are distance-consistent.

Proof. Let m be the vertex of degree 4 and let c be a labelling of T .
If c−1(1) is distance-consistent then c(m) = 1 + d(c−1(1),m) ≤ 3 since m

is the only vertex at distance d(c−1(1),m) from c−1(1). Similarly if c−1(9) is
distance-consistent, then c(m) = 9− d(c−1(9),m) ≥ 7. Thus c−1(1) and c−1(9)
are not both distance-consistent.

By Proposition 3.3.7, if a vertex u0 ̸∈ c−1({1, 9,m}) is distance-consistent
then c(m) ∈ {c(u0)− 1, c(u0) + 1} as u0 is either a leaf, in which case the
neighbour of u0 must be labelled c(u0)± 1 and m must be labelled c(u0)∓ 1 or
u0 is a neighbour of m. Therefore if a vertex u ∈ V (G) is distance-consistent
c(u) ̸∈ {1, 9,m} then c(u) ∈ {c(m)− 1, c(m) + 1}.

To �nd a contradiction assume T is 3-distance-consistent. Then there are
three distance-consistent vertices u1, u

′
1, and u′′

1 . Without loss of generality
assume u1 ̸= m and c(u1) ̸∈ {1, 9} (at most one of the vertices labelled 1 and 9
are distance-consistent).

First we show that if u1 := c−1(1) or u9 := c−1(9) are distance-consistent
then T is not 3-distance-consistent. Assume u1 is distance-consistent. Suppose
u1 is internal. One neighbour of u1 must be labelled 2, call it u2. u1u2 is a
cut-edge separating T in two components T1 and T2. Without loss of generality
assume u1 ∈ T1 and u2 ∈ T2. No vertex v ∈ T1 is distance-consistent because
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d(v, u2) > d(v, u1) but c(v, u2) < c(v, u1). u3 := c−1(3) ∈ T1 because u3 must
be a neighbour of u1 and u3 ̸= u2. No vertex v′ ∈ T2\{u2} is distance-consistent
because c(v′) ≥ 4 and thus c(v′, u3) < c(v′, u2) but d(v′, u2) < d(v′, u2).

Suppose u1 is instead a leaf. Then the neighbour of u1 has label 2, m has
label c(m) = 3, the vertices at distance 3 from u1 has labels 4, 5, 6 and the other
vertices have labels 7, 8, and 9. Any distance-consistent vertex u ̸= u1 must be
labelled 2, 3, or 4. To show that they are not distance-consistent we must �nd
v, w ∈ V (G) such that c(u, v) = c(u,w) + 1 and d(u, v) > d(u,w). For c(u) = 3
we have c(v) = 1 and c(w) = 5, and for c(u) = 4 we have c(v) = 1 and c(w) = 6.
Therefore c is not 3-distance-consistent - a contradiction. We conclude that u1

is not distance-consistent.
Let c1 be a labelling where u1 is distance-consistent. For any such labelling,

we can de�ne a labelling c9 by setting c9(v) = |V (G)|+1− c1(v) for all vertices
v. By Proposition 3.3.4 if u9 is distance-consistent then c9 is not 3-distance-
consistent since there is a one-to-one correspondence between such labellings,
it follows that no labelling is 3-distance-consistent and has a vertex labelled 9
that is distance-consistent.

The only remaining possibility is that the distance-consistent vertices u1, u
′
1,

and u′
1 are not labelled 1 or 9. By the argument in the beginning of the proof,

they must be labelled c(m)−1, c(m), and c(m)+1. Let v1 be the leaf adjacent to
u1. Since u1 and m are distance-consistent we have c(u1, v1) = 1, c(m,u1) = 1,
therefore c(m, v1) ≤ 2. This is a contradiction as c(m, v1) ≥ 3 since m is
distance-consistent and has degree 4.

In appendix A we calculate dc(T ) for all trees T on 9 or fewer vertices. The
tree in �g 3.2 is the only (and therefore smallest) such tree with local list number
2.

Lemma 3.3.6. Let G be a graph and e = xy ∈ E(G) be a cut-edge. If both x
and y are distance-consistent then c(x, y) = 1.

Proof. Let X and Y be the vertex sets separated by e, with x ∈ X and
y ∈ Y . If either endpoint has degree 1 we have c(x, y) = 1. If both endpoints
have degree greater than 1 there exist vertices x′ ∈ X \ {x} and y′ ∈ Y \ {y}.
By contraposition of proposition 3.1.1 :

d(x, y′) > d(x, y) =⇒ c(x, y′) ≥ c(x, y)

d(y, x′) > d(y, x) =⇒ c(y, x′) ≥ c(y, x).

Thus, for all vertices v ̸∈ {x, y} we have c(x, y) ≤ c(x, v) and therefore c(x, y) =
1.

Proposition 3.3.7. Let T be a tree and let u ∈ V (T ) be distance-consistent. u
has at most 2 distance-consistent neighbours.
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Lemma 3.3.8. Let G be a graph. A vertex v ∈ G is adjacent to at most two
distance-consistent leaves. Furthermore the distance-consistent leaves adjacent
to v must be labelled c(v)− 1 and/or c(v) + 1.

Proof. Let l be a distance-consistent leaf. The neighbour v of l must be
labelled l − 1 or l + 1, otherwise we would have d(l, c−1(l + 1)) > 1 = d(l, v) or
d(l, c−1(l − 1)) > 1 = d(l, v) despite 1 = |c(l) − (l ± 1)| < c(l, v) which would
contradict 3.1.1. Therefore any distance-consistent leaf adjacent to v must be
labelled c(v)− 1 or c(v) + 1.

As the list number is in a sense a measure of how close graph is to a local
list graph we might expect that trees which are in some sense close to a path
to have high list numbers and those far from a path (high branching factor),
such as stars, to have low list numbers. In the case of stars we �nd that this is
indeed the case.

Theorem 3.3.9. Let Sk be the star graph with k + 1 vertices. dc(Sk) = 3 for
all k ≥ 3. Moreover if the internal vertex is labelled 1 or k + 1 the labelling is
2-consistent but not 3-distance-consistent. Otherwise the labelling is 3-distance-
consistent.

Proof. Let c be a labelling of G = Sk, let v0 be the internal vertex, and let
l = c(v0).

By lemma 3.1.3 v0 is distance-consistent with respect to any labelling. By
lemma 3.3.8, if a vertex u ∈ V (G) is distance-consistent then c(u) ∈ {l − 1, l, l + 1}.
Thus dc(Sk) ≤ 3.

If there is a vertex ul−1 with c(ul−1) = l − 1 then it is distance-consistent
(by contraposition of proposition 3.1.1) since for all vertices v′ ̸∈ {ul−1, v0}
d(ul−1, v

′) = 2 and c(ul+1, v
′) ≥ c(u, v0) = 1. Similarly if there is a vertex

ul+1 with c(ul+1) = l+1 then it is also distance-consistent since for all vertices
v′′ ̸∈ {ul+1, v0} d(ul+1, v

′′) = 2 and c(ul+1, v
′′) ≥ c(u, v0) = 1. If l ̸∈ {1, k + 1}

both ul−1 and ul+1 exist and c is 3-distance-consistent. Otherwise precisely one
of ul−1 and ul+1 exist and c is 2-distance-consistent.

The double star Sk,l with k and l leaves is the union of two stars Sk and
Sl plus an edge between the middle vertices. Take for example S2,2 (see �gure
3.3a) and S2,3 (see �gure 3.3b). Computer calculations show that dc(S2,2) = 4
and dc(S3,4) = 3 (see Appendix A, �gure A.1i, and �gure A.1ce) We shall see
that S2,2 is an exception and that the list number of all but a few double stars
is 3, just like star graphs. First we show a lower bound for dc(Sk,l).

Lemma 3.3.10. dc(Sk,l) ≥ 3.

Proof. S1,1 is isomorphic to P4, so dc(S1,1) = 4. Assume min(k, l) ≥ 2.
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(a) dc(S2,2) = 4. The vertices labelled
2, 3, 4, and 5 are distance-consistent.
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(b) dc(S3,4) = 3. The vertices labelled 1, 2,
and 3 are distance-consistent.

At least one of the middle vertices has at least two neighbours. Call such
a vertex u2, label it 2 and label the adjacent leaves 1 and 3 through dG(u2).
Label the other middle vertex dG(u2) + 1. Finally label the remaining vertices
arbitrarily and denote the obtained labelling by c.

u2 is distance-consistent as its neighbours are labelled 1 and 3 through
dG(u2)+1 and the vertices at distance 2 from u2 are labelled dG(u2+1) through
|V (G)|.

c−1(1) is trivially distance-consistent (c follows the labelling scheme used to
prove Proposition 3.1.2).

The vertex u3 := c−1(3) is also distance-consistent as its neighbour is labelled
2, the vertices at distance 2 from u3 are labelled 1 and 4 through dG(u2)+1, and
vertices at distance 3 from u3 are labelled dG(u2)+2 through |V (G)|. Therefore,
Sk,l is 3-distance-consistent.

Lemma 3.3.11. Let c be a labelling of G and let v ∈ V (G). If two leaves u1

and u2 adjacent to v are distance-consistent, then no vertex distinct from u1, u2

and v is distance-consistent.

Proof. To �nd a contradiction assume there is a distance-consistent vertex
u′ ̸∈ {u1, u2, v}. By lemma 3.3.8 u1 and u2 must be labelled c(v)+1 and c(v)−
1. But this gives a contradiction since either c(u′, v) < c(u′, u1) or c(u′, v) <
c(u′, u2), but d(u′, v) < d(u′, u1) = d(u′, u2) = d(u′, v) + 1.

Theorem 3.3.12. dc(Sk,l) = 3 if and only if max{k, l} ≥ 3.

Proof. Let G ≃ Sk,l, with k, l ≥ 3. We already know that dc(G) ≥ 3.
To �nd a contradiction assume there is a 4-distance-consistent labelling c. By
lemma 3.3.11 only two leaves are distance-consistent as there are only two in-
ternal vertices. Thus both internal vertices are distance-consistent and each of
the middle vertices is adjacent to precisely one distance-consistent leaf, other-
wise one internal vertex would have three distance-consistent neighbours con-
tradicting Proposition 3.3.7. By lemma 3.3.6 there must be an n such that the
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distance-consistent vertices are labelled n, n + 1, n + 2, and n + 3. For each
k ∈ {n, . . . n+ 3} let uk := c−1(k). We have P = unun+1un+2un+3 ⊆ G.

Pick un to be the root of the tree. Since un+3 is at depth 3, the vertices at
depth 2 must have labels m satisfying |n−m| ≤ 3, otherwise we would have a
contradiction to our assumption. So since k, l ≥ 3, un+1 must have neighbours
labelled n− 1 and n− 2, but then un+1 cannot be distance-consistent because
|c(un+1) − (n − 2)| = 3 = c(un+1, un+3) + 1 while d(un+1, un+3) = 2 > 1 =
d(un+1, c

−1(n− 2)).
Computer calculations show that dc(S1,2) = dc(S2,2) = 4, see appendix A.

Theorem 3.3.13. For each integer n ≥ 3 and 3 ≤ k ≤ n there is a tree on n
vertices which has local list number k.

Proof. Some di�erent constructions are needed depending on how large k is
compared to n. For k = 3 Sn is an example of a tree on n vertices with local
list number k. Assume k ≥ 4.

Suppose n = k + 1. A k-distance-consistent tree is constructed as fol-
lows: Start with the path Pk = v1v2 . . . vk and add a vertex vk+1 and the edge
vk−1vk+1. The resulting graph has a k-distance-consistent labelling c(vj) = j,
but is not (k + 1)-distance-consistent as it is not a path.

Suppose k + 2 ≤ n ≤ 2k − 2. A k-distance consistent graph Tn,k can
be constructed as follows. Start with the paths P = v1v2 . . . vk and P ′ =
vk+1vk+2 . . . vn and add the edge vk−1vk+1. See Figure 3.4c. The labelling
c(vi) := i is k-distance-consistent with v1 through vk being the only distance-
consistent vertices as

d(vi, vj) =



c(vi, vj) if i = k or j = k

c(vi, vj) if i ≤ k − 1 and j ≤ k − 1

c(vi, vj) if i ≥ k + 1 and j ≥ k + 1

c(vi, vj)− 1 if i ≤ k − 1 and j ≥ k + 1

c(vi, vj)− 1 if j ≤ k − 1 and i ≥ k + 1

.

Assume there is a (k+1)-distance-consistent labelling c′ of Tn,k. Then there
are distance-consistent vertices va ∈ P − vk and vb ∈ P ′ since these paths are
shorter than or equal to k. As vn is the only vertex at maximum distance from
va it must be labelled 1 or n (see Proposition 3.1.4). Using proposition 3.3.4 we
assume c′(vn) = n without loss of generality. Similarly, v1 is the only vertex at
maximum distance from vb, so it must be labelled 1.

At least one of P \ {vk} and P ′ ∪ vk−1 must have at least k/2 distance-
consistent vertices. Suppose P \ {vk} has k/2 distance-consistent vertices.
Then there exists a distance-consistent vertex vc ∈ P \ {vk} with d(vc, v1) ≥
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1 2 . . . n

(a) n = k

1 2 . . . k − 1

k

k + 1

(b) n = k + 1

1 2 . . . k − 1

k

k + 2 . . . n

(c) k + 2 ≤ n ≤ 2k − 2

1 2 . . . k − 1

k

k + 2 . . . 2k − 3

2k − 2
2k − 1

...

n

(d) 2k − 2 < n < 3k

Figure 3.4: Trees on n vertices with dc(G) = k. The labellings depicted are
k-distance-consistent for the indicated values of n.
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d(vc, vk−1). Take vj ∈ P \ {vk}. Since P ′ is a path, vc is distance-consistent
and d(vc, vj) ≤ d(vc, v1), c′(vj , vc) = d(vj , vc) = |j − c|.By contraposition of
Proposition 3.1.1 if d(vb, vj) < d(vb, vc) then c′(vb, vj) ≤ c′(vb, vc). Otherwise,
if d(vb, vj) > d(vb, vc) then c′(vb, vj) ≥ c′(vb, vc) therefore c′(vj) = j.

There are two possibilities for c′(vk). Either c′(vk) = k and c′ = c, which
is a contradiction as c is not (k + 1)-distance-consistent, or c′(vk) = k + 1.
The second case also leads to a contradiction as vb is distance-consistent and
d(vb, vk) > d(vb, vk−1) but c′(vb, vk) = c′(b) − (k + 2) ̸≥ c′(b) − (k − 1) =
c′(vb, vk−1).

If instead P ′ ∪ {vk−1} has k/2 distance consistent vertices we reach a con-
tradiction using a completely analogous method.

Suppose instead n > 2k − 2. Let Tn,k be the tree constructed as follows.
Begin with T2k−2,k, add n−(2k−2) vertices v2k−1, v2k, . . . vn and for all 2k−1 ≤
j ≤ n add the edge v2k−3vj . Let c(vi) := i. See Figure 3.4d. As in the previous
case the vertices labelled 1 through k are distance-consistent.

Assume there exists a (k + 1)-distance-consistent labelling c′ of Tn,k. By
lemma 3.3.11 at most one of the leaves {v2k−2, . . . , vn} is distance-consistent as
k+1 > 3. If one of these leaves is distance-consistent we can assume it is in P ′

without loss of generality.

Now we can use the same strategy as in the previous case. There exists
distance-consistent vertices va ∈ P − vk and vb ∈ P ′ since |V (P − vk)| =
|V (P ′)| = k− 1. As v1 is the only vertex at maximum distance from vb it must
be labelled 1 or n (see Proposition 3.1.4). Using proposition 3.3.4 we assume
c′(v1) = 1 without loss of generality. At least one of P \ {vk} and P ′ ∪ vk−1

must have at least k/2 distance-consistent vertices.

First, suppose P \ {vk} has k/2 distance-consistent vertices. Then there
exists a distance-consistent vertex vc ∈ P \ {vk} with d(vc, v1) ≥ d(vc, vk−1).
Take vj ∈ P \ {vk}. Since P ′ is a path, vc is distance-consistent and d(vc, vj) ≤
d(vc, v1). c′(vj , vc) = d(vj , vc) = |j− c|.By contraposition of Proposition 3.1.1 if
d(vb, vj) < d(vb, vc) then c′(vb, vj) ≤ c′(vb, vc). Otherwise, if d(vb, vj) > d(vb, vc)
then c′(vb, vj) ≥ c′(vb, vc). Therefore c′(vj) = j.

As in the previous case there are two possibilities for c′(vk). Either c′(vk) = k
and c′ = c, or c′(vk) = k + 1. Both lead to contradictions in the same was as
when n ≤ 2k − 2.

If instead P ′∪{vk−1} has k/2 distance consistent vertices we reach a contra-
diction using a similar method. We �nd that there exists a distance-consistent
vertex v′c with d(v′c, vn) ≥ d(v′c, vk−1) and conclude that c′(vj) = j for all
j ≥ k + 1 and c′(vk−1) = k. Then c′(vk) = k − 1 or c′(vk) = k − 2. In
both cases we reach a contradiction in the same way as when n ≤ 2k − 2.
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3.4 Bipartite Graphs

Theorem 3.4.1. (Due to Casselgren) [4] If n ≥ 4 and m ≥ 4 then dc(Kn,m) =
1.

Proof. Based on a proof sketch provided by Casselgren [4].
Let c be a labelling ofKn,m, and letX and Y be the partite sets ofG = Kn,m.

If c−1(1) ∈ X is distance-consistent then the vertices in Y must be labelled
2 through m + 1, and by Proposition 3.1.4 no vertex in Y can be distance-
consistent. Also, no other vertex x ∈ X (x ̸= c−1(1)) can be distance consistent
because at least one vertex x′ ∈ X has c(x, x′) = 1, but there must be a vertex
y ∈ Y c(x, y) > 1. Similarly if c−1(n +m) ∈ X is distance consistent then the
vertices in Y must be labelled |X| through m + n − 1, and no vertex in Y is
distance-consistent, by prop 3.1.4. No vertex x′′ ∈ X other than c−1(n+m) is
distance-consistent as there exists at vertex x′′′ ∈ X with c(x′′, x′′′) = 1.

For sake of contradiction assume c is 2-distance-consistent. Then there are
two distance-consistent vertices u and u′ in V (G). Without loss of generality
assume u ∈ X and that c(u′) > c(u). Since u and u′ are both distance-consistent
we have c(u) ̸∈ {1, a+ b} and c(u′) ̸∈ {1, a+ b}.

Suppose �rst that u′ ∈ X. Since n,m ≥ 4 there exists a vertex v ∈ Y
with c(v) < c(u) < c(u′). This is a contradiction since c(u′, v) > c(u′, u), but
d(u′, v) = 1 < d(u, v) = 2.

Suppose instead that u′ ∈ Y . If c(u′) = c(u)+1 then w := c−1(c(u)+2) ∈ Y
since u ∈ X and |Y | ≥ 4. This leads to a contradiction because we must also
have w ∈ X since c(u′, w) = 1 and u′ has at least 4 neighbours. If instead
c(u′) > c(u) + 1 then w2 := c−1(c(u) + 1) ∈ Y , which is also a contradiction as
c(u′, w) < c(u′, u) but d(u′, w) = 2 > d(u′, u) = 1. We must conclude that c is
not 2-distance-consistent and thus dc(Kn,m) = 1.

These large complete bipartite graphs are an excellent example showing that
there are in�nite families of graphs that are not 2-distance-consistent.

This leaves only K1,n, K2,n and K3,n. K1,n is isomorphic to the star graph
Sn and so dc(K1,n) = 3 for all n ≥ 2.

Theorem 3.4.2. For all k ≥ 2 dc(K2,k) = 2

Proof. Let (X,Y ) be the partition of G := K2,k where |X| = 2 and |Y | = k
Label the vertices in the partite set of size two 1 and k + 2, and label the
remaining vertices arbitrarily. It is easy to check that the vertices labelled 1
and 2 are distance-consistent.

If u0 ∈ Y is distance-consistent and not labelled 1 or k+2 then the vertices
in X must be labelled c(u0) + 1 and c(u0) − 1. So no other vertex in Y , other
than those labelled 1 or k + 2 can be distance-consistent.
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If c−1(1) ∈ Y is distance-consistent the vertices in X must be labelled 2 and
3, and the remaining vertices must be labelled 4 through k+ 2. Thus, no other
vertex in Y can be distance-consistent. The vertices labelled 2 and 3 cannot be
distance-consistent either, since u := c−1(2), v := c−1(4), w := c−1(3) as well as
u′ := c−1(3), v′ := c−1(1), and w′ := c−1(2) contradict the local list criterion.

Similarly, if c−1(k + 2) ∈ Y is distance-consistent the vertices in X must be
labelled k−1 and k, and the remaining must be labelled 1 through k−2. Thus,
no other vertex in Y can be distance-consistent. The vertices in X cannot be
distance-consistent either, since c(u) = k + 1, c(v) = k − 1, c(w) = k as well as
c(u) = k, c(v) = k − 1, and c(w) = k + 1 contradict the local list criterion.

So if c is a labelling with a distance-consistent vertex in Y it is not 2-distance-
consistent, and therefore dc(K2,k) ≤ 2.

Proposition 3.4.3. dc(K3,3) = 2

Proof. Let X and Y be the partite sets of G = K3,3. Let c be the labelling
of G where the vertices in X are labelled 1, 2, and 4, and the vertices in Y are
labelled 3, 5, and 6.

The vertex labelled 3 is distance consistent because its neighbours are at
label distance 2 or less from c−1(3) while the vertices at distance 2 from c−1(3)
are at label distance at least 3. Similarly the vertex labelled 4 is distance-
consistent because all v ∈ Y satisfy c(c−1(4), v) ≤ 2 while all v′ ∈ X satisfy
c(c−1(4), v′) ≥ 2.

Suppose there is a 3-distance-consistent labelling c′ of G. If there a partite
set X ′ with 3 distance-consistent vertices then by Proposition 3.1.4 there must
be a vertex in X ′ set labelled 1 or 6. But because this vertex is also distance
consistent another vertex in X ′ must also be labelled 1 or 6. Since c′−1(1) is
distance consistent the last vertex v ∈ X ′ must be labelled 5, but since c′−1(6)
is distance-consistent v must also be labelled 1, which is a contradiction.

This leaves only the option that one partite set set X1 has at least one
distance-consistent vertex and the other partite setX2 has two distance-consistent
vertices. By Proposition 3.1.4 the vertices labelled 1 and 6 must be in di�er-
ent partite sets as both partite set contain distance-consistent vertices. Neither
c′−1(1) nor c′−1(6) can be distance-consistent because then they would need to
be in the same partite set.

If c−1(2) ∈ X is distance-consistent the vertices in X must be labelled
2, 5, and 6. But then, by Proposition 3.1.4 neither c−1(5) nor c−1(3) can be
distance-consistent as they are not in the same partite set as the vertex at
the furthers label-distance from them. There are four vertices which are not
distance-consistent, which contradicts c being 3-distances-consistent, therefore
c−1(2) is not distance consistent.
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Finally, assume c−1(5) is distance-consistent. Let Y be the partite set such
that c−1(5) ∈ Y . The vertices in Y must be labelled 1, 2 and 5. By 3.1.4 c−1(4)
cannot be distance consistent as it is not in the same partite set as c−1(1).
Again we �nd that the vertices labelled 1, 2, 4 and 6 are not distance-consistent
contradicting c being 3-distance-consistent. Therefore G is at most 2-distance-
consistent.

Theorem 3.4.4. For all k ≥ 4 dc(K3,k) = 1.

Proof. Let (X,Y ) be the partition of K3,k where |X| = 3 and |Y | = k.
Assume one vertex u is distance-consistent. We shall show that no other vertex
is distance-consistent.

Suppose �rst u ∈ Y . If c(u) = 1 then c(X) = {2, 3, 4}. If c(u) = k +
3 then c(X) = {k, k + 1, k + 2}. If c(u) ̸∈ {1, k + 3} then either c(X) =
{c(u)− 1, c(u) + 1, c(u) + 2} or c(X) = {c(u)− 1, c(u)− 2, c(u) + 1}. For any
of these possible sets c(X) there is only one possible value for c(u), and thus
no other vertex in Y can be distance-consistent. In either case each vertex
x ∈ X is adjacent to the vertex at maximum label distance from x, therefore,
by Proposition 3.1.4 x is not distance-consistent.

Suppose instead u ∈ X. We have already shown that if a vertex in X is
distance-consistent then it is the only distance-consistent vertex, therefore the
vertices in Y are not distance-consistent.

If c(u) = 1 then the vertices in Y must be labelled 2 through k + 1 and the
other vertices in X must be labelled k + 2 and k + 3. Then c−1(k + 2) is not
distance consistent as c(c−1(k+2), c−1(k) = 2 = c(c−1(k+2), c−1(k+3)+1 but
d(c−1(k + 2), c−1(k + 3)) = 2 > d(c−1(k + 2), c−1(k)) = 1. Similarly c−1(k + 3)
is not distance consistent as c(c−1(k+3), c−1(k+1) = 2 = c(c−1(k+3), c−1(k+
2) + 1 but d(c−1(k + 3), c−1(k + 2)) = 2 > d(c−1(k + 3), c−1(k + 1)) = 1.

If instead c(u) = k + 3 then the vertices in Y must be labelled 3 through
k + 2 and the other vertices in X must be labelled 1 and 2. Then c−1(2)
is not distance consistent as c(c−1(2), c−1(4) = 2 = c(c−1(2), c−1(1) + 1 but
d(c−1(2), c−1(1)) = 2 > d(c−1(2), c−1(4)) = 1.

Finally, if c(u) ̸∈ {1, k + 3} then at least one of c−1(1) and c−1(k + 3) in in
X. The �nal vertex v in X must be labelled 1, 2, k+2, or k+3 since it is one of
only two vertices at maximum distance from u. If c(v) = 1 or c(v) = k+3 then
v is not distance consistent as u is distance-consistent and u ̸= v. If c(v) = 2
then c(X) = {1, 2, c(u)} and v is not distance-consistent as c(v, c−1(4)) = 2 =
c(v, c−1(1)) + 1 but d(v, c−1(1)) = 2 > d(v, c−1(4)) = 1. If c(v) = k + 2 then
c(X) = {c(u), k + 2, k + 3} and v is not distance consistent as c(v, c−1(k) = 2 =
c(v, c−1(k + 3) + 1 but d(v, c−1(k + 3)) = 2 > d(c−1(k + 2), c−1(k)) = 1.

In conclusion for each choice of c(u) u is the only distance consistent vertex.
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We now know the local list number of all complete bipartite graphs. To
summarise:

dc(Kn,m) =


3 if min{n,m} = 1 and n ̸= m

2 if min{n,m} = 2 or n = m = 3 or n = m = 1

1 Otherwise

.
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Appendix A

Computer calculations

The following code calculates the local list number of all trees on 9 or fewer
vertices using the Python-based free and open source computer algebra system
Sage. The results of this code is presented in �gure A.1.

import i t e r t o o l s

def vwCombs(u , n ) :
# Finds combinat ions v ,w f o r check ing the
# l o c a l l i s t c r i t e r e on .
# Runs in O(n)
combs = set ( [ ] )
for v in [ x for x in range (1 , n+1) i f x != u ] :

LHS = abs (u=v )
w1 = u+LHS=1
w2 = u=LHS+1
i f w1 > 0 and w1 <= n :

combs . add ( ( v ,w1) )
i f w2 > 0 and w2 <= n :

combs . add ( ( v ,w2) )
return combs

def check_dc (G, c ) :
# Given graph G and l a b e l i n g c re turns l i s t o f
# d i s t ance c on s i s t e n t v e r i t c e s
H = G. copy ( )
H. r e l a b e l ( c )

Henricsson, 2023. 25
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dc = [ ]
for u in H. v e r t i c e s ( ) :

is_dc = True
for (v ,w) in vwCombs(u , H. num_verts ( ) ) :

i f H. d i s t ance (u ,w) > H. d i s t ance (u , v ) :
is_dc = False
break

i f is_dc :
dc . append (u)

return dc

def makeLabeling ( l s t ) :
# Takes a l i s t o f l a b e l s and re turns a l a b e l l i n g
# func t i on
return lambda v : l s t [ v=1]

# We ca l c u l a t e the l o c a l l i s t number o f a l l t r e e s on 9
# or fewer v e r t i c e s , dc (T) , the opt imal l a b e l l i n g and
# dis tance=c on s i s t e n t v e r t i c e s are added the l i s t t r e e s
t r e e s = [ ]
for n in range ( 3 , 1 0 ) :

for i ,T in enumerate( graphs . t r e e s (n ) ) :
T. r e l a b e l (lambda v : v+1) # Changes i n i t i a l l a b e l s

# from 0 through n=1
# to 1 through n

dcMax = 0
opt imalLabel = [ ]
# We simply go through a l l p o s s i b l e l a b e l l i g s
# and c a l c u l a t e the number o f
# dis tance=c on s i s t e n t v e r t i c e s
for l a b e l in i t e r t o o l s . permutat ions (

l i s t ( range (1 , n+1)) ) :
dc=check_dc (T, makeLabeling ( l i s t ( l a b e l ) ) )
i f len ( dc ) > dcMax :

dcMax = len ( dc )
opt imalLabel += [ [ l abe l , dc ] ]

opt imalLabel = l i s t (
f i l t e r (lambda l s t : \

len ( l s t [1])==dcMax , opt imalLabel ) )
t r e e s += [ (T, dcMax , opt imalLabel ) ]
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Figure A.1: Trees on n vertices, their local list number and optimal labelling
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