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POPULÄRVETENSKAPLIG SAMMANFATTNING

Studier av biologisk vävnad såsom den mänskliga hjärnan är centrala för vår förståel-
se av hur dess anatomi och fysiologi påverkas av sjukdomar, och för vår förmåga att
finna den bästa behandlingen mot dessa. Magnetisk resonansavbildning (MRI) är en
teknik som tillåter icke-invasiva studier av levande vävnad genom listigt utformade
magnetfält. Tack vare sin stora känslighet för ett stort antal olika vävnadsegenskaper
är MRI idag ett av de mest utnyttjade verktygen när det gäller att undersöka hjärnan
kliniskt. En speciell tillämpning av MRI, kallad diffusions-MRI, utnyttjar vattenmo-
lekylernas rörelse inom och mellan cellerna som bygger upp vävnaden. Egenskaper
som är relaterade till olika aspekter av cellernas utformning samt deras sammansatta
struktur, och vilka är osynliga för andra bildalstrande metoder, kan via dessa mole-
kylrörelser mätas och göras tillgängliga med diffusions-MRI.

Trots den anmärkingsvärda känsligheten för mikroskopiska vävnadsegenskaper, är
det en utmaning att tolka mätdata som man har fått via diffusions-MRI. Traditionella
mätningar har svårt att särskilja specifika uppmätta egenskaper i den komplicerade
blandning av celler som vävnaden utgör. För att lösa det problemet har forskare ut-
vecklat innovativa mätscheman för att urskilja det önskade bidraget från övriga mät-
signaler. Arbetet i denna avhandling presenterar nya sätt analysera och modellera
data från diffusions-MRI, med målet att dessa ska kunna användas i klinisk praktik.

De två första arbetena i avnhandlingen presenterar scheman för en mer pålitlig skatt-
ning av parametrar ur data från diffusions-MRI, samtidigt som mätningarna kan
göras snabbare, vilket undelättar för patienten. I det tredje arbetet används dessa
mätscheman för att undersöka hjärnorna hos patienter som tidigare har varit inlagda
för COVID-19, och som fortfarande lider av neurologiska besvär månader efter ge-
nomgången infektion. Resultaten visar utbredda förändringar i patienternas hjärnor,
och kan vara till hjälp för att förstå de bakomliggande orsakerna till de kvarvarnade
symptomen. I det fjärde arbetet undersöks ett alternativt sätt att modellera diffusio-
nen som finns i varje del av den undersökta vävnaden, och det påvisas att detta ger
en bättre representation jämfört med den vanligvis använda tekniken.
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ABSTRACT

The incessant, random motion of water molecules within biological tissues reveals
unique information about the tissues’ structural and functional characteristics. Dif-
fusion magnetic resonance imaging is sensitive to this random motion, and since the
mid-1990s it has been extensively employed for studying the human brain. Most
notably, measurements of water diffusion allow for the early detection of ischaemic
stroke and for the unveiling of the brain’s wiring via reconstruction of the neuronal
connections. Ultimately, the goal is to employ this imaging technique to perform non-
invasive, in vivo virtual histology to directly characterise both healthy and diseased
tissue.

Recent developments in the field have introduced new ways to measure the diffu-
sion process in clinically feasible settings. These new measurements, performed by
employing generalised magnetic field gradient waveforms, grant access to specific
features of the cellular composition and structural organisation of the tissue. Meth-
ods based on them have already proven beneficial for the assessment of different
brain diseases, sparking interest in translating such techniques into clinical practice.
This thesis focuses on improving the methods currently employed for the analysis of
such diffusion MRI data, with the aim of facilitating their clinical adoption.

The first two publications introduce constrained frameworks for the estimation of
parameters from diffusion MRI data acquired with generalised gradient waveforms.
The constraints are dictated by mathematical and physical properties of a multi-
compartment model used to represent the brain tissue, and can be efficiently en-
forced by employing a relatively new optimisation scheme called semidefinite pro-
gramming. The developed routines are demonstrated to improve robustness to noise
and imperfect data collection. Moreover, constraining the fit is shown to relax the
requirements on the number of points needed for the estimation, thus allowing for
faster data acquisition.

In the third paper, the developed frameworks are employed to study the brain’s white
matter in patients previously hospitalised for COVID-19 and who still suffer from
neurological symptoms months after discharge. The results show widespread alter-
ations to the structural integrity of their brain, with the metrics available through
the advanced diffusion measurements providing new insights into the damage to the
white matter.

The fourth paper revisits the modelling paradigm currently adopted for the analy-
sis of diffusion MRI data acquired with generalised gradient waveforms. Hitherto,
the assumption of free diffusion has been employed to represent each domain in a
multi-compartmental picture of the brain tissue. In this work, a model for restricted
diffusion is considered instead to alleviate the paradoxical assumption of free but
compartmentalised diffusion. The model is shown to perfectly capture restricted dif-
fusion as measured with the generalised diffusion gradient waveforms, thus endors-
ing its use for representing each domain in the multi-compartmental model of the
tissue.
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1
Introduction

Since its introduction in the mid 1980s [1], [2], diffusion Magnetic Resonance Imaging
(dMRI) has established itself as one of the main research and clinical tools for the
study and diagnosis of the in vivo brain. At its foundations, dMRI leverages the ever-
present random motion of water molecules to infer characteristics of the environment
where these molecules reside. Barriers and physiological processes influence this
random movement, thus imprinting their presence into the dMRI data. Successful
applications of dMRI demonstrating the exquisite sensitivity of this technique to the
tissue microstructure are found in the early detection of ischaemic stroke [3] — not
otherwise visible with other MR imaging modalities until hours after the onset of the
event — and the study of the brain connectivity, where the highly anisotropic nature
of diffusion within the neural tissue is exploited to reconstruct the pathways between
different areas of the brain [4]–[8].

Beyond these successful applications, the long-standing goal of dMRI is to perform
non-invasive histology, allowing structures on the microscopic scale to be seen from
images acquired with millimetre resolution. However, this objective has largely been
hampered by the limited information obtainable from conventional diffusion MRI
data. The workhorse of diffusion MRI experiments remains an MR sequence in-
troduced in 1965 by Stejskal and Tanner, where water self-diffusion is measured by
applying two rectangular magnetic field gradient pulses with opposite polarity [9].
While this experiment is sensitive to many features of the cells making up the tissue, it
also produces a signal where all these properties conflate and cannot be disentangled.
Widely employed clinical neuroimaging methods developed on top of this sequence,
such as diffusion tensor imaging (DTI) [10] and apparent diffusion coefficient (ADC)
mapping [2], thus provide only a glimpse towards the many tissue properties avail-
able through the random diffusive motion of water molecules.

Much work in the dMRI field has been devoted towards developing new ways of
measuring the diffusion process, aiming at specifically targeting different aspects of
the cellular tissue composition [11]–[16]. In this thesis, the focus is on a particular
class of measurements in which the Stejskal-Tanner experiment is extended to encom-
pass general time-varying magnetic field gradients that efficiently probe water diffu-
sion in multiple directions simultaneously. When analysed under the assumption
of free diffusion, these data are commonly referred to as tensor-encoded or tensor-
valued diffusion MRI data [17]–[19], since all the experimental parameters collapse
into a single descriptor called the B-tensor. The higher specificity to different tis-
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1. INTRODUCTION

sue characteristics accessed with tensor-valued dMRI compared to Stejskal-Tanner
measurements allows the computation of markers of intravoxel tissue heterogeneity
which have already been instrumental in better characterising the healthy and dis-
eased brain [17], [18], [20], [21]. This demonstrated the relevance for such diffusion
measurements and methods to reach routine clinical practice.

The overarching goal of this work is to facilitate this transition by improving on the
technologies currently employed for the analysis of diffusion MRI data encoded with
generalised gradient waveforms. The methods have so far been based on a picture
of the brain microstructure as being composed of many pores each represented by a
diffusion tensor [6], [22]. As such, the goal is to either estimate the distribution of dif-
fusion tensors making up the tissue [23], or access its statistical properties [17], [24].
Two avenues have been explored through the work presented here. The first con-
cerns producing reliable parameter estimates for the q-space trajectory framework
employed to access the mean and covariance of the diffusion tensor distribution [17].
These estimates are in turn used to compute descriptors of the brain cellular com-
position and organisation, with the ultimate goal of using them for characterising
diseased tissue. Therefore, it is imperative to ensure that these descriptors are ro-
bustly estimated from the data before endorsing their use in clinical practice. The
second avenue deals instead with the modelling of the diffusion MRI data given a
compartmentalised picture of the intravoxel brain microstructure. The current mod-
els employ the assumption of free diffusion occurring in separated compartments.
Besides being rather paradoxical, this representation ignores the distinctive features
imprinted on the MR signal by restricted diffusion, since the data are analysed via
the B-tensor only [25]. Therefore, a more suitable model for describing the diffusion
process in each pore making up the tissue should be considered.

1.1 Aim

The aim of this thesis can be summarised in the following three objectives, listed
according to the publications in which they are addressed:

papers I & II Develop methods for producing reliable estimates for the parameters
attainable via tensor-valued diffusion MRI.

paper III Investigate patients’ brain microstructure using diffusion MRI with gener-
alised gradient waveforms.

paper IV Extend the analysis of diffusion MRI with generalised gradient waveforms
beyond the free diffusion assumption.

1.2 Thesis outline

Including this introduction, the thesis is divided into 7 chapters. Chapter 2 intro-
duces the mathematical notation and several definitions useful for reading the con-
tent presented in this book and in the publications. Chapters 3 and 4 present funda-
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mental concepts of Magnetic Resonance Imaging and diffusion Magnetic Resonance
Imaging, respectively. Chapter 5 then introduces the diffusion MRI measurements
performed with generalised gradient waveforms, and how these can be exploited to
characterise tissue heterogeneity via representations of the diffusion signal. Chapter
6 deals with the estimation of model parameters from performed measurements, and
contains largely unpublished material on a machine learning approach for perform-
ing model fitting. Finally, Chapter 7 presents an overview of the papers included in
the thesis.

1.3 Data and Ethics

In papers I, II, and IV publicly available data have been employed [26]. These were
also used to generate the images displayed in this book, unless otherwise stated in the
figures’ caption. In paper II, additional diffusion MRI data from healthy volunteers
were acquired with ethical approval from the Swedish ethical review authority, Dnr
2019–06123. These were also used in Figure 3.4. In paper III, data from both healthy
subjects and patients were collected with ethical approval from the Swedish ethical
review authority, Dnr 2020-03029 and 2015/13-31. These data were also used to gen-
erate Figure 6.4. In Figures 4.9 and 6.5 data from brain tumor patients collected with
ethical approval EPM 2020-01404 are shown.

1.4 Funding

This work was financially supported by Linköping University (LiU) Center for In-
dustrial Information Technology (CENIIT), LiU Cancer, VINNOVA/ITEA3 IMPACT
and ASSIST, Analytic Imaging Diagnostic Arena (AIDA), the Swedish Foundation for
International Cooperation in Research and Higher Education (STINT), the Swedish
Foundation for Strategic Research (RMX18-0056), and the Swedish Research Council
2016-04482.
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2
Mathematical notation and
tools

This chapter introduces the notation employed throughout this thesis, and several
mathematical concepts used in later chapters.

2.1 Tensors

When working in vector spaces V equipped with a scalar product and hence an or-
thonormal (ON) basis, a (cartesian) tensor T of order m is a multilinear map:

T = Vm Ñ R. (2.1)

The order m of the tensor indicates the number of indices necessary to identify one
of its elements. For example, elements of second-order tensors, for which m = 2, are
identified by 2 indices.

Throughout the thesis, zeroth-order tensors, i.e. scalars, are indicated by non-bold
characters. First-order tensors, represented by vectors, are indicated by lower-case
bold characters. Second-order tensors, represented by matrices, are indicated with
upper-case bold characters. Fourth-order tensors, represented by 4-dimensional ar-
rays, are indicated with blackboard characters. For example, a is a scalar/zeroth-
order tensor, a is a vector/first-order tensor, A is a matrix/second-order tensor, and
A is a 4-dimensional array/fourth-order tensor.

Symmetric tensors

The second and fourth-order tensors encountered in this thesis present symmetries.
A symmetric second-order tensor A is such that Aij = Aji, where Aij and Aji are ij-
th and ji-th elements of tensor A, respectively. Fourth-order tensors are said to have
major symmetry if Aijkl = Aklij, minor symmetry if Aijkl = Ajikl = Aijlk, and total
symmetry if Aijkl = Aσ(ijkl), where σ(ijkl) indicates any possible permutation of the
indices.
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2. MATHEMATICAL NOTATION AND TOOLS

Inner and outer products

Inner products between first-order tensors, i.e. scalar products, are indicated either
by “¨” or by transposing the first tensor. For example, given an ON basis, the inner
product between a = (a1 a2 a3)

T, b = (b1 b2 b3)
T P R3 is:

v = a ¨ b = aTb = a1b1 + a2b2 + a3b3 =
ÿ

i

aibi. (2.2)

The inner product extends the concept of scalar product to tensors of order higher
than 1. Inner products are indicated with “:”, and the resultant is the scalar c obtained
by adding the point-wise multiplied elements of the tensors. For example, for two
second-order tensors A and B:

c = A : B =
ÿ

i

ÿ

j

AijBij. (2.3)

When the tensors can be expressed via matrices, the inner product can also be com-
puted as:

c = Tr(ATB), (2.4)

where the operator Tr(¨) denotes the trace of a square matrix, which is the sum of its
diagonal elements.

The outer product, or tensor product, between two tensors is indicated with “b”.
Given two tensors of order m and n, their outer product is a tensor of order m + n
constructed by multiplying each element of the two tensors. For example, the outer
product between two vectors a and b P R3 is the second-order tensor C:

C = a b b =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 . (2.5)

The disposition of the elements in the constructed tensor is seen via index notation.
For example, the ij-th element in C is Cij = aibj. For a fourth-order tensor C = A b B,
the ijkl-th element is Cijkl = AijBkl .
For first-order tensors/vectors, the outer product can also be indicate by transposing
the second vector: C = abT.
The outer product of a tensor with itself is indicated with:

Ab2 = A b A. (2.6)

Parameterisation of 3x3 axisymmetric tensors

There exist several ways to parameterise an axisymmetric 3 ˆ 3 tensor Λ when it is
expressed in a basis such that its matrix representation is diagonal. Here the "Hae-
berlen convention" [27]–[29] is considered as it is instrumental for later expressing the
relation between tensor-encoding shapes and probed diffusion patterns:
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2.1. Tensors

Λ =

λxx 0 0
0 λyy 0
0 0 λzz

 with |λzz ´ λiso| ě |λxx ´ λiso| ě |λyy ´ λiso|, (2.7)

where

λiso =
λxx + λyy + λzz

3
=

Tr(Λ)

3
(2.8)

represents the isotropic average of the tensor, and it relates to its size.

The shape of the tensor can be identified by the unitless parameter κλ:

κλ =
1

3λiso

(
λzz ´

λxx + λyy

2

)
. (2.9)

κλ takes value in the range [´0.5, 1], where κλ = ´0.5 corresponds to "pancake" ten-
sors, κλ = 0 corresponds to spherical tensors, and κλ = 1 corresponds to "stick"
tensors, see Figure 2.1.

Axisymmetric tensors, for which λxx = λyy = λK and λzz = λ∥, can be represented
in terms of λiso and κλ only as:

Λ = λiso

$

&

%

1 0 0
0 1 0
0 0 1

+ κλ

´1 0 0
0 ´1 0
0 0 2

,

.

-

, (2.10)

where

λiso =
λ∥ + 2λK

3
and κλ =

λ∥ ´ λK

3λiso
. (2.11)

The diagonalised tensor Λ can then be oriented in space by means of successive ro-
tations, resulting in a non-diagonal tensor Λrot = Rz(ϕ)Ry(θ)Λ RT

y (θ)RT
z (ϕ), where

θ and ϕ are the polar and azimuthal angles defining the target direction of the axis
of symmetry, respectively, and Ry and Rz are the matrices expressing the rotations
around the y and z axes, respectively [28]. The effect of the rotation on the parame-
terised tensor is seen via a matrix L:

L =
1
2

3l2
x ´ 1 3lx ly 3lx lz

3lx ly 3l2
y ´ 1 3lylz

3lx lz 3lylz 3l2
z ´ 1

 with
lx = sin θ cos ϕ

ly = sin θ sin ϕ

lz = cos θ

(2.12)

so that

Λrot = λiso(I + 2κλL). (2.13)
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-0.5 -0.25 0 0.5 1

Figure 2.1: Shapes of an axisymmetric tensor for varying values of κλ.

2.2 Positive (semi-)definite matrices

An n ˆ n real symmetric matrix M is positive semi-definite (PSD) if, for all vectors
v P Rn, vTMv ě 0. If, for all non-zero vectors v P Rn, vTMv ą 0, then M is
positive definite. Equivalently, a matrix is positive semi-definite if all its eigenvalues
are non-negative (if the eigenvalues are all strictly positive, then the matrix is positive
definite), or if there exists a real matrix B such that M = BTB. The positive semi-
definiteness and positive definiteness of a matrix are denoted with the symbols “ě 0”
and “ą 0”, respectively.

Cholesky decomposition

The Cholesky decomposition is the factorization of a real symmetric positive (semi-
)definite matrix into the product of a lower triangular matrix with its transpose:

M ě 0, M = LLT (2.14)

where L is of the form:




L11 0 ¨ ¨ ¨ 0

L21 L22
. . .

...
...

. . . 0
Ln1 ¨ ¨ ¨ ¨ ¨ ¨ Lnn




. (2.15)

If M is positive-definite, the matrix L has positive entries on its main diagonal, and
it is uniquely determined by M. If M is positive semi-definite, a matrix L having
non-negative entries on its main diagonal exists, but it is not necessarily unique.
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2.2. Positive (semi-)definite matrices

Block matrices

The positive semidefiniteness of block matrices can be established via the Schur com-
plements [30]. For a symmetric block matrix M,

M =

(
A B

BT C

)
, (2.16)

where A, B, and C are matrices (with A and C being square matrices), the following
conditions establish whether M is PSD:

• if A ą 0, then M ě 0 ðñ M/A = C ´ BTA´1B ě 0

• if C ą 0, then M ě 0 ðñ M/C = A ´ BC´1BT ě 0

where M/A and M/C are the Schur complements of the A and C blocks, respectively.

If M is block diagonal, i.e.

M =

(
A 0
0 C

)
, (2.17)

then M ě 0 ðñ A ě 0 and C ě 0.
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3
Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is nowadays ubiquitous in medical practice due
to its unique ability to produce high-resolution 3-dimensional images and time se-
ries of soft tissues’ structure, metabolism, and physiology; all of it in a non-invasive
and safe manner! These different types of contrast are based on the manipulation of
a quantum property of atomic nuclei called spin. Most of the imaging is based on
hydrogen spins, as hydrogen is abundant in most biological systems, and this abun-
dance is required in order to create a detectable signal.

This chapter introduces the foundations necessary for generating this detectable sig-
nal: starting from the hardware, going through the fundamental physical concepts,
and ending with how images are created by manipulations of magnetic field gradi-
ents.

3.1 The MR scanner

An MR scanner is fundamentally composed of three parts: the main magnet, a system
of three orthogonal gradient coils, and a radio frequency (RF) coil system. The main
magnet and the gradients coils are wrapped around the scanner opening, called bore,
where the object to be scanned is placed.

The main magnet, referred to as b0, is responsible for generating the strong uniform
magnetic field in which the object to be scanned is placed. Conventionally, the orien-
tation of this field determines the z-axis of the reference system, and aligns with the
scanner’s bore. Typical clinical MR scanners generate b0 fields of 1.5 ´ 3.0 Tesla [T],
with recent developments both in the direction of lower (0.064 T) and higher (7 T)
field strengths. For comparison, Earth’s magnetic field is approximately 40 µT, about
70000 times weaker than that generated by a 3 T system.

The system of orthogonal gradient coils is used to generate time-varying magnetic
fields, resulting in linearly changing magnetic field strengths along arbitrary orienta-
tions. These are necessary for imaging purposes, in order to achieve spatial localisa-
tion of the MR signal within the object, but also for measuring diffusion, as discussed
in the next chapter. Maximum gradient strengths on clinical and research scanners,
measured in [mT/m], are in the range of 40 ´ 80 mT/m.
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3. MAGNETIC RESONANCE IMAGING

Finally, the RF system comprises two antennas, often combined into a single coil,
used for the transmission and detection of rotating magnetic fields. These coils can
take various shapes and forms depending on the object to be scanned; this is done
in order to maximise the signal-to-noise ratio (SNR) at reception, and to transmit a
field as homogeneous as possible. As elaborated in Section 3.3, the transmitted RF
field, referred to as b1, is responsible for the selective excitation of spins precessing
at a specific frequency, thus fulfilling the resonance condition which gives the name to
this imaging technique.

3.2 Spins, precession, and magnetisation

Atomic nuclei with an odd number of protons and/or neutrons possess an intrinsic
angular momentum j called spin. The spin is a quantised property, meaning that it
can only take on a discrete set of values. The number of possible values is given by
2j+1, where j is the spin quantum number which is related to the magnitude of the
(spin) angular momentum via

||j||2 = h̄2 j(j + 1), with j = 0,
1
2

, 1,
3
2

, ... (3.1)

where h̄ is Planck’s constant divided by 2π [31]. For hydrogen atoms (protons), to
which we restrict the theory, j = 1/2, indicating that when measured along a certain
orientation they can only be pointing in either of 2 directions [32].

In classical mechanics, the spin can be interpreted as a rotation of the nucleus around
its axis. Like any other charged spinning object, this will result in the creation of
a (microscopic) magnetic field around the nucleus, which effectively acts like a tiny
magnet, see Figure 3.1 panel A. The magnetic moment µ of this magnet is directly
proportional to the spin via a constant γ called gyromagnetic ratio:

µ = γj. (3.2)

For hydrogen, γ = 2π ˆ 42.58 rad¨MHz
T .

At equilibrium, the orientation of the spin’s magnetic moment is completely random.
This means that for a nuclear spin system, i.e. a collection of spins of the same type,
no net magnetisation exists when an external magnetic field is not applied (see Figure
3.1 panel B). If the spins instead experience a strong magnetic field b0 = b0 ẑ, they will
be subject to a torque µ ˆ b0 which will make them precess around the direction of
the field. A spin system immersed in a strong magnetic field is said to be magnetised.
The angular velocity ω0 at which the spins precess around b0 is known as the Lar-
mor frequency, and, as it will be apparent later, is perhaps the single most important
concept in MR:

ω0 = γb0. (3.3)
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3.2. Spins, precession, and magnetisation

Given the quantisation, each spin can only be found either pointing in a direction
parallel (spin-up) or anti-parallel (spin-down) to b0, at an angle θ = 54.44˝ with
respect to the external field orientation, see Figure 3.1 panel C.

ω0

j

θ

b0

parallel

an�parallel

A B

x
y

z

ω0

θ

C

Figure 3.1: A Illustrative representation of the spin angular momentum j of a
charged nucleus as a rotation around its axis. This rotation effectively renders
the nucleus a tiny magnet (blue: north pole, red: south pole). B If not im-
mersed in an external magnetic field, spins in a spin system are randomly ori-
ented, thus no net magnetisation exists. C When an external strong magnetic
field b0 = b0 ẑ is introduced, the spins are forced into precession around the
direction of this field. The precession occurs at angular frequency ω0 = γb0
at an angle θ from the z-axis. Because of the quantum model, spins can only
be found in two energy states: parallel or antiparallel to b0.

According to quantum theory, the energy of interaction with the magnetic field, E =
´µ ¨ b0, depends on the orientation of the spins. For spin-up, EÒ = ´ 1

2 γh̄b0, while for
spin-down EÓ = 1

2 γh̄b0. It follows that spin-up is the lower energy state. The non-
zero energy difference between the two states, ∆E = γh̄b0, is known as the Zeeman
splitting phenomenon [32]. The number of spins in either state is related to this energy
difference:

NÒ
NÓ

= exp
(

∆E
kBTs

)
, (3.4)

where kB is the Boltzmann’s constant, Ts is the absolute temperature of the spin sys-
tem, and NÒ and NÓ indicate the total number of spins in the up and down states,
respectively. To first approximation, the excess number of protons found in the spin-
up state is:

NÒ ´ NÓ « ∆E
2kBTs

N, (3.5)

where N is the total number of spins in the system. This difference is typically very
small: for an experiment at Ts = 310 K in an MR system with b0 = 3 T, there are only
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3. MAGNETIC RESONANCE IMAGING

20 excess spins per million protons. Nevertheless, a typical spin system in MR imag-
ing comprises a number of protons in the order of 1020, thus producing a detectable
magnetisation m:

m =
N
ÿ

n=1

µn = mx x̂ + my ŷ + mz ẑ. (3.6)

The z-component of this magnetisation vector, mz, is referred to as the longitudinal
magnetisation as it lies in the direction of b0, whereas the xy-component, mxy, is re-
ferred to as the transverse magnetisation, as it lies on the plane orthogonal to the b0
field. At equilibrium (indicated with the superscript 0), m is aligned in the direction
of b0: m0 = m0

z ẑ = ||m|| = (γ2h̄2b0N)/(4kBTs), while m0
xy = 0 since the magnetic

moments in the transverse plane have random orientations. Note how the magneti-
sation strength is directly proportional to the strength of the b0 field.

3.3 Excitation, resonance, and relaxation

To obtain a measurable response, the net magnetisation needs to be perturbed from its
equilibrium state. This perturbation comes in the form of energy deposition into the
spin system by means of an oscillating magnetic field, b1(t), perpendicular to b0. The
energy carried by an electromagnetic wave of frequency ωrf is Erf = h̄ωrf. According
to the quantum model, to induce a spin system to change from one state to another,
the deposited energy must match the difference in energy between the adjacent spin
states. This is what is known as the resonance condition. From the previous section,
∆E = γh̄b0, and therefore, for the resonance condition to be satisfied, ωrf = γb0 = ω0.
To summarise, the oscillation frequency of b1(t) needs to match the Larmor frequency
of the spin system in order for the net magnetisation to be perturbed. Given that for
b0 « 1 T the Larmor frequency for hydrogen spins is in the radio frequency range,
and that the oscillating field is turned on for short periods of time, b1 is referred to as
an RF pulse.

Under the resonance condition, and for the time τ during which the RF pulse is ap-
plied, the spin system will be forced into precession around the direction of b1 with
precession frequency ω1(t) = γb1(t). On a coordinate system rotating at Larmor
frequency around the z-axis, this appears as a tilt of the magnetisation towards the
xy-plane, see Figure 3.2 panel A. The angle of this tilt is called flip angle and is given
by

α =

ż τ

0
ω1(t)dt =

ż τ

0
γb1(t)dt. (3.7)

An RF pulse is characterised in terms of the flip angle it produces and the direction
along which it is applied. For example, a 90˝

x RF pulse produces a flip angle of 90˝ and
is applied along the x axis. In the remainder of the thesis, when stating the direction
of application is not necessary, RF pulses will only be referred to by the flip angle they
generate.

When the RF pulse is turned off, the spin system starts to return to its equilibrium
state in a process called relaxation. The relaxation process is described by the phe-
nomenological Bloch equations [33], and it differs for the longitudinal and the trans-

14
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verse components of the magnetisation. In the x1y1z1 reference system rotating at the
Larmor frequency:

$

’

’

&

’

’

%

dmz1

dt
= ´

mz1 ´ m0
z

T1
,

dmx1y1

dt
= ´

mx1y1

T2
.

(3.8)

T1 and T2 are the characteristic relaxation times for the longitudinal and transverse
magnetisations, respectively. Solution to 3.8 gives:

#

mz1 (t) = m0
z(1 ´ e´t/T1 ) + mz1 (0)e´t/T1 ,

mx1y1 (t) = mx1y1 (0)e´t/T2 ,
(3.9)

where mz1 (0) and mx1y1 (0) are the longitudinal and transverse magnetisation right
after the application of the RF pulse.

The longitudinal relaxation describes the regrowth of the longitudinal magnetisation
to its equilibrium state, and it is also known as spin-lattice relaxation since it mostly
concerns the energy exchange between the spins and their surrounding. The trans-
verse relaxation describes instead the loss of spin precession coherence, and thus the
vanishing of the transverse magnetisation. It is also known as spin-spin relaxation, as
the loss of phase coherence is due to changes in precessional frequencies caused by
neighbouring nuclei. These two processes occur at two different scales, with T1 ě T2.
A basic source of contrast in MR images relies on selectively making the experiment
more sensitive to either of these relaxation processes. Section 3.4 explains how these
different sensitisations can be achieved.

The MR signal

If viewed from the static reference system, the time evolution of the traverse mag-
netisation mxy(t) = mxy(0)e´t/T2 e´iω0t combines the effects of the free precession
around b0, and the transverse (T2) relaxation, see Figure 3.2 panel B. This is what
constitutes the detected MR signal. By Faraday’s law of induction, the varying mag-
netic flux produced by the rotating and vanishing magnetisation will induce a voltage
in the (receiving) RF coil. This voltage is proportional to the rate at which the mag-
netisation is decaying, which is determined by T2 relaxation. Note that due to field
inhomogeneities, the decay of the transverse magnetisation is typically faster than
that implied by T2 relaxation only. This is discussed in the next section.

For an object placed in the MR scanner, the detected signal comprises the contribu-
tions of all spins:

S(t)9
ż

object
mxy(r, 0)e´t/T2(r)e´iω(r)tdr, (3.10)

where ω(r) is the free precession frequency accounting for spatial changes in the b0
field, and the spatial dependence of T2 is also taken into consideration. A signal ob-
tained by recording the return to equilibrium of the magnetisation after the applica-
tion of an RF pulse is called free induction decay (FID), and it constitutes the archetypal
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3. MAGNETIC RESONANCE IMAGING

MR signal. The quantity mxy(r, 0) gives a measure of proton density of the scanned
object.

A B

x

y

x'

y'

z’ ≡ z

α

b0

m

m

ω0
b1

y

x

z

receiver RF coil

Figure 3.2: A Tilting of the magnetisation vector m towards the transverse
plane by an angle α due to the application of an oscillating b1 field as seen
from a coordinate system x1y1z1 rotating around the b0 field. Both b1 and
the x1y1z1-axis rotate with angular velocity ω0 around b0. B Return of the
magnetisation to equilibrium after the application of an RF pulse inducing a
flip angle of 90˝. From the static laboratory frame, this is seen as an oscillation
around the z-axis with simultaneous loss of transverse magnetisation. The
voltage induced in the receiver coil by this oscillation and decay constitutes
the MR signal.

3.4 Pulse sequences, spin-echo, and contrast

Due to field inhomogeneities, the observed magnetisation decay in an FID experi-
ment occurs at a T˚

2 rate which is typically faster than T2 relaxation only. The effect of
these macroscopic inhomogeneities on the MR signal can be compensated by clever
sequences of RF pulses. In a phenomenon already discovered by Erwin Hahn in the
1950s [34], spins dephasing due to macroscopic field inhomogeneities can be brought
back to coherence by means of refocusing RF pulses. This regain of phase coherence
results in echoes. Echoes can be produced both by RF pulse sequences, or by employ-
ing magnetic field gradients. We will focus on the first case. At least two pulses are
needed to generate RF-echoes, and the most common form of echo, the spin-echo (SE),
is generated with only two RF excitations.

Before explaining how a SE is created, let us define the phase of a precessing spin. In
the rotating coordinate system, a spin precessing with angular velocity ω(t1) around
the z-axis travels a distance φ(t) = φ0 +

şt0+t
t0

ω(t1)dt1 during a time t, for some initial
position φ0. φ(t) defines the phase of the spin. This quantity is ubiquitous in MRI
as the effect of different processes acting on the magnetisation can be understood by
considering the phase distribution evolution of the spin system.

16



3.4. Pulse sequences, spin-echo, and contrast

Figure 3.3 shows how a spin-echo is obtained. The first RF pulse excites the magneti-
sation onto the transverse plane. As spins experience different local magnetic fields,
they will begin to precess at different frequencies, thus progressively getting out of
phase. After a time τ, the spin system is excited again with a second RF pulse. The
second pulse is designed to achieve a flip angle of 180˝, which effectively flips the
precessing spins onto the other side of the transverse plane. Assuming that the spins
will continue their precessions with the same angular frequency and orientation as
before the application of the second pulse, they will start to regain phase coherence
thus regrowing the tranverse magnetisation. After another time interval τ, the re-
gaining of phase coherence results in the echo. Differently from the FID, this signal
carries only the effects of T2 relaxation: since the same macroscopic inhomogeneities
that brought the spins out of phase also made them regain coherence, their effect on
the magnetisation has been nulled. The time at which the echo occurs, T = 2τ, takes
the name of time of echo or echo time, TE. This is a parameter that can be controlled by
the MR scanner operator.

0 𝑇𝐸2 𝑇𝐸

90x'𝑜 180x'𝑜 RF pulse

echo
Spin-echo pulse sequence

Magne�sa�on evolu�on
m

0 𝑇𝐸2 𝑇𝐸

x'
y'

z'

Figure 3.3: Spin-echo pulse sequence and related evolution of the magnetisa-
tion vector m. Before the first pulse, the magnetisation is at equilibrium and
oriented along the z-axis. After the 90˝ pulse, the magnetisation is tilted to-
wards the transverse plane where the spins start to get out of phase as they
experience different local magnetic fields and thus precess at different fre-
quencies. At t = TE/2 the 180˝ RF pulse is applied. Assuming that the pre-
cessional frequencies do not change, the spins will gradually return in phase
and produce an echo at t = TE. Note that due to T2 relaxation, the amplitude
of the magnetisation at t = TE will in general be lower than the one at equi-
librium.

The spin-echo experiment is typically repeated several times to, for example, allow
for a complete acquisition of an image, boost the SNR with averaged acquisitions, or
allow the magnetisation to reach steady state before acquiring the data. The time sep-
aration between experiments is called repetition time TR, and it is also a parameter that
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3. MAGNETIC RESONANCE IMAGING

can be controlled. The dependence of the longitudinal and transverse magnetisations
on TE and TR at steady state is given by:

#

mz1 = m0
z(1 ´ e´TR/T1 ),

mx1y1 = m0
z(1 ´ e´TR/T1 )e´TE/T2 .

(3.11)

It follows that TE is connected to the T2 decay, while TR is related to T1 relaxation.
Although the MR signal will always carry contributions from both relaxation pro-
cesses, by tuning TE and TR the experiment can be made more sensitive to either.
In MR imaging, there are three primary contrast mechanisms: proton density (PD),
T1-weighting (T1w), and T2-weighting (T2w). In PD experiments, both relaxation
effects are minimised. This is achieved by employing short TE and long TR. In T1w
experiments, the effect of longitudinal relaxation is enhanced; this is obtained by min-
imising the echo time, and thus the contribution of T2 relaxation. Conversely, in T2w
experiments the contrast introduced by T1 relaxation is minimised by employing a
long TR. In practice, PD is rarely used as it provides little contrasts between different
tissues. T1w and T2w images are instead widely employed to detect and characterise
different diseases. Examples of PD, T1w, and T2w brain images are shown in Figure
3.4 .

PD T1w T2w

Figure 3.4: Examples of Proton Density (PD), T1-weighted (T1w), and T2-
weighted (T2w) axial images of a human brain. The data was collected with
ethical approval Dnr 2019–06123.

3.5 Gradients, spatial localisation, and imaging

The MR signal presented in the previous section encompasses contributions from all
the spins in the scanned object irrespective of their location, and can therefore not
be used to create an image. Imaging a 3-dimensional object with MR is typically
done by acquiring a series of 2-dimensional images. Each image is obtained from
a certain slice of the object. A technique called slice selection is employed to select
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the slice. The spins’ positions in the other two dimensions can then be determined
via spatial encoding, typically combining phase-encoding and frequency-encoding. All
these methods rely on the use of time-varying magnetic fields generated by gradient
coils. These coils are designed to produce linearly varying magnetic fields in space,
b(r, t) = r ¨ g(t), where g(t) is the magnetic field gradient. Their purpose is to make
the Larmor frequency of the spins space-dependent:

ω(r) = γ(b0 + g(t) ¨ r), (3.12)

so that the position can be encoded in the collected MR signal.

In slice selection, a gradient is applied simultaneously to an RF pulse to selectively
excite only a slab of spins precessing at a specific frequency.

In frequency encoding, a gradient is applied during the read-out of the signal to make
the precession frequency linearly dependent along a certain direction r f e. Let’s call
this gradient g f e. Omitting the factor e´t/T2 and denoting the spin density ρ(r) =
mxy(r, 0) in 3.10, the recorded signal from all spins in the excited slab can be written
as:

S(t)9
ż

slab
ρ(r)e´iω(r)tdr =

ż

slab
ρ(r)e´iγ(b0+g f e¨r)tdr

= e´iω0t
ż

slab
ρ(r)e´i γ g f e¨r t dr.

(3.13)

In phase encoding, a gradient gpe is applied for a certain time Tpe prior signal read-out
to impart different phase shifts to the spins depending on their their location. A spin
located at position r will accumulate a phase ϕ(r) = γ(b0 + gpe ¨ r)Tpe during the time
the gradient is applied. The resulting signal will be

S(gpe)9e´iω0t
ż

slab
ρ(r)e´i γ gpe¨r Tpe dr, (3.14)

which can be interpreted as a non-encoded signal with an initial position-dependent
phase angle. In both 3.13 and 3.14, the carrier frequency e´iω0t will be removed by
demodulating the signal. Note that while in the frequency encoding direction the sig-
nal is sampled as a function of time, to resolve the spins’ positions along the phase
encoding direction the measurement needs to be repeated by varying the strength of
gpe.

By applying each encoding along two orthogonal axes on the slab, we obtain a signal
from which the image of the spin density can be recovered via 2D inverse Fourier
Transform. This is better seen via the so-called k-space formalism.

k-space

By introducing the variable

k(t) =
γ

2π

ż t

0
g(t1)dt1, (3.15)
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the evolution of a spin’s phase under the influence of a time-varying magnetic field
can be written as:

φ(r, t) = γ

ż t

0
g(t1) ¨ r dt1 = 2π k(t) ¨ r. (3.16)

The MR signal can in general then be written as

S(k)9
ż

slab
ρ(r)e´i 2π k(t)¨rdr, (3.17)

which shows that the registered MR signal is proportional to the Fourier transform
of the spin density. The MR signal is thus sampled at discrete points in the space
of spatial frequencies, called in MRI k-space. These points are collected along trajec-
tories achieved by spatial encoding. Figure 3.5 shows an example trajectory widely
used in diffusion MRI called Echo-Planar Imaging (EPI), and the corresponding re-
constructed image. In phase encoding, the k-space coordinate is set by the time of
acquisition: kpe = γgpeTpe; traversing of k-space along the pe-direction corresponds
to jumps defined by gpe and Tpe. In frequency encoding, k-space is traversed during
read-out along a linear trajectory described by Equation 3.15.

The 3-dimensional image is thus obtained via a 2-dimensional inverse Fourier trans-
form of the sampled k-space for each slice. The reconstructed image is composed of
voxels, the 3-dimensional equivalent of a pixel in 2D images. Typical voxel sizes for
T1w and T2w images are in the order of 0.5 ˆ 0.5 ˆ 0.5 mm3, while diffusion-weighted
images (DWIs) tends to have larger voxels in the order of 2 ˆ 2 ˆ 2 mm3.
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Figure 3.5: Example of a blipped echo-planar imaging (EPI) k-space trajec-
tory (yellow) on the left, and the reconstructed diffusion-weighted image on
the right. K-space and image space are related by Fourier transform: the 2D
inverse Fourier transform (IFT) of the samples collected in k-space on a carte-
sian grid (white lines) yields the image. The data were acquired with ethical
permit Dnr 2019–06123.
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4
Diffusion Magnetic
Resonance Imaging

Diffusion MRI (dMRI) is a powerful probe of the tissue microstructure; It relies on
the random motion of water molecules to probe structural and physiological tissue
features at scales not otherwise accessible via direct MR imaging. In this chapter, the
basics of diffusion and diffusion MRI are introduced as well as relevant representa-
tions for the diffusion-weighted MR signal.

4.1 Diffusion

Diffusion relates to mass transport occurring in the absence of bulk motion [35].
When considering ensembles of particles, diffusion arises due to gradients in par-
ticle concentration thus inducing a flux from high concentration to low concentration
areas. This flux is described by Fick’s first law:

j = ´D∇C(r, t), (4.1)

where j is the flux, C is the particle concentration, and D is the diffusion coefficient.
D is an intrinsic property of the medium depending on its temperature T, viscosity η,
and size. For a spherical particle of radius R,

D =
kBT

6πηR
. (4.2)

Fick’s second law, also known as the diffusion equation, stems from the law of mass
conservation. This requires that a change in concentration is accompanied by a
change in flux: BC(r, t)/Bt +∇j = 0, leading to

BC(r, t)
Bt

= D∇2C(r, t). (4.3)

At the molecular level, diffusive processes arise instead due to particle collisions and
mechanical motion which are attributed to thermal energy only, without requiring

21



4. DIFFUSION MAGNETIC RESONANCE IMAGING

any gradient in concentration. This is what is referred to as Brownian motion since
this phenomenon was first observed by botanist Robert Brown. In 1905, Albert Ein-
stein described diffusive processes in terms of the probability of particle displacement
[36], by introducing the conditional probability of a particle to move from a position
r0 to a position r1 during a time ∆, P(r1, ∆|r0). This quantity, known as the diffusion
propagator, allows the treatment of Brownian motions as stochastic processes [37].

The diffusion propagator obeys Fick’s laws, which can therefore describe changes in
concentration in terms of this conditional probability:

B

Bt
P(r1, ∆|r0) = D∇2P(r1, ∆|r0). (4.4)

For ∆ Ñ 8, the solution to this differential equation for free and homogeneous diffu-
sion with initial condition P(r1, 0|r0) = δ(r1 ´ r0) is the Gaussian

P(r1, ∆|r0) =
1

(4πD∆)3/2 exp
(

´
(r1 ´ r0)

2

4D∆

)
. (4.5)

The mean squared displacement x(r1 ´ r0)
2y, which tells on average how far particles

have moved from their initial position during a certain time (here taken to be ∆), is
computed from 4.5 as:

x(r1 ´ r0)
2y =

ż

R3
(r1 ´ r0)

2P(r1, ∆|r0)dr1 = 6D∆. (4.6)

Equation 4.6 is known as Einstein’s equation for diffusion, and highlights that (for un-
bounded homogeneous motion) the squared distance between the initial and "final"
positions of the particles grows linearly with time via the diffusion coefficient.

For particles diffusing in one dimension, x(r1 ´ r0)
2y = 2D∆, and the diffusion coef-

ficient can be defined as

D =
1
2

x(r1 ´ r0)
2y

∆
. (4.7)

Figure 4.1 shows particles’ displacement distributions for different diffusion times
and different diffusion coefficients for 1-dimensional free diffusion.
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4.1. Diffusion

Figure 4.1: One-dimensional Gaussian distributions of particles displacement
for increasing diffusion time and fixed diffusion coefficient D = 1 µm2/ms
(left), and different diffusion coefficients and fixed diffusion time ∆ = 20 ms
(right). The distributions are given by equation 4.5. The shaded area un-
der each curve represents the portion of the distribution bounded within[
´

?
2D∆,+

?
2D∆

]
, i.e. between the negative and positive standard devia-

tion of the stochastic variable representing the net displacement. Note how
for longer diffusion times, the particles move further from their initial posi-
tion. The same occurs for increasing values of the diffusion coefficient.

The diffusion tensor

The results presented so far can be generalised to the case of free anisotropic diffu-
sion, when the motion of water particles cannot be accurately described by a single
scalar value D. In this case, the particles flux in any direction can be represented
by a symmetric second-order tensor known as the diffusion tensor D. This tensor
represents the covariance matrix of the 3-dimensional (Gaussian) distribution of par-
ticles’ displacement. Defining x, y, and z as the particles’ displacement along three
orthogonal directions, the diffusion tensor is [38]:

D =
1

2∆



〈

x2〉 〈xy〉 〈xz〉
〈yx〉

〈
y2〉 〈yz〉

〈zx〉 〈zy〉
〈
z2〉


 , (4.8)

where each element is

Dij =
1
2

x(r1 ´ r0)i(r1 ´ r0)jy
∆

. (4.9)

Since it represents a covariance, the diffusion tensor is positive semi-definite. The
symmetry implies that Dij = Dji, so only six elements of the tensor are unique. The
symmetry and positive semi-definiteness also imply that the matrix D representing
the tensor can be diagonalised, and that the diagonal entries are non-negative: D =
TTΛT, where the matrix T contains the eigenvectors on the columns, T = [e1|e2|e3],

and the diagonal matrix Λ contains the eigenvalues, Λ =




λ1 0 0
0 λ2 0
0 0 λ3


, with λi ě

0. With this representation, the diffusion tensor is often displayed as an ellipsoid
with semi-axes equal to the square root of the eigenvalues, and with the orientation
given by the associated eigenvectors. Figure 4.2 panel A shows a general diffusion
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4. DIFFUSION MAGNETIC RESONANCE IMAGING

tensor ellipsoid, while panel B shows particles’ displacements and the corresponding
diffusion tensor ellipsoid for isotropic and anisotropic diffusion.

ee1e2

e3A B

Figure 4.2: A Diffusion tensor ellipsoid in its eigensystem defined by the three
eigenvectors e1, e2, e3. The length of each semi-axis of the ellipsoid is given by
the square root of the eigenvalue

a

λi associated with the respective eigenvec-
tor. B Diffusion tensor ellipsoids for 3-dimensional isotropic diffusion on the
left, and 3-dimensional anisotropic diffusion on the right. The particles’ dis-
placement from which the tensors were recovered was obtained by random
walks with either equal (left) or different (right) diffusion coefficients along
three orthogonal directions.

4.2 Diffusion and MR

The Bloch-Torrey equation

The mathematical framework describing the evolution of the magnetisation for an
MR experiment under relaxation and isotropic diffusion processes is given by the
Bloch-Torrey equations [39]. For the transverse local magnetisation mxy(r, t):

Bmxy(r, t)
Bt

=

[
∇ ¨ D∇ ´ iω(r, t) ´ 1

T2

]
mxy(r, t), (4.10)

where ω is the space and time-dependent Larmor frequency for spins in an inhomo-
geneous magnetic field oriented along the direction of b0, b0 ẑ = b0 + g(t) ¨ r. The
gradient g(t) can take any form, though it is assumed that for experiments involving
some sort of echo signal,

şTE
0 g(t1)dt1 = 0. This requirement is known as the refocusing

or rephasing condition.

Solving 4.10 with appropriate boundary and initial conditions would give the mea-
sured MR signal for a voxel:

S(t) =
ż

mxy(r, t)dr. (4.11)

The only available analytical solution to the Bloch-Torrey equation in the case of gen-
eral g(t) exists for the case of free and homogeneous diffusion, for which (discarding

24



4.2. Diffusion and MR

the free precession phase component):

S = S0e´bD, (4.12)

where S0 is the macroscopic signal obtained without an applied g(t), i.e. due to
relaxation processes only, and the exponential term captures the decay introduced by
the diffusion process. Generalisation to anisotropic multidimensional diffusion leads
to

S = S0e´B : D. (4.13)

b is commonly referred to as the b-value, and it is given by

b = Tr(B) with B =

ż TE

0
q(t)qT(t)dt, (4.14)

where B is the measurement B-tensor and q(t) = ´γ
şt
0 g(t1)dt1 is the dephasing vec-

tor. In a diffusion MR experiment, the b-value controls the level of sensitivity to the
diffusion process. For increasing values of b and a fixed diffusion coefficient, the MR
signal will be more diffusion-attenuated. Examples of diffusion-weighted MR images
acquired with different b-values are shown in Figure 4.3.

b
Figure 4.3: Diffusion-weighted MR images for increasing diffusion weighting
as quantified by the b-value. As b increases, more of the signal is attenuated,
as a manifestation of the magnetisation decay induced by the diffusion pro-
cess. This attenuation naturally results in a lower signal-to-noise ratio as b
increases.

The probabilistic interpretation

An alternative way of looking at the MR signal for diffusing particles without resort-
ing to the Bloch-Torrey equation is by considering the effects of the gradient g(t) on
the spins’ phase [40]. Omitting the contribution of free precession, the phase of a spin
following a trajectory r(t) is:

φ(r, T) = γ

ż T

0
g(t) ¨ r(t)dt. (4.15)

The accrued phase at time T will depend on the initial position and the random tra-
jectory followed by the spin up to that point. For the local magnetisation mxy(r, t),
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4. DIFFUSION MAGNETIC RESONANCE IMAGING

the decay induced by the diffusion process would be given by the average phase
dispersion for all the trajectories ending at position r at time T:

mxy(r, t) = ρ(r)
A

e´iγ
şT

0 g(t)¨r(t)dt
E

= ρ(r)
A

e´iϕ(r,T)
E

. (4.16)

In the absence of local T1 and T2 relaxations, the macroscopic signal would then de-
pend on the macroscopic T2 relaxation, and on the average over the phases accrued
by all spins in the voxel:

S(t) = e´t/T2

ż

mxy(r, t)dr = S0

A

e´iϕ(T)
E

. (4.17)

Dropping the dependence on r and T, this expression can also be written in terms of
the spins’ phase distribution function P(ϕ) [41]:

S(t) = S0

ż 8

´8

P(ϕ)e´iϕdϕ. (4.18)

If diffusion is free and homogeneous, P(ϕ) is Gaussian, and Equation 4.18 reduces
to:

S(t) = S0 exp
(

´
1
2

@

ϕ2(T)
D

)
, (4.19)

from which one recovers 4.12 [41]. Expressions like 4.17 and 4.18 are ubiquitous in
diffusion MRI, and will appear again later on in this and the next chapter.

4.3 Measuring diffusion with MR

Diffusion MR experiments are performed by controlling the gradient g(t) strength
temporal profile. By doing so, the MR signal can be sensitised to different aspects of
the diffusion process. The material presented in this section deals with one partic-
ular pulsed-gradient spin-echo (PGSE) experiment which is still the most employed
method for measuring diffusion. In the next chapter, the focus is placed instead on
diffusion measurements performed with general time-varying magnetic fields.

The Stejskal-Tanner experiment

Although introduced almost 60 years ago, the Stejskal-Tanner spin-echo experiment
is still the workhorse for most diffusion MRI experiments. A variation of the PGSE
sequence is depicted in Figure 4.4. It involves two rectangular gradient pulses of
duration δ before and after the 180˝ refocusing pulse, separated by a time ∆ ´ δ. This
separation is referred to as the diffusion time. The b-value for this sequence is obtained
by inserting the gradient profile into 4.14, which gives:

b = γ2g2δ2(∆ ´ δ/3), (4.20)

where g = ||g||.
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4.3. Measuring diffusion with MR

0 𝑇𝐸2 𝑇𝐸

90𝑜 180𝑜 𝑞 = 𝛾𝑔𝛿

δ

Δ

g(t)

t

RF pulse

echo

g

Stejskal-Tanner pulse sequence

Figure 4.4: Diagram for the Stejskal-Tanner pulse sequence for measuring dif-
fusion. The key players are the two pulsed field gradient blocks placed before
and after the 180˝ RF refocusing pulse. The duration, strength, and separation
of the gradient pulses are given by the δ, g, and ∆ parameters, respectively.

The narrow-pulse approximation and q-space

The success of the Stejskal-Tanner sequence is due to the fact that when δ is very
short, diffusion during the application of the gradient pulses can be neglected. This
is known as the narrow-pulse approximation. The idea is that the first gradient pulse
will impart a phase shift on each spin depending on their position which will be
reverted by the second gradient pulse if the spin does not move during the diffusion
time. Conversely, if the spin changes location in between the gradient pulses, it will
accumulate a net phase shift based only on the magnetic field experienced at its initial
and final positions.

Even though the narrow pulse condition is rarely realised in practice, it offers a the-
oretical framework under which the solution to the Bloch-Torrey equation can be
found for diffusion processes other than the free and homogeneous case. The MR
signal attenuation due to diffusion processes only, E(q), is given by [9]:

E(q) =
ż

ρ(r0)

ż

P(r1, ∆|r0)e´iq¨(r1´r0)dr1dr0, (4.21)

where ρ(r0) is the spin density at r0, and q = γgδ. By introducing the ensemble
averaged propagator (EAP) P(r, ∆) =

ş

ρ(r0)P(r0 + r, ∆|r0)dr0, where r = r1 ´ r0 is
the net displacement variable, equation 4.21 can be rewritten as

E(q) =
ż

P(r, ∆)e´iq¨rdr. (4.22)

Equation 4.22 relates the MR signal to the EAP via Fourier transform. Similarly to
what is done for MR imaging, where the signal is sampled in k-space, the MR signal
decay due to diffusion is sampled in q-space [42]. In the small q regime, only the
bulk content of the diffusion process is accessed, whereas the high q regime contains
the fine details. Recovering the EAP by inverse Fourier transform of E(q), and thus
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4. DIFFUSION MAGNETIC RESONANCE IMAGING

obtaining an image of displacements, is called q-space MRI [43], [44]. However, due to
the high number of samples required for the inversion, this technique is almost never
feasible in practice.

Long pulses: centre of mass propagator

As the duration δ of the gradients in the Stejskal-Tanner sequence is prolonged, the
narrow-pulse approximation becomes invalid. Mitra and Halperin [45] showed that
for finite-pulse widths, the diffusion MR signal is described by a centre-of-mass prop-
agator rather than a diffusion propagator [46]. This propagator describes the proba-
bility that a trajectory having a certain centre of mass during the first gradient pulse
ends up having a trajectory with another centre of mass during the second gradient
pulse. By inserting the g(t) for the Stejskal-Tanner sequence into Equation 4.15 one
obtains:

ϕ(r, ∆ + δ) = γg ¨

(
ż δ

0
r(t)dt ´

ż ∆+δ

∆
r(t)dt

)
= q ¨

(
1
δ

ż δ

0
r(t)dt ´

1
δ

ż ∆+δ

∆
r(t)dt

)
,

(4.23)

where q = γgδ. The quantity rδ
COM(τ) = 1

δ

şτ+δ
τ r(t)dt is the centre-of-mass (COM)

for a trajectory of duration δ. The MR signal decay due to diffusion is then given by:

E(q) =
B

e´iq¨[rδ
COM(0)´rδ

COM(∆)]
F

, (4.24)

where the average is taken over all the spins’ trajectories.

Diffusion Tensor Imaging

If diffusion is free and homogeneous, the diffusion propagator is Gaussian, and the
signal measured with the Stejskal-Tanner pulse sequence reduces to

S = S0e´b nTDn, (4.25)

where b is the b-value given in Equation 4.20 and n is the vector giving the direc-
tion of the diffusion measuring gradient g = ||g||n. The diffusion tensor D and the
non-diffusion-weighted signal S0 can be estimated by collecting data with diffusion-
sensitive gradients applied along at least six non-collinear directions and one mea-
surement without diffusion weighting [10]. From the estimated diffusion tensor, ro-
tational invariants can be obtained from the eigenvalues of D. These quantities do
not depend on the orientation of the laboratory frame in which the tensor is mea-
sured. Commonly employed ones are the mean diffusivity (MD), axial diffusivity
(AD), radial diffusivity (RD), and fractional anisotropy (FA):

MD = (λ1 + λ2 + λ3)/3 (4.26)

AD = λ3 (4.27)

RD = (λ1 + λ2)/2 (4.28)

28



4.3. Measuring diffusion with MR

FA =

a

(λ1 ´ λ2)2 + (λ1 ´ λ3)2 + (λ2 ´ λ3)2
b

2(λ2
1 + λ2

2 + λ2
3)

, (4.29)

where it is assumed that λ3 ě λ2 ě λ1. Maps of fractional anisotropy can be color-
coded using a red-green-blue (RGB) scheme according to the direction given by the
eigenvector associated with the main eigenvalue, e3. These images are referred to
as direction-encoded fractional anisotropy (DEC-FA) maps. In brain imaging, blue
encodes for the superior-inferior direction, green for the anterior-posterior direction,
and red for the left-right direction. Example maps of MD, AD, RD, FA, and DEC-FA
for a human brain are shown in Figure 4.5.

MD AD RD FA DEC-FA

Figure 4.5: Example of scalar invariants obtained from the diffusion tensor:
mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), frac-
tional anisotropy (FA), and direction-encoded fractional anisotropy (DEC-
FA). MD gives an average measure of diffusivity, whereas AD and RD quan-
tify the diffusivity along the main tensor axis and the directions orthogonal to
it, respectively. FA quantifies the variance between the tensor’s eigenvalues
which expresses its anisotropy. With respect to brain imaging, this quantity is
often high along the main neural tracts connecting different areas of the brain,
with the orientation of the tracts given by the DEC-FA (blue for the superior-
inferior direction, green for the anterior-posterior direction, and red for the
left-right direction).

The apparent diffusion coefficient and apparent diffusion
tensor

When diffusion is not free, the spins’ phase distribution considered in 4.18 is in gen-
eral not of Gaussian form, and the diffusion process cannot be accurately described
via the diffusion coefficient or the diffusion tensor [47]. This happens, for example,
when particles encounter barriers such as cell membranes, or are diffusing in a tor-
tuous intra-cellular space, see Figure 4.6. For small diffusion weighting gradients,
diffusion can still be considered Gaussian though slowed down. This slowdown is
often represented with an apparent diffusion coefficient (ADC) or apparent diffusion tensor
(Dapp).
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4. DIFFUSION MAGNETIC RESONANCE IMAGING

t

r

RESTRICTED

FR
EE

HIN
DE
RE
D

Figure 4.6: Mean squared displacement
@

r2D

for free, hindered, and restricted
diffusion as a function of time. For free diffusion, the slope of the curve corre-
sponds to the diffusion coefficient, and it is time-independent. For hindered
and restricted diffusion, the slope is also a straight line for short diffusion
times (before the particles can experience hindrances/restrictions), and then
deviates from this behaviour. For hindered diffusion, the dependence appears
linear at long times though with a reduced diffusion coefficient. For restricted
diffusion, the mean squared displacement reaches a plateau given by the re-
striction size, and the diffusion coefficient appears to be 0.

A formal explanation can be given by considering the cumulant expansion of the
exponential factor in equation 4.17 up to the fourth order:

ln(S(t)/S0) « ´ 1
2

c2 +
1
24

c4, (4.30)

where the odd terms vanish due to the refocusing condition [48]. The coefficients for
the two cumulants are

c2 = xφ(T)2y (4.31)

and
c4 = xφ(T)4y ´ 3xφ(T)2y2, (4.32)

respectively [48], [49]. For g Ñ 0, the quadratic term dominates the series. This
regime is what is referred to as the Gaussian Phase Approximation (GPA). Under the
GPA, all terms higher than the quadratic one are neglected, and the signal is given
by:

S(t) « S0 exp
(

´ 1
2

@

φ2(T)
D

)
. (4.33)
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This Gaussian distribution of the spins’ phase can be captured by an apparent diffu-
sion coefficient:

S(t) = S0 e´b ADC. (4.34)

Note that contrary to the diffusion coefficient D, the ADC is influenced by the geome-
try of the medium and by the parameters of the experiment (such as the orientation of
the diffusion measurement and the diffusion time). It is thus not an intrinsic property
of the tissue.

For free diffusion, the phase distribution is Gaussian, and the terms higher than the
quadratic one disappear, so that the relation in 4.34 is correct (and analogous to Equa-
tion 4.19). To simplify the notation, in the remainder of this thesis the distinction
between ADC and D (and between D and Dapp) is neglected.

Diffusional Kurtosis

As the gradient strength increases, the contribution of the higher order terms in 4.30
cannot be neglected when diffusion is not free; this is typically seen as a deviation
from a straight line when plotting ln(S(t)/S0) as a function of b, see Figure 4.7.

Inclusion of the fourth order cumulant in the signal expression gives the kurtosis
model [47], [50]:

S(t) = S0 exp
(

´ bD +
1
6

b2D2K
)

, (4.35)

where K = c4/c2
2 is the diffusional kurtosis. This parameter quantifies the degree of

non-Gaussian diffusion, without however being specific to the underlying cause [50],
[51].

Figure 4.7: Logarithmic MR signal decay as a function of b for the free diffu-
sion (dashed-blue line) and kurtosis (orange line) models. At low b-values,
both signals decay in a straight fashion. As b increases, the effect of the kurto-
sis is no longer negligible and the signal deviates from the straight line.
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Similarly to the case of anisotropic diffusion, the directional dependence of the kur-
tosis can be captured with a tensorial object. The kurtosis tensor Wijkl is a fully sym-
metric fourth-order tensor; of its 81 elements, only 15 are unique due to the complete
interchangeability of the indexes. Estimation of W is achieved in Diffusional Kurtosis
Imaging (DKI) [50].

4.4 Diffusion within confined pores

The strong time-dependence of the diffusion process as shown in Figure 4.6 is a hall-
mark of restricted diffusion [52], [53]. In the narrow-pulse regime for a Stejskal-
Tanner experiment, the size of the restricting geometry can be recovered thanks to
the so-called diffusion-diffraction phenomena at high q-values [54], [55] provided
that δ ăă a2/D, where a is the characteristic size of the restriction, and that ∆ is
long enough so that the particles can explore the pore space many times. Different
methods and formalisms have been developed to study the problem of restricted dif-
fusion when these conditions are not met, and when general gradient waveforms are
employed [56]–[59]. While there are expressions for computing the MR signal for par-
ticles diffusing in simple symmetric geometries (slab, cylinder, sphere), the analysis
of more general 3-dimensional pore shapes is difficult.

The confinement tensor

The alternative that was considered in this thesis (paper IV) consists of picturing dif-
fusion as occurring in a potential landscape, where the confining potential takes the
parabolic form [60]:

V(r) =
1
2

k r2, (4.36)

where k is the stiffness of a spring. The diffusing spins thus experience an external
(Hookean) restoring force that prohibits them from escaping to infinity (as instead
implied in free diffusion). This is seen in the (1-dimensional) mean squared displace-
ment which takes the form:

x(r1 ´ r0)
2y =

2
C
(1 ´ e´DCt). (4.37)

In the limit of t Ñ 8, this mean squared displacement approaches the constant value
of 2/C, where C is a measure of confinement, C = k

kBT , having units of inverse
squared length.

The resulting model for the 3-dimensional anisotropic diffusion process consists of a
tensorial quantity, the confinement tensor, which captures the geometrical features of
the restricting pore, and an effective diffusivity which can be expressed either through
a tensorial (akin to the diffusion tensor) or scalar quantity. The MR signal decay for
the confinement tensor model is given by [60]:

E = exp
(

´ Deff

ż t f

0
|u(t)|2 dt

)
exp

(
´

Deff
2

u⊺(0)Ω´1 u(0)
)

(4.38)
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with

u(t) = γ

ż t f

t
e´Ω(t1´t)g(t1)dt1 (4.39)

and
Ω = Deff Ceff, (4.40)

where Deff is the effective (isotropic) diffusivity, and Ceff is the (effective) confinement
tensor. Note that conversely to the apparent diffusion tensor, where the geometry
of the medium slowing down the diffusion becomes entangled with the diffusivity
property, in this model the two are separated. Figure 4.8 shows examples of "mean
confinement" (Tr(Ceff)) and Deff maps for an axial slice of a healthy brain [26]. Figure
4.9 shows axial slices of mean confinement and effective diffusivity for a brain tu-
mour. Both results were obtained from non-linear fittings of the confinement tensor
model to diffusion MRI data acquired with generalised gradient waveforms.

DeffTr(Ceff)

0.0 0.04 [µm-2] 0.0 3.5 [µm2 / ms]

Figure 4.8: Confinement tensor trace (left) and effective diffusivity (right)
maps for a healthy brain. The trace gives a measure of mean confinement;
It is high in white matter where water experiences the tight restriction of the
axons’ membranes, and low in the ventricles where water diffuses freely. The
effective diffusivity is akin to the axial diffusivity in Figure 4.5. This is ex-
pected since with the confinement model the diffusivity is decoupled from the
geometry of the pore, thus it reflects a "free" diffusivity (as it is along fibers in
DTI) rather than a mean diffusivity.

For the Stejskal-Tanner sequence, the signal given by the confinement tensor model
can be computed analytically [60]:

E = e´gTAg, (4.41)

with A being the real symmetric matrix:

A = Deffγ
2Ω´3

[
(1 ´ e´Ω∆)(1 ´ e´Ωδ)2eΩδ ´ (1 ´ e´2Ωδ)eΩδ + 2Ωδ

]
. (4.42)

Both 4.38 and 4.41 highlight the different time-dependence of the model on the se-
quence parameters, compared to the free diffusion scenario (see Equation 4.12) where
everything condenses into b. Figure 4.10 shows that this time dependence is consis-
tent with that of restricted diffusion.
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Figure 4.9: Invariants from the confinement tensor model for axial slices of a
brain tumour identified by pathology as a grade 4 glioblastoma. The trace of
the confinement tensor suggests low restriction around the tumoral zone, with
the elevated diffusivity shown in the Deff map possibly indicating peritumoral
oedema. Data were acquired with ethical permission EPM 2020 ´ 01404.

a = 3 µm

a = 5 µm

a = 8 µm

a = 100 µm

Figure 4.10: Dashed lines: MR signal for particles diffusing between two par-
allel plates separated by a distance 2a, as a function of the diffusion time
∆. The signal Erestricted is computed according to equation 32 in [61], and
it is used here as ground truth. The solid lines (Econfinement) correspond to
the signal predicted using equations 4.41 and 4.42 for the confinement ten-
sor model with C = 12/(2a)2. The gradients’ pulse width and strength were
set to δ = 10 ms and g = 80 mT/m, while the diffusion coefficient was set to
D = 1 µm2/ms. The plot highlights that the confinement model possesses a
time dependency similar to that of restricted diffusion. The plot also shows
that the confinement model accommodates free diffusion (Efree) when the re-
strictions are not felt by the diffusing particles.
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Effective potential for restricted diffusion

The propagator for diffusion taking place in a confining potential is also of Gaus-
sian form [62], [63], and the quadratic dependence on the magnetic field gradient’s
strength seen in 4.41 highlights that the confinement tensor model is based on the
Gaussian phase approximation. Therefore, the contributions of higher order terms
are neglected. Nevertheless, there are relevant experimental scenarios, often realised
in clinical settings, for which the confinement tensor becomes the effective model for
restricted diffusion.

The simple case concerns the use of small gradient strengths; as discussed in the pre-
vious section, for g Ñ 0 the spin phase distribution is approximately Gaussian, and
therefore the confinement model would perfectly represent the data. Especially for
experiments considering diffusion time-dependence, the parabolic potential would
provide a superior representation of the diffusion process compared to a slowed free
diffusion [64].

The second relevant scenario concerns measurements performed using long pulses.
In this case, as exemplified in Equations 4.23 and 4.24, the signal becomes sensitive
to the centre of mass of the trajectories rather than to the instantaneous positions. For
particles trapped in a pore, the distribution of the centre of masses of the trajectories
approaches a Gaussian as δ Ñ 8 [40], [65], [66], which renders the MR signal insensi-
tive to all the fine features of the restricting geometry. The only surviving property is
the force that does not allow the particles to escape, which is perfectly captured by a
Hookean force [65]. In paper IV, we showed that currently employed diffusion mea-
surements with general time-varying magnetic field gradients fall in this long pulse
category, thus endorsing the use of the confinement tensor for analysing such data.
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5
Mapping heterogeneity with
generalised diffusion
gradients

A powerful aspect of diffusion MRI is that resolution is primarily determined by
the distance traveled by the water molecules during the experiment, rather than by
the voxel-size of the reconstructed image. Typical diffusion MRI measurements per-
formed in clinical settings probe the random motion of water molecules over hun-
dreds of milliseconds. Considering a representative diffusion coefficient of 10´9

m2/s for brain tissue, the mean squared displacement given by 4.6 would approxi-
mately be xr2y « 10´10 m2, resulting on an average particle displacement in the order
of 10µm. This happens to coincide with the typical cell size, entailing that the MR
signal resulting from this molecular motion is sensitive to cellular structures.

However, all the spins residing within the approximately 2 ˆ 2 ˆ 2 mm3 voxel will
contribute to the averaged signal. In DTI, this averaged signal is used to obtain a
global measure of diffusion anisotropy. In DKI, the signal is used to estimate a devi-
ation from Gaussianity, though without being specific to the underlying cause. This
chapter introduces diffusion measurements by means of generalised gradient wave-
forms which efficiently sample diffusion along different directions simultaneously,
allowing the contributions to the MR signal of different sources of intravoxel hetero-
geneity to be separated. Under the assumption of free diffusion, these generalised
waveforms are typically designed to achieve specific shapes of the measurement B-
tensor. Thus, one often refers to them as tensor-valued diffusion encoding.

5.1 Tensor-valued diffusion encoding

As seen in the previous chapter, diffusion MRI is performed by sampling q-space. The
dephasing vector q(t) encompasses the q-space trajectory determined by the time-
varying magnetic field gradient g(t) employed to measure diffusion:

q(t) = γ

ż t

0
g(t1)dt1. (5.1)
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For free diffusion, all the experimental parameters condense into the measurement
B-tensor B defined in Equation 4.14 [67]:

B =

ż TE

0
q(t) b q(t)dt. (5.2)

Similarly to the diffusion tensor, the B-tensor is a symmetric positive semi-definite
tensor. For Stejskal-Tanner measurement, this tensor is of rank-1, meaning that only
one of the eigenvalues is non-zero. In tensor-valued dMRI, the gradient waveforms
g(t) are designed to yield measurement tensors of rank 1, 2, and 3 [68].

Typically, measurement tensors of rank 1 are referred to as linear tensor encoding
(LTE), axisymmetric measurement tensors of rank 2 as planar tensor encoding (PTE),
and rank 3 isotropic measurement tensors as spherical tensor encoding (STE). The
nomenclature is based on the respective shapes of the B-tensor ellipsoid. Figure
5.1 shows the magnetic field gradient waveforms, q-space trajectories, and result-
ing B-tensors for the Stejskal-Tanner experiment and tensor-valued diffusion pulse
sequences.

Note that different shapes of the B-tensor can also be achieved by sequential repeti-
tions of the pulse gradients used in the Stejskal-Tanner experiment. For example, by
adding another pair of pulses, one can achieve planar B-tensors [11], and by adding
a third pair of pulses one achieves spherical tensor encoding [69]. Especially the
use of two pairs of pulses, in the so-called double diffusion encoding (DDE) experi-
ments, has found large employment since it provides information not achievable with
a single pair of pulsed gradients [14], [15], [70]–[73]. The advantage of adopting the
generalised gradient waveforms presented here is that they allow for measurements
more easily realisable in clinical settings, where the limited strength of the gradient
system would not allow for achieving significant b-values in short echo times when
repeating the pulsed gradients multiple times.
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Figure 5.1: Magnetic field gradient waveforms, q-space trajectory, and mea-
surement B-tensor ellipsoids for Stjeskal-Tanner pulse sequence, linear tensor
encoding, planar tensor encoding, and spherical tensor encoding. The q-space
trajectories were obtained from the gradient waveforms according to Equa-
tion 5.1, and were color-coded to show the time evolution. Due to the refocus-
ing condition, all trajectories start and end at 0. The B-tensors were obtained
from the q-trajectories according to 5.2. For Stejskal-Tanner and LTE, only one
eigenvalue of the B-tensor is non-zero, and the shape is thus a stick (for visu-
alization purposes, the 0 eigenvalues were replaced with a non-zero value).
For PTE, two eigenvalues are non-zero, thus the B-tensor is a disc/pancake.
For STE, all the eigenvalues are equal and non-zero thus the B-tensor ellipsoid
is a sphere.
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Connection between measurement tensors and diffusion
patterns

A simple intuition behind the link between the shape of the measurement tensor and
the probed diffusion pattern is based on the tensor parameterisations expressed via
Equations 2.10 and 2.13 which were presented in Chapter 2. Recall that the MR signal
depends on the product between the measurement B-tensor and the diffusion tensor:

S = S0e´B:D. (5.3)

Given an axisymmetric measurement tensor B and an axisymmetric diffusion tensor
D, by expressing the diffusion tensor in the eigenbasis of the measurement tensor,
their product becomes [28]:

B : D = bDiso

(
1 + κbκD[3cos2(θ) ´ 1]

)
, (5.4)

where Diso is the isotropic component of D, Diso = Tr(D)/3, κb and κD are defined as
in Expression 2.9, and θ is the angle between the major axis of symmetry of the two
tensors. From Equation 5.4 one can see that spherical encoding (κb = 0) selectively
probes the isotropic component of D, while other shapes of the encoding tensor (κb ‰

0, κb = 1 for LTE and κb = ´0.5 for PTE) conflate information regarding the size,
shape, and orientation of D. Overall, the idea is that by using different shapes of
the measurement tensor, different parts of the diffusion tensor can be probed, thus
probing specific patterns.

5.2 Tensor distributions as a proxy to intravoxel
heterogeneity

The mismatch between the millimeter-scale voxel size and the micrometer-scale sen-
sitivity of the diffusion measurements can be bridged by representing diffusion in
each pore within the voxel with a tensorial quantity. As such, the voxel-level signal
is assumed to be the sum of the contributions from spin-packets residing in differ-
ent non-communicating environments [74], [75]. Under the GPA, each environment
can be represented with a diffusion tensor, and the resulting signal arising from a
distribution of diffusion tensors (DTD) reads as [22]:

S(B) = S0

ż

D
P(D)e´B:DdD, (5.5)

where P(D) is the distribution function for the stochastic variable D. This func-
tion essentially weights the contribution of each diffusion tensor in the distribution
towards the voxel-level signal. Note that if there is no heterogeneity in the voxel,
meaning that the diffusion process can be captured by a global diffusion tensor, P(D)
is a delta function, and Equation 5.5 reduces to 5.3.

Equation 5.5 relates the MR signal to the Laplace transform of P(D), implying that
the DTD can in principle be recovered by inverse transformation of the MR signal
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acquired with a family of measurement tensors Bn, n = 1, ..., N. Once at hand, statis-
tical descriptors of the DTD, such as means, variances, and covariances, can be used
to characterise the intravoxel heterogeneity [23], [76], [77]. However, the numerical
inversion of the Laplace transform from a discrete sampling of the signal is known
for being an ill-posed problem [78]–[80]. For the problem at hand, this results in
the following undesirable properties: in general, the obtained solution is not unique,
meaning that many different DTDs will represent the signal from the employed mea-
surement tensors equally well; Subtle variations in the input signal, for example due
to noise, will correspond to a largely different solution. Schemes for the numerical
inversion of the Laplace transform are discussed in the next chapter.

To stabilise the inversion of Equation 5.5, enough information needs to be encoded
into S(B) to promote differentiation between different heterogeneities in the voxel.
Figure 5.2 shows that this cannot be achieved with diffusion measurements per-
formed with the Stejskal-Tanner sequence only. The example depicts two different
voxels which would yield identical signals if measured with linear tensor encoding
only, and one would therefore measure the same kurtosis in both cases despite the
different underlying sources. For this reason, the diffusion signal produced with
Stejskal-Tanner type of measurements has sometimes been referred to as ’remark-
ably unremarkable’ [75], [81], and a plethora of different measurements schemes have
been proposed to achieve higher specificity to different diffusion features [11]–[16],
[72], [82]. For example, the two voxels can be torn apart when measurements with
spherical tensor encoding are added. In paper IV, we argued that adding measure-
ments performed by varying the frequency content of the magnetic field gradient
waveforms could also aid in differentiating between different voxel compositions
when considering distributions of confinement tensors, which are presented later in
the Chapter [60], [83], [84].

S
(B
)

S
(B
)

Figure 5.2: Example of two voxels for which the LTE signal is identical despite
the different sources of heterogeneity. On the left, the system is microscopi-
cally anisotropic, but macroscopically isotropic due to the orientation disper-
sion. On the right, the system is both locally and globally isotropic, with dis-
persion in mean diffusivity. The two collections of tensors were designed to
yield the same mean diffusion tensor. As shown in the plots, the LTE signal
(κb = 1) is the same in the two cases, whereas the STE signal (κb = 0) differs.
As detailed in Section 5.3, this extra information can be used to tell the two
cases apart by resolving the sources of intravoxel heterogeneity.
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Wishart-distributed diffusion tensors

Even when employing diffusion measurements covering different shapes, sizes, and
orientations of the B-tensors (and possibly employing gradient waveforms with var-
ied frequency content), the inversion of the Laplace transform in Expression 5.5 re-
mains a remarkably difficult problem. One way of getting around this problem is
to impose a known form for the probability distribution function P(D) for which
the Laplace transform can be computed analytically. For example, a natural choice
is to set P(D) to follow the Wishart distribution [85], since it is a family of distri-
butions for symmetric positive semi-definite random matrices, which can represent
covariance matrices like the diffusion tensor [86]. Indeed, using this distribution as
an extension to DTI was considered in [22] for measurements performed with the
Stejskal-Tanner pulse sequences. For diffusion measurements performed with tensor
encoding, the Gamma distribution (which the Wishart distribution generalises) has
also been employed to characterise tissue heterogeneity in the healthy and diseased
human brain [20], [24], [87].

A symmetric d ˆ d positive semi-definite random matrix D is said to follow the central
Wishart distribution Wd(p, Σ) if its probability density function is given by:

p(D) =
|D|(d´p´1)/2

|Σ|p/2 2dp/2 Γd(
p
2 )

e´ 1
2 Tr(Σ´1D), (5.6)

where the scale matrix Σ belongs to the manifold of d ˆ d positive semi-definite matri-
ces, the scale parameter p represents the degrees of freedom of the distribution, and
Γd is the multivariate gamma function. d gives the dimensionality of the problem;
for diffusion in three dimensions, d = 3. A sample random matrix drawn from the
Wishart distribution Wd(p, Σ) is such that:

D =

p
ÿ

i=1

xixTi , xi „ Nd(0, Σ), i = 1, ..., p (5.7)

where Nd(0, Σ) is the d-variate normal distribution defined by the covariance matrix
Σ. The mean of the Wishart distribution is directly proportional to this covariance
matrix:

xDy = pΣ. (5.8)

The diffusion-weighted MR signal for Wishart-distributed diffusion tensors can be
obtained by inserting 5.6 into 5.5, which yields [40]:

S(B) = |I + 2BΣ|
´p/2 , (5.9)

where | ¨ | indicates the determinant. In paper I, this expression generalised to the
case of non-central Wishart distributed diffusion tensors [88], [89] was used to sim-
ulate the diffusion-weighted MR signals for given measurement tensors B and scale
matrices Σ. These signals were then employed to test the performance of a developed
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framework for the estimation of the mean and covariance of the DTD from diffusion
data acquired with general time-varying magnetic field gradients [17], [89], [90].

5.3 Q-space trajectory imaging

Another way of getting around the problem of numerically inverting the Laplace
transform in 5.5 was presented by Westin et al. in [17]. It was shown that by con-
sidering the cumulant expansion of Equation 5.5, one could estimate the mean and
covariance of the DTD from diffusion measurements performed with different tensor
encoding shapes. The technique was named q-space trajectory imaging (QTI).

Equation 5.5 can be interpreted in terms of the expected value of the function of the
stochastic variable D:

S(B)/S0 =
A

e´B:D
E

. (5.10)

The term on the right side of the equation reads as the moment-generating function
of D. The terms of the cumulant expansion are given by the Taylor expansion of the
logarithm of this function for B : D Ñ 0. The Taylor expansion of

@

e´B:DD

gives

A

e´B:D
E

«

B

1 ´ B : D +
1
2

Bb2 : Db2
F

= 1 ´ B : xDy +
1
2

Bb2 :
A

Db2
E

. (5.11)

By taking the logarithm of the expression above and using ln(1 + x) « x ´ 1
2 x2, the

expansion, limited to the second order terms, is found to be:

ln
(A

e´B:D
E)

« ´B : xDy +
1
2

Bb2 :
A

Db2
E

´
1
2

Bb2 : xDy
b2 . (5.12)

Therefore,

ln (S(B)) « ln(S0) ´ B :
@

D
D

+
1
2

Bb2 :
(

@

Db2D

´
@

D
Db2

)
. (5.13)

One recognises that the first cumulant corresponds to the mean of the distribution,
xDy = pD, while the second cumulant corresponds to the 4-th order covariance tensor

C =
A

(D ´ pD) b (D ´ pD)
E

. The C tensor can be seen to have major and minor
symmetries, thus 21 of its elements are independent. Therefore, C can be represented
by a 6 ˆ 6 symmetric matrix C. The covariance tensor can also be expressed in terms
of the second moment tensor M = xD b Dy =

@

Db2D

:

C = M ´ xDy b xDy = M ´ xDy
b2 . (5.14)

Ignoring the higher order cumulants corresponds to considering the diffusion tensor
distribution to be Gaussian, and the MR signal in 5.10 can be written as:

S(B) = S0e´B : D+ 1
2 B : C, (5.15)
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where B = Bb2. Clearly, relying only on the first two terms of the expansion to
represent the signal may bias the results, when the higher-order cumulants are not
null. For this approximation to hold, only measurements performed at low b values
should be considered.

Similarly to what is done in DTI, scalar invariants relating to features of the mi-
crostructure can be obtained from pD and C. From pD the same invariants as from the
diffusion tensor can be obtained. These were presented in Section 4.3 and depicted
in Figure 4.5. Scalar invariants from the covariance tensor can be computed by inner
products between C and 4-th order tensors borrowed from the field of mechanics [91].

Scalar invariants from the covariance tensor

By analogy with the 4-th order elasticity tensor [91]–[93], the isotropic, shear, and
bulk variances can be obtained from the covariance tensor C by inner products with
three fourth-order tensors (which have the same symmetries as C) [17]:

Eiso, where only the Eijij elements have non zero value, Eijij =

$

’

&

’

%

1
3

if i = j,

1
6

if i ‰ j
(5.16)

Ebulk = Eiso b Eiso, with Eiso =
1
3

I (5.17)

Eshear = Eiso ´ Ebulk (5.18)

The isotropic, bulk, and shear variances in diffusivity can be obtained from the co-
variance tensor as:

Vbulk = C : Ebulk (5.19)

Vshear = C : Eshear (5.20)

Viso = Vbulk + Vshear = C : Eiso (5.21)

Note that, as alluded to in Figure 5.2, the bulk and shear components cannot be ob-
tained when only LTE measurements are employed. Disentangling these two vari-
ances’ contribution to the total isotropic variance requires measuring diffusion with
at least LTE and STE. The bulk part of the variance relates to the spread in size or
mean diffusivity between different environments. If each tensor’s mean diffusivity
is equal this variance would be zero, while its value would grow as the dispersion
between each domain’s size increases. The shear variance is instead sensitive to dif-
ferences in shapes and orientations between the different environments. Returning to
the example presented in Figure 5.2, the Viso for the voxel on the left would entirely
be determined by Vshear, as there is no variation in compartment size, while for the
voxel on the right, it would be fully determined by Vbulk, since there is no anisotropy
nor orientation dispersion. An example of how these variances look for a healthy
brain is shown in Figure 5.3.

Note that Vshear is a composite variance determined by a microscopic and a macro-
scopic component [17]:

Vshear = C : Eshear =
@

Db2 : EshearD

´
@

D
Db2 : Eshear = VµA ´ VMA. (5.22)
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The microscopic shear variance VµA refers to a measure of microscopic anisotropy
unconfounded by the orientation of each pore, while the anisotropy measured by
macroscopic shear variance VMA reflects the degree of orientation coherence of the
microenvironments.

These variances can be reconducted to more intuitive parameters of the microstruc-
ture, all taking value in the range [0, 1]. Here the focus is posed in particular on the
microscopic fractional anisotropy µFA [11], [24], [94]–[97], orientation coherence Cc,
and variance in mean diffusivity CMD, since they were employed (together with the
metrics from pD) in papers I, II, and III:

µFA2 =
3
2

M : Eshear

M : Eiso (5.23)

Cc =

(
pDb2 : Eshear

) (
M : Eiso)

(
pDb2 : Eiso

) (
M : Eshear

) =
FA2

µFA2 (5.24)

CMD =
C : Ebulk

M : Ebulk (5.25)

In words, µFA is a measure of local anisotropy unconfounded by dispersion in orien-
tation, meaning that it would yield a high value when the local diffusion tensors are
anisotropic, irrespectively of their relative orientation. Cc gives a measure of global
alignment of anisotropic tensors: it is 1 when the anisotropic compartments are co-
herently aligned, and 0 when they are instead randomly oriented. The definition
in 5.24 establishes the relation between the local (µFA) and global (FA) anisotropy.
When the compartments in the voxel share a common orientation, Cc = 1, and these
two measures coincide. Conversely, when anisotropic compartments are out of align-
ment, µFA will retain a high value while FA decreases due to a reduction in Cc. Lastly,
CMD is simply the normalised bulk variance that was previously described. A picto-

Viso Vbulk Vshear

= +

Figure 5.3: Example maps of variances obtained from the covariance tensor C

for a healthy brain. The total isotropic variance, Viso, shows non-zero values
everywhere in the brain except in the ventricles, where no heterogeneity is ex-
pected. Most of the variance in mean diffusivity Vbulk is found at the interface
between different tissue types, whereas the shear variance Vshear is predom-
inant in white matter, where anisotropy and orientation effects dominate the
MR signal.
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Figure 5.4: Different synthetic voxels and associated diffusion metrics (MD,
CMD, FA, µFA, and Cc) obtainable with QTI. The red arrows show the direc-
tion along which the indicated metric increases in value.

rial representation how these and the parameters from pD change for different tissue
compositions is presented in Figure 5.4. Figure 5.5 shows instead example brain im-
ages of µFA, Cc, and CMD. The accuracy and precision of these metrics as recovered
via QTI were recently discussed. It was reported that in voxels presenting large varia-
tions in compartment size and/or high degree of orientation dispersion these metrics
tend to be innacurate, possibly because of the contributions of the higher order cu-
mulants [98]–[100]. However, these situations should not be commonly encountered
when studying the brain white matter.
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µFA Cc CMD

Figure 5.5: Example of scalar invariants obtained from the covariance ten-
sor C for a healthy brain. µFA has elevated values in essentially all the brain
parenchyma, while high values in orientation coherence Cc are found in white
matter where axons fibre bundles are coherently aligned. CMD is the nor-
malised variance in mean diffusivity.

5.4 Distributions of confinement tensors

In paper IV we argued that it is quite paradoxical to consider a compartmentalised
picture of the tissue microstructure when diffusion is modelled as free (i.e. with a
diffusion tensor) in each compartment. Further, it was shown via simulations that for
current clinical tensor-valued diffusion measurements [26], the employed gradient
waveforms are effectively long pulsed gradients [84]. Thus, indeed the net displace-
ment of particles within each environment is well captured by a Gaussian distribu-
tion, but this Gaussian is the one implied by the confinement tensor model and not by
the diffusion tensor. This was particularly evident for STE measurements, where the
modulation imparted on the MR signal by the restricting geometry for different ori-
entations of g(t) cannot be captured by a diffusion tensor, since the spherical B-tensor
will be identical irrespective of the rotation of the waveform. Conversely, the mod-
ulation is perfectly described by the confinement tensor, which we thus suggested
as a better candidate to represent each pore in a compartmentalised picture of the
microstructure.

For a joint distribution of confinement tensors and effective diffusivities with proba-
bility density P(C, D), the signal is given by:

S(g(t)) = S0

ż

E (g(t), C, D)P(C, D)dCdD, (5.26)

where E(g(t), C, D) is the signal implied by the confinement tensor model given by
Equations 4.38, 4.39, and 4.40. For brevity, the subscripts for the effective confinement
tensor and effective diffusivity are hereby dropped.

Using the algorithm described in the next chapter, discrete joint distributions of ax-
isymmetric confinement tensors and effective diffusivities can be estimated from the
data by numerically inverting the Laplace transform in Equation 5.26. According to
the definitions given in Section 2.1, axisymmetric confinement tensors are parame-
terised by a parallel C‖ and a perpendicular CK component, and two angles θ and φ
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defining the orientation of the main axis of symmetry. From the distributions, vari-
ous means E[¨], variances V[¨], and covariances Cov[¨, ¨] can be computed in terms of
the tensors’ shape κC, size Ciso, and diffusivity D. κC and Ciso are defined as in 2.11.
Figure 5.6 shows examples of such statistical descriptors.

Additionally, the space defined by C∥ and CK can be divided into different zones so
that each tensor in the distribution gets mapped to a geometrical shape [23]. The
mapping presented here (and in paper IV) is done so that each pair of C∥ and CK con-
nects to the represented pore shape rather than to the confinement tensor’s shape. For
example, for CK " C∥ the confinement tensor would have a pancake shape, meaning
that diffusion is strongly confined in two directions but not along the main axis of
symmetry. This would correspond to a stick-like pore. Figure 5.7 shows examples of
confinement tensor-effective diffusivity distributions for voxels from the white mat-
ter, gray matter, and ventricles. In the same figure the different zones in the C∥ and
CK and the geometry they map to are displayed. Assigning each confinement ten-
sor in the distribution to a pore shape allows computing the relative fraction of each
geometry found in the voxel. Further, it is possible to compute and display the aver-
age effective diffusivity for each pore shape. Examples of the relative fractions and
per-shape average effective diffusivity are shown in Figure 5.7. According to the
space division considered in the figure, stick-like pores are found in the white mat-
ter, while spheres are mostly located in the gray matter. Free water is found in the
ventricles and spaces surrounding the brain parenchyma, as well as in gray matter.
Note that the free-water condition is determined by simultaneously low C∥ and CK

values, rather than by high diffusivity. By comparing the two panels in the bottom
part of Figure 5.7, the results suggest that geometrically unconfined water can diffuse
at a speed lower than that of free water (which is D0 « 3.0 µm2/ms for water at 37˝

[101]). This is perhaps reflecting unbounded water diffusing in the tortuous extracel-
lular environment. Otherwise, as expected, truly free fast diffusing water is found in
the ventricles and outside the brain parenchyma, with average diffusivity matching
the expected D0 value. Diffusivities inside stick-like pores are found instead to be
around 2.0 µm2/ms.
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Figure 5.6: Statistical descriptors for joint distributions of confinement
tensors-effective diffusivities. Means, variances, and covariances are com-
puted in terms of the isotropic component of the confinement tensor Ciso, its
squared anisotropy κ2

C, and effective diffusivity D. The maps E[Ciso] and E[D]
should correspond to those presented in Figure 4.8 (Trace(Ceff) and Deff, re-
spectively). The variance in effective diffusivity V[D] is similar in spirit to
Vbulk from QTI. However, since geometry and diffusivity are not entangled
in the confinement model, this variance reflects purely a spread in diffusiv-
ity, rather than an indirect variance in size as observed through a change in
diffusivity as measured by Vbulk. The variance in pore size is instead cap-
tured by V[Ciso]. The separation between geometry and diffusivity can also
be observed in the covariance maps. Interestingly, an increase in Ciso, i.e. a
reduction in pore size, is in most cases accompanied by an increase in diffu-
sivity.
The anisotropy maps are instead computed from the eigenvalues of the con-
finement tensors, which in the case of axisymmetry are C‖ and CK. The macro-
scopic anisotropy (MA) is obtained by computing the variance of the eigenval-
ues of the mean confinement tensor of the distribution, while the microscopic
anisotropy (µA) is the average of the eigenvalue variance computed for each
confinement tensor in the distribution. MA is reminiscent of FA, while µA is
the un-normalized version of µFA. The order parameter (OP) is the ratio be-
tween these two, and expresses orientation coherence between the tensors in
the distribution similarly to Cc in QTI.
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Figure 5.7: On top: examples of joint confinement tensor-effective diffusiv-
ity distributions for different tissue types, and birds’ eye view on the C‖-CK
plane where regions are defined to assign each confinement tensors to a dif-
ferent shape. In the C‖-CK-D plots, each dot represents a confinement tensor-
effective diffusivity, with the size indicating the weight in the distribution
and the colour denoting the tensor orientation (red for left-right, green for
anterior-posterior, blue for superior-inferior). The projections of the points on
the three axes are delineated by the contours. On the bottom: fractions of each
pore shape per voxel determined using the C‖-CK space division presented on
top, and average per-fraction effective diffusivity.
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6
Parameter estimation

The content of this final chapter deals with the estimation of model parameters from
data. In particular, the focus is on the problem introduced in Section 5.2 regarding the
inversion of the Laplace transform, and on the estimation of the q-space trajectory
imaging parameters. In the last section, a machine learning approach for solving
both problems is presented along with results on data from brain tumor patients and
COVID-19 survivors.

6.1 Optimisation problems

Estimating model parameters given some data is a form of optimisation where the
goal is to find the set of values for the variables that best describes the observations.
This often involves limiting the search space for the parameters to regions where
these take meaningful values for the problem. A general optimisation problem can
take the form:

minimise
x

f (x)

subject to gi(x) ď bi, i = 1, ..., m
(6.1)

where x P Rk is the vector containing the variables of the model, f : Rk Ñ R is the
objective function, gi : Rk Ñ R are the constraint functions, and the constants bi are
the bounds for the constraints. The problem is said to be linear if both the objective
and the constraint functions are linear. Solving the problem in 6.1 consists of finding
a vector x˚ that yields the minimum value of f (x) while satisfying the constraints.
If a vector x˚ is found, then x˚ = argmin( f (x)). Different classes of optimisation
problems are defined with respect to the type of objective function and constraint in-
equalities. The next two sections present two classes of convex optimisation problems
relevant to this thesis.

Least squares

Least squares problems are frequently encountered in data fitting. The goal is to
find the combination of parameters that minimises the quadratic norm of the vector
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6. PARAMETER ESTIMATION

containing the differences between N observed data points and their prediction based
on the model. The unconstrained problem takes the form:

minimise
x

||η||
2
2 = ||Ax ´ y||

2
2 =

N
ÿ

n=1

(an ¨ x ´ yn)
2, (6.2)

where || ¨ ||2 indicates the Euclidian norm, the matrix A is the design matrix contain-
ing the experimental parameters, and an is the n-th row of A. The elements of the
vector η are called the residuals. The solution to this problem can be found analyt-
ically (knowing that stationary points for this problems correspond to minimising
points) by expanding the objective function and evaluating its derivative to find the
minimum value:

f (x) = xTATAx ´ 2yTAx + yTy

∇ f (x) = 2ATAx ´ 2ATy = 0

ATAx = ATy

x = (ATA)´1ATy,

where the inverse of ATA exists if A has full rank. The least squares problem can
be interpreted in the statistical sense as the maximum likelihood estimation of the
vector x from measurements corrupted by Gaussian noise. When the noise is of un-
equal variance for the different measurements, weights are introduced in the problem
formulation to restore homoskedasticity.

Semidefinite programming

Semidefinite programming (SDP) are constrained linear convex problems of the form
[102]:

minimise
x

cTx

subject to F(x) ľ 0
(6.3)

with

F(x) = F0 +
m

ÿ

i=1

xiFi, (6.4)

where c is the vector containing the observations, F0, ..., Fm are symmetric k ˆ k ma-
trices, and the matrix F(x) is positive semi-definite. Contrary to linear least squares,
there is no analytical solution for SDP problems. However, interior-point (IP) meth-
ods can solve them very efficiently in a few iterations [102]. Moreover, convexity
guarantees that, if found, the vector x˚ minimising the objective function is the global
minimum.

Linear convex (constrained) problems can often be reformulated as SDP, thus exploit-
ing IP algorithms to find the solution. The standard tricks for converting optimi-
sation problems into SDP consist of introducing auxiliary variables and employing
Schur complements [30]. For example, the least squares problem presented above can
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6.2. Numerical inversion of the Laplace transform

be reformulated as:

minimise
tt, xu

t

subject to t ´ xTATAx + 2yTAx ě 0,
(6.5)

where the variable t serves as an upper bound to the objective function, entailing
that by minimising t we also find the minimum to the objective function. Note that
the term yTy was dropped as it is a constant. The product ATA = Q is positive-
semidefinite, and thus Q = PTP for some square matrix P. By substituting c =
´2ATy, the constraint becomes t ´ xTPTPx ´ cTx ě 0. Requiring this is equivalent
to requiring

F(x) =
(

I Px
xTPT t ´ ctx

)
ľ 0, (6.6)

where I is the identity matrix with same size as Q. The equivalency is seen via the
properties of the Schur complements listed in Section 2.2. Since I is positive definite,
then F(x) ľ 0 if and only if t ´ xTPTPx ´ cTx ě 0. This shows that the least squares
problem can be recast as an SDP, with the benefit that constraints can be included in
the optimisation problem via linear matrix inequalities.

6.2 Numerical inversion of the Laplace transform

As shown in the previous chapter, in the absence of exchange the MR signal is the
average of the contributions from spins residing in different environments within the
voxel. Independently of the chosen representation for these environments, the signal
reads as the Laplace transform of the compartments’ probability density distribution
function. Here, the signal for a joint distribution of confinement tensors and effective
diffusivities with probability density P(C, D) is considered:

S(g(t)) = S0

ż

E(g(t), C, D)P(C, D)dCdD. (6.7)

To numerically invert the Laplace transform and obtain P(C, D) without assuming
any parametric form for the distribution (as was instead presented for the DTD in
the previous chapter, Section 5.2), one needs to consider a discrete distribution of h
tensors. In this case, the probability density function is given by a sum of h delta
functions:

P(C, D) =
h

ÿ

i=1

wiδCi (C)δDi (D), (6.8)

and the signal is given by:

S(g(t)) =
h

ÿ

i=1

wi(Ci, Di)E(g(t), Ci, Di). (6.9)

For N diffusion measurements performed by varying the gradient waveform g(t),
the above expression can be cast into a vector-matrix product:

S
loomoon

Nˆ1

= E
loomoon

Nˆh

w
loomoon

hˆ1

(6.10)
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where S is the vector containing the diffusion measurements obtained with N dif-
ferent g(t), E is the matrix (sometimes referred to as dictionary) where each column
contains the signal produced by a confinement tensor and effective diffusivity (or a
diffusion tensor when considering a DTD instead) for the given measurements, and
w is the vector of probabilities associated with each item in the joint distribution.

The elements in vector w can be obtained by solving the constrained least square
problem:

minimise
w

||S ´ E w||
2
2

subject to wi ě 0,
(6.11)

where the constraint requiring the positivity of the elements in w follows from the
interpretation of the wi as probability densities. The problem in 6.11 can be solved
by non-negative linear least-squares programs (NNLS), for example, the lsqnonneg
Matlab (The MathWorks, Natick) function which implements the active-set algorithm
described in [103]. Though the solution to 6.11 is unique, the ill-conditioned nature of
the problem will manifest itself in that this solution will strongly depend on the noise
[104]. It can indeed be shown that different noise realisations within the same noise
statistics would lead to vastly different solutions [105]. In the following subsections
two different strategies aiming at mitigating this problem are presented.

Adding a regularisation term

One strategy to reduce the noise-dependency of the solution is to include a regulari-
sation term in 6.11 [103], [105]–[107]:

minimise
w

||S ´ E w||
2
2 + λΦ(w)

subject to wi ě 0,
(6.12)

where λ ě 0 determines the balance between the data consistency and the regularisa-
tion. The regularisation term can be selected in many ways, for example to promote
sparsity [108]–[110] or smoothness [106], [111] in the solution. Even though the addi-
tion of a regularisation term reduces the ill-conditioning of the problem, the solution
then shows features arising from the regularisation. Moreover, as the weight of the
regularisation term increases, the solution becomes less consistent with the data.

Monte Carlo sampling

A different strategy consists of finding a set of plausible vectors w for which the
associated distributions fit the data equally well according to 6.11 [105]. An algorithm
implementing this approach was proposed in [112], [113]. Briefly, one instance of the
plausible solutions is found by iteratively constructing the dictionary E by randomly
sampling the parameter space; only the tensors for which the elements of w, as found
with an NNLS algorithm [103], are non-zero, are saved. After several iterations, only
the n tensors with the highest w are retained. This process is then repeated a number
of times, to collect a set of tensor distributions each describing equally well the MR
signal. This approach was the one employed in paper IV and to obtain the results
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6.3. Estimation routines for q-space trajectory imaging

presented in Figures 5.6 and 5.7 in the previous chapter. Since several solutions to
the same problem are considered, this approach, referred to as Monte Carlo, allows
the study of the uncertainty around the retrieved distributions based on statistical
descriptors [105], [112], [113].

6.3 Estimation routines for q-space trajectory
imaging

The MR signal considered in q-space trajectory imaging is determined by the non-
diffusion weighted signal S0, the distribution average diffusion tensor pD, and the
covariance tensor C:

S(B) = S0e´B : pD+ 1
2 B : C. (6.13)

These three are the quantities that we want to estimate from N diffusion measure-
ments obtained by employing different b-values and shapes of the measurement B-
tensor B, S(Bn), n = 1, ..., N. The problem can be formulated as a least squares,
though the objective function is in this case non-linear:

minimise
tS0, pD, Cu

||η||
2
2 =

N
ÿ

n=1

η2
n

with ηn = S0e´Bn : pD+ 1
2 Bn : C ´ S(Bn).

(6.14)

Non-linear least squares

The problem in 6.14 can be readily solved using non-linear least squares (NLLS) rou-
tines, for example employing the Levenberg-Marquardt algorithm [114]–[116]. The
downside of non-linear estimation is that there is no guarantee that the global mini-
mum of the objective function will be reached, and the retrieved minimum will typi-
cally depend on the initial guess for the solution. Additionally, the iterative nature of
the solvers generally results in lengthy computational times.

Weighted linear least squares

To avoid solving the non-linear problem, Equation 6.14 can be linearised by taking
the logarithm. To correct for the heteroskedasticity introduced by the logarithmic op-
eration, each error term ηn needs to be weighted. To first approximation, the weights
can be determined by rearranging the equation on the right in 6.14 and taking the
logarithm:

ln (ηn + S(Bn)) = ln (S0) ´ Bn : pD +
1
2

Bn : C. (6.15)

For small ηn, the left side of the equation can be rewritten as:

ln
(

S(Bn)

(
1 +

ηn

S(Bn)

))
= ln(S(Bn)) + ln

(
1 +

ηn

S(Bn)

)
« ln(S(Bn)) +

ηn

S(Bn)
.

(6.16)
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This shows that for the log-linearised problem, the error terms need to be multiplied
by the measured signal values:

ηn = S(Bn)

(
ln(S0) ´ Bn : pD +

1
2

Bn : C ´ ln(S(Bn))

)
. (6.17)

Adopting the measured signals as weights is typical for the estimation of DTI param-
eters [10], [117]. However, to obtain the best linear unbiased estimator, the weighting
should be done with the noise-free signal values [118]. Since these are in practice not
available, iterative re-weighting strategies, where the weights are updated with the
noise-free model prediction of the signal, can be employed [119].

The log-linearised problem can then be cast into matrix form:

η
loomoon

Nˆ1

= A
loomoon

Nˆ28

x
loomoon

28ˆ1

´ y
loomoon

Nˆ1

(6.18)

where A is the design matrix containing the experimental parameters multiplied by
the signal values, x is the vector of unknown parameters to be estimated (S0, the 6 six
unique elements of pD, and the 21 unique elements of C), and y is the vector contain-
ing the log of the measured signals multiplied by the signal values. The objective is to
minimise the squared norm of η, which can be achieved via conventional linear least
squares routines. As this essentially involves inverting a matrix, the solution to the
linearised problem can be obtained very quickly compared to its non-linear counter-
part. Moreover, if the solution exists, it is guaranteed to be the global minimum, and
there is no need for an initial guess for the solution.

Semidefinite programming

The log-linearised least squares problem can also be reformulated as a semidefinite
programming as explained in Section 6.1. The advantage of employing this formu-
lation rather than the least squares one is that it naturally allows for constraints ex-
pressed via positive semidefinite matrices to be included in the problem. For exam-
ple, since both the average diffusion tensor pD and the covariance tensor C represent
a covariance matrix, their estimates should be positive semidefinite [89]. This can be
strictly required in the SDP formulation by expanding the constraint matrix F(x) in
6.6 to be:

F(x) =


I Px 0 0

xTPT t ´ cTx 0 0
0 0 pD 0
0 0 0 C

 ľ 0, (6.19)

where C is the 6 ˆ 6 representation of C.

QTI+ and QTI˘̆̆

In papers I and II we developed two constrained frameworks, named QTI+ and
QTI˘, for estimating the QTI parameters under observance of several physical and
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mathematical conditions dictated by the model itself. These involve the positivity
of the pD, C, and M tensors, which was considered in QTI+, and observance of the
“speed limit” for the diffusivities which cannot exceed the value of free water, which
was instead added in QTI˘. As imposing these conditions often involves requiring
matrices to be positive semi-definite, the SDP formulation is the natural choice for
solving the constrained problem. Moreover, since the estimation of model param-
eters for each voxel is independent, fitting over N voxels can be computed at once
by having as objective function the sum of all the objective functions, and having all
the constraints included in the diagonal of the matrix F(x). With this formulation, the
SDP solver is called only once instead of N times, resulting in a tremendous reduction
in computational time.

The frameworks are implemented in Matlab (The MathWorks, Natick), and QTI+
was made freely available1. Both SDP and non-linear least squares are used to obtain
robust estimates for S0, pD, and C. A description of the software was published but
is not included in this thesis [90]. We also made a Python implementation of QTI+
available through the dipy library [120].

6.4 A machine learning approach

Estimation of model parameters from data is increasingly being attained using arti-
ficial intelligence. In the dMRI field, machine learning (ML) has, for example, been
investigated for avoiding lengthy computations due to non-linear objective functions
[121]–[123], overcome the degeneracy problem where more than one solution can fit
the data [121], [124], [125], and perform model parameters estimation using minimal,
clinical-friendly dMRI protocols [126], [127]. In this section, a simple but powerful
neural network (NN) architecture for performing model fitting is described. Results
are presented for QTI and DTD applied to data from healthy subjects, brain tumor
patients, and COVID-19 survivors.

Neural network architecture

The employed NN for the estimation of QTI and DTD parameters, named QTIML+
and DTDML respectively, are shown in Figure 6.1. Both are based on an en-
coder/decoder architecture, where the encoder consists of three fully connected hid-
den layers with exponential linear unit (ELU) activation [128], and the decoder im-
plements the functional form of the considered model for the dMRI data. In DTDML,
dropout [129] is used on the last hidden layer to implement the Monte Carlo Dropout
technique [130], detailed later. The output of the encoder is thus interpreted as being
the QTI and DTD model parameters that are to be estimated.

The NN is trained in a self-supervised voxel-wise fashion, where the loss objective is
to minimise the error between the measured dMRI data (input) and predicted dMRI
signal (output) for a voxel, thus essentially performing regression. A typical dMRI
brain dataset comprising « 50000 voxels is sufficient to train the NN for the esti-
mation of the QTI model parameter. In the case of the DTD estimation, it becomes

1https://github.com/DenebBoito/qtiplus
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Hyperparameters
optimizer: Adam

learning rate: 10-3 to 10-5

nodes per layer:

   - HL1: size(input) x (1,2)

   - HL2: size(input) x (2,4)

   - HL3: size(input) x (1,2)

batch size: (64, 16)

epochs: (50, 100)

loss function: L1 loss

dropout rate: 0.35

Figure 6.1: Neural network layouts for estimating parameters in q-space tra-
jectory imaging (top) and diffusion tensor distribution imaging (bottom). In
both cases, an encoder/decoder architecture is used. The encoder transforms
the input dMRI signal for each voxel into the parameters of the adopted dif-
fusion model, while the decoder reconstructs the predicted dMRI signal em-
ploying the model’s functional form. The loss function thus measures the
mean absolute error (L1 loss) between the acquired and predicted dMRI sig-
nals. For the DTD, 20 tensors making up the distributions are estimated, with
an L1 penalty applied on the vector containing the weights associated with
each tensor to promote sparsity in the solution. Moreover, dropout is used on
the last layer of the encoder (indicated by the red crosses) to implement the
Monte Carlo Dropout technique. This allows different solutions for the same
input to be obtained during inference. The hyperparameters of the networks
are indicated in the box. For the batch size, number of nodes per layer, and
number of epochs, the first number within the parenthesis applies to the NN
for QTI, while the second number applies to the NN for the DTD. The learn-
ing rate was set to decay in from 10´3 to 10´5 in a polynomial fashion. Early
stopping was employed to end the training if the loss was not decreasing over
5 epochs.

instead necessary to increase the number of training examples, for example by gener-
ating synthetic data. In our experiments, we pre-train the network on synthetic data
(« 2 million voxels) before fine-tuning it or applying it on experimental data.
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Q-space trajectory imaging

The top panel in Figure 6.1 shows that positivity constraints acting on the pD and C

tensors in QTI can be strictly imposed within the network. The L and Γ matrices in the
encoder output represent the lower triangular matrices in the Cholesky factorisation
of the average diffusion and covariance tensors, respectively, such that

pD = LLT and C = ΓΓT, (6.20)

where C is the 6 ˆ 6 representation of C. Having the constraints strictly imposed
within the NN is a great advantage compared to relying on the network to learn the
conditions from the training examples.

Figure 6.2 shows a comparison between the invariants obtained from the pD and C

tensors as estimated using QTI+ and the machine learning approach. The compari-
son is drawn based on two brain-like synthetic datasets that were generated by com-
puting the QTI signal from parameters obtained by employing QTI+ on a publicly
available dataset and its subsampled versions [26], [89]. The experimental datasets
are hereafter referred to as p217 and p56 according to the number of diffusion mea-
surements included in the respective sets. Noise from the Rician distribution was
added to the synthetic data generated as described above, obtaining the p217synth
and p56synth datasets with a signal-to-noise ratio of 25. The QTI+ and QTIML+ per-
formances were assessed by computing the difference between the ground truth in-
variants and those obtained with the two methods. The results show that the ML
approach performs similarly to QTI+ on the larger dataset, while providing closer-
to-ground truth parameters when fewer data points are employed for the estimation.
This is possibly due to the inherent denoising resulting from the data compression
carried out by the encoder segment of the NN. The denoising and smoothing attained
with the ML approach are clearly seen in Figure 6.3, where the invariants obtained
with QTI+ and QTIML+ from the experimental p217 and p56 datasets are displayed.

Figure 6.4 shows tract-based spatial statistics (TBSS) [131] results obtained by com-
paring the brain white matter of patients previously hospitalised for COVID-19 and
healthy controls using fits produced with QTI˘ and QTIML+. The results obtained
with QTI˘ were used in paper III, where a detailed description of the clinical study is
given. Here the focus is only on comparing the two fitting approaches. The QTIML+
fits were obtained by training separate networks on each subject. QTI˘ and QTIML+
produced rather consistent results, highlighting that the relevant patterns in the var-
ious QTI maps are preserved despite the smoothing introduced by the neural net-
work’s encoder. Note that the “speed limit” conditions considered in QTI˘ can also
be enforced with the ML approach, albeit in a soft manner. This corresponds to
adding penalties to the cost function whenever the conditions are violated. How-
ever, training such NN is more complicated and typically requires lengthier com-
putations, without guaranteeing clear improvements to the results already attainable
with QTIML+. Figure 6.5 shows results obtained from a brain tumor dataset for QTI+,
QTIML+, and QTI˚

ML+. The difference between QTIML+ and QTI˚
ML+ is that while the

first is trained by fitting the tumor data directly, the second is trained on data from
a healthy volunteer and then applied on the tumor data. While the fit residuals are
clearly lower for QTIML+, the difference between the invariants computed with both
ML methods and QTI+ is similar, suggesting that training on the “healthy voxels” al-
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QTI+
QTIML+

p217synth

p56synth

Figure 6.2: QTI+ and machine learning (QTIML+) fit comparison on brain-like
synthetic data with signal-to-noise ratio = 25. Top: results on a dataset com-
prising 217 diffusion measurements (p217synth). Bottom: results on a dataset
comprising 56 diffusion measurements (p56synth). The histograms show the
deviation between the ground truth and estimated parameters. Histograms
skewed to the right of the 0 line therefore indicate parameter underestimation,
while histogram skewed to the left 0 line indicate parameter overestimation.
The results on the p217synth dataset show that the two estimation methods
perform quite closely, while on the p56synth the machine learning approach
produces parameter estimates closer to the ground truth value. This is per-
haps due to the smoothing effect introduced by the encoder, as seen in Figure
6.3. The results also highlight the tendency for the NN of underestimating
anisotropy related metrics (FA, µFA, Cc) while overstimating diffusivity re-
lated metrics (MD and CMD)

ready spans the entire parameter space of the diffusion model, and results on unseen
“disease voxels” can be obtained by mere interpolation. This result is of relevance for
two reasons. First, trained neural networks do not require expensive and high-end
machines to run inferences on new data. As such, they are a more portable technol-
ogy compared to that typically needed for estimating parameters using non-linear
objective functions. Second, the time gain. For the rather simple neural network ar-
chitectures considered here (with in general less than 250000 trainable parameters),
inference can be achieved for an entire brain dataset in less than a second. As a refer-
ence, the computational times for the three routines employed in Figure 6.5, timed on
the CPU of the same high-end desktop computer, were « 15 minutes for QTI+, « 5
minutes for QTIML+, and ď 1 second for QTI˚

ML+ (after « 5 minutes for pre-training
on the data from the healthy subject). Note that the SDP solver employed in QTI+
(Mosek, MOSEK ApS, Denmark) is a commercial product and it is free to use only for
academic research. Other open-source SDP solvers, like SDPT3 [132], are typically
2 ´ 3 times slower. Therefore, whenever time is of concern, the machine learning
approach is a truly viable option.
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p217

MDFA

QTI+

QTIML+

DEC CMDCcµFA

p56

QTI+

QTIML+

Figure 6.3: QTI+ and machine learning (QTIML+) fit comparison on the and
experimental data. Top: results on the p217 dataset. Bottom: results on the
p56 dataset. The results on both datasets highlight the smoother appear-
ing maps obtained with the machine learning approach, as a possible con-
sequence of the denoising effect introduced by the encoder.
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Figure 6.4: Tract-based spatial statistics results obtained comparing the brain
white matter of patients previously hospitalised for COVID-19 and healthy
controls using fits produced with QTI˘ and QTIML+. The maps show the
skeleton voxels where statistically significant differences emerged (p-value
ď 0.05 corrected for multiple comparison using family-wise error rate). The
methods produced consistent results, indicating that despite the smoothing
introduced by the encoder, the relevant patterns in the various maps are pre-
served by the machine learning approach. The data were collected with ethi-
cal approvals Dnr 2020-03029 and 2015/13-31.
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Figure 6.5: QTI+ and machine learning fit comparison on brain tumor data.
The tumor was recognised by pathology as a grade 4 astrocytoma. The
top row displays the standard clinical images (T1 weighted with contrast
agent (T1W_Gd), T1 weighted (T1W), T2 weighted (T2W), and T2 flair
(T2W_FLAIR)). The middle part shows the QTI-derived maps for QTI+,
QTIML+, and QTI˚

ML+ fits. Fit residuals are shown in the rightmost column,
while difference maps between QTI+ and the two network fits are shown at
the bottom. The results obtained with the two networks appear smoother
and less noisy, which may aid in visually inspecting the microstructure maps.
However, this could also result in loss of information and/or reduced con-
trast, as it seems to happen for example in the CMD map. The data were
acquired with ethical approval EPM 2020-01404.
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6.4. A machine learning approach

Diffusion tensor distribution

The bottom panel of Figure 6.1 shows the NN architecture for the estimation of ax-
isymmetric diffusion tensors distributions. Each node pi in the encoder’s output is, in
this case, interpreted as the Di

‖, Di
K, θi and φi components, and associated wi weight

of the i-th diffusion tensor in the distribution. From these components, the 6 ele-
ments of the diffusion tensors are obtained and fed into the decoder to compute the
predicted dMRI signal.

The last hidden layer of the decoder is followed by a dropout layer, indicated by the
red crosses in Figure 6.1. Although dropout is used as a regularisation when training
neural networks [129], here it is primarily employed to implement the Monte Carlo
Dropout technique [130]. Contrary to the standard use of dropout layers, which are
turned off at inference time, in Monte Carlo Dropout these are maintained active
so that different solutions can be obtained for the same input. In this way, the NN
can be used to mimic the Monte Carlo sampling method for the inversion of the
Laplace transform which was described in Section 6.2, thus computing several so-
lutions that fit the input signal. The major advantage of the machine learning ap-
proach is then found in the time it takes to produce these multiple solutions. While
the Monte Carlo sampling may take days to complete [113], the trained neural net-
work can produce hundreds of different solutions in a matter of seconds. Figure 6.6
shows example results of statistical descriptors for DTDs estimated with the Monte
Carlo sampling strategy (DTDNNLS) and the machine learning (DTDML) approach on
the p217 dataset. Similar to what was discussed for QTI, the DTDML tends to produce
smoother maps compared to DTDNNLS.

DTDNNLS

DTDML

Figure 6.6: Axisymmetric diffusion tensor distributions estimation with the
Monte Carlo sampling strategy described in Section 6.2 (DTDNNLS) and the
machine learning (DTDML) approach. In both cases, the DTD estimation was
repeated 100 times. The maps show examples of statistical descriptors of the
DTD obtained by averaging the 100 estimations.
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7
Review of papers &
conclusions

The overarching goal of this thesis was promote the clinical adoption of diffusion
MRI measurements performed with generalised gradient waveforms. In particular,
the focus was directed towards improving the methods currently employed for the
analysis of the data. This translated into creating algorithms for robust estimation of
q-space trajectory imaging (QTI) parameters (papers I and II, Section 6.4), employing
the developed methods for assessing the brain microstrucure of COVID-19 survivors
(paper III), and suggesting an alternative to the diffusion tensor distribution (DTD)
for modelling the collection of compartments making up the intravoxel tissue com-
position (paper IV). This last chapter presents an overview of the papers and discuss
their main contributions in relation to the aims set forth in Chapter 1.

7.1 Papers I & II

Aim: Develop methods for producing reliable estimates for the parameters attain-
able via tensor-valued diffusion MRI

Investigative studies employing q-space trajectory imaging have demonstrated that
the diffusion metrics accessed by employing this technique can be extremely in-
strumental in better characterising several neurological diseases compared to more
widely adopted diffusion methods [17], [18], [20], [21], [133]. The first two papers
thus focused on developing optimisation schemes for robustly estimating the dif-
fusion and covariance tensors accessed via QTI. Several mathematical and physical
properties of the diffusion pD, covariance C, and second moment M tensors estimated
in QTI were identified, and included in two constrained frameworks which enforce
them during model fitting. In paper I, the focus was directed towards ensuring the
positivity of the D, C, and M tensors, while in paper II the focus was on “speed limit”
conditions aiming at prohibiting diffusion faster than that of free water. Since these
conditions are expressed via positive semidefinite matrices, they can be efficiently
imposed using semidefinite programming. The developed routines were called QTI+
and QTI˘, respectively, for nomenclature consistency with other methods employed
to enforce positivity conditions in diffusion MRI [134].
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Through simulations and experimental data, the results obtained in paper I showed
how the constrained estimation improved the reliability of the estimated quanti-
ties with respect to noise, especially when compared to those achieved with uncon-
strained methods. Moreover, it was clearly shown on a public dataset [26] that when
the D, C, and M tensors are estimated with the (currently employed) unconstrained
methods, there are violations of the positivity conditions in almost every voxel. This
means that the obtained estimates are not mathematically or physically meaningful,
thus justifying the need for the constrained routines. The speed limit conditions con-
sidered in paper II were then shown to further improve the results attainable with
QTI+, especially in brain regions where voxels present partial voluming with free
water pools.

Additionally, we found that even though each voxel is fitted independently, the con-
strained estimation yields smoother-appearing maps. A third important outcome of
these works was learning that constrained optimisation can obviate imperfections in
the data sampling schemes, and requires fewer datapoints for the estimation. These
results are particularly relevant for the clinical translation of q-space trajectory imag-
ing. Indeed, to aid patients’ comfort we should strive to keep the scan time as short
as possible, which requires our estimation routines to perform robustly even on sub-
optimally sampled data. The creation of robust estimation routines thus comple-
ments the efforts towards designing parsimonious data acquisition protocols for QTI
[135]. Moreover, we envision that similar results regarding the possibility of faster
acquisitions would be found for other diffusion MRI techniques for which mathe-
matical and physical constraints are available [134], [136].

The time gain on the acquisition side can be complemented by the fast parameter
estimation attainable with the machine learning approach presented in Section 6.4.
Indeed, the constrained estimation achieved via semidefinite programming tends to
be much slower compared to the unconstrained least square fit, and typically requires
high-end machinery not often available in clinical settings. While for the offline esti-
mation of QTI parameters this does not constitute an obstacle, in cases where a rapid
initial assessment of the microstructure is necessary, faster methods are required.
The machine learning approach nicely fits these requirements by being extremely
lightweight and computationally quick. Moreover, the considered architecture allows
the two most influential positivity constraints [89] to be strictly imposed within the
network, thus ensuring that the estimated parameters fall withing a mathematically
and physically meaningful range.

7.2 Paper III

Aim: Investigate patients’ brain microstructure using diffusion MRI with gener-
alised gradient waveforms

Increased evidence for the long-term effects of COVID-19 on the central nervous sys-
tem is being reported [137]–[143]. These typically involve fatigue, cognitive impair-
ment, stress, and anxiety. In this work we employed the QTI˘ scheme developed in
paper II to investigate the brain white matter microstructure of patients previously
hospitalised for COVID-19, and who still suffer from neurological symptoms months
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7.3. Paper IV

after hospital discharge. While conventional MR images did not reveal typical pat-
terns that could be linked to the experienced symptomatology [144], the results ob-
tained in this work showed widespread alterations to the patients’ white matter mi-
crostructure.

The results were the outcome of a group comparison between 16 healthy controls
(11 males) and 16 male patients. The comparison was based on the several diffusion
metrics attainable with QTI (MD, AD, RD, CMD, FA, µFA, Cc), and was performed
using the tract-based spatial statistic (TBSS) method [131]. The statistical analysis re-
vealed widespread reductions in FA and µFA, while reductions in Cc were mostly
located in the parietal lobe. These changes could be indicative of oedema, axonal
damage, and loss of fibre orientation coherence, respectively. Importantly, having
access to µFA and Cc, thus disentangling the contributions of local anisotropy and
structural organisation to the macroscopic anisotropy, allowed more specific insights
into the possible pathogenesis. In particular, it showed that the majority of the ob-
served changes in anisotropy are due to local rather than structural alterations, with
only certain regions of the brain being affected by both mechanisms. Moreover, as
µFA was found to vary more frequently than FA, certain changes could have gone
undetected if this metric was not available. Widespread changes were also found for
MD, RD, and CMD, with their values being higher in the patient population. An in-
crease in RD is typically associated with demyelination [145], while increased CMD
could indicate cellular membrane disruption, cell swelling, and cellular atrophy [20].

Overall, the results once more demonstrated the sensitivity of diffusion MRI to mi-
crostructural alterations otherwise not visible with other MR imaging sequences, with
the information provided by the QTI-accessible metrics allowing a more in-depth
characterisation of the detected changes.

7.3 Paper IV

Aim: Extend the analysis of diffusion MRI with generalised gradient waveforms
beyond the free diffusion assumption

The analysis of tensor-valued dMRI data remains largely based on the assumption
of the signal rising from a collection of compartments each exhibiting free diffusion,
i.e. a distribution of diffusion tensors. As explained in Chapter 5, one then wishes to
recover either the diffusion tensor distribution making up the tissue [23], or estimate
the parameters of some predefined functional form for it [17], [22], [24]. In either case,
statistical descriptors of the intravoxel tissue compositions can be obtained.

In this paper we propose instead to represent each compartment in the tissue with
a model for restricted diffusion, namely the confinement tensor [60]. Such represen-
tation overcomes the assumption of free diffusion in a compartmentalised medium.
Moreover, unlike for the diffusion tensor, the MR signal implied by the confinement
tensor model is inextricably linked to the temporal dependence of the diffusion gra-
dient waveform, rather than simply depending on the B-tensor. Through simulations
we highlighted that, especially for spherical tensor encoding, where the measure-
ment is assumed to be rotationally invariant with respect to the direction of the dif-
fusion gradient, the signal modulation due to restricting boundaries cannot possibly
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be captured via the B-tensor only. Ignoring the diffusion time-dependence effects on
isotropic diffusion measurements was shown to results in errors and biases in the
metrics derived from the diffusion tensor distribution [25], [51], [83], [146]. In partic-
ular, the excess kurtosis arising from compartmental restrictions would erroneously
contribute to the bulk and shear variances accessed via the diffusion tensor distribu-
tion, thus introducing biases which could confound the assessment of the microstruc-
ture [25], [147]–[149].

Even though time-dependent diffusion has been observed in brain white-matter in
clinical acquisitions [149]–[151], these biases would ultimately depend on the pa-
rameters of the experiment [152]. As the duration of the diffusion gradient pulses
is prolonged, the compartmental kurtosis would disappear, eventually leading to a
Gaussian spin phase distribution [65], [153], [154]. As explained in Section 4.4, under
this condition the confinement tensor becomes the effective model of restricted dif-
fusion. In the paper we demonstrated via simulations that the generalised diffusion
gradients employed to achieve current clinical tensor-valued protocols are effectively
long-pulsed gradients, and the signal modulation due to restricted diffusion is in this
case perfectly described by the confinement tensor model. Therefore, the diffusion
metrics obtained from the distribution of confinement tensors should not exhibit any
bias from the compartmental kurtosis due to confined diffusion. As such, the con-
finement tensor model constitutes the natural choice for representing each isolated
domain in a multi-compartment picture of the tissue microstructure.

Expressions for computing distributions of confinement tensors and performing q-
space trajectory imaging with confined subdomains were given. Examples of con-
finement tensor distributions for different brain tissue types as recovered via the nu-
merical inversion of the Laplace transform [23], [112] described in Section 6.2 were
shown. Finally, it was demonstrated through simulations that by adding diffusion
measurements with varied frequency content, it is possible to increase the precision
of the estimated compartmental diffusivity.

7.4 Conclusions

MRI measurements of water diffusion beyond the Stejskal-Tanner experiment per-
mits targeting specific microscopic properties of biological tissues, thus allowing for
a better in-vivo characterisation of these complex media. This thesis has dealt with
a particular class of measurements based on generalised gradient waveforms which,
by relying on the assumption of the tissue being composed of several non-exchanging
compartments, disentangles different sources of intravoxel heterogeneity.

As it was shown in paper III as well as in other works [18], [20], [21], [155], measures
of intravoxel heterogeneity improve the assessment of microstructural changes in the
presence of diseases. Moreover, they may disentangle competing intravoxel effects
which lead to opposite directional changes in voxel-level metrics such as fractional
anisotropy [133], [156], [157]. Given the clinical feasibility of tensor-valued diffusion
measurements [135], [158], [159], and the robust and fast analysis methods developed
within this thesis (papers I and II) [89], [160], investigations of the tissue microstruc-
ture via intravoxel diffusion metrics could become routine clinical practice.
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7.4. Conclusions

The work performed in paper IV further contributed to this endeavour by proposing
a better model for each isolated compartment in the tensor distribution represent-
ing the tissue microstructure. Differently from the diffusion tensor, the confinement
tensor model was shown to perfectly capture the diffusion time-dependence due to
restrictions in data acquired with the clinically available tensor-valued diffusion MRI
protocols. Therefore, future studies should consider employing such model for in-
vestigations of intravoxel heterogeneity.
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a b s t r a c t 

Q-space trajectory imaging (QTI) enables the estimation of useful scalar measures indicative of the local tissue 
structure. This is accomplished by employing generalized gradient waveforms for diffusion sensitization alongside 
a diffusion tensor distribution (DTD) model. The first two moments of the underlying DTD are made available by 
acquisitions at low diffusion sensitivity (b-values). Here, we show that three independent conditions have to be 
fulfilled by the mean and covariance tensors associated with distributions of symmetric positive semidefinite ten- 
sors. We introduce an estimation framework utilizing semi-definite programming (SDP) to guarantee that these 
conditions are met. Applying the framework on simulated signal profiles for diffusion tensors distributed accord- 
ing to non-central Wishart distributions demonstrates the improved noise resilience of QTI+ over the commonly 
employed estimation methods. Our findings on a human brain data set also reveal pronounced improvements, 
especially so for acquisition protocols featuring few number of volumes. Our method’s robustness to noise is ex- 
pected to not only improve the accuracy of the estimates, but also enable a meaningful interpretation of contrast 
in the derived scalar maps. The technique’s performance on shorter acquisitions could make it feasible in routine 
clinical practice. 

1. Introduction 

Determining the local structure of neural tissue using diffusion MRI 
has already made an impact in neuroscience and radiology. Diffusion 
MRI’s sensitivity to tissue microstructure is exploited and interpreted 
through models that provide a simplified picture of the complex tissue 
makeup. The parameters of an adequate model reflect the key character- 
istics of the tissue that influence the stochastic movement of the water 
molecules. Measuring the diffusional process and estimating such model 
parameters from the acquired data are the two essential components of 
structure determination via diffusion MRI. 

In q-space trajectory imaging (QTI) ( Westin et al., 2016 ), diffusion 
sensitization is achieved via general time-dependent gradient wave- 
forms while the tissue is envisioned to have numerous non-exchanging 
compartments. Diffusion is characterized by a diffusion tensor within 
each of these compartments. Consequently, the voxel is represented by 
a diffusion tensor distribution (DTD) ( Jian et al., 2007 ). QTI exploits 
the sensitivity of the diffusion MRI signal to the statistical moments of 
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the parameters characterizing the microscopic domain ( Özarslan et al., 
2011 ). By doing so, QTI provides a simple means of relating the sig- 
nal obtained via general gradient waveforms to the DTD, which is key 
for introducing meaningful MRI ‘biomarkers’ in QTI. Under the assump- 
tions of the DTD picture, the effect of all measurement parameters is 
captured by a positive-semidefinite tensor, referred to as the b-tensor 
( Mattiello et al., 1994 ), and denoted by 𝐁 𝑖𝑗 in this work. The level of 
diffusion sensitization is usually quantified by the trace of this tensor, 
denoted by b . 

Common clinical MRI examinations of the neural tissue probe 
the low- b regime of the MR signal attenuation. As shown by 
Westin et al. (2016) , the data in this regime reveal the mean and co- 
variance tensors of the underlying DTD. The former is a 3 × 3 symmetric 
positive semidefinite matrix, while the covariance tensor has the sym- 
metries of the fourth order elasticity tensor in mechanics ( Basser and 
Pajevic, 2003 ). Once estimated, these two tensors are employed in com- 
puting several scalar measures that characterize macroscopic and mi- 
croscopic anisotropies, orientational coherence and size variance of the 
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subdomains making up the tissue. Thus, a key step in obtaining reliable 
estimates of these quantities involves accurate estimation of the mean 
and covariance tensors from the data. In this study, we investigate possi- 
ble improvements in the estimates of the QTI-derived parameters when 
several necessary nonnegativity conditions are enforced. 

Improvements due to constrained optimization have been reported 
for diffusion MRI models developed for traditional pulsed field gradient 
measurements of Stejskal and Tanner (1965) . For example, diffusion 
tensor imaging (DTI) ( Basser et al., 1994a; 1994b ) has benefited from 

estimation schemes ( Koay, 2010; Koay et al., 2006; Lenglet et al., 2006; 
Pennec et al., 2006; Wang et al., 2004 ) that ensure that the diffusion 
tensor is positive semidefinite —a condition that follows from the physics 
of diffusion. The estimation problems for models that go beyond DTI 
( Jensen et al., 2005; Özarslan and Mareci, 2003; Tournier et al., 2007 ) 
have also been studied via methods that enforce relevant constraints 
( Barmpoutis et al., 2012; 2009; Chen et al., 2013; Ghosh et al., 2014; Qi 
et al., 2010; Veraart et al., 2011 ). 

In a recent work, Dela Haije et al. (2020) considered three such 
prominent models, namely, spherical deconvolution ( Tournier et al., 
2004 ), diffusion kurtosis imaging ( Jensen et al., 2005; Liu et al., 2004 ), 
and mean apparent propagator MRI ( Özarslan et al., 2013 ) and formu- 
lated several sum-of-squares (SoS) constraints arising from the nonneg- 
ativity of the relevant distribution functions yielding remarkable im- 
provements in the model estimates over earlier methods. Enforcing them 

in the estimation via semidefinite programming (SDP) guaranteed the 
fulfillment of such constraints in contrast to earlier methods that either 
did not account for them or imposed them “softly, ” i.e., did not ensure 
strict adherence to the relevant constraints. "Softly " imposed constraints 
were also initially considered for QTI in ( Jeurissen et al., 2019 ), high- 
lighting the interest and need for more sophisticated fitting approaches 
to be used with this method. 

To investigate the effects of constrained optimization for the 
QTI technique, we devised an estimation framework that guarantees 
the fulfillment of three conditions that mean and covariance ten- 
sors of DTDs have to respect. Following the naming convention in 
Dela Haije et al. (2020) , we refer to our method as QTI+. After in- 
troducing our notation and providing an overview of the QTI model, 
we introduce the constraints to be imposed. Several methods for esti- 
mating the mean and covariance tensors as well as a test for checking 
the fulfillment of one of the constraints are introduced. Simulated sig- 
nals for non-central Wishart distributed DTDs ( Shakya et al., 2017 ) are 
employed to compare the performance of commonly-employed methods 
with ours. We also provide analyses on tensor-valued diffusion encoded 
brain data ( Szczepankiewicz et al., 2019 ) and assess the performance of 
our framework on data sets with few number of acquisitions. 

2. Background 

Our notation 

There is a multitude of notations for tensors. Here, we describe the 
notations and conventions we employ. In this study, there is no need 
to make a distinction between contra- and covariant tensors. Thus, all 
indices are written as subscripts. 

Scalars are denoted with italic characters, while matrices and sec- 
ond order tensors are denoted with boldface characters. Blackboard bold 
(double struck) characters are used for fourth-order tensors. For exam- 
ple, 𝔸 𝑖𝑗𝑘 𝓁 is a fourth order tensor whose 𝑖𝑗𝑘 𝓁th component is 𝐴 𝑖𝑗𝑘 𝓁 . 
Fourth-order tensors considered in this work can also be represented by 
6 × 6 matrices. To make the distinction clear, we employ the following 
convention: 

◦ Latin letters 𝑖, 𝑗, 𝑘, 𝓁 range from 1 to 3. 
◦ Early Greek letters 𝛼, 𝛽, and 𝛾 range from 1 to 6. 

Thus, 𝔸 𝑖𝑗𝑘 𝓁 and 𝐀 𝛼𝛽 are the fourth order and second order represen- 
tations of the same tensor. When used with double struck and boldface 

characters, the indices are retained just to inform about the order of the 
tensor, which is the number of indices and the range of those indices; 
they do not refer to a particular component of the tensor. 

We employ the Einstein summation convention, which is usually de- 
scribed as “all repeated indices are summed over. ” E.g., 𝐴 𝑖𝑖 = 

∑3 
𝑖 =1 𝐴 𝑖𝑖 is 

the trace of the matrix 𝐀 𝑖𝑗 , while 𝐶 𝑖𝑘 = 𝐴 𝑖𝑗 𝐵 𝑗𝑘 = 

∑3 
𝑗=1 𝐴 𝑖𝑗 𝐵 𝑗𝑘 is the 𝑖𝑘 th 

component of the product of matrices 𝐀 𝑖𝑗 and 𝐁 𝑖𝑗 . 

QTI 

In this work, we are interested in the statistical properties of a dis- 
tribution of diffusivity tensors 𝐃 𝑖𝑗 , represented by a family of samples 

{ 𝐃 

( 𝑛 ) 
𝑖𝑗 } . Here, since it represents a diffusivity, which is proportional to 

second moment of displacements, each second order tensor 𝐃 

( 𝑛 ) 
𝑖𝑗 is sym- 

metric and positive semidefinite. With ⟨⋅⟩ indicating mean (expectation) 
value, we would like to estimate the mean diffusivity tensor 1 

�̂� 𝑖𝑗 = ⟨𝐃 𝑖𝑗 ⟩
and the covariance, which in this case becomes the fourth order (covari- 
ance) tensor ℂ , defined as 

ℂ 𝑖𝑗𝑘 𝓁 = ⟨𝐃 𝑖𝑗 − ̂𝐃 𝑖𝑗 ⟩ ⊗ ⟨𝐃 𝑘 𝓁 − ̂𝐃 𝑘 𝓁 ⟩. 
This tensor has the so called minor ( 𝐶 𝑖𝑗𝑘 𝓁 = 𝐶 𝑗𝑖𝑘 𝓁 , 𝐶 𝑖𝑗𝑘 𝓁 = 𝐶 𝑖𝑗𝓁𝑘 ) and ma- 
jor ( 𝐶 𝑖𝑗𝑘 𝓁 = 𝐶 𝑘 𝓁𝑖𝑗 ) symmetries, which result in ℂ 𝑖𝑗𝑘 𝓁 having 21 indepen- 
dent components. It is (as usual) possible to express ℂ 𝑖𝑗𝑘 𝓁 in terms of the 
(second) moment tensor 𝕄 𝑖𝑗𝑘 𝓁 = ⟨𝐃 𝑖𝑗 ⊗ 𝐃 𝑘 𝓁 ⟩ through the relationship 

ℂ 𝑖𝑗𝑘 𝓁 = 𝕄 𝑖𝑗𝑘 𝓁 − ̂𝐃 𝑖𝑗 ⊗ �̂� 𝑘 𝓁 . 

𝕄 𝑖𝑗𝑘 𝓁 has the same symmetries and degrees of freedom as ℂ 𝑖𝑗𝑘 𝓁 . 
The QTI signal’s dependence on the b-matrix 𝐁 𝑖𝑗 is given by 

( Westin et al., 2016 ) 

𝑆( 𝐁 𝑖𝑗 ) = 𝑆 0 exp 
(
− 𝐵 𝑖𝑗 ̂𝐷 𝑖𝑗 + 

1 
2 
𝐵 𝑖𝑗 𝐵 𝑘𝑙 𝐶 𝑖𝑗𝑘 𝓁 

)
, (1) 

where 𝑆 0 is the signal with no diffusional attenuation, i.e., when 𝐁 𝑖𝑗 = 𝟎 . 
Thus, given a family of measurement tensors { 𝐁 

( 𝑛 ) 
𝑖𝑗 } 

𝑁 

𝑛 =1 and the corre- 

sponding signal values 𝑆 1 , 𝑆 2 , … , 𝑆 𝑁 

with 𝑆 𝑛 = 𝑆( 𝐁 

( 𝑛 ) 
𝑖𝑗 ) , the task, given 

the model (1) , is to produce estimates of 𝑆 0 , �̂� 𝑖𝑗 and ℂ 𝑖𝑗𝑘 𝓁 . 

The Voigt notation 

The diffusivity tensors 𝐃 𝑖𝑗 in three-dimensional space are symmetric 
second order tensors. The set of all symmetric second order tensors forms 
a vector space 𝑉 of dimension six, and this space is equipped with a 
natural scalar product: < 𝐀 𝑖𝑗 , 𝐁 𝑖𝑗 > = 𝐴 𝑖𝑗 𝐵 𝑖𝑗 . Hence one can introduce 

an orthonormal basis { 𝐞 ( 𝛽) 𝑖𝑗 } 
6 
𝛽=1 and express any tensor in 𝑉 as 

𝐴 𝑖𝑗 = 

6 ∑
𝛽=1 

𝑎 𝛽 𝑒 
( 𝛽) 
𝑖𝑗 . 

These six coordinates 𝑎 𝛽 are customarily put into a vector with six ele- 
ments, and this is referred to as the Voigt notation. See Appendix A for 
our choice for the basis. 

This approach yields various representations of the covariance ten- 
sor ℂ 𝑖𝑗𝑘 𝓁 as well. Because of the symmetries of ℂ 𝑖𝑗𝑘 𝓁 , this tensor can 
be regarded as a symmetric mapping 𝑉 → 𝑉 , and in turn (given an or- 
thonormal basis for 𝑉 ) represented as a symmetric 6 × 6 matrix, which 
is consistent with ℂ 𝑖𝑗𝑘 𝓁 having 21 degrees of freedom. This matrix will 
be denoted by 𝐂 𝛼𝛽 where 1 ≤ 𝛼, 𝛽 ≤ 6 as described above. 

We can proceed in a similar manner. The set of symmetric mappings 
𝑉 → 𝑉 constitute a vector space of dimensions 21 and, again, given an 
orthonormal-basis for this space, any tensor ℂ (with the appropriate 
symmetries) can be represented by a vector with 21 elements. 

1 The mean is defined in the traditional sense. For a family of 𝑁 tensors, 
�̂� 𝑖𝑗 = 

1 
𝑁 

∑𝑁 
𝑛 =1 𝐃 

( 𝑛 ) 
𝑖𝑗 . 

2 
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3. Theory 

As mentioned in the previous section, given a family of measure- 
ments tensors { 𝐁 

( 𝑛 ) 
𝑖𝑗 } 

𝑁 

𝑛 =1 , the set of corresponding signal values { 𝑆 𝑛 } 𝑁 

𝑛 =1 
and the model (1) , the task is to produce estimates of 𝑆 0 , ̂𝐃 𝑖𝑗 and ℂ 𝑖𝑗𝑘 𝓁 . 
Assuming approximately Gaussian noise, this is achieved by finding the 
𝑆 0 , �̂� 𝑖𝑗 and ℂ 𝑖𝑗𝑘 𝓁 , which minimize the ‘error,’ i.e., 

argmin 
𝑆 0 , ̂𝐃 𝑖𝑗 , ℂ 𝑖𝑗𝑘 𝓁 

𝑁 ∑
𝑛 =1 

||||𝑆 𝑛 − 𝑆 0 𝑒 
− 𝐵 ( 𝑛 ) 𝑖𝑗 �̂� 𝑖𝑗 + 

1 
2 𝐵 

( 𝑛 ) 
𝑖𝑗 𝐵 

( 𝑛 ) 
𝑘𝑙 𝐶 𝑖𝑗𝑘 𝓁 

||||
2 
. (2) 

Here we make two remarks: 

1. Even if there is a global minimum, it is not easy to specify in advance 
a minimizing routine, which is guaranteed to find the minimum. 

2. If a minimum is found, the obtained estimates of �̂� 𝑖𝑗 and ℂ 𝑖𝑗𝑘 𝓁 may 
be unacceptable. 

We start by addressing the second issue in the following subsection. 

3.1. Positivity conditions 

There are a number of positivity conditions one can impose on the 
estimates, which have to be met in order for their interpretation to be 
physically reasonable. Here, we will give three such conditions, which 
are independent in the sense that any two of them do not imply the 
other. See Appendix B . 

The first condition is on ̂𝐃 𝑖𝑗 , namely, it should represent a diffusivity 

and thus �̂� 𝑖𝑗 (in addition to being symmetric) is positive semi-definite. 

We express this condition as �̂� 𝑖𝑗 ⪰ 0 . 
The second condition is similar. From the fact that ℂ 𝑖𝑗𝑘 𝓁 represents a 

covariance (so that 𝐶 𝑖𝑗𝑘𝑙 𝐴 𝑖𝑗 𝐴 𝑘𝑙 ≥ 0 for all symmetric matrices 𝐀 𝑖𝑗 ), it is 
necessary that when cast as a 6 × 6 matrix 𝐂 𝛼𝛽 , this matrix should also 
be positive semi-definite, i.e., 𝐂 𝛼𝛽 ⪰ 0 . 

The third condition is on 𝕄 𝑖𝑗𝑘 𝓁 , i.e., concerns ⟨𝐃 𝑖𝑗 ⊗ 𝐃 𝑘 𝓁 ⟩. Since 
𝕄 𝑖𝑗𝑘 𝓁 is the mean of tensor products of diffusion tensors, each of which 
is positive semi-definite, this property is carried over to 𝕄 𝑖𝑗𝑘 𝓁 . The 
conclusion is that for any vector 𝒖 𝑖 ∈ 𝐑 

3 , the symmetric second order 
tensor, whose 𝑖𝑗th component is 𝑀 𝑖𝑗𝑘 𝓁 𝑢 𝑘 𝑢 𝓁 , should be positive semi- 
definite. In other words, for any pair of vectors 𝒗 𝑖 and 𝒖 𝑖 , we must have 
𝑀 𝑖𝑗𝑘 𝓁 𝑣 𝑖 𝑣 𝑗 𝑢 𝑘 𝑢 𝓁 ≥ 0 . 

We shall refer to these three conditions as ‘(d)’, ‘(c)’, and ‘(m)’ where 
the letters indicate the tensor on which the conditions are imposed. To 
summarize, our conditions are, then, 

(d) �̂� 𝑖𝑗 ⪰ 0 , 
(c) 𝐂 𝛼𝛽 ⪰ 0 , and 

(m) for all 𝒗 𝑖 and 𝒖 𝑖 , 𝑀 𝑖𝑗𝑘 𝓁 𝑣 𝑖 𝑣 𝑗 𝑢 𝑘 𝑢 𝓁 ≥ 0 . 

Let us also remark that the condition 𝑆 0 ≥ 0 is obviously also re- 
quired, but that it need not be imposed explicitly (this can be inferred 
from the fact that all 𝑆 𝑛 ≥ 0 ). 

3.2. Linearizing the equation and the least squares solution 

As mentioned above, it is not trivial to ensure that a global minimum 

to (2) is found. However, there is a related problem for which a global 
minimum is guaranteed to be found. Namely, by taking the logarithm 

of (1) , the model is linearized as 

ln 𝑆( 𝐁 𝑖𝑗 ) = ln 𝑆 0 − 𝐵 𝑖𝑗 ̂𝐷 𝑖𝑗 + 

1 
2 
𝐵 𝑖𝑗 𝐵 𝑘 𝓁 𝐶 𝑖𝑗𝑘 𝓁 . (3) 

Due to the heteroscedasticity caused by taking the logarithm of the sig- 
nal, the minimization problem arising from (3) is the weighted problem 

( Basser et al., 1994a; Bevington and Robinson, 2003 ) 

argmin 
𝑆 0 , ̂𝐃 𝑖𝑗 , ℂ 𝑖𝑗𝑘 𝓁 

∑𝑁 

𝑛 =1 𝑆 
2 
𝑛 
|||ln ( 𝑆 𝑛 ) − ln ( 𝑆 0 ) + 𝐵 

( 𝑛 ) 
𝑖𝑗 �̂� 𝑖𝑗 − 

1 
2 𝐵 

( 𝑛 ) 
𝑖𝑗 𝐵 

( 𝑛 ) 
𝑘𝑙 𝐶 𝑖𝑗𝑘 𝓁 

|||
2 
, (4) 

which is an approximation to (2) ; see Appendix C . Using the Voigt no- 
tation, the unknowns determining ln ( 𝑆 0 ) , ̂𝐃 𝑖𝑗 and ℂ 𝑖𝑗𝑘 𝓁 can be stacked 
into a vector 𝒙 with 1+6+21 = 28 components, i.e., 𝒙 = ( 𝑥 1 , … , 𝑥 28 ) 𝖳 . 
The components of 𝒙 could be determined through 2 

ln ( 𝑆 0 ) = 𝑥 1 

�̂� 𝑖𝑗 ≐ 1 √
2 

⎛ ⎜ ⎜ ⎜ ⎝ 

√
2 𝑥 2 𝑥 5 𝑥 6 
𝑥 5 

√
2 𝑥 3 𝑥 7 

𝑥 6 𝑥 7 
√
2 𝑥 4 

⎞ ⎟ ⎟ ⎟ ⎠ 

𝐂 𝛼𝛽 ≐ 1 √
2 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

√
2 𝑥 8 𝑥 11 𝑥 12 𝑥 17 𝑥 18 𝑥 14 
𝑥 11 

√
2 𝑥 9 𝑥 13 𝑥 19 𝑥 15 𝑥 20 

𝑥 12 𝑥 13 
√
2 𝑥 10 𝑥 16 𝑥 21 𝑥 22 

𝑥 17 𝑥 19 𝑥 16 
√
2 𝑥 23 𝑥 26 𝑥 27 

𝑥 18 𝑥 15 𝑥 21 𝑥 26 
√
2 𝑥 24 𝑥 28 

𝑥 14 𝑥 20 𝑥 22 𝑥 27 𝑥 28 
√
2 𝑥 25 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

and Eq. (4) can be formulated as the weighted linear least squares 
(WLLS) problem 

𝐀 𝒙 = 𝒚 (5) 

where the vector 𝒚 = ( 𝑆 1 ln ( 𝑆 1 ) , … , 𝑆 𝑁 

ln ( 𝑆 𝑁 

)) 𝖳 contains the weighted 
signals and the 𝑁 × 28 matrix 𝐀 is formed by the signal values 𝑆 𝑛 and 
the measurement tensors 𝐁 

( 𝑛 ) 
𝑖𝑗 . 

Without further restrictions, the minimizing vector 𝒙 can easily be 
found by standard linear regression routines. However, we also give two 
other formulations, which are equivalent to (5) in the unconstrained 
case, but differ when it comes to imposing the positivity constraints (d), 
(c), and (m). 

3.3. Quadratic programming (QP) for the linearized problem 

First, we note that since the least squares solution minimizes ||𝐀 𝒙 − 

𝒚 ||2 , i.e., 

𝒙 𝖳 𝐀 

𝖳 𝐀 𝒙 − 2 𝒚 𝖳 𝐀 𝒙 + 𝒚 𝖳 𝒚 (6) 

this can also be solved using quadratic programming ( Nocedal and 
Wright, 2006 ). Note that if 𝐀 has full rank, 𝐐 = 𝐀 

𝖳 𝐀 is positive defi- 
nite. Through the substitution 𝒄 = −2 𝑨 

𝖳 𝒚 , the (least squares) solution 
to (5) can also be found as the solution to 

argmin 
𝒙 

𝒙 𝖳 𝐐 𝒙 + 𝒄 𝖳 𝒙 . (7) 

Here, we ignored the constant factor 𝒚 𝖳 𝒚 as we are interested in the 
minimizing argument. 

3.4. Semidefinite programming (SDP) for the linearized problem 

Eq. (7) can be further reformulated. First, we note that the mini- 
mizing argument 𝒙 can be found by minimizing an auxiliary variable 𝑡 
under the condition 𝑡 ≥ 𝒙 𝖳 𝐐 𝒙 + 𝒄 𝖳 𝒙 , i.e., we are interested in 

argmin 
𝑡, 𝒙 

𝑡, subject to 𝑡 − 𝒙 𝖳 𝐐 𝒙 − 𝒄 𝖳 𝒙 ≥ 0 . (8) 

With 𝐏 being a square matrix such that 𝐏 𝖳 𝐏 = 𝐐 , and with 𝐈 being the 
identity matrix of the same size as 𝐐 , this can be formulated as 

argmin 
𝑡, 𝒙 

𝑡, subject to 

( 

𝐈 𝐏𝐱 
𝒙 𝖳 𝐏 𝖳 𝑡 − 𝒄 𝖳 𝒙 

) 

⪰ 0 (9) 

which shows that we can employ SDP as well to solve this problem (see 
Appendix D ). 

2 Here, “≐” is used to indicate that the following matrix is just one represen- 
tation of the tensor in a particular basis. 
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3.5. Imposing positivity conditions: Nonlinear least squares with (d) and 

(c) constraints (NLLS(dc)) 

Comparing the original problem (2) , and the various linearized ver- 
sions (4),(7) , and (8) , they all differ when it comes to imposing the pos- 
itivity constrains (d), (c), and (m). 

For Eq. (2) , it is possible to impose conditions (d) and (c), by utilizing 
the Cholesky decomposition, i.e., the fact that any symmetric positive 
semi-definite matrix 𝐀 can be written 𝐀 = 𝐋𝐋 

𝖳 , where 𝐋 is a lower tri- 
angular matrix with positive diagonal entries. 

To this end, we cast ℂ 𝑖𝑗𝑘 𝓁 in its 6 × 6 matrix form 𝐂 𝛼𝛽 . We also intro- 
duce a fourth order tensor 𝔹 

′
𝑖𝑗𝑘 𝓁 whose 𝑖𝑗𝑘 𝓁th component is 𝐵 𝑖𝑗 𝐵 𝑘 𝓁 and 

its 6 × 6 matrix form is 𝐁 

′
𝛼𝛽 . We can use the ansatz 

�̂� 𝑖𝑗 = 𝐿 𝑖𝑘 𝐿 𝑗𝑘 and 
𝐶 𝛼𝛽 = Λ𝛼𝛾Λ𝛽𝛾

(10) 

where both 𝐋 𝑖𝑗 and 𝚲𝛼𝛽 are lower triangular matrices with positive di- 
agonal entries. The problem (2) , then, becomes 

argmin 
𝑆 0 , 𝐋 𝑖𝑗 , 𝚲𝛼𝛽

𝑁 ∑
𝑛 =1 

||||𝑆 𝑛 − 𝑆 0 𝑒 
− 𝐵 ( 𝑛 ) 𝑖𝑗 𝐿 𝑖𝑘 𝐿 𝑗𝑘 + 

1 
2 𝐵 

′( 𝑛 ) 
𝛼𝛽 Λ𝛼𝛾Λ𝛽𝛾

||||
2 
, (11) 

which guarantees that (d) and (c) (but not necessarily (m)) are satisfied. 

3.6. Imposing positivity conditions: SDP with (d) and (c) constraints 

(SDP(dc)) 

The estimation schemes based on the linearized version of the model 
(weighted linear, quadratic programming, and semidefinite program- 
ming) described above, which all produce global minima, differ when 
it comes to imposing the positivity constraints. In particular, the semi- 
definite programming (SDP) framework is particularly well-suited for 
imposing (d) and (c). With 𝒙 = ( 𝑥 1 , … , 𝑥 28 ) 𝖳 as before, the conditions 
(d) and (c), namely that �̂� 𝑖𝑗 and 𝐂 𝛼𝛽 are nonnegative, then fit directly 
into the SDP framework, i.e., we can impose (d) and (c) by solving 

argmin 
𝑡, 𝒙 

𝑡, subject to 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑰 𝑷 𝒙 0 0 
𝒙 𝖳 𝑷 𝖳 𝑡 − 𝒄 𝖳 𝒙 0 0 
0 0 �̂� 𝑖𝑗 0 
0 0 0 𝐂 𝛼𝛽

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
⪰ 0 . (12) 

Again, condition (m) is not imposed, which is mostly because 𝕄 𝑖𝑗𝑘 𝓁 de- 
pends quadratically on ⟨𝐃 𝑖𝑗 ⟩. 
3.7. An SDP scheme for checking if condition (m) is fulfilled ((m)-check) 

Addressing (11) or (12) , we get (initial) estimates of 𝑆 0 , ⟨𝐃 𝑖𝑗 ⟩, ℂ 𝑖𝑗𝑘 𝓁 
and 𝕄 𝑖𝑗𝑘 𝓁 , where the constraints (d) and (c) are imposed. To determine 
whether condition (m) needs to be imposed, we first check whether it 
is violated or not. Hence, we pose the question: for a given estimate of 
𝕄 𝑖𝑗𝑘 𝓁 , is it true that 

for all 𝒗 𝑖 , 𝒖 𝑖 , 𝑀 𝑖𝑗𝑘 𝓁 𝑣 𝑖 𝑣 𝑗 𝑢 𝑘 𝑢 𝑙 ≥ 0 ? (13) 

Again, this can be investigated with SDP by addressing a feasibility prob- 
lem. As explained in Appendix E , it is possible from 𝕄 𝑖𝑗𝑘 𝓁 to construct 
a 9 × 9 matrix 𝐌 where each entry is a first order polynomial in the pa- 
rameters 𝓁 1 , 𝓁 2 , … , 𝓁 9 , and check (using SDP) whether there are feasible 
solutions to the problem 

min 
𝓵 

0 , subject to 𝐌 ( 𝓵 ) ⪰ 0 . (14) 

Here we have put the parameters 𝓁 𝑖 into a vector: 𝓵 = ( 𝓁 1 , 𝓁 2 , … , 𝓁 9 ) 𝖳 . 
This expression differs from the earlier adaptations of the SDP method 
in that we are only interested in finding out whether a solution fulfilling 
all the constraints exists. Thus, the function to be minimized is unim- 
portant, and is taken to be 0 by choice. If 3 the SDP routine finds a vector 
𝓵 , condition (m), i.e., (13) is satisfied. 

3 We do not have strict equivalence, see Appendix E 

3.8. Imposing positivity conditions: SDP with (c) and (m) constraints 

(SDP(dcm)) 

In the case when condition (m) is violated, it is imposed in the follow- 
ing way. From the estimate at hand, we fix 𝑆 0 and ̂𝐃 𝑖𝑗 , i.e., 𝑥 1 , 𝑥 2 , … , 𝑥 7 , 4 

so that 𝕄 𝑖𝑗𝑘 𝓁 is linear in the remaining variables 𝑥 8 , … , 𝑥 28 . These 
are then re-estimated to ensure that both (c) and (m) are satisfied. 
Again, this can be accomplished with SDP, and we refer the reader to 
Appendix F for the formulation. In short, with 𝑥 1 , … , 𝑥 7 fixed, we set 
�̃� = ( 𝑥 8 , … , 𝑥 28 ) 𝖳 and 𝓵 = ( 𝓁 1 , 𝓁 2 , … , 𝓁 9 ) 𝖳 and can assert (c) and (m) by 
solving 

min 
𝑡, ̃𝒙 , 𝒍 

𝑡, subject to 

⎛ 
⎜ ⎜ ⎜ ⎜ ⎝ 

𝐈 �̃� ̃𝐱 0 0 
�̃� 𝑇 �̃� 𝑇 𝑡 − ̃𝐜 𝑇 �̃� 0 0 
0 0 𝐂 𝛼𝛽 0 
0 0 0 𝐌 ( 𝒍 ) 

⎞ 
⎟ ⎟ ⎟ ⎟ ⎠ 
⪰ 0 . (15) 

Note that we refer to this scheme as “SDP(dcm) ” as it relies on a 
previous estimate of �̂� 𝑖𝑗 , which is positive semidefinite. Thus, the end 
result is guaranteed to fulfill all three conditions (d), (c), and (m). 

3.9. Rank deficient estimation 

Normally, it is assumed that the matrix 𝐀 in the (weighted) least 
squares problem (5) is of full rank, which in our case is 1 + 6 + 21 = 28 . 
This is achieved by having a sufficiently rich family of measurement ten- 
sors { 𝐁 

( 𝑛 ) 
𝑖𝑗 } 

𝑁 

𝑛 =1 , which ‘spans the parameter space.’ However, for practical 
reasons there is a trade-off since there is also a desire to keep the mea- 
surement protocol short. 

Acquisition protocols could feature measurements having 𝐁 𝑖𝑗 tensors 
with quite general features (e.g., non-axisymmetric or anisotropic rank- 
3 tensors), which could offer some benefits ( Herberthson et al., 2019 ). 
However, in the current practice, it is quite common to use measurement 
tensors which fall into one of the following three classes: (i) LTE (linear 
tensor encoding) where each measurement tensor is the outer product of 
some vector with itself, implying the eigenvalues of each such 𝐁 

( 𝑛 ) 
𝑖𝑗 being 

{ 𝜆( 𝑛 ) , 0 , 0} for some 𝜆( 𝑛 ) > 0 . (ii) PTE (planar tensor encoding), where 
each such measurement tensor 𝐁 

( 𝑛 ) 
𝑖𝑗 has eigenvalues { 𝜆( 𝑛 ) , 𝜆( 𝑛 ) , 0} , 𝜆( 𝑛 ) > 

0 . (iii) STE (spherical tensor encoding) where each such measurement 
tensor is proportional to the identity matrix. 

For protocols that use measurements of only type (i) and (iii), i.e., 
LTE and STE, this will lead to a rank deficient matrix 𝐀 , with (max- 
imum) rank 1 + 6 + 16 = 23 . The reason for this is that with measure- 
ment tensors of type (i), i.e., LTE, the measurements are only sensitive 
to the completely symmetric part of ℂ 𝑖𝑗𝑘 𝓁 , and the space of such tensors 
has dimension 15. Furthermore, since all isotropic (STE) measurement 
tensors, i.e., tensors of type (iii), are proportional to each other, they 
will only be capable of measuring one more dimension in the parameter 
space. 

This raises two questions. First, how does this affect the estimates 
and the routines to find these? The observation is that the solution is 
non-unique and also that derived matrices like 𝐐 = 𝐀 

𝖳 𝐀 become singu- 
lar (positive semidefinite but not positive definite). There are various 
ways to handle this challenge; the most common with degenerate least 
squares problem is perhaps to pick the solution vector with minimal 
norm. This can be achieved by employing a pseudoinverse or using a so 
called subspace reduction. When integrated into the WLLS method, we 
refer to the technique as “WLLS(ss). ”

The second question is: how are the presented results affected by the 
rank deficiency of the design matrix? Indeed, because of this degener- 
acy, many ℂ 𝑖𝑗𝑘 𝓁 tensors are equivalent in terms of their ability to rep- 
resent the data. However, as shown in Appendix G , all scalar measures 
to be used in this work are insensitive to this degeneracy, the exception 

4 This may seem like a restriction. In our experience, however, the estimates 
of 𝑥 1 , 𝑥 2 , … , 𝑥 7 are relatively ‘stable’ as compared to 𝑥 8 , … , 𝑥 28 . 
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being the Frobenius norm involving the covariance tensor ℂ 𝑖𝑗𝑘 𝓁 in the 
case of rank deficient estimation. 

4. Methods 

4.1. Implementation 

In this section, we describe our strategy incorporating the techniques 
described above into a unified framework. The framework contains the 
following steps: 

1. SDP(dc): See Section 3.6 and Eq. (12) . The result of this step could 
be taken as the final result. However, it can also be treated as an 
initial estimate and fed into Step 2, for which heteroscedasticity is 
not an issue. It can also be fed into Step 3 (and 4 if necessary) for 
imposing condition (m). 

2. NLLS(dc): See Section 3.5 and Eq. (11) . This step employs the origi- 
nal (nonlinear) model, which should in general reduce the residues 
(in the nonlinear form of the model) obtained via SDP(dc). In rare 
cases when NLLS(dc) fails to produce an improvement over SDP(dc), 
which can occur when the modified Cholesky decomposition leads 
to poor initial estimates, the SDP(dc) outcome is retained. The result 
of this step could be used as the final result. However, if condition 
(m) is to be imposed, further analysis is necessary. 

3. (m)-check: See Section 3.7 and Eq. (14) . If the voxel satisfies con- 
dition (m), no further step is necessary. If not, the next step is em- 
ployed. 

4. SDP(dcm): See Section 3.8 and Eq. (15) . 

All the fitting routines were implemented in Matlab (The Mathworks 
Inc, Natick, Massachussets). For SDP we used CVX, a package for spec- 
ifying and solving convex programs in Matlab ( Grant and Boyd, 2008; 
2014 ). In steps 1, 3, and 4 CVX calls the solver MOSEK version 9.1.9 
(MOSEK ApS, Denmark). For the non-linear fit in step 2 we used the Mat- 
lab routine lsqcurvefit . For the standard QTI analysis, the multidimen- 
sional dMRI toolbox, provided at https://github.com/markus-nilsson/ 
mddmri was employed. The estimation methods were also indepen- 
dently implemented in Mathematica (Wolfram Research Inc., Cham- 
paign, IL, USA) to check for consistency. 

4.2. Simulations 

We performed simulations to assess the impact of adding different 
constraints to the estimation of 𝑆 0 , ̂𝐃 𝑖𝑗 and ℂ 𝑖𝑗𝑘 𝓁 . We considered an in- 
dependent method for the generation of the diffusion signals to be fitted 
with both the available and proposed methods. For this task, we chose 
the non-central Wishart distribution whose mean and covariance tensors 
can be derived analytically. As discussed elsewhere ( Herberthson et al., 
2019; Jian et al., 2009; 2007 ), the diffusion MR signal is the Laplace 
transform of the underlying DTD. For the case of non-central Wishart 
distributions, the result is provided by Mayerhofer (2013) . Given some 
measurement tensor 𝐁 𝑖𝑗 , the signal for a non-central Wishart distribu- 
tion with the non-centrality matrix 5 𝛀𝑖𝑗 , the scale parameter (degrees of 
freedom) 𝑝 , and scale matrix 𝚺𝑖𝑗 is given by 6 ( Shakya et al., 2017 ) 

𝑆( 𝐁 ) = 𝑆 0 |𝐈 + 𝚺𝐁 |− 𝑝 exp (− Tr [ 𝐁 ( 𝐈 + 𝚺𝐁 ) −1 𝛀]) (16) 

where “| ⋅ |” indicates matrix determinant and we dropped the subscripts 
for brevity. We employed this expression for the signal to find �̂� 𝑖𝑗 and 
𝐶 𝑖𝑗𝑘 𝓁 in the model (1) , the result being 

�̂� 𝑖𝑗 = 𝑝 Σ𝑖𝑗 + Ω𝑖𝑗 (17) 

5 Here we are following the notation of Letac and Massam (1998) . In this 
work, which emphasizes the relation to gamma distributions, the Wishart dis- 
tribution is written 𝛾𝑝, Σ. It is related to the more common notation 𝑊 𝑑 ( 𝑝, Σ) by 
𝛾𝑝, Σ = 𝑊 𝑑 (2 𝑝, Σ∕2) . 

6 We note and correct an error in the order of 𝚺 and 𝐁 matrices in 
( Shakya et al., 2017 ). 

Table 1 
The five protocols considered in this study. The protocol p217 
contains thirteen non-diffusion weighted images while the oth- 
ers have one such image. 

Protocol Encoding b-values [ms/m 

2 ] Samples per shell 

p217 LTE 0.1, 0.7, 1.4, 2.0 10,10,16,46 

p217 PTE 0.1, 0.7, 1.4, 2.0 10,10,16,46 

p217 STE 0.1, 0.7, 1.4, 2.0 10,10,10,10 

p81 LTE 0.1, 0.7, 1.4, 2.0 6,6,10,21 

p81 STE 0.1, 0.7, 1.4, 2.0 6,6,10,15 

p56 LTE 0.1, 1.4, 2.0 4,10,15 

p56 STE 0.1, 1.4, 2.0 6,10,10 

p56s LTE 0.1, 1.0, 2.0 4,10,15 

p56s STE 0.1, 1.0, 2.0 6,10,10 

p39 LTE 0.1, 1.4, 2.0 4,10,15 

p39 STE 0.1, 1.4, 2.0 3,3,3 

𝐶 𝑖𝑗𝑘 𝓁 = 

𝑝 
2 
(Σ𝑖 𝓁 Σ𝑗𝑘 + Σ𝑖𝑘 Σ𝑗𝓁 ) (18) 

+ 

1 
2 
(Σ𝑗𝑘 Ω𝑖 𝓁 + Σ𝑖 𝓁 Ω𝑗𝑘 + Σ𝑗𝓁 Ω𝑖𝑘 + Σ𝑖𝑘 Ω𝑗𝓁 ) . 

The derivation of the above expressions is provided in Appendix H . The 
non-central Wishart distribution simulated here has higher order cumu- 
lants, which is what we expect to have in neural tissue as well. However, 
we provide the expressions for the first two cumulants, which are to be 
estimated using the model. 

In our simulations, we took 0.7 𝜇𝑚 

2 ∕ ms for 1 3 Tr ( ̂𝐃 𝑖𝑗 ) , and set 𝚺𝑖𝑗 = 

�̂� 𝑖𝑗 ∕(5 𝑝 ) . We performed two simulations, first having isotropic �̂� 𝑖𝑗 with 

𝑝 = 2, while in the other we took 𝑝 = 4 and the eigenvalues of �̂� 𝑖𝑗 to be 
0.6, 0.2, and 1.3 𝜇m 

2 ∕ ms . Note that 𝑝 determines the asymptotic behav- 
ior of the signal decay curve; see (16) . For 𝑝 = 2 , one obtains a signal 
decay consistent with Debye-Porod law, which is the expected decay for 
diffusion in porous media measured via Stejskal-Tanner pulse sequence 
featuring narrow pulses ( Sen et al., 1995 ). For wide pulses, such slow de- 
cay is replaced by a steeper one ( Özarslan et al., 2018 ). Fig. 1 shows the 
joint distributions of Mean Diffusivity (MD) and Fractional Anisotropy 
(FA) for the tensor distributions whose averages are the anisotropic and 
isotropic �̂� 𝑖𝑗 considered in the simulations. 

Two sets of measurement tensors 𝐁 𝑖𝑗 were used to generate the 
signal for the simulations. The shorter protocol having 56 measure- 
ments is referred to as p56s. This protocol combines 𝐁 𝑖𝑗 tensors 
of rank 1 and 3, i.e., linear (LTE) and spherical (STE) encodings, 
and one measurement without diffusion encoding. A longer proto- 
col, referred to as p217, consisting of 217 measurements was also 
considered. This longer protocol combines encoding tensors of rank 
1, 2, and 3 as well as 13 measurements without diffusion weight- 
ing. The two protocols are summarized in Table 1 . The protocol 
p56s can be found at http://github.com/filip-szczepankiewicz/fwf _ seq _ 
resources/tree/master/GE . The longer protocol p217 is a subset of the 
one described in Szczepankiewicz et al. (2019) and available at https:// 
github.com/filip-szczepankiewicz/Szczepankiewicz _ DIB _ 2019 . In par- 
ticular, the repeated STE measurements were removed from the full 
protocol in Szczepankiewicz et al. (2019) . Note that the shorter pro- 
tocol p56s leads to rank-deficient design matrices while the matrices 
associated with the long protocol p217 are not rank-deficient. 

Noisy Gaussian and Rician distributed signals were synthesized by 
adding Gaussian noise to the real and to the real and imaginary parts 
of the analytical signals obtained from (16) , respectively. The standard 
deviations of the Gaussian noise were taken to be 𝜎 = [0, 0.020 0.056, 
0.092, 0.128, 0.164, 0.200], which correspond to SNR 

7 values of SNR 

= 1∕ 𝜎 = [ ∞, 50, 18, 11, 8, 6, 5] for the non-diffusion weighted sig- 

7 Our definition of the SNR is the same as that in other studies on noise in 
MRI ( Gudbjartsson and Patz, 1995; Koay et al., 2009 ). 
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Fig. 1. Joint distribution of MD and FA values of the diffusion tensors in the simulated DTDs. Left: DTD with anisotropic mean. Right: DTD with isotropic mean. 

Fig. 2. The four protocols considered in this study for the analysis of the experimental data. From left to right: p217, p81, p56, and p39 refer to the protocols having 
217, 81, 56, and 39 volumes, respectively. The colored dots show the initial direction of each diffusion gradient waveform. Red, green, blue, and yellow dots indicate 
such directions for samples at 𝑏 -values of 0.1, 0.7, 1.4, and 2.0 ms/μm 

2 , respectively. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

nal, where this signal was taken to be S 0 = 1 . For each standard devia- 
tion, 1000 noisy signals were generated and then fitted using the var- 
ious QTI and QTI+ estimation schemes. We compared the results pro- 
duced by the different methods using metrics derived from ̂𝐃 𝑖𝑗 and ℂ 𝑖𝑗𝑘𝑙 . 
These metrics involved both a direct measure of the distance between 
the analytical and the estimated tensors, given by the Frobenius norm 

of the difference between the reference and estimated tensors normal- 
ized with the Frobenius norm of the reference tensors, ||Δ�̂� 𝑖𝑗 ||∕ ||�̂� 𝑖𝑗 ||
and ||Δℂ 𝑖𝑗𝑘𝑙 ||∕ ||ℂ 𝑖𝑗𝑘𝑙 ||, and invariants obtained from the estimated �̂� 𝑖𝑗 
(fractional anisotropy (FA), mean diffusivity (MD), and macroscopic 
anisotropy ( 𝐶 𝑀 

)) as well as those that utilize additional information 
from the covariance tensor (microscopic anisotropy ( 𝐶 𝜇), size variance 
( 𝐶 𝑀𝐷 ), and microscopic orientation coherence ( 𝐶 𝑐 )). 

4.3. Experimental data 

Four subsets of the data set publicly available at https://github. 
com/filip-szczepankiewicz/Szczepankiewicz _ DIB _ 2019 and described 
in Szczepankiewicz et al. (2019) were used to test the proposed frame- 
work. One subset was formed with the 217 samples previously de- 
scribed in Table 1 , i.e., protocol p217. Further subsets containing 
39, 56, and 81 measurements produced the protocols p39, p56, and 
p81, respectively. These are also summarized in Table 1 . The sam- 
ples in p56 and p81 were chosen with the purpose of mimicking 
the protocols found at http://github.com/filip-szczepankiewicz/fwf _ 
seq _ resources/tree/master/GE . Having to pick samples out of an existing 
dataset, we randomly selected the measurements from the ones avail- 
able with the goal of keeping reasonably spread measurement directions 

while making sure that the design matrix will have rank 23. Fig. 2 shows 
the sample distributions for p217, p81, p56, and p39. 

On these four datasets, we fitted the QTI model using Eqs. (5) (with 
and without subspace implementation), (12), (11) , and (15) . For each fit 
we then checked where the conditions (d), (c), and (m) were violated. 
Conditions (d) and (c) were considered satisfied if the eigenvalues of the 
estimated �̂� 𝑖𝑗 and 𝐂 𝛼𝛽 were non-negative. However, we consider that a 
simple check done on the raw eigenvalues of the two tensors might mis- 
take a violation of the two conditions with numerical errors arising from 

limited tolerances in the employed fitting routines. For example, a tensor 
having eigenvalues 2, 1, and −10 −8 can still be considered nonnegative 
if the proximity of the negative eigenvalue to 0 is smaller than numerical 
tolerance. To overcome this ambiguity, we introduced a metric we refer 
to as “negativity index, ” which in essence is a normalized and dimen- 
sionless indicator of the positivity violations. For any symmetric matrix, 
we calculate the eigenvalues 𝜆1 , … , 𝜆𝑁 

and form the quotient 

NI = 

𝑁 ∑
𝑖,𝜆𝑖 < 0 

𝜆2 𝑖 

/ 𝑁 ∑
𝑖 
𝜆2 𝑖 (19) 

i.e., the sum in the numerator is only taken over the negative eigenval- 
ues. Note that this measure is insensitive to scalings of the underlying 
matrix. When NI is below 5 ×10 −4 , the nonnegativity condition (d) or (c) 
is deemed to be fulfilled. To check whether condition (m) is fulfilled, we 
employed the scheme described in Appendix E . 
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4.4. Synthetic data 

Additional simulations, inspired by those performed in 
Dela Haije et al. (2020) , were performed to further assess the relevance 
of enforcing positivity constraints for the estimation of the parameters. 
The 𝑆 0 , �̂� 𝑖𝑗 , and ℂ 𝑖𝑗𝑘𝑙 estimated by applying SDP(dcm) on the dataset 
with 217 measurements were used to create a synthetic dataset ac- 
cording to equation (1) . As explained in Dela Haije et al. (2020) , such 
dataset can be seen as the output of an ideal preprocessing pipeline 
which removes any bias and artifacts in the data. Moreover, assuming 
that the signal reconstruction provided by the investigated model is 
representative of the acquired data, this dataset can effectively be seen 
as a collection of signals produced by many different plausible tissue 
specimens. Therefore, it can act as ground truth for validation purposes. 

Gaussian and Rician noise with standard deviation 𝜎 = 0 . 04 , corre- 
sponding to SNR = 1∕ 𝜎 = 25 on an 𝑆 0 value estimated from a region 
of interest containing white and gray matter voxels, was added to the 
dataset. The noisy datasets were then subsampled to 56 measurements. 
The parameters were estimated through both WLLS(ss) and SDP(dcm) 
applied on the noisy synthetic datasets with 217 and 56 measurements. 

5. Results 

5.1. Simulations 

The results of our simulations are illustrated in Fig. 3 for the isotropic 
�̂� 𝑖𝑗 and Fig. 4 for the anisotropic ̂𝐃 𝑖𝑗 . The analytical results are depicted 
via dotted lines, which can be regarded as the ground truth in cases 
when QTI offers an accurate representation of the analytical signal. For 
a comparison of the QTI model in general compared to other methods for 
estimating statistical descriptors, we refer to ( Reymbaut et al., 2020 ) 8 . 
Here, it is observed that the QTI model allows for, and indeed may pro- 
duce, negative estimates of manifestly non-negative quantities. If the 
model in (1) is insufficient in describing the signal, i.e., when the higher 
order cumulants influence the signal within the range of employed dif- 
fusion weightings, we expect a deviation of the noiseless (SNR =∞) es- 
timates from the dotted lines. Each solid circle shows the mean value 
of the estimates, different colors representing different estimation meth- 
ods. The standard deviations are depicted via error bars. No appreciable 
difference was observed between the fits obtained on the noisy Rician 
and Gaussian distributed signals, therefore only the results on the Rician 
noise are shown. 

From Figs. 3 and 4 , it is clear that the QTI+ estimates obtained via 
SDP(dc), NLLS(dc), and SDP(dcm) methods are more robust to noise. In 
general, this refers to smaller deviations of the mean of the presented 
metrics, and substantially reduced standard deviations (error bars). This 
is particularly evident for the derived scalar measures. The Frobenius 
norms exhibit more noise sensitivity, which is likely because the Frobe- 
nius norm captures the tensors in their entirety while the other parame- 
ters are sensitive only to certain features of the tensors. Therefore, larger 
deviations appear, as expected, in the Frobenius norms of the difference 
between the reference and estimated tensors. This suffices to explain 
as well why most of the metrics derived from the WLLS(ss) fit are ac- 
ceptable for SNRs down to ≈ 20 despite complications due to the rank 
deficiency of the design matrix for the shorter protocol. 

Concerning the QTI+ estimation methods, we note that the results 
produced with SDP(dc), NLLS(dc), and SDP(dcm) are not drastically dif- 
ferent. Especially when comparing NLLS(dc) and SDP(dcm), the differ- 
ence is very subtle. This is partly because the violations of condition 
(m) are not frequent 9 and perhaps also because satisfying condition (m) 
does not have a very strong influence on the estimated metrics. 

8 Note, however, that the work of Reymbaut et al. (2020) focuses on DTDs of 
axisymmetric diffusion tensors. 

9 The numbers of signal profiles that violated condition (m) after the NLLS(dc) 
fitting and were subsequently fed into the SDP(dcm) routine were highest for 

Looking at specific metrics, we note that FA increases with noise 
when �̂� 𝑖𝑗 is isotropic. Interestingly, constrained estimation tends to re- 

duce FA in simulations featuring anisotropic �̂� 𝑖𝑗 tensors. This could be 
explained considering that in absence of constraints, smaller eigenval- 
ues would spread in the negative direction, thus incorrectly increasing 
the spread of the eigenvalues of �̂� 𝑖𝑗 hence the FA value, while when 
constraints are applied, the small eigenvalues can only grow in the posi- 
tive direction, leading to a reduction in anisotropy. The same trends are 
evident in the 𝐶 𝐶 results as expected. 

Microscopic anisotropy is perhaps the most interesting scalar mea- 
sure that has prompted much interest in the development of alternative 
diffusion encoding methods ( Cheng and Cory, 1999; Cory et al., 1990; 
Ianus et al., 2017; Lawrenz et al., 2010; Özarslan, 2009 ) that eventually 
led to the introduction of QTI. Note that having isotropic ̂𝐃 𝑖𝑗 does not im- 
ply 0 microscopic anisotropy because a non-central Wishart distributed 
set of tensors represent an ensemble of anisotropic subdomains even 
if their mean is isotropic. Our simulations suggest that the microscopic 
anisotropy index ( 𝐶 𝜇 = 𝜇FA 

2 ) is also quite susceptible to noise when tra- 
ditional QTI methods are employed. The estimates benefit greatly from 

constrained estimation methods. 
The noise sensitivity issue is more serious for indices of size variance 

( 𝐶 MD ) and coherence ( 𝐶 C ). In fact, the estimates are simply unreliable 
under noisy conditions when no constraint is employed. QTI+ estimates 
of these indices could make them suitable for comparative analyses. 

Effects of employing shorter acquisition protocols can be assessed 
by comparing the two panels of Figs. 3 and 4 . Remarkably, employing 
the shorter protocol leads to a very considerable loss of quality for un- 
constrained QTI estimates of 𝐶 𝜇 for example. As far as the constrained 
QTI+ estimators are concerned, the influence of the protocol has a rel- 
atively minor effect. This observation is important as it suggests that 
QTI+ could facilitate the employment of the method in clinical inves- 
tigations where the acquisition time is a critically important limitation. 

5.2. Experimental data 

In Fig. 5 , we illustrate the extent of the violations of the three pos- 
itivity conditions. For both the long protocol p217 (left) and shorter 
protocol p56 (right), condition (c) is violated almost everywhere within 
the brain parenchyma when WLLS methods are employed. Condition (d) 
seems to be violated mostly in the very anisotropic and coherently orga- 
nized regions like in the corpus callosum. As expected, these violations 
do not prevail when the QTI+ methods are employed. The rank defi- 
ciency of the design matrix associated with the shorter protocol seems 
to have the biggest impact on condition (m). Without the formulation 
in the subspace, this issue manifests as violation of (m) in almost all 
voxels. WLLS(ss) reduces the extent of such violations considerably. In- 
terestingly, the SDP(dc) method provides further improvement although 
the condition (m) is not enforced. SDP(dcm) fulfills all three conditions 
as expected. 

Fig. 6 illustrates the maps of the scalars obtained through various 
estimation methods for the dataset comprising 56 volumes. Despite the 
apparent similarity of the maps, some differences are visible, particu- 
larly in anisotropy measures (FA, 𝐶 𝑀 

, 𝐶 𝜇 , 𝜇FA ). Namely, the maps de- 
rived through constrained estimation methods shown in the last three 
rows appear to be smoother than those obtained via unconstrained esti- 
mation. As none of the analyses employs information from neighboring 
voxels, we think this is an important finding, which corroborates the 
noise resilience associated with the constrained estimation methods ev- 
ident in the simulations. Appreciable changes are also evident in the 𝐶 𝐶 
maps by way of a reduction in the apparent coherence values in CSF. 

Fig. 7 shows the scalar maps obtained by fitting the considered pro- 
tocols, respectively, with WLLS(ss) and SDP(dcm). Looking at both pan- 

the simulations of the p56s protocol with anisotropic ̂𝐃 𝑖𝑗 . These numbers were, 
respectively, 0, 12, 92, 200, 307, 358, out of the 1000 noisy samples for each 
(non-zero) noise level. 

7 



M. Herberthson, D. Boito, T.D. Haije et al. NeuroImage 238 (2021) 118198 

Fig. 3. Simulations for isotropic �̂� 𝑖𝑗 , and Rician distributed noisy signals. Frobenius norms (indicated by || ⋅ ||) and the estimated measures under varying noise 

levels for the estimation methods considered. ℂ stands for ℂ 𝑖𝑗𝑘𝑙 while ̂𝐃 stands for ̂𝐃 𝑖𝑗 . (a) protocol p217. (b) protocol p56s. 
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Fig. 4. Simulations for anisotropic ̂𝐃 𝑖𝑗 , and Rician distributed noisy signals. Frobenius norms (indicated by || ⋅ ||) and the estimated measures under varying noise 

levels for the estimation methods considered. ℂ stands for ℂ 𝑖𝑗𝑘𝑙 while ̂𝐃 stands for ̂𝐃 𝑖𝑗 . (a) protocol p217. (b) protocol p56s. 
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Fig. 5. The violations of the three constraints 
are color encoded and depicted on brain im- 
ages. Red, green, and blue indicate violation of 
conditions (c), (m), and (d) respectively. The 
last column indicates the constraints together 
where yellow indicates violations of (c) and 
(m), magenta (c) and (d), and cyan (d) and (m). 
All three conditions are violated in white pix- 
els. (a) protocol p217. (b) protocol p56. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.) 

Fig. 6. Maps estimated through various methods from data involving 56 vol- 
umes. Red voxels on the 𝜇FA maps indicate imaginary values. Despite the voxel- 
by-voxel analysis, the QTI+ maps (last three rows) are visibly smoother than 
the QTI maps employing weighted linear estimations (first two rows). 

els, one observes that the non-diffusion weighted ( 𝑆 0 ) and mean diffu- 
sivity (MD) maps are not severely affected by the downsampling. The 
anisotropy maps (fractional anisotropy FA, macroscopic anisotropy 𝐶 𝑀 

, 
and microscopic anisotropy 𝐶 𝜇 = 𝜇FA 

2 ) obtained via both methods are 
acceptable for the 81-measurement protocol. At sparser samplings, the 
improvement obtained by enforcing constraints becomes clear. Such im- 
provement is evident also when looking at the bar plots indicating the 
mean absolute deviations of the scalar maps from their ground truth 
values, which are taken to be the maps computed on the p217 protocol. 
The results obtained by employing SDP(dcm) show consistent lower de- 
viations from the respective ground truths compared to those obtained 
via WLLS(ss). The bar plots also reveal that the coherence ( 𝐶 𝑐 ) and size 
variance ( 𝐶 MD ) estimates have very large absolute deviations for uncon- 
strained estimation. A further examination of the pixel values revealed 
that this can be attributed in part to a small number of voxels that yield 

values way outside their expected range ([0, 1]). This issue is remedied 
by the QTI+ framework. 

Figs. 8 and 9 show details for the FA and 𝜇FA maps computed on 
all considered protocols by employing WLLS(ss) and SDP(dcm), respec- 
tively. Looking at the (a) panels, the benefits of applying constraints are 
already evident. Again, we stress how the maps obtained with SDP(dcm) 
appear overall smoother even though the method is performed on a 
voxel-by-voxel basis without incorporating any intervoxel information. 
Panels (b) in these figures show the difference between the maps es- 
timated with the p217 protocol, taken here as reference, and its sub- 
sets p81, p56, and p39. It is quite interesting to note that reducing the 
number of measurements from 56 to 39 does not drastically change the 
results. The histograms in panels (c) illustrate how reducing the num- 
ber of available samples introduces a bias towards higher values in the 
anisotropy measures. We also note that constraining the fit strongly re- 
duces the number of voxels presenting values outside the expected range 
([0,1] for FA and 𝜇FA ). With respect to this, applying constraints (d), 
(c), and (m) seems to be insufficient to guarantee the condition 𝜇FA 

≤ 1 . We found that when 𝜇FA is greater than 1 in the results produced 
by SDP(dcm), the values are still very close to 1. Although one can be 
tempted to attribute this error to numerics, a more reasonable explana- 
tion is that 𝜇FA is formed from the estimates of ̂𝐃 𝑖𝑗 and ℂ 𝑖𝑗𝑘𝑙 , which are 
in a sense independent, and there is no guarantee that 𝜇FA should in 
fact not be greater than 1. Moreover, QTI+ only ensures some neces- 
sary constraints, but not all. Having 𝜇FA values strictly lower or equal 
to 1 could be added as a constraint, but from our findings this would 
have a very marginal effect 10 . 

5.3. Synthetic data 

Fig. 10 shows the results obtained by fitting the synthetic brain 
datasets with both the WLLS(ss) and SDP(dcm) routines. The perfor- 
mance of the two methods was quantified through the Fobenius norms 
of the difference between the estimated and ground truth ℂ 𝑖𝑗𝑘𝑙 tensors, 
||Δℂ ||, and differences between the estimated and ground truth metrics, 
ΔFA , Δ𝜇FA , ΔC 𝑐 , counted for all voxels ( ≈ 84000 ) in the dataset. 

10 Out of the ≈ 84000 considered voxels, only 42, 30, 14, and 21 had 𝜇FA values 
> 1 for the SDP(dcm) fits performed on the 217, 81, 56, and 39 measurements 
datasets, respectively. 
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Fig. 7. Scalar maps obtained by employing WLLS(ss) and SDP(dcm) estimation schemes on p217, p81, p56, and p39 protocols. Red pixels on the 𝜇𝐹 𝐴 maps indicate 
complex values. The bars on the last rows of panels (a) and (b) show the mean absolute deviation of the respective parameters due to downsampling the p217 
protocol. Here, S 0 has arbitrary units while MD is expressed in 𝜇m 

2 ∕ ms . (a) WLLS(ss), (b) SDP(dcm). 
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Fig. 8. (a) FA maps obtained by fitting the QTI model with 
WLLS(ss) and SDP(dcm) on the four protocols. The fits per- 
formed with both methods on the p217 protocol are used 
as reference. (b) Difference between the reference FA maps 
and those estimated with both methods on the three down- 
sampled protocols. (c) Histograms showing the distribu- 
tion of FA values for the three protocols. 

Looking globally at the results in panels (a) and (b), there seems 
to be no relevant difference between the fitting results obtained in the 
data corrupted with either Gaussian or Rician noise. There is more- 
over not a marked difference between the performance of QTI and 
QTI+ on the 217-measurement protocols, with QTI+ providing slightly 
better results. The difference in performance between WLLS(ss) and 

SDP(dcm) is instead highlighted in the plots showing the results on the 
56-measurement protocol. There, the distance between the estimated 
and reference metrics is almost centered about zero for QTI+, while 
the parameter values produced with QTI exhibit a more pronounced 
tendency towards being over-estimated. 

12 
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Fig. 9. (a) 𝜇FA maps obtained by fitting the QTI model 
with WLLS(ss) and SDP(dcm) on the four protocols. The 
fits performed with both methods on the p217 protocol 
are used as reference. (b) Difference between the reference 
𝜇FA maps and those estimated with both methods on the 
three downsampled protocols. (c) Histograms showing the 
distribution of 𝜇FA values for the three protocols. 

5.4. Run times 

One of the appealing features of QTI is the computational speed at 
which the estimation can be performed via standard linear regression 
routines; it takes only a few seconds to fit the model to an entire dataset. 

This is definitely not the case for non-linear fitting routines, but also for 
the softwares currently available for semidefinite programming. As men- 
tioned in the implementation section, we rely on an external package to 
solve the SDP problems. In our experience, calling this package on a 
voxel-by-voxel basis is inefficient, leading to prolonged computational 

13 
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Fig. 10. Comparison of QTI and QTI+ on synthetic data. Frobenius norm of the difference between the ground truth and estimated ℂ 𝑖𝑗𝑘𝑙 (indicated by ||Δℂ ||) and 
differences between the estimated and ground truth metrics. Positive and negative values in the difference plots indicate parameters over- and under-estimated, 
respectively. (a) Gaussian noise. (b) Rician noise. 
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Table 2 
Run times for the protocols with 217 and 56 volumes. 

Protocol Fitting Routine Run Times 

p217 SDP(dc), single voxel 43 min 

p217 SDP(dc), multi voxel 6 min 

p217 NLLS(dc), single voxel 11 min 

p217 m-check + SDP(dcm), single voxel 37 min 

p217 m-check + SDP(dcm), multi voxel 5 min 

p217 SDP(dcm), multi voxel 14 min 

p217 WLLS(ss) 4 s 

p217 WLLS 2 s 

p56 SDP(dc), single voxel 50 min 

p56 SDP(dc), multi voxel 10 min 

p56 NLLS(dc), single voxel 15 min 

p56 m-check + SDP(dcm), single voxel 38 min 

p56 m-check + SDP(dcm), multi voxel 10 min 

p56 SDP(dcm), multi voxel 14 min 

p56 WLLS(ss) 2 s 

p56 WLLS 5 s 

times. A better approach involves performing the operations on a batch 
of voxels each time the function is called. In this case, steps 1, 3, and 4 
can be performed by, for example, solving the problems on 50 voxels at 
a time. This provided relevant speed up when compared to performing 
the analysis one voxel at a time, as shown in Table 2 . The table shows 
the run times for the different routines using different strategies on the 
experimental dataset ( ≈ 84000 voxels) with, respectively, 217 and 56 
measurements. The clock times were recorded on a workstation featur- 
ing a 12-core Intel Core i9-7920X CPU. The “multi voxel ” implementa- 
tion concerned sending 50 voxels at a time to the SDP solver. 

Performing the fit on a multivoxel basis is perhaps intuitive for 
SDP(dc), but maybe not so much for the (m)-check and eventual 
SDP(dcm) steps, given the conditional step involved in the process. In 
the worst case scenario, one would in fact have to run the (m)-check 
on all batches of voxels, and then SDP(dcm) on all those batches. Even 
though this would still be faster than doing this process voxel-by-voxel, 
a faster option could be to skip the check on the (m) condition and di- 
rectly perform SDP(dcm) on a multivoxel basis. However, since already 
after SDP(dc) (and NLLS(dc)) most of the (m) violations are resolved, 
and since the (m)-check appears to be faster than SDP(dcm), we find 
that the fastest option is to perform both the (m)-check and SDP(dcm) 
on a multivoxel basis. 

It is well-known that non-linear fitting is typically more time- 
consuming than linear regression. One aspect to be considered is that 
having a good starting point, provided here by SDP(dc), helps in speed- 
ing up the non-linear fitting of the NLLS(dc) routine. However, we would 
like to remind the reader that NLLS(dc) is not a necessary step to per- 
form in QTI+ as satisfactory results can be obtained using SDP(dc) and 
SDP(dcm). If truly pressed with time, one could also rely on the results 
produced with SDP(dc) only, as violations of the (m) condition are both 
infrequent and not extremely influential on the estimates. 

6. Discussion 

Since the inception of the DTD model ( De Swiet and Mitra, 1996; Jian 
et al., 2007 ), the challenge of obtaining the underlying DTD from the MR 

signal has been addressed in different ways. One approach is to assume 
a parametric distribution, which can naturally ensure that all tensors 
in the DTD are positive-nonnegative. Indeed, Jian et al. (2007) have 
assumed a mixture of Wishart distributions for the DTD and even pro- 
vided the analytical signal for diffusion encoding via arbitrary b-tensors; 
that relationship can be obtained by setting 𝛀 = 𝟎 in (16) . The Wishart 
distribution is the multidimensional generalization of the gamma distri- 
bution, which has been employed to represent the distribution of diffu- 
sivities for diffusion in polymer solutions ( Röding et al., 2012 ). This ap- 
proach has been adopted by Lasi č et al. (2014) for representing the dis- 
tribution of diffusivities along all directions combined. When employed 

on tensor-encoded data, this approach yields visually appealing results 
for some of the parameters considered in this work ( Szczepankiewicz 
et al., 2015; 2016 ). However, the validity of the gamma distribution 
is not guaranteed in all voxels, and the consequences of not fulfilling 
this assumption have not been understood. Moreover, this method relies 
on an accurate estimation of the orientationally-averaged signal, which 
can be challenging especially when the number of samples is limited 
( Afzali et al., 2020 ). Most recently, Magdoom et al. (2021) have intro- 
duced an alternative method, which employs a new pulsed field gradient 
sequence. The DTD is taken to be a tensor-valued normal distribution 
with non-positive-definite tensors suppressed. Due to the lack of an ana- 
lytical form of the signal for this distribution, the signal is approximated 
using a large number of samples drawn from a given normal distribu- 
tion. The mean and covariance are subsequently estimated using a least 
squares optimization. 

Rather than employing an assumption regarding the underlying dis- 
tribution like in the works mentioned above, we have employed the 
framework in Westin et al. (2016) , which allows the estimation of the 
mean and covariance tensors only. It should be noted that this is not 
meant to represent the signal in the entire “b-space, ” but only its behav- 
ior at low b-values, which are probed in typical clinical acquisitions. 
Here, we considered imposing three constraints on the estimated mean 
and covariance tensors. Strictly speaking, each and every diffusion ten- 
sor in the underlying DTD has to be positive-semidefinite. However, im- 
posing such a strong condition without attempting to solve an extremely 
ill-posed problem that involves the reconstruction of the actual DTD 

( Jian et al., 2007; Topgaard, 2019 ) is likely to be infeasible under noisy 
conditions or with limited number of diffusion encodings. Interestingly, 
non-negativity of each microscopic diffusion tensor implied the (m) con- 
dition, which seemed to have a minor effect in our analyses. Much of 
the improvement is already obtained through imposing condition (d) 
together with the (c) condition, which follow from the nonnegativity 
of the covariance tensors 11 ; these conditions are valid even when the 
distribution is over a more general space —not necessarily the space of 
positive semidefinite tensors. 

Satisfactory performance obtained by imposing only the conditions 
(d) and (c) have implications also when one decides on which estimation 
method to use. Our findings suggest that the (m) condition is relevant 
for a small portion of the voxels. Moreover, imposing the (d) and (c) 
conditions in the linearized version of the problem already provides a 
substantial portion of the overall gain. Thus, the SDP(dc) routine can 
be employed with relative confidence, which makes the overall estima- 
tion computationally inexpensive compared to the full framework that 
includes the subsequent NLLS(dc), (m) check and SDP(dcm) methods. 

Our work could be extended to include higher order terms in the 
expansion in Eq. 1 . However, the next order term introduces 56 new 

unknowns ( Westin et al., 2016 ), which demands longer acquisition pro- 
tocols, which make them challenging for clinical studies. 

Another matter that we did not address here concerns the limitations 
of the DTD model. The latter assumes that diffusion is described fully 
by a diffusion tensor and the effect of the waveforms on the signal are 
captured by the b-matrix. As discussed elsewhere ( Özarslan et al., 2015; 
Yolcu et al., 2016 ), this would be valid for large compartments or at 
very short measurement times. To address this problem, one can con- 
sider the distribution of confinement tensors ( Afzali et al., 2015; Yolcu 
et al., 2016; Zucchelli et al., 2016 ), which are shown to have the correct 
time dependence in small compartments making it the effective model 
for many scenarios of interest ( Boito et al., 2020; Liu and Özarslan, 2019; 
Özarslan et al., 2017 ). One manifestation of this problem concerns ac- 
quisitions with isotropic b-matrices ( Avram et al., 2018; Mori and van 
Zijl, 1995; Wong et al., 1995 ). In this case, the DTD model predicts the 
same signal for all measurements at each b-value, thus suppressing the 

11 Here, we remark that the diffusion tensor is the covariance matrix of net 
displacements. 
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potentially relevant information due to the non-Gaussianity of the dif- 
fusion process ( Jespersen et al., 2019; de Swiet and Mitra, 1996 ). Simi- 
larly, the DTD model ignores the higher order cumulants of the diffusion 
process within each compartment; this challenge has been studied in re- 
cent works ( Henriques et al., 2020; Paulsen et al., 2015 ). We note that 
the estimation methods introduced here may be instrumental in devel- 
oping constrained fitting techniques for models aiming to overcome the 
limitations of the DTD picture. 

The protocols obtained by downsampling a long protocol were not 
optimized as the waveforms were selected from a preexisting set. This 
poses an additional limitation for the downsampled protocols. However, 
our constrained estimation framework yielded acceptable image qual- 
ity even for the shortest protocol comprising only 39 acquisitions. Thus, 
QTI+ could be more robust to imperfections in the experimental design 
as well; such imperfections are encountered, for example, due to gradi- 
ent nonlinearities. More generally, a typical data set is likely to exhibit 
various artifacts such as Gibbs-ringing, subject motion, and frequency 
drift. In this case, unconstrained fitting will likely yield violations of the 
mathematically-necessary conditions. Employing a constrained estima- 
tion framework like QTI+ is thus expected to help alleviate the effects of 
artifacts. Similarly, studies have shown that identifying and discarding 
outliers is an effective approach for dealing with some of the confound- 
ing factors ( Chang et al., 2012; Maximov et al., 2011; Tax et al., 2015; 
Zwiers, 2010 ). We would like to stress that we do not envision QTI+ 

to be a replacement for techniques developed to address such effects. 
Rather it could be part of a series of algorithms ( Maximov et al., 2019 ) 
that collectively provide accurate maps of the desired parameters. 

In recent years, the sensitivity of QTI-accessible quantities 
like 𝜇FA on various cerebral diseases including schizophrenia 
( Westin et al., 2016 ), brain tumors ( Szczepankiewicz et al., 2016 ), 
epilepsy ( Lampinen et al., 2020 ), multiple sclerosis ( Andersen et al., 
2020 ), and Parkinson’s disease ( Kamiya et al., 2020 ) have been inves- 
tigated. Having reliable estimates of those quantities is of paramount 
importance for such studies, which could benefit particularly from the 
robustness of QTI+ to SNR. In fact, in the brain the signal without diffu- 
sion weighting does have some (typically 𝑇 2 -weighted) contrast, which 
may be amplified in the presence of pathologies. This contrast will lead 
to a spatially-dependent SNR, which ultimately affects the estimated pa- 
rameters. Hardware-related effects such as spatially-varying sensitivity 
of the receiver coil are expected to contribute to this challenge. Our 
findings indicate that computing the sought after parameters via QTI+ 

could substantially reduce the SNR dependence of the findings, improv- 
ing the accuracy and specificity of the estimated parameters. 

Another important challenge in the translation of advanced imaging 
techniques into the clinical realm involves the limitations concerning 
the acquisition length. Recent works have attempted to address this is- 
sue by employing parsimonious data acquisition schemes ( Nilsson et al., 
2020 ). Our study demonstrates that sophisticated post-processing meth- 
ods could be employed to achieve the same goal. 

From a signal processing point of view, it is quite intriguing that 
the constrained estimation framework produces smoother maps and im- 
proved resilience to noise although the estimation is performed for each 
voxel independently, i.e., without employing any information from the 
adjacent voxels. Thus, the constrained methods do not yield a loss of im- 
age resolution, which is typically the case for routine smoothing meth- 
ods. Moreover, the constraints have a very solid foundation pertaining to 
the mathematical properties of the estimated quantities. Consequently, 
the constrained estimation schemes like the ones we introduced here, do 
not involve any parameters that are to be decided in an ad hoc manner. 

7. Conclusion 

In conclusion, we introduced QTI+, a new estimation framework 
for q-space trajectory imaging that respects three positivity conditions 
arising from the mathematical properties of the quantities estimated. We 
demonstrated that QTI+ leads to notable improvements in the accuracy 

and precision of the measured parameters. Although data smoothing is 
not employed, our framework is exceptionally robust to SNR, which has 
important ramifications for the interpretability of the derived parame- 
ters. The benefits of QTI+ are more conspicuous when shorter acqui- 
sition protocols with fewer number of diffusion-weighted volumes are 
available. Thus, our technique is expected to improve the feasibility as 
well as reliability, hence the diagnostic utility, of diffusion MRI mea- 
surements with generalized diffusion encoding. 
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Appendix A. Convention for the Voigt notation 

It is customary to use the Voigt notation so that the matrix 

𝐀 ij = 

⎛ 
⎜ ⎜ ⎝ 

𝑥 1 𝑥 4 𝑥 5 
𝑥 4 𝑥 2 𝑥 6 
𝑥 5 𝑥 6 𝑥 3 

⎞ 
⎟ ⎟ ⎠ 

is represented by the vector 

𝒗 𝑖 = 

⎛ 
⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑎 1 
𝑎 2 
𝑎 3 
𝑎 4 
𝑎 5 
𝑎 6 

⎞ 
⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑥 1 
𝑥 2 
𝑥 3 √
2 𝑥 4 √
2 𝑥 5 √
2 𝑥 6 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Here, 𝐀 𝑖𝑗 = 

6 ∑
𝛽=1 

𝑎 𝛽 𝐞 
( 𝛽) 
𝑖𝑗 , i.e., the coordinates 𝑎 1 , 𝑎 2 , … , 𝑎 6 express the ma- 

trix 𝐀 𝑖𝑗 in the (orthonormal) basis { 𝐞 (1) 𝑖𝑗 , 𝐞 
(2) 
𝑖𝑗 , … , 𝐞 (6) 𝑖𝑗 } . With the represen- 

tation above, these basis matrices are 

⎛ ⎜ ⎜ ⎝ 

1 0 0 
0 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ 
, 
⎛ ⎜ ⎜ ⎝ 

0 0 0 
0 1 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ 
, 
⎛ ⎜ ⎜ ⎝ 

0 0 0 
0 0 0 
0 0 1 

⎞ ⎟ ⎟ ⎠ 
, 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 1 √
2 

0 
1 √
2 

0 0 

0 0 0 

⎞ ⎟ ⎟ ⎟ ⎠ 
, 
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⎛ ⎜ ⎜ ⎜ ⎝ 

0 0 1 √
2 

0 0 0 
1 √
2 

0 0 

⎞ ⎟ ⎟ ⎟ ⎠ 
, 

⎛ ⎜ ⎜ ⎜ ⎝ 

0 0 0 
0 0 1 √

2 
0 1 √

2 
0 

⎞ ⎟ ⎟ ⎟ ⎠ 
. 

Appendix B. Independence of (d), (c), and (m) 

Here, we take independence to mean that there are examples of ten- 
sors 𝐃 𝑖𝑗 , ℂ 𝑖𝑗𝑘 𝓁 , 𝕄 𝑖𝑗𝑘 𝓁 , where two given constraints are satisfied but not 
the third. 12 To see that the conditions (d), (c), and (m) are independent 
in the above sense, we give the following examples. 

(d) & (c) ⇏ (m): Let ⟨𝐃 𝑖𝑗 ⟩ = 𝟎 𝑖𝑗 and define 𝐄 𝑖𝑗 through 𝐄 ij = 

⎛ ⎜ ⎜ ⎝ 

0 1 0 
1 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ 
. Take ℂ 𝑖𝑗𝑘 𝓁 = 𝐄 𝑖𝑗 ⊗ 𝐄 𝑘 𝓁 , which implies that also 𝕄 𝑖𝑗𝑘 𝓁 = 𝐄 𝑖𝑗 ⊗

𝐄 𝑘 𝓁 . By construction, ℂ 𝑖𝑗𝑘 𝓁 is positive semi-definite as a symmetric map- 
ping 𝑉 → 𝑉 , but the choice 𝒗 𝑖 = (1 , 1 , 0) 𝖳 , 𝒖 𝑖 = (1 , −1 , 0) 𝖳 gives an exam- 
ple where 𝑀 𝑖𝑗𝑘 𝓁 𝑢 𝑖 𝑢 𝑗 𝑣 𝑘 𝑣 𝓁 = −4 < 0 . 

(d) & (m) ⇏ (c): Again, take ⟨𝐃 𝑖𝑗 ⟩ = 𝟎 𝑖𝑗 and define ℂ by 

ℂ ijk 𝓁 = 

⎛ ⎜ ⎜ ⎝ 

1 0 0 
0 1 0 
0 0 1 

⎞ ⎟ ⎟ ⎠ 
⊗

⎛ ⎜ ⎜ ⎝ 

1 0 0 
0 1 0 
0 0 1 

⎞ ⎟ ⎟ ⎠ 
− 

⎛ ⎜ ⎜ ⎝ 

0 1 0 
1 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ 
⊗

⎛ ⎜ ⎜ ⎝ 

0 1 0 
1 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ 
Then (c) is violated but on the other hand, for any vector 𝒗 𝑖 = ( 𝑥, 𝑦, 𝑧 ) 𝖳 

𝐌 

’ 
ij 
= 𝑀 ijk 𝓁 𝑣 𝑘 𝑣 𝓁 = 

⎛ ⎜ ⎜ ⎝ 

𝑥 2 + 𝑦 2 + 𝑧 2 −2 xy 0 
−2 xy 𝑥 2 + 𝑦 2 + 𝑧 2 0 
0 0 𝑥 2 + 𝑦 2 + 𝑧 2 

⎞ ⎟ ⎟ ⎠ 
. 

This matrix has eigenvalues 𝑥 2 + 𝑦 2 + 𝑧 2 , ( 𝑥 − 𝑦 ) 2 + 𝑧 2 and ( 𝑥 + 𝑦 ) 2 + 𝑧 2 , 
which means that 𝐌 

’ 
ij 

is positive semi-definite for any vector 𝑣 𝑖 . Hence 

(m) is satisfied. 
(c) & (m) ⇏ (d): This is immediate since if 𝕄 𝑖𝑗𝑘 𝓁 is constructed as 

𝕄 𝑖𝑗𝑘 𝓁 = ℂ 𝑖𝑗𝑘 𝓁 + ⟨𝐃 𝑖𝑗 ⟩⊗ ⟨𝐃 𝑘 𝓁 ⟩, then 𝕄 𝑖𝑗𝑘 𝓁 is unaffected by the replace- 
ment ⟨𝐃 𝑖𝑗 ⟩ → − ⟨𝐃 𝑖𝑗 ⟩, and by choosing an example with ⟨𝐃 𝑖𝑗 ⟩ ≠ 𝟎 , both 
⟨𝐃 𝑖𝑗 ⟩ and − ⟨𝐃 𝑖𝑗 ⟩ cannot be positive semi-definite. 

Appendix C. Heteroscedasticity compensation of the 
log-linearized problem. 

In this appendix we motivate, very briefly the weighting of the lin- 
earized problem (4) , i.e., the insertion of the weights 𝑆 2 𝑛 . With 

Δ𝑛 = 𝑆 0 𝑒 
− 𝐵 ( 𝑛 ) 𝑖𝑗 �̂� 𝑖𝑗 + 

1 
2 𝐵 

( 𝑛 ) 
𝑖𝑗 𝐵 

( 𝑛 ) 
𝑘 𝓁 𝐶 𝑖𝑗𝑘 𝓁 − 𝑆 𝑛 , 𝑛 = 1 , 2 , … , 𝑁 

a solution to (2) minimizes 
∑𝑁 

𝑛 =1 |Δ𝑛 |2 . By adding 𝑆 𝑛 to both sides and 
taking logarithms, we get 

ln ( 𝑆 𝑛 + Δ𝑛 ) = ln ( 𝑆 0 ) − 𝐵 

( 𝑛 ) 
𝑖𝑗 �̂� 𝑖𝑗 + 

1 
2 
𝐵 

( 𝑛 ) 
𝑖𝑗 𝐵 

( 𝑛 ) 
𝑘 𝓁 𝐶 𝑖𝑗𝑘 𝓁 . 

If Δ𝑛 is small compared to 𝑆 𝑛 , we get ln ( 𝑆 𝑛 + Δ𝑛 ) = ln ( 𝑆 𝑛 ) + ln (1 + 

Δ𝑛 
𝑆 𝑛 

) ≈

ln ( 𝑆 𝑛 ) + 

Δ𝑛 
𝑆 𝑛 

. As a result, a straightforward least squares implementation 

will (approximately) minimize 
∑𝑁 

𝑛 =1 |Δ𝑛 
𝑆 𝑛 

|2 . This is compensated for by 

multiplying the linearized equation for the 𝑛 th measurement with the 
corresponding signal values 𝑆 𝑛 . 

Appendix D. Equivalence of QP and SDP for the unconstrained 

linearized equation 

Here we show that (7) is equivalent to (9) , namely, we first see that 
to find an 𝒙 which minimizes 𝒙 𝖳 𝐐 𝒙 + 𝒄 𝖳 𝒙 , where 𝐐 ≻ 0 , is equivalent 
to solving the problem 

argmin 
𝑡, 𝒙 

𝑡, subject to 𝑡 − 𝒙 𝖳 𝑸 𝒙 − 𝒄 𝖳 𝒙 ≥ 0 

12 Not all possible constraints are independent in this sense. For instance, a 
possible constraint is that 𝕄 viewed as a symmetric mapping 𝑉 → 𝑉 is positive 
semi-definite. If (d) and (c) are satisfied, then this is automatically true. 

because minimizing 𝑡 in the inequality 𝑡 ≥ 𝒙 𝖳 𝐐 𝒙 + 𝒄 𝖳 𝒙 leads us to find 
the minimum value of 𝒙 𝖳 𝐐 𝒙 + 𝒄 𝖳 𝒙 . Next, suppose 𝐏 is a square matrix 

with 𝐏 𝖳 𝐏 = 𝐐 . Then, ( 𝐈 𝐏 𝒙 
𝒙 𝑇 𝐏 𝑇 𝑡 − 𝒄 𝑇 𝒙 ) ⪰ 0 is equivalent to the state- 

ment 

∀𝒗 , 𝑎, 
(
𝒗 𝖳 𝑎 

)( 

𝐈 𝐏 𝒙 
𝒙 𝖳 𝐏 𝖳 𝑡 − 𝒄 𝖳 𝒙 

) ( 

𝒗 
𝑎 

) 

≥ 0 . 

But the expression on the left hand side can be written (using 𝐏 𝖳 𝐏 = 𝐐 ) 
as 

( 𝒗 + 𝑎 𝐏 𝒙 ) 𝖳 ( 𝒗 + 𝑎 𝐏 𝒙 ) + 𝑎 2 ( 𝑡 − 𝒙 𝖳 𝐐 𝒙 − 𝒄 𝖳 𝒙 ) . (D.1) 

But if this is nonnegative for all 𝒗 and 𝑎 , then (by choosing 𝒗 = − 𝑎 𝐏 𝒙 ) 
so is 𝑡 − 𝒙 𝖳 𝐐 𝒙 − 𝒄 𝖳 𝒙 . Conversely, if 𝑡 − 𝒙 𝖳 𝐐 𝒙 − 𝒄 𝖳 𝒙 ≥ 0 , then so is the 
expression in (D.1) . 

Appendix E. Checking condition (m) using SDP 

Here, we describe our scheme for checking condition (m), i.e., 

For all 𝒗 𝑖 , 𝒖 𝑖 , 𝕄 𝑖𝑗𝑘𝑙 𝑣 𝑖 𝑣 𝑗 𝑢 𝑘 𝑢 𝑙 ≥ 0 ? 

By putting 𝒗 𝑖 = ( 𝑥, 𝑦, 𝑧 ) 𝖳 and 𝒖 𝑖 = ( 𝑟, 𝑠, 𝑡 ) 𝖳 , the contraction 𝑀 𝑖𝑗𝑘𝑙 𝑣 𝑖 𝑣 𝑗 𝑢 𝑘 𝑢 𝑙 
becomes a fourth order homogeneous polynomial 𝑝 in the six variables 
𝑥, 𝑦, 𝑧, 𝑟, 𝑠, 𝑡 . Condition (m) can then be formulated as 

Is 𝑝 ( 𝑥, 𝑦, 𝑧, 𝑟, 𝑠, 𝑡 ) ≥ 0 for all 𝑥, 𝑦, 𝑧, 𝑟, 𝑠, 𝑡 ? (E.1) 

Because of the symmetries of 𝕄 𝑖𝑗𝑘𝑙 and the form of the contraction with 
𝒗 𝑖 and 𝒖 𝑖 , it is possible to represent 𝑝 in the following way. We start 
by forming the vector 𝑽 = ( 𝑥𝑟, 𝑥𝑠, 𝑥𝑡, 𝑦𝑟, 𝑦𝑠, 𝑦𝑡, 𝑧𝑟, 𝑧𝑠, 𝑧𝑡 ) 𝖳 . Then, for any 
symmetric 9 × 9 matrix 𝐌 , it is clear that also 𝑽 𝖳 𝐌 𝑽 is a fourth order 
homogeneous polynomial in 𝑥, 𝑦, 𝑧, 𝑟, 𝑠, 𝑡 , and it is not difficult to see that 
any 𝕄 can be represented by such a matrix 𝐌 . In fact, this representa- 
tion is not unique, and by solving the equation 𝑽 𝖳 𝐌 𝑽 = 0 , one finds 
the solution space to be a nine-dimensional subspace (in the space of 
symmetric 9 × 9 matrices): 

𝑽 𝑇 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 𝑙 1 𝑙 2 0 𝑙 4 𝑙 6 
0 0 0 − 𝑙 1 0 𝑙 3 − 𝑙 4 0 𝑙 7 
0 0 0 − 𝑙 2 − 𝑙 3 0 − 𝑙 6 − 𝑙 7 0 
0 − 𝑙 1 − 𝑙 2 0 0 0 0 𝑙 5 𝑙 8 
𝑙 1 0 − 𝑙 3 0 0 0 − 𝑙 5 0 𝑙 9 
𝑙 2 𝑙 3 0 0 0 0 − 𝑙 8 − 𝑙 9 0 
0 − 𝑙 4 − 𝑙 6 0 − 𝑙 5 − 𝑙 8 0 0 0 
𝑙 4 0 − 𝑙 7 𝑙 5 0 − 𝑙 9 0 0 0 
𝑙 6 𝑙 7 0 𝑙 8 𝑙 9 0 0 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

𝑽 = 0 , 𝑙 1 , … , 𝑙 9 ∈ 𝐑 . 

We indicate this freedom by writing 

𝑝 ( 𝑥, 𝑦, 𝑧, 𝑟, 𝑠, 𝑡 ) = 𝑽 𝖳 𝐌 ( 𝓵 ) 𝑽 

where 𝓵 = ( 𝓁 1 , … , 𝓁 9 ) . Now if, for some value of the parameter vector 𝓵 , 
the matrix 𝐌 ( 𝓵 ) is positive semi-definite, then it is clear that (E.1) (and 
hence also (m)) holds. This is exactly the feasibility problem (14) . By 
diagonalizing 𝑴 ( 𝓵 ) (if it is nonnegative) one sees that 𝑝 is expressed as 
a sum of squared (SoS) polynomials, i.e., 

𝑝 ( 𝑥, 𝑦, 𝑧, 𝑟, 𝑠, 𝑡 ) = 

9 ∑
𝑖 =1 

𝛼𝑖 𝑝 
2 
𝑖 ( 𝑥, 𝑦, 𝑧, 𝑟, 𝑠, 𝑡 ) 

where { 𝛼𝑖 } 9 𝑖 =1 are the (non-negative) eigenvalues of 𝑴 ( 𝓵 ) and each 𝑝 𝑖 is 
a linear combination of the entries of the vector 𝑽 . This is thus an ex- 
ample of the rich theory of SoS polynomials ( Berg et al., 1976; Lasserre, 
2007 ). We should remark that it is not strictly necessary that 𝑴 ( 𝓵 ) is 
positive semi-definite for (E.1) to hold, which means that the condi- 
tion 𝑴 ( 𝓵 ) ⪰ 0 is slightly stronger, as there are non-negative polynomi- 
als which are not SoS. In practice, however, this drawback is compen- 
sated for by the computational convenience offered by SDP. Also, there 
are results which show that the set of SoS polynomials are, in a certain 
sense( Lasserre, 2007 ), dense in the set of non-negative polynomials. 
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Appendix F. Imposing condition (m) using SDP 

By choosing the independent variables 𝑥 1 , 𝑥 2 , … , 𝑥 28 to encode for 
𝑆 0 , ̂𝐃 𝑖𝑗 and ℂ 𝑖𝑗𝑘𝑙 as explained in Section 3 , the tensor 𝕄 𝑖𝑗𝑘𝑙 = ℂ 𝑖𝑗𝑘𝑙 + 

�̂� 𝑖𝑗 ⊗ �̂� 𝑘𝑙 becomes linear in 𝑥 8 , … , 𝑥 28 but quadratic in 𝑥 2 , … , 𝑥 7 . For 
this reason, we have adopted the strategy that if (m) is violated (in an es- 
timate where (d) and (c) are imposed), we fix the estimates of 𝑥 1 , … , 𝑥 7 , 
(i.e., ln ( 𝑆 0 ) and �̂� 𝑖𝑗 ) and re-estimate 𝑥 8 , … , 𝑥 28 using SDP while impos- 
ing both (c) and (m). 

We shall return to the (un-constricted) scenario formulated as a 
quadratic programming problem. We seek 

argmin 
𝒙 

𝒙 𝖳 𝐐 𝒙 + 𝒄 𝖳 𝒙 (F.1) 

where 𝒙 = ( 𝑥 1 , … , 𝑥 28 ) 𝖳 and 𝐐 is a symmetric matrix of size 28 × 28 . 
Next, we decompose 𝒙 = ( ̌𝒙 𝖳 , ̃𝒙 𝖳 ) 𝖳 , where ̌𝒙 = ( 𝑥 1 , … , 𝑥 7 ) 𝖳 is fixed, while 
�̃� = ( 𝑥 8 , … , 𝑥 28 ) 𝖳 contains our remaining free parameters. To match this, 
we decompose 𝐐 and 𝒄 into block matrices in the following fashion: 

𝐐 = 

( 

𝐐 11 𝐐 12 
𝐐 21 𝐐 22 

) 

, and 𝒄 = 

( 

𝒄 1 
𝒄 2 

) 

where the sizes of 𝐐 11 , 𝐐 12 , 𝐐 21 , 𝐐 22 are 7 × 7 , 7 × 21 , 21 × 7 , and 21 ×
21 , respectively, and 𝒄 1 , 𝒄 2 are vectors with 7 and 21 elements. Then 
𝒙 𝖳 𝐐 𝒙 + 𝒄 𝖳 𝒙 becomes 

( ̌𝒙 𝖳 , ̃𝒙 𝖳 ) 
( 

𝐐 11 𝐐 12 
𝐐 21 𝐐 22 

) ( 

�̌� 
�̃� 

) 

+ 

(
𝒄 𝖳 1 𝒄 𝖳 2 

)( 

�̌� 
�̃� 

) 

which simplifies to 

�̃� 𝖳 �̃� ̃𝒙 + ̃𝒄 𝖳 �̃� + 𝑐 0 (F.2) 

where 

�̃� = 𝐐 22 

�̃� 𝖳 = 2 ̌𝒙 𝐐 12 + 𝒄 𝖳 2 and 

𝑐 0 = �̌� 𝖳 𝐐 11 ̌𝒙 + 𝒄 𝖳 1 ̌𝒙 . 

With �̃� such that �̃� 𝖳 �̃� = �̃� (and remembering that 𝑐 0 is just a con- 
stant that does not affect the minimizing argument 𝑥 ), (F.2) is if the 
form which admits a SDP formulation. Disregarding 𝑐 0 , this is found 
in the upper left blocks of the matrix in (15) . Since all the variables 
𝑥 8 , … , 𝑥 28 are still free, and since they form 𝐂 𝛼𝛽 , the positivity condi- 

tion (c) remains the same: 𝐂 𝛼𝛽 ⪰ 0 . Finally, with �̂� 𝑖𝑗 fixed, and since 

𝕄 𝑖𝑗𝑘 𝓁 = ℂ 𝑖𝑗𝑘 𝓁 + ̂𝐃 𝑖𝑗 ⊗ �̂� 𝑘 𝓁 , all entries of the components 𝕄 𝑖𝑗𝑘 𝓁 will be 
first order polynomials in 𝑥 8 , … , 𝑥 28 and hence can be cast into a 9 × 9 
symmetric matrix 𝐌 as described in Appendix E . By adding the freedom 

in terms of the parameters 𝓁 1 , 𝓁 2 , … , 𝓁 9 as also described in the previous 
section, we get the matrix 𝐌 ( 𝓵 ) , (which could also be written 𝐌 ( 𝓵 , ̃𝒙 ) ) 
and by this formulation, both conditions (c) and (m) will be imposed 
simultaneously in the formulation (15) . 

Appendix G. Scalar measures in the rank deficient case 

As mentioned in Section 3 , protocols that use measurements of only 
type (i) and (iii), i.e., LTE and STE, will produce matrices 𝐀 , which are 
rank deficient. In this case, the (maximum) rank will be 23 instead of 28, 
and as a result, there is a (five parameter worth) family of covariance 
tensors ℂ 𝑖𝑗𝑘 𝓁 compatible with the (fit of the) measurements. Here, we 
will describe this freedom and also indicate why the scalars measures 
FA , MD , 𝐶 M 

, 𝐶 𝜇, 𝜇FA , 𝐶 MD , and 𝐶 c are unaffected by this non-uniqueness 
in the estimates of ℂ 𝑖𝑗𝑘 𝓁 . 

First we note that for measurements of type (i), i.e., of type LTE, 
such a measurement picks up only the content of the completely 
symmetric part ℂ ( 𝑖𝑗𝑘 𝓁) of ℂ 𝑖𝑗𝑘 𝓁 . Namely, since any measurement ten- 
sor 𝐁 𝑖𝑗 of type (i) is symmetric, positive semi-definite and has rank 

one, we can write 𝐵 𝑖𝑗 = 𝑣 𝑖 𝑣 𝑗 for some vector 𝑣 𝑖 . It is then clear 
that 𝐶 𝑖𝑗𝑘 𝓁 𝐵 𝑖𝑗 𝐵 𝑘𝑙 = 𝐶 𝑖𝑗𝑘 𝓁 𝑣 𝑖 𝑣 𝑗 𝑣 𝑘 𝑣 𝓁 = 𝐶 ( 𝑖𝑗𝑘 𝓁) 𝑣 𝑖 𝑣 𝑗 𝑣 𝑘 𝑣 𝓁 since 𝑣 𝑖 𝑣 𝑗 𝑣 𝑘 𝑣 𝓁 itself is 
completely symmetric. As a result, the difference 𝕂 𝑖𝑗𝑘 𝓁 = ℂ 𝑖𝑗𝑘 𝓁 − ℂ ( 𝑖𝑗𝑘 𝓁) 
satisfies 𝐾 𝑖𝑗𝑘 𝓁 𝑣 𝑖 𝑣 𝑗 𝑣 𝑘 𝑣 𝓁 = 0 for all vectors 𝑣 𝑖 . Moreover, since ℂ 𝑖𝑗𝑘 𝓁 has 
21 independent components while ℂ ( 𝑖𝑗𝑘 𝓁) has 15, this means that 𝕂 𝑖𝑗𝑘 𝓁 
has six degrees of freedom. 

Next, we express the tensor 𝕂 𝑖𝑗𝑘 𝓁 as a 6 × 6 matrix using the Voigt 
notation, yielding 

𝐊 𝛼𝛽 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 𝑎 + 𝑑 − 𝑤 𝑤 − 𝑑 0 0 𝑒 
𝑎 + 𝑑 − 𝑤 0 𝑤 − 𝑎 0 𝑐 0 
𝑤 − 𝑑 𝑤 − 𝑎 0 𝑏 0 0 
0 0 𝑏 − 𝑎 − 𝑑 + 𝑤 − 

𝑒 √
2 

− 

𝑐 √
2 

0 𝑐 0 − 

𝑒 √
2 

𝑑 − 𝑤 − 

𝑏 √
2 

𝑒 0 0 − 

𝑐 √
2 

− 

𝑏 √
2 

𝑎 − 𝑤 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , and 𝑤 are the six free parameters. Because 𝐊 𝛼𝛽 is 
symmetric, the corresponding fourth order tensor 𝕂 𝑖𝑗𝑘 𝓁 has the cor- 
rect symmetries. Moreover, for any vector 𝒗 𝑖 = ( 𝑥, 𝑦, 𝑧 ) 𝖳 , the tensor 𝒗 𝑖 𝒗 𝖳 𝑗 
can be expressed as 𝑽 𝛼 = 

(
𝑥 2 , 𝑦 2 , 𝑧 2 , 

√
2 𝑥𝑦, 

√
2 𝑥𝑧, 

√
2 𝑦𝑧 

)𝖳 
through the 

Voigt notation. Using this, it can be verified that 𝐾 𝛼𝛽𝑉 𝛼𝑉 𝛽 = 0 and hence 
𝐾 𝑖𝑗𝑘 𝓁 𝑣 𝑖 𝑣 𝑗 𝑣 𝑘 𝑣 𝓁 = 0 for all vectors 𝒗 𝑖 . 

To proceed, we now refer to ( Westin et al., 2016 ), in which the def- 
initions of the scalars can be found. The key observation is then that 
all the scalar measures involves ℂ 𝑖𝑗𝑘 𝓁 (or, equivalently, 𝐂 𝛼𝛽) in such a 
way that inner products are taken with linear combinations of the fourth 
order tensors 𝔼 iso 𝑖𝑗𝑘 𝓁 and 𝔼 bulk 𝑖𝑗𝑘 𝓁 , whose 6 × 6 representations are given by 

𝐄 

bulk 
𝛼𝛽 = 

1 
9 

⎛ 
⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 0 0 0 
1 1 1 0 0 0 
1 1 1 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

⎞ 
⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and 

𝐄 

iso 
𝛼𝛽 = 

1 
3 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where in particular 𝔼 bulk is related to measurements of type (iii), i.e., 
STE. The contributions from 𝕂 𝑖𝑗𝑘 𝓁 to such inner products are 

𝐾 ijk 𝓁 𝐸 

bulk 
ijk 𝓁 = 

2 𝑤 

9 
, 

𝐾 ijk 𝓁 𝐸 

iso 
ijk 𝓁 = − 

𝑤 

3 
= − 

3 
2 
𝐾 ijk 𝓁 𝐸 

bulk 
ijk 𝓁 . 

This implies that the set of scalar measures considered here are sensitive 
to 𝕂 𝑖𝑗𝑘 𝓁 only through 𝑤 , which can be obtained via an STE measurement 
in addition to a proper set of LTE acquisitions that enable the estimation 
of ℂ ( 𝑖𝑗𝑘 𝓁) . 

Appendix H. The mean and covariance of the Wishart distribution 

Deriving the first two moments of the non-central Wishart distribu- 
tion directly from the probability distribution function is a bit involved. 
However, using (16) , we can find these by matching this expression to 
our model (1) . In essence, we want to find �̂� 𝑖𝑗 and ℂ 𝑖𝑗𝑘 𝓁 so that 

|𝐈 + 𝚺𝐁 |− 𝑝 exp (− Tr [ 𝐁 ( 𝐈 + 𝚺𝐁 ) −1 𝛀]) = 𝑒 − 𝐵 𝑖𝑗 ̂𝐷 𝑖𝑗 + 
1 
2 𝐵 𝑖𝑗 𝐵 𝑘𝑙 𝐶 𝑖𝑗𝑘 𝓁 + 𝑂(( 𝐵 𝑖𝑗 ) 3 ) . 

By taking logarithms and introducing a scale parameter 𝑥 , we demand 
that for each fixed (symmetric, positive semi-definite) 𝐁 𝑖𝑗 , it holds that 

− 𝑝 ln |𝐈 + 𝑥 𝚺𝐁 | − Tr 
[
𝑥 𝐁 ( 𝐈 + 𝑥 𝚺𝐁 ) −1 𝛀

]
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= − 𝑥𝐵 ij �̂� ij + 

𝑥 2 

2 
𝐵 ij 𝐵 kl 𝐶 ijk 𝓁 + 𝑂 

(
𝑥 3 
)
. (H.1) 

It follows from the definition of the ( 3 × 3 ) determinant that 

|𝐈 + 𝑥 𝚺𝐁 | = 1 + 𝑥 Tr [ 𝚺𝐁 ] + 

𝑥 2 

2 
(
Tr [ 𝚺𝐁 ] 2 − Tr 

[
( 𝚺𝐁 ) 2 

])

+ 𝑂 

(
𝑥 3 
)

and 

ln |𝐈 + 𝑥 𝚺𝐁 | = 𝑥 Tr [ 𝚺𝐁 ] − 

𝑥 2 

2 
Tr [( 𝚺𝐁 ) 2 ] + 𝑂( 𝑥 3 ) 

so that 

− 𝑝 ln |𝐈 + 𝑥 𝚺𝐁 | = − px Σij 𝐵 ji + 𝑝 𝑥 
2 

2 
Σij 𝐵 jk Σ𝑘 𝓁 𝐵 𝓁𝑖 

+ 𝑂 

(
𝑥 3 
)
. (H.2) 

Next, since ( 𝐈 + 𝑥 𝚺𝐁 ) −1 = 𝐈 − 𝑥 𝚺𝐁 + 𝑂( 𝑥 2 ) , 

− Tr [ 𝑥 𝐁 ( 𝐈 + 𝑥 𝚺𝐁 ) −1 𝛀] = − 𝑥𝐵 𝑖𝑘 ( 𝐼 𝑘𝑛 − 𝑥 Σ𝑘𝑚 𝐵 𝑚𝑛 )Ω𝑛𝑖 + 𝑂( 𝑥 2 ) . (H.3) 

Inserting (H.2) and (H.3) into (H.1) and identifying terms w.r.t. 𝑥 , 
we find that, for each symmetric 𝐁 𝑖𝑗 , 

( ̂𝐷 𝑖𝑗 − 𝑝 Σ𝑖𝑗 − Ω𝑖𝑗 ) 𝐵 𝑖𝑗 = 0 (H.4) 

( 𝐶 𝑖𝑗𝑘 𝓁 − 𝑝 Σ𝑖 𝓁 Σ𝑗𝑘 − 2Σ𝑗𝑘 Ω𝓁𝑖 ) 𝐵 𝑖𝑗 𝐵 𝑘 𝓁 = 0 . (H.5) 

Note that the first equation does not imply that �̂� 𝑖𝑗 = 𝑝 Σ𝑖𝑗 + Ω𝑖𝑗 

unless we take the symmetry of �̂� 𝑖𝑗 into account since 𝐴 𝑖𝑗 𝐵 𝑖𝑗 = 0 
for any anti-symmetric matrix 𝐀 𝑖𝑗 ( 𝐁 𝑖𝑗 being symmetric). On the 

other hand, with �̂� 𝑖𝑗 symmetric, it is necessary that �̂� 𝑖𝑗 = 𝑝 Σ𝑖𝑗 + 

Ω𝑖𝑗 , since if for a symmetric matrix 𝐀 𝑖𝑗 , 𝐴 𝑖𝑗 𝐵 𝑖𝑗 = 0 for all sym- 
metric positive definite matrices 𝐁 𝑖𝑗 , then 𝐴 𝑖𝑗 = 0 . For (H.5) , the 
terms Σ𝑖 𝓁 Σ𝑗𝑘 and Σ𝑗𝑘 Ω𝓁𝑖 do not have the symmetries of ℂ ijk 𝓁 . On 
the other hand, using the symmetry of 𝐁 𝑖𝑗 , one can check that, for 

all 𝐁 𝑖𝑗 , Σ𝑖 𝓁 Σ𝑗𝑘 𝐵 𝑖𝑗 𝐵 𝑘 𝓁 = 

1 
2 (Σ𝑖 𝓁 Σ𝑗𝑘 + Σ𝑖𝑘 Σ𝑗𝓁 ) 𝐵 𝑖𝑗 𝐵 𝑘 𝓁 and 2Σ𝑗𝑘 Ω𝓁𝑖 𝐵 𝑖𝑗 𝐵 𝑘 𝓁 = 

1 
2 (Σ𝑗𝑘 Ω𝑖 𝓁 + Σ𝑖 𝓁 Ω𝑗𝑘 + Σ𝑗𝓁 Ω𝑖𝑘 + Σ𝑖𝑘 Ω𝑗𝓁 ) 𝐵 𝑖𝑗 𝐵 𝑘 𝓁 , so that we can replace 
(H.5) by 

𝐴 𝑖𝑗𝑘 𝓁 𝐵 𝑖𝑗 𝐵 𝑘 𝓁 = 0 

for all symmetric positive semidefinite matrices 𝐁 𝑖𝑗 , where 𝐴 ijk 𝓁 = 

𝐶 ijk 𝓁 − 

𝑝 
2 (Σ𝑖 𝓁 Σjk + Σik Σ𝑗𝓁 ) − 

1 
2 (Σjk Ω𝑖 𝓁 + Σ𝑖 𝓁 Ωjk + Σ𝑗𝓁 Ωik + Σik Ω𝑗𝓁 ) has the 

same symmetries as ℂ ijk 𝓁 . But this forces 𝐴 𝑖𝑗𝑘𝑙 to be zero since we know 

(c.f. the discussion in (3.9) ) that with general measurement tensors 𝐁 𝑖𝑗 , 
we can produce tensors with components 𝐵 𝑖𝑗 𝐵 𝑘𝑙 , which together deter- 
mine 𝐴 𝑖𝑗𝑘𝑙 above. This proves (18) . 
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a b s t r a c t

Q-space trajectory imaging (QTI) allows non-invasive estimation of microstructural features
of heterogeneous porous media via diffusion magnetic resonance imaging performed with
generalised gradient waveforms. A recently proposed constrained estimation framework,
called QTIþ, improved QTI’s resilience to noise and data sparsity, thus increasing the reli-
ability of the method by enforcing relevant positivity constraints. In this work we consider
expanding the set of constraints to be applied during the fitting of the QTI model. We show
that the additional conditions, which introduce an upper bound on the diffusivity values,
further improve the retrieved parameters on a publicly available human brain dataset as
well as on data acquired from healthy volunteers using a scanner-ready protocol.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diffusion magnetic resonance imaging (dMRI) is an imaging technique possessing exquisite inherent sensitivity to the
randommotion of watermolecules, which can be exploited to determine local features of complex porousmedia. The random
motion can be encoded into the MR signal by means of time-varying magnetic field gradients, and interpreted using (bio)
physical models or signal representations. In Q-space trajectory imaging (QTI) [1], the medium is imagined as being
composed of several non-exchanging gaussian compartments, each represented by a diffusion tensor [2]. As such, each voxel
is represented using a diffusion tensor distribution (DTD) [3]. At low diffusion sensitivities achieved with general gradient
waveforms, QTI gives access to the first statistical moments of the DTD via the cumulant expansion. These are quantified in a
3� 3 symmetric positive semidefinite matrix denoting the average diffusion tensor, and a fourth order object denoting the
covariance of the diffusion tensorsd the two quantities that define a tensor-variate normal distribution [4]. From these two,
it is possible to compute a series of metrics which are sensitive to different microstructural features of porous structures. Akin
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to what is done for characterizing size distributions [5], the goal in QTI is to estimate the statistical moments of the DTD from
the collected data, and use these to interpret structural properties of complex media.

Herberthson et al. recently introduced a framework calledQTIþ [6],which improvedQTI’s robustness to noise thus increasing
its reliability. Thiswas accomplished by imposing relevant positivity constraints aswas done for other diffusionMRmodels [7]. It
was shown that by performing the constrained estimation, it was possible to obtain more accurate parameter estimates which
seemed to promote smoothness in the derived maps, despite each voxel being fitted independently [6]. Moreover, it was found
that the constrained fit lowered the demand on the number of diffusion measurements to be acquired and considered for the
estimation [8]. In addition to these encouraging findings, we encountered unrealistically high values of some of the scalar
measures particularly invoxelswith a large cerebrospinalfluid (CSF) content. To address this issue, in thisworkwe formulate and
apply complementary constraints which prohibit water diffusivity to exceed its theoretical physical value. Other works also
considered imposing upper boundswhile estimatingmetrics in other diffusionmodels, such as diffusion kurtosis imaging [9,10].
We thus incorporate the newconstraints into theQTIþ framework, determine the extent of the violations of such conditions, and
observe how imposing them influences the QTI metrics on human brain data obtained from a GE scanner.

2. Methods

2.1. Theory

2.1.1. Notation
The notation in this work is kept consistent with the one used in Ref. [6]. In short, italic characters are reserved for scalar

quantities, boldface characters are used formatrices and second order tensors, and blackboard bold (double struck) characters
denote fourth-order tensors. By choosing a basis in the 6-dimensional space of symmetric 3� 3 matrices, all their mutual
tensor products give 6� 6 elements of the same type as the fourth orders tensors occurring here. Hence these fourth order
tensors can be represented as 6� 6 matrices, and the tensor symmetries also imply that these 6� 6 matrices are symmetric.

For the indexing, when expressed through Latin letters i; j; k; and l, they range from 1 to 3,whilewhen expressed through the
early Greek letters a, b, and g, they range from 1 to 6. As an example, Aijkl and Aab are the fourth order and second order rep-
resentations of the same tensor. When used with double struck and boldface characters, the indices do not refer to a particular
componentof the tensor but rather to theorderof the elements.As explained inRef. [6], the components of a tensor are addressed
using ordinary capital letters, e.g., Aij. The matrix products are expressed using the Einstein summation convention.

2.1.2. QTI
QTI [1] is a framework utilizing diffusion measurements with time varying magnetic field gradients and a diffusion tensor

distribution [3] model, with stochastic variable Dij, for the medium microstructure. The DTD model assumes Gaussian
diffusionwithin the subdomains making up the tissue. Consequently, all experimental parameters of each diffusion magnetic
resonance experiment are captured by a measurement tensor, which we refer to in the text as Bij [11]. In the limit of small Bij,

the MR signal in QTI is interpreted through the first two statistical cumulants of the DTD, namely the mean bDij ¼ < Dij > and

fourth order covariance tensor Cijkl ¼ < ðDij � bDijÞ5 ðDkl � bDklÞ> . The MR signal, via cumulant expansion, can thus be
written as [1]:

S
�
Bij
�¼ S0 exp

�
� Bij bDij þ

1
2
BijBklCijkl

�
: (1)

Given a family of measurements Bij, the parameters S0, bDij, and Cijkl can be estimated by solving the following problem:

argmin
S0;bD ij;Cijkl

XN
n¼1

���Sn � S0e
�BðnÞ

ij
bDijþ1

2B
ðnÞ
ij BðnÞ

kl Cijkl

���2 (2)

which upon linearization by taking the logarithm becomes the weighted linear least squares problem:

argmin
S0;bD ij;Cijkl

XN
n¼1

S2n

����lnðSnÞ � lnðS0Þ þ BðnÞij
bDij �

1
2
BðnÞij BðnÞkl Cijkl

����2 (3)

where the heteroskedasticity introduced by the logarithmic operation is accounted for by the factor S2n. The problems defined
in equations (2) and (3) can be solved by traditional non-linear and (weighted) linear least squares routines, respectively.

2.1.3. QTIþ
In QTIþ, the problems defined in equations (2) and (3) are solved while necessary positivity conditions are applied on the

tensors to be estimated using non-linear and semidefinite programming (SDP) routines. The applied conditions were named
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‘(d)’, ‘(c)’, and ‘(m)’, with the letters indicating which tensor the condition is imposed on. Here, d0 stands for positive semi-
definite in the sense that all eigenvalues are non-negative:

(d) bDijd0 ,

(c) Cabd0 , and

(m) for all vi and ui, Mijkl vi vj uk ul � 0

where Mijkl are the elements of the fourth order tensor Mijkl ¼ Cijkl þ bDij 5
bDkl.

2.1.4. Diffusivity-limiting conditions
In this section, we describe additional conditions that could be imposed. In particular, the earlier conditions are expanded

based on the observation that the maximum values of the diffusivities must be bounded from above. This maximum allowed
value could be specified to be the bulk diffusivity D0 for free diffusion occurring at a certain temperature. Mathematically, this

translates into saying that bDij � D0Iij must be negative semidefinite for some bulk diffusivity D0. We refer to this condition as
ðdSLÞ, where SL stands for ‘speed limit’:

ðdSLÞ bDij � D0Iij70

The same reasoning applied to the covariance tensor Cijkl results in several constraints. Below, the components Cijkl are
expressed with respect to an orthonormal basis, and the coefficients Cab with respect to a basis which is discussed in the
appendix:

ðc1SLÞ �D2
0

.
4 � Cab � D2

0

.
4 and 0 � Caa � D2

0

.
4; if 1 � a; b � 3

ðc2SLÞ 0 � li �
3
4
D2
0; i ¼ 1;2;3;4;5; 6;where li are the eigenvalues of Cab

�
Gþ
SL
�  

Cijkl þ
D2
0
4
IijIkl

!
uiujukul � 0

�
G�
SL
�  

Cijkl �
D2
0
4
IijIkl

!
uiujukul � 0

When applied on the tensor Mijkl, this constraint results in the condition

ðmSLÞ
�
Mijkl � D2

0IijIkl
�
uiujukul � 0

To apply these constraints, one is forced to determine the appropriate D0 to be used as maximum allowed diffusivity. This
value is mostly depending on thewater temperature at themoment the experiment is performed. As there is no simpleway of
measuring this, the chosen threshold will most likely be an approximation of what the correct one should be. The discussion
around possible choices of this value for human brain dMRI acquisition is found in later sections.

2.2. QTI±

The conditions derived in the previous sections can be applied alongside those enforced in QTIþ using semidefinite
programming. Fig. 1 shows how both the positivity and diffusivity-limiting conditions are enforced in the newly created QTI±
framework. In the nomenclature, the ‘� ’ sign refers to the diffusivity-limiting conditions, while the ‘þ’ sign refers to the non-
negativity constraints.

In the SDP(dc±) step, conditions (d), (c), (dSL), (clSL), (c2SL), and (G�
SL) are enforced. Note that condition (Gþ

SL) does not need
to be applied, as it is already implied by condition (c). The results obtained in this step can then be checked to verify whether
they satisfy conditions (m) and (mSL). As it was explained in QTIþ [6], these conditions can be checked with a semidefinite
programming approach. If both are satisfied, then the results obtained in SDP(dc±) are the final result. If instead either “m”

condition is violated, SDP(dcm±), which imposes conditions (c), (m), (clSL), (G
�
SL) and (mSL), is performed. In this step, the

estimated values obtained for Dij in SDP(dc ±), which are already guaranteed to satisfy conditions (d) and (dSL), are fixed, so
that Mijkl is linear in the variables to be estimated.
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Note that while the framework depicted in Fig. 1 is what we find to provide the best solutions, it is not compulsory to
execute all of its steps. For example, one option could be to take the output of SDP(dc±) as the final result. Another option is to
skip the check on conditions (m) and (mSL), and directly execute SDP(dcm±) after SDP(dc±). The results presented in later
sections and the run times reported in Table 1 should provide the necessary information for the users to make an informed
decision on which option to choose.

2.3. Implementation

The functions performing the constrained fit with both positivity and diffusivity-limiting conditions were implemented in
Matlab as an extension to the qtiplus software available at https://github.com/DenebBoito/qtiplus and described in Ref. [12].
Two SDP optimizers, namely SDPT3 [13] and MOSEK (MOSEK ApS, Denmark), interfaced via CVX [14,15], were inter-
changeably used to fit the model to the data, and to check the violations of the (m) and (mSL) conditions.

2.4. Violations of the conditions

A publicly available and thoroughly sampled human brain dataset, described in Ref. [16] and available at https://github.com/
filip-szczepankiewicz/Szczepankiewicz_DIB_2019, was used to investigatewhere the diffusivity-limiting conditions are violated
onmodel parameter estimates produced with the QTIþ (SDP(dcmþ) method) framework. To simulate shorter acquisitions, this
dataset was downsampled as described in Ref. [6], to produce datasets comprising, respectively, 217, 81, 56, and 39 diffusion
measurements.We refer to these datasets as, respectively, p217, p81, p56, and p39. These datasets are available at https://github.
com/filip-szczepankiewicz/Szczepankiewicz_DIB_2019/tree/master/DATA/brain/NII_Boito_SubSamples.

First, to verify the violations’ dependence on the set maximum allowed bulk diffusivity D0, the diffusivity-limiting con-
ditions were checked on model parameter estimates produced on the p81 datasets for 5 different D0 values. These D0 values
were derived from the work of Holz et al. [17], for water temperatures in the range ½36:5�C � 39:5�C�.

Secondly, to assess whether the violations exhibit some dependence on the amount of available data, the conditions were
checked on the p217, p81, p56, and p39 for the same maximum allowed bulk diffusivity D0 ¼ 3:0750 mm2=ms.

Fig. 1. QTI± framework. First, the data and b-tensors are input to the SDP(dc±) method. The produced estimates are checked for violations of both conditions (m)
and (mSL). If both are satisfied, the obtained parameters constitute the output of the framework. Otherwise, the estimates produced in SDP(dc±) are used as
starting point in SDP(dcm±), which then produces the final estimates for the model parameters.

Table 1
Run times for different estimation methods in the QTIþ and
QTI± frameworks. The times were clocked while fitting one of the
collected datasets (z60000 voxels).

Method Run time

SDP(dcþ) 7 min
SDP(dc±) 22 min
SDP(dcmþ) 9 min
SDP(dcm±) 50 min
m-check þ SDP(dcmþ) 7 min
m-check þ SDP(dcm±) 48 min
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2.5. Experimental data

Data from 8 healthy volunteers were collected with ethical approval from the Swedish Ethical Review Authority (Dnr
2019e06123) on a clinical GE Signa Architect 3T MR scanner using a q-space trajectory imaging diffusion protocol. The
imaging parameters were: TE ¼ 122 ms, TR ¼ 3289 ms, field-of-view ¼ 240� 240� 304 mm3, matrix size ¼ 80� 80� 39,
voxel size ¼ 3� 3� 4 mm3 with 4 mm spacing between slices. The QTI protocol consisted of 122 diffusion measurements
organized as follows:

LTE: 6, 6, 16, and 30 directions at, respectively, b ¼ ½0:1;0:7;1:4;2:0� mm2=ms
PTE: 6, 10, and 15 directions at, respectively, b ¼ ½0:1;1:0;2:0� mm2=ms
STE: 6, 6, 10, and 10 directions at, respectively, b ¼ ½0:1;0:7;1:4;2:0� mm2=ms
where LTE stands for linear tensor encoding, PTE for planar tensor encoding, STE for spherical tensor encoding, and b is the

trace of the measurement tensor Bij. Prior to model fitting, the data were preprocessed for motion and eddy current cor-
rections using the eddy tool from FSL [18] interfaced via MRtrix3 [19] with default parameters.

3. Results

3.1. Violations of the conditions

Fig. 2 shows where the violations of conditions (dSL), (clSL), (c2SL), (G
�
SL), and (mSL) occur. The voxels are color-coded based

onwhich condition is violated in them: blue for the condition onDij ((dSL)), red for for the conditions onCijkl ((clSL), (c2SL) and
(G�

SL)), and green for the condition on Mijkl ((mSL)). The (dcmSL) column shows the voxels in which at least one of the
diffusivity limiting conditions is violated; the color there is based on an RGB colormap resulting from the sum of the first 5
columns.

Themaps in panel a), obtained on the p81 protocol, highlight how the violations are independent of themaximum allowed
diffusivity, for the considered values. The maps in panel b) show that the violations are consistent d in terms of occurring in
regions where there is abundance of free water d for model parameters estimated from datasets comprising different
numbers of diffusion measurements. From both panels, it is evident that the conditions on the maximum allowed diffusivity
are violated almost exclusively in tissues containing large fractions of cerebrospinal fluid (CSF).

3.2. Imposing the conditions

Fig. 3 shows on the left the violations of the diffusivity limiting conditions on fits produced with the unconstrained routine
(as implemented in https://github.com/markus-nilsson/md-dmri), QTIþ, SDP(dc±), and SDP(dcm±). The resulting QTI stains
(Mean Diffusivity (MD), Fractional Anisotropy (FA), microscopic Fractional Anisotropy (mFA), Size Variance (CMD), and

Fig. 2. Violations of the conditions for different choices of D0 and protocol p81 (panel a)), and the considered protocols and maximum allowed diffusivity D0 ¼
3:0750 mm2=ms (panel b)). Colors are used to indicate which of the conditions is violated in each voxel: blue for (dSL), red for (c1SL), (c2SL) and (G�

SL), and green for
ðmSLÞ. The (dcmSL) column shows all the voxels in which at least one of the conditions is violated as a sum of the first 5 columns RGB values. The model pa-
rameters on which the conditions are checked are produced with QTIþ (SDP(dcmþ)). Both panels highlight how, within the range of considered scenarios, the
violations are largely independent of the set maximum allowed diffusivity, and number of diffusion measurements. Moreover, the violations are almost entirely
limited to tissues containing a significant amount of CSF.
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Orientation Coherence (Cc)) are shown on the right. The model fitting was performed on the p81 (top panel) and p56 (bottom
panel) protocols. The violation maps for SDP(dc±) and SDP(dcm±) highlight how imposing the constraints provides model
estimates which satisfy the targeted conditions.

The maps located on the right side in the panels show how the constraints affect the stains derived in the QTI analysis. The
conditions imposed in QTIþ provide generally smoother looking maps, while most of the changes introduced by the new
constrained framework aremost easily observable in the ventricles, where the theoretical value of FA, mFA, CMD, and Cc should
be 0, while the value of MD should have an upper limit set by the maximum allowed diffusivity D0. The fits produced with
SDP(dc±) already provide an improvement in several maps when comparedwith those produced in QTIþ. In particular, it was
possible to remove the flow artefact located in the frontal horn of the left ventricle. The results are further improved when all
the diffusivity limiting conditions are applied in SDP(dcm±). Observe for example how the mFA, CMD, and Cc quantities are
further pushed towards their expected value. Note however that on the fit produced on the p56 protocol, mFA seems to
erroneously increase in value in the ventricles.

3.3. Experimental data

Fig. 4 shows the scalar maps obtained by fitting the data for two healthy subjects with QTIþ, SDP(dc± ) and SDP(dcm± ).
Similar to the results obtained on the p56 and p81 datasets, the QTI maps obtained with the extended list of constraints
exhibit improved parameter estimation in tissue containing large fractions of CSF. This provides in general better delineation
of different anatomical regions, most evidently in CMD and Cc maps.

Fig. 3. Violations of the conditions (left) and scalar maps (right) obtained through the p81 (top) and p56 (bottom) protocols. The maximum allowed diffusivity
was set to D0 ¼ 3:0750 mm2=ms.
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3.4. Computational times

In Table 1 we report the run times for the different steps of the QTI± framework and representative steps of the
QTIþ framework, for fittings performed on one of the collected datasets. The run times were recorded on a workstation
featuring a 12-core Intel Core i9-7920X CPU. The considered voxels for the fit amounted to z60000.

4. Discussion

The results displayed in Fig. 2 highlighted how the violations of the conditions are almost exclusively restricted to areas
containing large fractions of CSF. This is perhaps to be expected since in these regions the diffusivity is approximately the
same as the speed limit. The results in Fig. 2 panel a) also suggested that when the diffusivity limit is surpassed, it is most
likely surpassed by a considerable margin. This consideration could help to relax strict demands on setting an accurate
maximum allowed diffusivity to be used for constraining the fit.

Though regions containing only free water are typically of little interest for subsequent analysis, we would like to stress
that the proposed constraints are relevant for voxels with partial voluming between free water and structures. We show

examples of this in Fig. 5. After removing the voxels in which at least one of the eigenvalues of bD (estimated with QTIþ)
exceeds the speed limit, there remain voxels violating condition (mSL). These voxels are most likely located at the interface
between white-matter and grey-matter or CSF, i.e., where partial voluming is bound to occur due to the limited achievable
spatial resolution. As condition (mSL) is related to the speed limit for each compartment in the voxel’s DTD, the violation can
be explained by considering that the diffusivity limit is exceeded by the free water fraction in the voxel. In Fig. 5 panel b) we
then show how different the QTI stains are in these voxels if estimated with QTIþ (SDP(dcmþ)) or QTI± (SDP(dcm±)). While,

as expected, the metrics computed from bD are essentially equal, there is a substantial discrepancy between the mFA, CMD, and
Cc values produced with QTIþ and QTI±. Such discrepancy could play a major role when characterizing tissue heterogeneity
via quantitative analysis. This would be especially relevant when analysing diseased tissues, such as brain tumors. The
necrotic and oedematous tumor compartments typically contain large fractions of free water, which could bias the recovered

Fig. 4. Example results on two datasets collected on healthy volunteers using a protocol readily available on GE MR scanners. The maximum allowed diffusivity
was set to D0 ¼ 3:0750 mm2=ms.
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metrics [20]. Therefore, methods accounting for possible artifacts arising from free water partial voluming should be
considered for better in vivo assessment of tissue heterogeneity.

The results shown in Fig. 3 depicted the improvement introduced in the QTI stains when the diffusivity-limiting conditions
are imposed. These results were consistent with those obtained on the datasets acquired during the study, thus demon-
strating the validity of our findings across platforms. Note however that, as pointed out in section 3.2, some values of the
constraint estimated mFA are pushed in the wrong direction. This is plausibly due to performing the fit on fewer data which
are also already at the noise floor. Enforcing constraints under these conditions might produce biased estimates for pa-
rameters whose value is supposedly distributed around 0. As illustrated for example in Fig. 3 for the mFA values in the
ventricles, this seems to manifest mostly on fits to datasets very sparsely sampled, such as p39 (results not shown) and p56.
The effect is instead more contained on datasets comprising a higher number of data points, such as p217 (results not shown)
and p81.

To be considered are also the run times reported in Table 1. The overall improvement in the parameters’ estimation
brought by performing constrained optimization comes at the cost of increasing the time it takes to estimate the model
parameters. Future advances on the solvers’ algorithmic side could help reduce the current processing time.

5. Conclusion

In this work we considered extending the list of conditions to be applied while fitting the QTI model, by adding constraints
targeting the maximum allowed diffusivity. We showed that in regions where freely diffusing water is abundant these
conditions are easily violated, with the violations plausibly due to contributions of different factors such as noise, CSF flow
artifacts, and acquisition protocols not designed for data collection in these specific brain areas. Imposing the constraints
helps the parameters derived from the QTI analysis to be directed towards their expected values, and generally provides
stronger visual contrast between different brain tissues.
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computed from the fits produced employing QTIþ (SDP(dcmþ)) and QTI± (SDP(dcm±)) on the voxels remaining after masking out those in which condition (dSL)
is not respected (a total of 1221 voxels across the all brain). The plots show that FA and MD have essentially equal values for the two fits, while mFA, CMD and Cc

may differ quite substantially.
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Appendix. Derivation of the diffusivity-limiting conditions

In this appendix we discuss some of the inequalities presented in section 2.1.4.
Suppose that Dij is a stochastic variable which satisfies 07Dij7D0Iij. For a non-zero vector uj, which without loss of

generalisation can be assumed to have unit length, fromMijkl ¼ <DijDkl > it follows thatMijkl ¼ <DijuiujDklukul > ¼ < X2 > ,

where X ¼ Dijuiuj, so that X takes values in ½0;D0�. This means that <X2 > � D2
0, i.e.,Mijkluiujukul � D2

0 ¼ D2
0IijIkluiujukul which

is condition (mSL).
It can also be shown that the variance of the stochastic variable X satisfies VðXÞ � D2

0=4. To see this, we first note that the
variance is independent of translations, i.e., we can assume that X takes values in ½ � d0;d0�, where d0 ¼ D0= 2. The problem

can then be formulated as follows: suppose suppðpÞ3½ � d0;d0�, p � 0,
R d0
�d0

pðxÞdx ¼ 1,
Zd0

�d0

xpðxÞdx ¼m. What is the maximal

value of

Zd0

�d0

ðx� mÞ2pðxÞdx¼
Zd0

�d0

x2pðxÞdx� m2?

Let g be the even part of p, gðxÞ ¼ ðpðxÞ þ pð� xÞÞ=2. Then
Zd0

�d0

xgðxÞdx ¼0 and

Zd0

�d0

ðx� 0Þ2gðxÞdx¼
Zd0

�d0

x2
pðxÞ þ pð�xÞ

2
dx¼

Zd0

�d0

x2pðxÞdx�
Zd0

�d0

x2pðxÞdx�m2 ¼
Zd0

�d0

ðx� mÞ2pðxÞdx:

Hence, we can assume that p is even (so that m ¼ 0). Next, since p � 0,

Zd0

�d0

x2pðxÞdx�d20

Zd0

�d0

pðxÞdx ¼ d20 ¼ D2
0

,
4;

and this value is obtained for pðxÞ ¼ 1
2 dðxþd0Þ þ 1

2 dðx�d0Þ: Since Cijkluiujukul is precisely VðxÞ, (and since Iijuiuj ¼ 1), con-
dition (G�

SL) follows.
Conditions (c1SL) and (c2SL) can be proven by first considering that the coefficients Cab are expressed with respect to an

particular orthonormal set of basis matrises fA1;A2;A3;A4;A5;A6g in the space of symmetric 3�3 matrices, with ortho-
normality taken with respect to the scalar product <A;B> ¼ trðABÞ. Namely, the three first matrices in the basis are A1 ¼0@1 0 0

0 0 0
0 0 0

1A, A2 ¼
0@0 0 0

0 1 0
0 0 0

1A, A3 ¼
0@0 0 0

0 0 0
0 0 1

1A. Defining X1 ¼ DijðA1Þij, X2 ¼ DijðA2Þij, X3 ¼ DijðA3Þij, we get three

stochastic variables taking values in ½0; D0�. Hence 0 � VðXiÞ � D2
0=4; i ¼ 1;2;3: For 1 � a; b � 3, Cab ¼ CovðXa; XbÞ. Since

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðXÞVðYÞp � CovðX;YÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðXÞVðYÞp
, which results in condition (c1SL).

Finally, note that if ba is an eigenvector with eigenvalue l to Cab, and if ba has unit norm, then Cabbabb ¼ l. In terms of
Cijkl and the corresponding (eigen)matrix Bij (with unit norm) this means that CijklBijBkl ¼ l. Define Y ¼ ðDij �d0IijÞBij with
d0 ¼ D0=2. Then VðYÞ ¼ < ðY � <Y > ÞðY � <Y > Þ> ¼ < ððDij � d0IijÞBij � < ðDij � d0IijÞBij > ÞððDkl � d0IklÞBkl �
< ðDkl � d0IklÞBkl > Þ> ¼ < ðDijBij � <DijBij > ÞðDklBkl � <DklBkl > Þ> ¼ CijklBijBkl. On the other hand,
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jYj ¼ ��ðDij �d0IijÞ Bij
�� � 

ðDij �d0IijÞ



,

Bij

 ¼ 

ðDij � d0IijÞ


. All the eigenvalues of Dij � d0Iij lie in the range ½�d0; d0� and

hence


ðDij �d0IijÞ



 � d0


Iij

 ¼

ffiffiffi
3

p
d0 ¼

ffiffiffi
3

p
D0=2: By the earlier results, VðYÞ � 3D2

0=4, which proves condition (c2SL).
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MRI with generalized diffusion encoding 
reveals damaged white matter in patients 
previously hospitalized for COVID-19 and 
with persisting symptoms at follow-up
Deneb Boito,1,2 Anders Eklund,1,2,3 Anders Tisell,2,4,5 Richard Levi,2,5,6 Evren Özarslan1,2,* 
and Ida Blystad2,5,7,*

* These authors contributed equally to this work.

There is mounting evidence of the long-term effects of COVID-19 on the central nervous system, with patients experiencing diverse 
symptoms, often suggesting brain involvement. Conventional brain MRI of these patients shows unspecific patterns, with no clear 
connection of the symptomatology to brain tissue abnormalities, whereas diffusion tensor studies and volumetric analyses detect 
measurable changes in the brain after COVID-19. Diffusion MRI exploits the random motion of water molecules to achieve unique 
sensitivity to structures at the microscopic level, and new sequences employing generalized diffusion encoding provide structural in-
formation which are sensitive to intravoxel features. In this observational study, a total of 32 persons were investigated: 16 patients 
previously hospitalized for COVID-19 with persisting symptoms of post-COVID condition (mean age 60 years: range 41–79, all male) 
at 7-month follow-up and 16 matched controls, not previously hospitalized for COVID-19, with no post-COVID symptoms (mean 
age 58 years, range 46–69, 11 males). Standard MRI and generalized diffusion encoding MRI were employed to examine the brain 
white matter of the subjects. To detect possible group differences, several tissue microstructure descriptors obtainable with the em-
ployed diffusion sequence, the fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, microscopic anisotropy, 
orientational coherence (Cc) and variance in compartment’s size (CMD) were analysed using the tract-based spatial statistics frame-
work. The tract-based spatial statistics analysis showed widespread statistically significant differences (P < 0.05, corrected for mul-
tiple comparisons using the familywise error rate) in all the considered metrics in the white matter of the patients compared to the 
controls. Fractional anisotropy, microscopic anisotropy and Cc were lower in the patient group, while axial diffusivity, radial diffu-
sivity, mean diffusivity and CMD were higher. Significant changes in fractional anisotropy, microscopic anisotropy and CMD affected 
approximately half of the analysed white matter voxels located across all brain lobes, while changes in Cc were mainly found in the 
occipital parts of the brain. Given the predominant alteration in microscopic anisotropy compared to Cc, the observed changes in dif-
fusion anisotropy are mostly due to loss of local anisotropy, possibly connected to axonal damage, rather than white matter fibre co-
herence disruption. The increase in radial diffusivity is indicative of demyelination, while the changes in mean diffusivity and CMD are 
compatible with vasogenic oedema. In summary, these widespread alterations of white matter microstructure are indicative of vaso-
genic oedema, demyelination and axonal damage. These changes might be a contributing factor to the diversity of central nervous 
system symptoms that many patients experience after COVID-19.
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Introduction
COVID-19 and the brain
Since the first wave of the COVID-19 pandemic, it has be-
come clear that the infection caused by the corona virus 
may go with long-term sequelae, affecting a considerable 
percentage of the population on a long-term basis (5%,1

6.5–28.5%2). Symptoms are diverse and often suggest brain 
involvement, manifesting in problems such as fatigue, cogni-
tive impairment, depression and anxiety.3 Persisting pro-
blems can linger for several years, affecting patients 
irrespective of the initial disease severity.4 Brain findings on 
MRI in the acute phase of the infection during the first pan-
demic were often associated with vascular changes, such as 
ischaemic and haemorrhagic events.5,6 At later follow-up, 
conventional clinical MRI shows unspecific patterns of struc-
tural changes,7,8 whereas diffusion tensor studies and volu-
metric analyses detect measurable changes in the brain 
after COVID-19.9-11 In this work, advanced diffusion MRI 
(dMRI) is used to quantitatively analyse the properties of 
brain tissue in 16 patients previously hospitalized for 
COVID-19 and with persisting symptoms after the infection 
at 7-month follow-up. The analysis is based on a comparison 
between this group and 16 controls with no post-COVID 
symptoms and who were not hospitalized for COVID-19.

dMRI and Q-space trajectory imaging
dMRI is an imaging technique with extreme sensitivity to tis-
sue structure on the micrometre level. The structural proper-
ties of the tissue can be retrieved by measuring, typically with 
a pair of pulsed magnetic field gradients,12 and modelling the 
random motion of water molecules.13-15 Barriers in the tissue 
guide the diffusion process, thus imprinting their presence 
and characteristics into the measurement. Models can then 
be applied to the measured diffusion signal to retrieve these 
features.

In neurological medical practice, dMRI has become a sta-
ple for fast detection of acute brain ischaemia and for study-
ing brain connectivity.16 Diffusion MR images obtainable 
with standard clinical MR systems are however typically lim-
ited to 2–3 mm spatial resolution while being sensitive to 
structures at the microscopic level. This means that all the 
contributions from different micrometre-level features with-
in a voxel conflate and are typically lost when only 
voxel-scale metrics, such as those obtainable with diffusion 
tensor imaging (DTI),17 are used.

Recent efforts directed towards resolving this limitation 
resulted in innovative dMRI encodings and methods. 
While standard dMRI acquisitions rely on single diffusion 
encoding (SDE), i.e. diffusion being measured along a single 
direction at a time, new protocols involving simultaneous 
diffusion measurements in multiple directions have been de-
veloped.18-23 This has allowed for retrieval of more specific 
features of the tissue microstructure which prompted interest 
towards bringing these methods into the clinic.

Q-space trajectory imaging (QTI)24 is a diffusion imaging 
technique that utilizes diffusion data acquired with general 
time-varying magnetic field gradients,25,26 which allow time- 
efficient measurements of water displacement in multiple di-
rections. The diffusion waveforms employed in QTI are typ-
ically referred to as linear tensor encoding (LTE), planar 
tensor encoding (PTE) and spherical tensor encoding 
(STE), for 1D, 2D and 3D diffusion measurements, respect-
ively. For analysing the collected data, QTI employs a multi-
compartment model for the tissue microstructure, where 
each voxel is envisioned as being composed of many diffu-
sion tensors.27 In a sense, this method alleviates the limita-
tion of DTI where all intravoxel microscopic tensors are 
condensed into one, which represents their average. 
Figure 1A shows this idea of modelling each voxel as a collec-
tion of separate environments where water is freely diffusing 
within and in between them, exploiting dMRI’s sensitivity 
to finer-than-voxel size features. Figure 1B shows two 
diffusion-weighted pulse sequences, one where conventional 
trapezoidal gradients are used to achieve diffusion sensitiza-
tion and one where general time-varying magnetic field gra-
dients are employed to achieve diffusion sensitization.

The QTI analysis provides several quantities akin to vari-
ous ‘stains’ used in histology, which capture different aspects 
of the tissue microstructure. Figure 2A shows pictorially four 
such measures and how they change based on the character-
istics of the intravoxel environment. Macroscopic anisot-
ropy is typically quantified by fractional anisotropy (FA),28

which measures the voxel-level degree of diffusion anisot-
ropy and orientational coherence. FA is 0 when 
voxel-averaged diffusion is equally probable in all directions 
and 1 when diffusion occurs in only one direction. In terms of 
the multicompartment picture, this means that in order for 
FA to take the value 1, diffusion in all microenvironments 
needs to share the same preferred orientation. In the case 
where all microenvironments exhibit anisotropic diffusion 
but not along the same direction, FA will take a value lower 
than 1. Microscopic anisotropy (µFA) captures the degree of 
anisotropy on a local level (i.e. for each microscopic environ-
ment), and it is thus insensitive to the relative orientation of 
the compartments. This metric then takes the value 0 when 
diffusion is isotropic in all microenvironments, while its va-
lue is close to 1 when the voxel comprises highly anisotropic 
microenvironments, irrespective of whether they share a 
common preferred orientation. The degree to which diffu-
sion exhibits a global preferred orientation is captured by 
the orientational coherence (Cc) parameter. When diffusion 
is locally anisotropic but not globally, this parameter takes 
the value 0. When diffusion is instead both locally and 
globally anisotropic, its value is close to 1. The size 
variance (CMD) parameter reflects the degree of variation 
in compartment size within each voxel. If compartments 
are all the same size, this parameter takes the value 0, where-
as when compartments have different sizes, it takes a value 
closer to 1. Figure 2B shows an example of how these para-
meters look for one of the healthy subjects enrolled in this 
study.
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Recent studies investigated the sensitivity of QTI-accessible 
metrics, like μFA and CMD, on various cerebral diseases such 
as schizophrenia,24 brain tumours,29 epilepsy,30 multiple 
sclerosis31 and Parkinson’s disease.32 All these studies showed 
the potential for these metrics to characterize the disease more 
specifically, when compared to quantities obtainable with 
conventional dMRI methods such as DTI.

Aim
The aim of this study was to compare the brain white matter 
of patients previously hospitalized for COVID-19 and with 
subsequent persisting symptoms after the infection, with a 
matched healthy control group, using advanced dMRI. We 
hypothesized that the symptomatology reported by the pa-
tients at 7-month follow-up would be reflected by altered 
water diffusion patterns, due to microstructural changes in 
the brain tissue.

Most previous dMRI studies on brain-related effects of 
COVID-19 employed conventional dMRI quantities and 
methods (apparent diffusion coefficient33 and DTI9,34,35). 
In this work, the dMRI data were instead acquired using gen-
eral time-varying magnetic field gradients and analysed using 
QTI. A second aim was therefore to assess the sensitivity of 
the diffusion metrics accessible via QTI to possible micro-
structural alterations and to determine whether the newly 
available quantities add relevant information when com-
pared to DTI-derived metrics.

Materials and methods
Participants
Sixteen patients from the Linköping COVID-19 Study co-
hort7,36 previously hospitalized with a laboratory-confirmed 
(polymerase chain reaction) COVID-19 diagnosis during the 

A Diffusion MRI is sensitive to intravoxel structure

B Diffusion MRI pulse sequences

t [ms]
-15

-10

-5

0

5

10

15

20

25
Stejskal-Tanner pulse sequence

t [ms]
-15

-10

-5

0

5

10

15

20

25

G
(t

) 
[m

T
 /

 m
]

G
(t

) 
[m

T
 /

 m
]

General time-varying magnetic field gradients pulse sequence

G
x

G
y

G
z

RF pulses
Read-Out
Signal

Figure 1 dMRI pulse sequences and sensitivity to intra-voxel features. (A) dMRI images achieve millimetre-scale spatial resolution while 
probing structures at the microscopic level, meaning that intra-voxel microstructural features are available. The analysis method employed here 
pictures the intra-voxel environment as being composed of several non-exchanging pores, each modelled with a diffusion tensor. (B) dMRI pulse 
sequences. Top row: conventional Stejskal–Tanner pulse sequence employing trapezoidal magnetic field gradients before and after the refocussing 
radiofrequency (RF) pulse to achieve diffusion sensitization. Bottom row: a pulse sequence utilizing time-varying magnetic field gradients for 
diffusion encoding. In both experiments, the relative intensities of the x, y and z components of the gradients determine the gradient direction at a 
given time.
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first wave of the pandemic in the spring of 2020, and with 
persisting symptoms at the clinical evaluation during follow- 
up, were included for an extended MR examination. 
Premorbid level of function was assessed, and individuals 
with severe frailty and severe pre-existing comorbidities 

were not included.7 Mean patient age was 60 years (41–79 
years), and all were men. Eleven of these patients had been 
in ventilator care for a mean of 15 days (7–41 days). The 
MR scan was performed after outpatient follow-up on aver-
age 230 days after the admission to the hospital (204–256 
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A Q-space trajectory Imaging (QTI) - indices
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B Example maps of QTI-derived indices

Figure 2 QTI indices. (A) Indices of tissue microstructure features retrieved with QTI. The arrows indicate the direction of increasing value for 
each metric [macroscopic anisotropy, quantified by FA, µFA, size variance (CMD) and orientational coherence (Cc)]. All metrics are bounded 
between 0 and 1. (B) Example maps of QTI-derived indices for one of the healthy volunteers included in the study.
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days). This is a subgroup of the cohort reported in Hellgren 
et al.7 An age-matched control group of 16 healthy indivi-
duals with no neurological disease, no symptoms of 
post-COVID condition and not previously hospitalized for 
COVID-19 was recruited [mean age 58 years (46–69 years), 
11 men and 5 women]. The control group did not undergo 
infection status assessment (see Table 1 for details on demo-
graphics). Data were collected with ethical approval from 
the Swedish ethical review authority Dnr 2020-03029, 
2015/13-31, and informed written consent was obtained 
from all participants.

Neuroimaging data acquisition
The 32 subjects were scanned with a 48-channel head coil on 
a clinical GE Signa Architect 3T MR scanner at Linköping 
University Hospital, using the clinical protocol described in 
Hellgren et al.,7 with the addition of the advanced diffusion 
sequence. Briefly, the clinical protocol included axial T2– 
fluid-attenuated inversion recovery, axial T2–fast spin echo 
(T2–FSE), T1–FSE, 3D T1–gradient echo, axial diffusion 
weighted imaging and axial susceptibility-weighted imaging.

The diffusion MR images were collected using a QTI 
protocol comprising 122 measurements of which 6, 6, 16 
and 30 LTE measurements at b = 100, 700, 1400 and 
2000 s/mm2; 6, 10 and 15 PTE measurements at b = 100, 
1000 and 2000 s/mm2; 6, 6, 10 and 10 STE measurements 
at b = 100, 700, 1400 and 2000 s/mm2; and 1 measurement 
without diffusion weighting. The imaging parameters were 
echo time = 122 ms, repetition time = 3289 ms, field of 
view 240 × 240 × 156 mm3, matrix size = 80 × 80 × 39 and 
voxel size = 3 × 3 × 4 mm3. Total QTI scan time was 6 and 
45 s.

Data analyses
Subject-level preprocessing
After converting the collected DICOM images to NIFTI 
using ‘dcm2niix’,37 the data were preprocessed for head mo-
tion and eddy current correction using the ‘eddy’ tool from 
‘FSL’38 interfaced via ‘Mrtrix3’.39 Susceptibility distortion 
correction was not applied, since the diffusion data were 
only collected with a single phase-encoding direction. The 
QTI maps were then obtained using the QTI ± framework,40

which achieves robust estimates throughout the brain by en-
forcing a set of mathematical constraints.40,41

Group comparisons
To detect possible group differences in terms of the micro-
structure metrics obtainable with QTI, the FA, µFA, Cc, 
mean diffusivity (MD), axial diffusivity (AD), radial diffusiv-
ity (RD) and CMD maps were analysed using the tract-based 
spatial statistics (TBSS)42 framework. Briefly, the FA maps of 
all subjects were non-linearly co-registered using the 
FMRIB58_FA template image as target and subsequently af-
fine aligned to the MNI152 space. The FA maps were then 
averaged, and the average FA map was used to derive a skel-
eton of voxels which should represent the white matter tracts 
common to all subjects. A threshold of 0.2 (selected accord-
ing to the TBSS user recommendations and after visual in-
spection) was used to refine the mean FA skeleton. Each 
subject’s FA map was then projected onto the skeleton prior 
to performing the statistical analysis. One-sided two-sample 
unpaired t-tests were employed to detect FA differences be-
tween the two groups, testing both directions (FAcontrols >  
FApatients and FAcontrols < FApatients). This was performed 
using the ‘randomise’ function in FSL,43 as recommended 
by the TBSS user guide. Five thousand permutations were 
used to build the null hypothesis, and the threshold-free 
cluster enhancement option was used as it often results in a 
higher statistical power compared to cluster extent thresh-
olding.44 Age and sex were included as covariates, to make 
sure that any group difference is not due to age or sex. The 
same procedure was then repeated for the other 
QTI-derived maps using the registration matrices and projec-
tion vectors obtained from the FA analysis to co-register the 
images and populate the skeleton, respectively.

Results
As reported in Hellgren et al.,7 the findings of the conven-
tional images in the patient cohort were unspecific with 
white matter lesions and some abnormalities on 
susceptibility-weighted images. There were no clinically sig-
nificant findings of the conventional images of the control 
group, only unspecific white matter lesions. The Fazekas 
scores are presented in Table 1.

TBSS results
The TBSS analysis showed widespread differences in all 
QTI-derived metrics in the white matter of the patients com-
pared to the controls. Figure 3 shows exemplary results from 
the statistical analysis performed within the TBSS frame-
work in different slices for a statistical significance level of 
P < 0.05, corrected for multiple comparisons using family-
wise error rate (FWE). Figure 4 shows the TBSS results in dif-
ferent anatomical regions for P < 0.05, FWE-corrected for 
multiple comparisons. In these figures, the colour map is cho-
sen to highlight results for P < 0.0036, where a Bonferroni 

Table 1 Description of participants

Participants Patients Healthy controls

Gender M/F 16/0 11/5
Age 60 (41–79 years) 58 (46–69 years)
Ventilator care 11 N/A
Time in ventilator 15 (7–41 days) N/A
Time to follow-up 230 (204–256 days) N/A
Fazekas 0 4 6
Fazekas 1 8 10
Fazekas 2 4

Time is given in mean with range. Time to follow-up is from hospital admission. N/A, not 
applicable.
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correction for testing over multiple contrasts (seven micro-
structure metrics tested for the mean of each group being ei-
ther greater or lower than the other group’s mean, leading to 
P = 0.05/14 = 0.0036) is applied.45 The results of the TBSS 
analysis can also be explored in NeuroVault (https:// 
identifiers.org/neurovault.collection:13799) where we share 
all the statistical maps.

In general, the two measures of diffusion anisotropy, FA 
and µFA, were found to be lower in the patients’ white 

matter, while the MD and the variance in compartment 
size CMD were found to be higher in the patient group. 
When looking at the axial and radial diffusivities (AD and 
RD), RD had higher values in the whole brain in the patient 
group, whereas differences in AD, with higher values for pa-
tients, were limited to the white matter of the left frontal 
lobe. The parameter describing the structural orientational 
coherence within the voxel, Cc, was found to be lower for 
the patient group.

Quantification of the inter-group difference for each 
QTI-derived metric over the skeleton voxels exhibiting stat-
istical significance is presented in Fig. 5. The histograms 
show the distributions of differences between the metric’s 
mean (indicated with x̅) for the two groups. A positive value 
indicates that the mean for the healthy controls is higher 
compared to the patients, and vice versa. The results in per-
centage units show that all the metrics present quite pro-
nounced differences (median values 8.5, 5.2, 11.7, −9.2, 
−7.3, −11.9 and −15.3%, for FA, µFA, Cc, MD, AD, RD 
and CMD, respectively). Figure 6 shows where these differ-
ences are localized in the brain. FA, µFA, CMD and RD 
presented the most widespread differences between the 
two groups, showing statistically significant differences 
(P < 0.05, FWE corrected) in, respectively, 44, 56, 47 and 
36% of the analysed white matter voxels. MD, AD and Cc 

presented differences in, respectively, 17, 1 and 12% of the 
skeleton voxels. Changes in MD and AD were mostly loca-
lized in the frontal part of the brain, while differences in Cc 

were found occipitally.

Discussion
In this study, we found widespread changes in the white mat-
ter of the brain in patients previously hospitalized for 
COVID-19 with persisting symptoms at follow-up, com-
pared to a matched healthy control group, as revealed by ad-
vanced dMRI. As seen in other neuroinflammatory and 
neurodegenerative conditions,46,47 patients show a decrease 
in anisotropy-related measurements and an increase in 
diffusivity-related metrics compared to the controls, indicat-
ing a general loss of tissue integrity at the microstructural le-
vel as well as diffuse oedema. As shown in the histograms in 
Fig. 5, the amount by which the metrics differ between the 
two groups can be quite pronounced. Displaying these differ-
ences in multiple axial slices highlights how some metrics 
(FA, µFA, RD and CMD) are widely affected, while others 
(MD, AD and Cc) exhibit more localized changes in the 
frontal and parietal lobes.

Focusing on voxel-level metrics (FA, MD, RD, AD), these 
changes were seemingly due to an increase in RD, while the 
AD was essentially unaltered. Other publications33-35 where 
dMRI was also employed to study COVID-19-induced al-
terations in the brain report similar trends. Though not spe-
cific to any biological tissue feature, these metrics have been 
correlated with different neuronal damaging processes. 
Increased values of RD were found to be related to 
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Figure 3 TBSS results on QTI-derived maps. TBSS results 
for the QTI-derived maps. Each row shows the results of the 
comparison between the mean value of each map for the two 
groups, with symbols ‘>’ and ‘<’ indicating the direction of the test. 
The voxels coloured in the blue–yellow colour scale depict the 
locations on the skeleton where statistically significant differences 
emerged (P < 0.05, FWE corrected). The P < 0.0036 represents the 
statistical threshold for significance when correcting the familywise 
error for multiple contrasts.

Altered brain white matter in post COVID                                                                     BRAIN COMMUNICATIONS 2023: Page 7 of 14 | 7

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/5/6/fcad284/7326753 by guest on 14 N

ovem
ber 2023



demyelination, while alterations of AD were representative 
of axonal damage.48 Our results would then suggest an 
underlying process of myelin damage, which is reasonable gi-
ven that demyelination is an unspecific reaction when 

damage occurs to the white matter. Demyelination can be 
a product of inflammatory or infectious processes in the 
CNS and has been reported in association with 
COVID-19.49,50

Cerebral Peduncles

Axial Coronal Sagittal

Cerebral Peduncles

Axial Coronal Sagittal

Thalamus - Internal Capsule - Corpus Callosum
Axial Coronal Sagittal

thalamus internal capsule corpus callosum
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TBSS results in different anatomical regions

FA

CMD
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MD

AD

RD
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CMD
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MD

AD
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CMD

Cc

µFA

MD

AD
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Figure 4 TBSS results in different anatomical areas. TBSS results for all the considered QTI-derived metrics in different brain regions and 
anatomical structures for the tests which resulted in statistically significant differences (P < 0.05, FWE corrected) between the two groups 
(FAcontrols > FApatients, µFAcontrols > µFApatients, Cc

controls > Cc
patients, MDcontrols < MDpatients, ADcontrols < ADpatients, RDcontrols < RDpatients and 

CMD
controls < CMD

patients). Changes were widespread, affecting all lobes of the brain.
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Rau et al. employed the diffusion microstructure imaging 
methods for a three-compartment biophysical model [simi-
lar in spirit to the neurite orientation dispersion and density 
imaging (NODDI)51 model] for interpreting the dMRI data 
of COVID-19 patients with neurological symptoms.52 In 
their work, a volume fraction shift from the intra- and 
extra-axonal spaces to the free water compartment was re-
ported and interpreted as being representative of vasogenic 
oedema. The reduction in FA and increase in MD and RD 
(as well as increase in CMD, discussed later) found in our 
study could also fit with this explanation. However, it is im-
portant to stress that conventional dMRI data (as the one 
used in Rau et al.52) has been shown to not contain enough 
information to allow for reliable estimation of such bio-
physical model parameters53,54; thus, care should be taken 
when interpreting the results. Moreover, due to the unspe-
cific nature of metrics such as FA and MD with respect to 
biological features, drawing conclusions on the exact 
physiological mechanisms underpinning these changes is 
problematic.

The major advantage deriving from combining the ad-
vanced diffusion acquisition sequence and analysis employed 
in this study is that it allows estimation of intra-voxel micro-
structural features, thus complementing the voxel-level in-
formation obtainable with standard dMRI protocols and 
methods. This is particularly relevant when competing intra- 
voxel effects lead to opposite directional changes in voxel- 
level metrics,54-56 thus limiting their sensitivity and interpret-
ability. Conversely, separating each effect’s contribution has 
already been shown to boost specificity when characterizing 
different brain diseases, such as brain tumours29 and mul-
tiple sclerosis.31

Similarly to what was reported in those studies, the results 
obtained here suggest µFA as a more sensitive (and specific) 
metric for detecting microstructural changes compared to 
FA. Conversely to FA, µFA is a measure of diffusion anisot-
ropy unconfounded by orientation dispersion, this latter 
being quantified by Cc. Therefore, having access to these 
two metrics (µFA and Cc) not only allows for increased spe-
cificity to the exact mechanism underpinning changes in 
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0 %
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35 %

0 %
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0 %

40 %
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Figure 6 Visualization of the QTI metric differences in percentage across the brain. Visualization of the QTI metric differences in 
percentage between patients and controls across the brain. FA, µFA, RD and CMD present widespread differences. Changes in MD and AD are 
localized in the frontal part of the brain, while changes in Cc are localized in the dorsal part of the brain. The cold black–blue–white colours indicate 
a reduction in the metric, while the warm black–red–yellow colours indicate an increase in the metric. Only the voxels presenting statistically 
significant differences (P < 0.05, FWE corrected) were included.
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diffusion patterns but may also highlight alterations in the 
microstructure which would not appear when FA alone is 
considered. Looking at the results in Figs 3–5, one can pos-
tulate that, given the predominant alterations in µFA com-
pared to Cc, the observed change in diffusion anisotropy is 
mostly due to loss of local anisotropy rather than white mat-
ter fibre coherence disruption. Since µFA has been proposed 
as a measure reflecting axons rather than myelin,57,58 this 
suggests widespread axonal damage resulting from the se-
vere COVID-19 infection. Therefore, considering the ob-
served results on voxel and intra-voxel metrics, alterations 
in the microstructure seems to be due to damage to both mye-
lin and axons. We stress that this argument would not have 
been possible if only the voxel-level metrics, as accessible 
with conventional DTI, were available.

In regions where Cc was found to be significantly different 
between the two groups, as for example in the parieto-occipital 
lobes and the dorsal parts of corpus callosum, changes to the 
microstructure could also be subject to additional interpreta-
tions including disruptions in tissue integrity in the form of 
loss of fibre coherence. In the neuropsychological evaluation,7

patients with white matter lesions in the brain MRI had a lower 
visuospatial index compared to those with normal MRI find-
ings. The parietal lobes are important in the integration of sen-
sory input, and the localized finding of changes in orientational 
coherence (Cc) in the dorsal part of the brain could be related to 
affected visuospatial performance.

The variance in compartments’ size (CMD) was among the 
metrics showing widespread change between the control and 
patient groups. CMD has previously been connected to cell 
density,29 where higher CMD values stood for low cell density, 
and vice versa. Thus, the increase in CMD observed in this co-
hort may be indicative of white matter damage in the form of 
cellular membrane disruption, cell swelling, cellular atrophy 
and necrosis.

Age-related effects on the considered QTI-derived metrics 
were also investigated. Consistent with other studies,32,56 we 
observed a decrease in FA and µFA and an increase in MD 
with increasing age. Cc was also found to decrease with 
age while CMD seems to not be affected by aging.

The Fazekas scores (see Table 1) are slightly higher in the pa-
tient group, but no study participant had a Grade 3, meaning 
that the white matter changes are generally minimal to moder-
ate. The white matter hyperintensities reflect damaged white 
matter, which is in line with the findings of the diffusion ana-
lysis. Studies have shown that white matter lesions are common 
in the acute/subacute phase of the disease but also persist at 
follow-up after COVID-19.5,6,10 The white matter thus seems 
to be affected on the micro- as well as on the macrolevel.

Limitations
Several possible limitations need mentioning with respect to 
the adopted methodology for the data analysis. First, the ac-
curacy and precision of the microstructural metrics as ob-
tained via QTI were recently investigated.59 It was found 
that when such metrics are retrieved via QTI, they tend to 

be inaccurate in voxels presenting large variations in com-
partment size and/or high degree of orientation dispersion. 
While this should not severely affect the analysis of healthy 
white matter, care should be taken when considering, for ex-
ample, oedematous fibrous tissue. Moreover, it was also re-
cently reported that QTI metrics could be severely biased in 
noisy41,59 and under-sampled41 data. This issue was how-
ever recently addressed,40,41 and the estimation framework 
employed in this work should produce robust estimates 
with respect to these two issues.

Second, the adopted method assumes no diffusion time de-
pendence; thus, contributions of restriction and exchange on 
the diffusion signal are not captured.60 Recent studies61-63

have shown that such contributions, while subtle, may not 
be negligible in the human brain; thus, the metrics considered 
here may be biased by neglecting them. Therefore, in future 
studies, methods including restriction effects and time de-
pendence64-66 and exchange67 should be considered. Note 
that similar limitations apply to other studies employing 
DTI and NODDI.

Third, while TBSS is currently the most adopted method 
for comparing groups based on white matter diffusion me-
trics, concerns regarding the reliability of the different steps 
included in the framework have been raised.68,69 In particu-
lar, the results may depend on the selected target for the regis-
tration of all subjects to a common template, the performance 
of the registration algorithm and on the user’s choices for dif-
ferent settings.68 In this study, we adhered to the default and 
recommended settings as stated in the TBSS documentation 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide) since 
this should provide ground for comparison with other stud-
ies.68 Moreover, while the results shown here were obtained 
by using the FMRIB58_FA template as target for the registra-
tion, we also repeated the analysis using one of the healthy 
controls’ FA as template to check for results’ dependency 
on this step. Indeed, the results do not match perfectly, since 
the derived skeletons differ. However, they showed the same 
trends with respect to direction of change for the different 
QTI-derived metrics and their localization in the brain. 
Nevertheless, for this and other studies employing the TBSS 
framework, we advocate for caution when interpreting the 
results for specific tracts or anatomical structures.

Additional limiting factors for the interpretation of the re-
sults obtained in this study arise from the rather small cohort 
and the cross-sectional design which omits the longitudinal 
perspective on the development of brain-associated changes 
after COVID-19. The infectious status of the control group 
was not investigated, which might be considered a limita-
tion. However, the inclusion criterion for the patient group 
was a previous hospitalization for COVID-19 with persisting 
symptoms at follow-up. Hence, the controls were recruited 
and included regardless of their previous infectious state if 
they were in good health with no symptoms of a 
post-COVID condition nor a previous hospitalization due 
to COVID-19. The differences found between the two 
groups might therefore be contributed to the course of the 
disease, where the hospitalization for COVID with persisting 
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symptoms at follow-up is reflected in the deviating findings 
of the diffusion analysis.

The use of sex as a covariate in the statistical analysis may 
also be questioned since one group consisted of males only. 
We therefore repeated the analysis both not including the sex 
covariate and excluding the female subjects. When not using 
sex as a covariate in the group analysis, two of the statistical 
maps (AD and CMD) change. For CMD, the percentage of sig-
nificant voxels increases by 15% if a sex covariate is included, 
whereas for AD, 90% of the otherwise significant voxels be-
come non-significant when a sex covariate is used. 
Furthermore, repeating the group analyses with only male sub-
jects (11 controls and 16 patients) resulted in statistical maps 
that are essentially unchanged to those where sex is used as a 
covariate (when analysing all 32 subjects; see Supplementary 
material). Given these results, we believe that including a sex 
covariate provides the most sound results.

Hospitalization and ventilator care might also have con-
tributed to the observed changes, which can therefore not 
be attributed solely to the disease. Additionally, to the pre-
sented analysis, we performed permutation tests to assess 
whether the length of stay in ventilation care had any effect 
on the microstructure. Given that for this analysis we consid-
ered only the 16 subjects in the patient group (11 of which 
required ventilation care), no statistically significant results 
emerged. However, the trends were in agreement with the re-
sults obtained from the TBSS analysis: decreasing FA, µFA 
and Cc and increasing MD, AD, RD and CMD, with increas-
ing length of time on ventilator. As length of time on ventila-
tor is expected to correlate with the severity of the 
COVID-19, these results are not surprising and suggest 
that the infection indeed plays a role in the detected altera-
tions to the brain white matter microstructure.

Ultimately, histopathology would be needed for a com-
plete characterization of the observed tissue changes70,71; 
nevertheless, dMRI still provides a safe and non-invasive 
means for assessing the brain microstructure.

Conclusion
In this cohort of patients who suffered from COVID-19 requir-
ing hospitalization and with persisting symptoms at follow-up, 
we find general changes affecting the microstructure of the 
white matter of the brain, detectable with advanced dMRI. In 
particular, the QTI metrics CMD and µFA demonstrated higher 
sensitivity to these alterations compared to the DTI metrics FA 
and MD. The observed changes, which are consistent with 
axonal damage, demyelination and oedema, might be a con-
tributing factor to the diversity of central nervous system symp-
toms that many patients experience after COVID-19.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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Multidimensional Diffusion MRI
Methods With Confined Subdomains
Deneb Boito1,2, Cem Yolcu1 and Evren Özarslan1,2*

1Department of Biomedical Engineering, Linköping University, Linköping, Sweden, 2Center for Medical Image Science and
Visualization, Linköping University, Linköping, Sweden

Diffusion Magnetic Resonance Imaging (dMRI) is an imaging technique with exquisite
sensitivity to the microstructural properties of heterogeneous media. The conventionally
adopted acquisition schemes involving single pulsed field gradients encode the random
motion of water molecules into the NMR signal, however typically conflating the effects of
different sources contributing to the water motion. Time-varying magnetic field gradients
have recently been considered for disentangling such effects during the data encoding
phase, opening to the possibility of adding specificity to the recovered information about
the medium’s microstructure. Such data is typically represented via a diffusion tensor
distribution (DTD) model, thus assuming the existence of several non-exchanging
compartments in each of which diffusion is unrestricted. In this work, we consider a
model that takes confinement into account and possesses a diffusion time-dependence
closer to that of restricted diffusion, to replace the free diffusion assumption in
multidimensional diffusion MRI methods. We first demonstrate how the confinement
tensor model captures the relevant signal modulations impressed by water diffusing in
both free and closed spaces, for data simulated with a clinically feasible protocol involving
time-varying magnetic field gradients. Then, we provide the basis for incorporating this
model into two multidimensional dMRI methods, and attempt to recover a confinement
tensor distribution (CTD) on a human brain dataset.

Keywords: confinement, anisotropy, microstructure, restricted, tensor, distribution

1 INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) is a method used for investigating the
microstructural organization of various heterogeneous media. This is achieved by sensitizing the
MR signal to the random motion of water molecules inside the scanned substrate. To interpret and
extract relevant information from the water motion, several models and signal representations have
been developed.

At spatial resolutions achievable with current MR scanners, the scanned sample comprises several
compartments within, outside, and possibly in between which diffusion is taking place. A general
strategy for capturing this complexity without assuming any specific combination of compartments
(see for example [1, 2] for reviews of multi-compartment models for brain white matter), considers
modeling the medium as a collection of isolated pores, each represented by a diffusion tensor [3, 4].
This approach leads to a diffusion tensor distribution (DTD), which could also be represented
parametrically via normal [5] and Wishart [4] distributions as well as other related distributions
[6–8]. Advances in diffusion encoding schemes [9–13] provided ways of disentangling confounding
signal contributions, thus possibly enabling the extraction of relevant information about the
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medium’s structure and composition via such modeling [14].
However, it is rather paradoxical to have free diffusion within
isolated compartments, as the cellular membranes have a strong
effect on diffusion, making them the primary determinant of
diffusion anisotropy [15]. If this picture involving multiple
isolated compartments is to be employed, it would be natural
to represent the individual subdomains by accounting for
confined diffusion within them [16].

A viable alternative to the diffusion tensor representation of
individual subdomains utilizes confinement tensors [17]
instead. In this case, the molecules are envisioned to be
diffusing under the influence of an Hookean restoring force,
i.e., according to the Ornstein-Uhlenbeck process [18]. Just like
in restricted diffusion, the particle trajectories have limited
extent, which has made the Ornstein-Uhlenbeck process a
simple toy problem in earlier theoretical works on
characterizing the influence of restricted diffusion on the
NMR signal [19–21].

Following a series of developments [22, 23], the confinement
tensor model has been noted to provide an alternative
representation of diffusion anisotropy, very-well suited for
studying heterogeneous media [17, 24, 25]. Furthermore, for
NMR experiments involving long diffusion encoding pulses,
the harmonic confinement becomes the effective model of
restricted diffusion, giving rise to an approximately linear
dependence of the effective stochastic force on the center-of-
mass position of the particles during the application of the
gradient pulses [26].

Similarly to the better-known diffusion tensor model, the
model proposed by Yolcu et al. [17] captures the pore’s
geometry/anisotropy with a tensorial object, which can be
visualized as an ellipsoid. However, the confinement tensor
model offers an extra parameter to encode diffusivity. This
parameter can either be a scalar bulk diffusivity, or another
tensorial quantity. In either case, this represents the diffusivity
when there is no impediment to the particles’ motion, i.e., when
the confinement value approaches 0. Therefore, the confinement
tensor model can accommodate both restricted and unrestricted
diffusion. In a recent study, the orientationally-averaged signal
was studied for confined diffusion measured via single- and
double diffusion encoding measurements demonstrating that
certain features of the NMR signal [27, 28] that cannot be
predicted by diffusion tensors are reproduced by the
confinement tensor model [29].

These findings suggest the confinement tensor model as a
plausible alternative for representing non-exchanging
microscopic domains in multicompartment specimen models.
In this work, we therefore propose to incorporate this model into
the so-called multi-dimensional MRI methods [14]. In particular,
we replace the diffusion with the confinement tensor in Diffusion
Tensor Distribution Imaging (DTDI) [4, 30], and illustrate that
the moments of the DTD estimated using Q-space trajectory
Imaging (QTI) [31] would have a different interpretation for
confined diffusion. We start by assessing the capabilities of the
confinement model in representing single pores on data
simulated using a typical protocol involving general time-
varying diffusion gradient fields [32], and then proceed with

first attempts at recovering distributions of confinement tensors
in a human brain dataset.

2 BACKGROUND AND THEORY

2.1 Diffusion Under a Hookean Restoring
Force
In a diffusion NMR experiment, diffusing molecules acquire a
phase shift depending on their trajectory x(t) and on the time-
varying magnetic field gradient G(t). The signal from all
molecules can be expressed as

E �〈e
−iγ∫ dt x(t)·G(t)〉, (1)

where γ is the gyromagnetic ratio, and the averaging is performed
over all particle trajectories.

For the case of diffusion under a Hookean restoring force, we
shall denote by C the confinement tensor, which, upon
multiplication by the Boltzmann constant kB and absolute
temperature T, gives the tensorial force constant f = kBTC
defining the Hookean potential V through V(r) � 1

2r
ufr.

Furthermore, we denote the possibly anisotropic free diffusion
tensor by D, and assume that D and C commute, i.e., they share
the same eigendirections. Finally, we introduce Ω = DC for
brevity.

Statistical quantities, such as the signal, can be calculated using
the path weight

Pr[x()]∝ exp −1
4
∫ dt

dx
dt

+Ωx(t)( )u

D−1 dx
dt

+Ωx(t)( )( ),
(2)

which represents the differential probability for a particle to
follow the trajectory x(). The NMR signal in (Eq. 1) can thus
be evaluated, up to a constant, through the path integral

E∝ ∫Dx() exp( − ∫ dt(1
4

dx
dt

+Ωx(t)( )u

D−1 dx
dt

+Ωx(t)( )
+iγx(t) · G(t))). (3)

Thanks to stationarity, the time integration can be taken from
−∞ to ∞, in which case employing the substitutions

x(t) � ∫ dω
2π

eiωt x̂(ω) (4a)

G(t) � ∫ dω
2π

eiωt Ĝ(ω) (4b)
yields

E � exp −∫ dω
2π

Ĝ
†(ω)K(ω) Ĝ(ω)( ) (5)

with

K(ω) � 2γ2D(ω2I +Ω2)−1. (6)
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Converting Eq. 5 to the time domain yields

E � exp −γ
2

2
∫ dt∫ dt′Gu(t′)DΩ−1 e−Ω|t−t′| G(t)( ). (7)

2.2 The Confinement Tensor Model
Figure 1A shows the parameters of the confinement tensormodel [17]
and how they represent a generic pore. The shape of the subdomain is
captured by an effective confinement tensor C with units of inverse
squared length, like in the case of diffusion under a Hookean force as
described above. On the other hand, the rate of water diffusivity is
captured by a scalar effective isotropic diffusivity Deff.

While the expression given in Eq. 7 is the natural way for
defining the signal implied by the confinement tensor model, that
is not optimal for the actual computation of the signal. To avoid
potential numerical issues with the inversion of the Ω tensor
within the integral, we find more advantageous to use the
equivalent expression given by Yolcu et al. [17] for a gradient
waveform applied between time points 0 and tf,

E � exp −Deff ∫
tf

0

dt |Q(t)|2⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ exp −Deff

2
Qu(0)Ω−1 Q(0)( ) (8)

with

Q(t) � γ∫
tf

t

dt′e−Ω(t′−t)G(t′). (9)

Note that for C → 0, the signal in Eq. 8 reduces to the NMR
signal expression for isotropic free diffusion (the proof is provided in
[17]), while forC→∞, the signal converges to 1, indicating particles’
immobility. Both these scenarios are shown in Figure 1B, where the
signal for confinement values in the range [0, ∞) is shown.

2.3 md—dMRI With Confinement
The expressions derived thus far concern the MR signal for a
single confinement tensor. Here, we instead consider the case

where a distribution of such tensors is collectively giving rise to
the signal. In particular, we provide the signal expression for a
confinement tensor distribution (CTD), which could be used
for performing Confinement Tensor Distribution Imaging
(CTDI), and discuss employing QTI for locally confined
diffusion.

2.3.1 Confinement Tensor Distribution
The NMR signal expression for a distribution P(D) of diffusion
tensors is given by [4]

S(b) � S0 ∫P(D) e−b: D dD, (10)

where b is the measurement tensor [34],D is the diffusion tensor,
and “ :″ indicates the generalized scalar product between tensors.
A similar expression can be introduced to include the
confinement tensor model. Due to the extra parameter Deff,
the considered distribution becomes the joint distribution of
effective confinement tensors and effective diffusivities
P(C, Deff ). The signal expression for an experiment
determined by a general time varying magnetic field gradient
G(t) is

S(G(t)) � S0 ∫P(C, Deff )E(G(t),C, Deff ) dC dDeff , (11)

where E (G(t), C, Deff) is as defined in Eq. 7 or Eq. 8. Eqs 10, 11
can be considered to be generalizations of the Laplace transforms
of P(D) and P(C, Deff ), respectively. Recovering the P(D) (or
P(C, Deff )) from a series of measurements, i.e., numerically
inverting the Laplace transform, is well known to be an ill-
posed problem [30, 35, 36].

2.3.2 QTI for Locally Confined Diffusion
The QTI technique exploits the sensitivity of the detected signal
to the statistical moments of the structural parameters describing
the specimen [37]. When the DTD model is employed for the
latter, the high signal (low diffusion sensitivity) regime reveals the

FIGURE 1 | (A) Confinement tensor model parameters. For a subdomain of generic shape, the geometry is captured by the effective confinement tensor, while the
water diffusivity within is represented by an effective isotropic diffusivity. The tensor representing the shape is a second order tensor, while the effective diffusivity is a
scalar. (B) Signal for different confinement values for linear tensor encoding experiments at different b-values. ForC→ 0 the signal converges to the free diffusion regime,
where the value is determined as exp ( − b D0), with b being the b-value [33]. This is represented by the colored circles in the plot. ForC→∞, the signal converges to
1 indicating complete water immobility.
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first few moments of the diffusivities [31, 38]. For a DTD
characterized by the distribution P(D) the signal decay in (10)
can be expressed by

E(b) � 〈e−bkℓ Dkℓ〉, (12)
where we employed the Einstein summation convention. At low
diffusion sensitivity, the natural logarithm of the signal decay is
approximated by the Maclaurin series of the above expression
around b ≈ 0, yielding

lnE(b) ≈ − bkℓ 〈Dkℓ〉 + 1
2
bkℓ bmn 〈DkℓDmn〉c, (13)

where the last quantity is the second cumulant,
i.e., 〈DkℓDmn〉c � 〈DkℓDmn〉 − 〈Dkℓ〉〈Dmn〉. We remind that
the components of the measurement tensor are given through
[34, 39].

bkℓ � γ2 ∫
tf

0

dt∫t
0

dt′∫t
0

dt″Gk(t′)Gℓ(t″). (14)

In the case of a CTD, the averaging takes the form of an
integration over Deff as well as C; see (Eq. 11). Applying the same
procedure for the signal in frequency domain, (Eq. 5), yields

lnE(Ĝ(ω)) ≈ −∫ dω
2π

Ĝk(ω) Ĝℓ(ω) 〈Kkℓ(ω)〉

+1
2
∫ dω
2π

∫ dω′
2π

Ĝk(ω) Ĝℓ(ω) Ĝm(ω′) Ĝn(ω′)

〈Kkℓ(ω)Kmn(ω′)〉c, (15)
while the same is given in the time-domain by

lnE(G(t)) ≈ − ∫ dt ∫ dt′Gk(t)Gℓ(t′) 〈Hkℓ(t, t′)〉

+ 1
2
∫ dt∫ dt′∫ dt″∫ dt‴Gk(t)Gℓ(t′)

Gm(t″)Gn(t‴) 〈Hkℓ(t, t′)Hmn(t″, t‴)〉c,

(16)

where

Hkℓ(t, t′) � γ2

2
C−1e−DC|t′−t| (17)

since C and D commute.
Note that, the shape of the waveformG(t) is inextricably linked to

the signal in the CTD case. Furthermore, the interpretations of the
signal decay rate are substantially different for the CTD and DTD
assumptions. Thus, when QTI is performed, one can quantify only
apparent moments of a DTD while the same analysis employing the
CTDmodel would provide amoremeaningful description of the low
diffusion sensitivity regime.

3 IMPLEMENTATION

The confinement tensor model was implemented in Matlab (The
Mathworks Inc., Natick, Massachussets) according to Eqs 8, 9.

Numerical integration was performed using the trapezoidal rule.
The signal computation for a given confinement tensor and
effective isotropic diffusivity was carried out in a reference
frame in which Ω is diagonal. This is achieved by rotating the
measurement waveforms G(t) with the rotation matrix
determined by the eigenvectors of Ω. This allows for
computations to be carried out separately for each of the
eigenvalues of Ω thanks to the separability of the model [17].
This approach mitigates numerical issues that arise for small
confinement values, in which case inverting Ω may become
problematic. Possible issues can be alleviated by considering a
Taylor expansion for the second exponential factor in Eq. 8 to
remove the dependency of that part of the signal on Ω. The
derivation of the expression for computing the approximation of
the signal using the Taylor expansion is provided in Appendix.

To fit the confinement model to the data, we used the Matlab
function lsqnonlin with Levenberg-Marquardt as algorithm. The
unknown estimated quantities consist of the signal without
diffusion weighting S0, the effective diffusivity Deff, and the six
unique components of the confinement tensor C. During the
fitting, the tensor Ω is replaced by its Cholesky factorization to
ensure the positive semidefiniteness of the estimated confinement
tensor [40].

To estimate the joint distribution of confinement tensors and
effective isotropic diffusivities, we adapted the existing
technology implementing a Monte Carlo inversion of Eq. 10,
as detailed in [36] and retrieved from https://github.com/markus-
nilsson/md-dmri. As for the original implementation, we limit
ourselves to the case of axisymmetric tensors. These can be
represented using 4 parameters: the parallel and perpendicular
confinement (Cpara and Cperp) capture the pore’s geometry, while
the other two define the pore orientation through the azimuthal
(ϕ) and polar (θ) angles. Altogether, each pore is represented by 5
parameters (Cpara, Cperp, ϕ, θ, and Deff). While performing the
inversion, these parameters are searched within the limits 8 ≤
log10(Cpara/m

−2), log10(Cperp/m
−2) ≤ 12, 0.1 ≤ (Deff/μm

2ms−1) ≤ 3.
2, 0 ≤ ϕ ≤ 2π, 0 ≤ cos(θ) ≤ 1. For each voxel, the recovered
P(C, Deff ) can be visualized in 3D plots where Cpara and Cperp

vary along the x and y axes, while Deff varies along the z axis,
respectively. The pore direction is encoded using the RGB color
scale. We adopted the convention of displaying the color
according to the main diffusion direction, not according to the
direction of maximum confinement.

4 RESULTS

4.1 Signal for Single Compartments
In this section we investigate the capabilities of the confinement
tensor model in capturing features of both free and restricted
diffusion in data where the diffusion sensitization is achieved with
general time varying magnetic field gradients. We employ a
protocol featuring 217 measurements comprising Linear,
Planar, and Spherical Tensor Encoding (LTE, PTE, and STE
respectively) [32]. We refer to this protocol as tensor encoding.
Signals for diffusion taking place in closed and open geometries
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were computed using this protocol. The pore shapes and the
respective defining parameters were as follows:

• Free isotropic diffusion, D0 = 3 μm2/ms
• Stick compartment (uni-directional free diffusion), D0 =
2.5 μm2/ms

• Infinite cylinder, r = 5 μm, D0 = 3 μm2/ms
• Capped cylinder 1, l = 12 μm, r = 2 μm, D0 = 2 μm2/ms

• Capped cylinder 2, l = 10 μm, r = 1.5 μm, D0 = 2.5 μm2/ms,
• Sphere, r = 5 μm, D0 = 2 μm2/ms

where D0 is the bulk diffusivity, r is the radius, and l is the length.
The diffusion tensor model was used to generate the signals for
the free diffusion and the stick compartments, while the method
described in [12] was used to generate the signals for the cylinders
and the sphere.

FIGURE 2 | Confinement and diffusion tensor fit to signals arising from particles diffusing in free (Free Diffusion, Stick) and restricted (Infinite Cylinder, Capped
Cylinder 1, Capped Cylinder 2, Sphere) geometries. In both panels (A,B) all the 217 data points were used to fit the model. For ease of interpretation, in panel (A) only 52
random points out of the 217 are shown. In panel b) all the data points produced with Spherical Tensor Encoding are shown. Note how the confinement tensor model
captures features of diffusion in both free and restricted scenarios. In particular, observe in panel (B) how the signature of restricted diffusion imprinted on the
signals produced with STE can be captured by the confinement tensor model while are inevitably missed by the diffusion tensor.
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Figure 2A shows the results obtained by fitting the
confinement tensor model and the diffusion tensor to the
simulated signals. Only a subset of the measurements is shown
for easier visual inspection. For the considered protocol, the
confinement tensor model seems to capture well the features
of both free and restricted diffusion, suggesting that the model
given in Eq. 8 has sufficient degrees of freedom and there is no
need for employing a tensorial diffusivity. Note that as illustrated
for the 1D problem of restricted diffusion between two parallel
plates [26], in the ideal scenario involving only very long pulses
and simple geometries, one would expect the measurement to be
sensitive only to the product of squared confinement and
diffusivity, in which case there is no need to employ an

effective diffusivity in the model. However, in practice there is
such sensitivity, and the relationship between the parameters of
the model (Deff, andC) and those of the geometry requires further
investigations. What is remarkable however is that having only
one additional parameter (Deff) offers sufficient complexity to
capture the information in the signal for the considered
acquisition scenario. This is also evident in Figure 2B, which
better illustrates how the assumption of free diffusion fails [3, 41]
while the confinement tensor model fully captures the signal
modulations due to restricted diffusion probed by STE
measurements.

The recovered values of the effective diffusivity Deff coincided
with the bulk diffusivity D0 for the stick and free water

FIGURE 3 | Example results of inverting Eq. 11 on real data collected with LTE, PTE, and STE waveforms [32]. The panel on top shows a bird’s eye view on the
geometry plane, and how to associate the location of points to a shape according to the Cpara and Cperp coordinates. The contours in the 3D plot show the projections of
the pores’ clusters onto the various 2D planes.
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compartments. For the compartments in which diffusion is fully
restricted, the estimated values were lower than the nominal D0.
Respectively, 1.65 μm2/ms for Capped Cylinder 1, 2.0 μm2/ms for
Capped Cylinder 2, and 1.7 μm2/ms for Sphere.

4.2 Signal for a Distribution of
Compartments
Illustrative results obtainable with the Monte Carlo inversion
method described in Section 3 were produced on a publicly
available brain dataset [32] collected via the tensor encoding
protocol used in the simulations. Figure 3 shows Monte Carlo
inversion results on a few selected voxels on the bottom, and a
bird’s-eye view on the plane displaying the geometric information
about the tensors in the distribution on the top. In this last, the
colored areas indicate what shape each tensor would have for
different values of Cpara and Cperp. Pores with isotropic geometries
are found along the diagonal where Cpara = Cperp. Free isotropic
diffusion is found for low Cpara = Cperp, while confined isotropic
diffusion is found for high Cpara = Cperp. Stick-like pores are
located at the Cpara ≪Cperp corner, while pancake-like pores are
found at the Cpara ≫Cperp corner.

In the same spirit of what was shown in [42] for the DTD
model, the 3D plots in Figure 3 show what the P(C, Deff ) for
voxels containing either single or multiple types of brain tissues,
as obtained from the data, could be. For example, voxels
containing pure CSF would have a P(C, Deff ) of only free
diffusion geometry with Deff ≈ 3.1 μm2/ms. Pure white matter
voxels would only contain collections of stick-like geometries (see
the voxel from the Corpus Callosum), while, for the considered
dataset, gray matter could contain isotropic free water at lower
Deff compared to free water. Voxels with mixed tissue types could
build their P(C, Deff ) based on those from single tissues. Note
how having separate components encoding for the pore geometry
(C) and the water diffusivity (Deff) allows for clearly identifying
scenarios where pores could have the same shape, but different
water mobility. See for example the voxel “WM, 2 fiber bundles?“,
where the distribution seems to suggest the presence of two
differently oriented fiber bundles, which can be teased apart
also by looking at their water diffusivity. The same specificity
could not be achieved by only considering a distribution of
diffusion tensors, where the information about the pore
geometry is inextricably entangled to that of water diffusivity.

Note however that all what is presented and discussed in this
section are simply initial conjectures, which may very well be the
results of falling into the temptation of over-interpreting the
outcomes of the DTD or CTD estimation. As shown by [36],
inverting Eq. 10, and by extension Eq. 11, is already challenging
even at infinite SNR. The situation worsens in real data where the
validity of the solutions proves to be very sensitive to the presence
of noise. Moreover, as we present and discuss later, the results,
and their interpretation, strongly depend upon the adopted
acquisition scheme. For example, we could expect to find
sphere-like compartments in gray matter in data encoded with
different diffusion times and higher diffusion sensitivity, possibly
indicating that a relevant fraction of the signal is due to cell
bodies. Moreover, while the considered protocol (and data)

should encode sufficient information for accurately recovering
the pores’ geometry, other waveforms could prove beneficial to
study the time-dependence of the diffusion process, augmenting
the reliability of the Deff dimension.

5 DISCUSSION

The results in Figure 2 illustrate how well the confinement model
captures the features of both free and restricted diffusion, for data
simulated with a clinically-feasible protocol including typical
time-varying magnetic field gradients. The signal’s modulation
due to restrictions is, under the considered experimental set-up,
fully described by studying the problem of diffusion occurring in
a potential landscape. This shows that the considered approach
retains the right number of degrees of freedom to characterize
diffusion processes within individual compartments. This finding
is consistent with what was reported by Özarslan et al. [26] for
experiments involving long duration pulses, and supports the
idea of adopting the confinement tensor for representing isolated
pores in multicompartment models.

Having a single model covering both restricted and unrestricted
diffusion in different geometries could be advantageous when defining
multi-compartmental models based on such shapes as building blocks.
Biophysical models, such as the composite hindered and restricted
model of diffusion (CHARMED) [43] and neurite orientation
dispersion and density imaging (NODDI) [44] strive for modeling
specifically the neural tissue, therefore are not suitable for different
tissues and other heterogeneous media. The confinement tensor
representation of each compartment could be integrated into such
models and could provide a convenient means for accounting for
restricted diffusion. On the other hand, the confinement tensor
distribution model is far more general than such specific models as
one would not need to make a priori assumptions on the specimen
composition, apart from limiting its representation to numerous non-
exchanging and possibly confined domains. The results in Figure 3
exemplified the specificity achievable by modeling a specimen with a
joint distribution of confinement tensors-isotropic effective diffusivities.
Other information about the water pools, such as T1 andT2 relaxations
[42, 45], could be added to increase specificity to the tissue
heterogeneity. Similarly to what was presented there, the
confinement tensor model could also be considered for
diffusion—relaxation studies [42, 46–49].

Note that on the specific dataset used in this work we did not
observe striking modulation in the signal for isotropic
measurements at constant b-value. This could be explained by
the experiments not being sensitive to finite-sized anisotropic
restrictions, i.e., axons could effectively be pictured as sticks.
Under these conditions, the fit to signal for both the DTD and
CTD would yield very close results. Having two fundamentally
different models exhibiting good fits to the data suggests that the
data is possibly not descriptive enough. Another factor
contributing to equal performance could be found in both
DTD and CTD being overly-parameterized, thus effectively
having the capabilities to fit the data equally successfully. This
should not however be interpreted as both models being
acceptable and providing informative results. In addition,
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FIGURE 4 | (A) Layout of themixed protocol. 102measurements consist of LTE, PTE, and STEwaveforms as defined in the tensor encoding protocol, but with their
directions redistributed over the sphere to achieve more uniform directional sampling. Another 102 measurements consist of Trapezoidal Cosine Oscillating Gradient
Spin Echo waveforms oscillating at 4 different frequencies. The last 13 measurements had null diffusion gradient strength. (B) Results of inverting Eq. 11 for a simple
system consisting of two equally weighted water pools with identical geometries but different water diffusivities. Left, data encoded with the tensor encoding
protocol. Right, data encoded with the mixed protocol. The red filled dots depict the ground truth values in the 3D plot, while the red crosses show the ground truth

(Continued )
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based on the results in Figure 2, we expect the CTD to provide
meaningful information on data where restrictions have
imprinted a clearer signature.

We would also care to iterate once more on the limitation of
performing CTDI (or DTDI) using the technology implemented in
https://github.com/markus-nilsson/md-dmri, due to the
mathematically ill-posed problem that is being attempted.
Different P(C,Deff ) in Eq. 11 will represent the signal equally
well, thus possibly leading to wrong interpretations of the
microstructural characteristics of the scanned specimen. A similar
issue is referred to as the “degeneracy problem” [50] in recovering
the brain microstructure. Multi-compartment models present flat
fitting landscapes with multiple local minima located in different
parts of the parameter space, each of which providing equally sound
biological explanation for the signal. One approach to alleviate the
problem involves including additional measurements, e. g, diffusion
measurements having different temporal profiles, with the goal of
disentangling the contribution of different parameters to the model
interpretation [51].

When attempting at recovering the joint distribution of
confinement tensors and isotropic effective diffusivities, we
found from simulations that the pores’ geometry can be
obtained relatively faithfully using the tensor encoding
protocol only. However, determining the pore diffusivity
relatively to the restriction size from data encoded
exclusively in such manner seems to be more challenging.
We provide examples of this in Figure 4. In Figure 4A we show
a modified version of the tensor encoding protocol, where half
of the waveforms are replaced with Trapezoidal-Cosine
Oscillating Gradient Spin-Echo (TC-OGSE). We refer to
this protocol as mixed. The goal is to achieve higher
sensitivity to molecules’ diffusivity within restrictions by
using waveforms with well defined encoding frequency, and
by matching the frequency of such waveform to that of the
diffusion process [52–54]. Retaining part of the original
protocol should ensure accurate pore geometry estimation.
In Figures 4B,C we show the results obtained for a simple
scenario where the specimen consists of two pools of water in
which molecules are diffusing at different rates. When the data
are simulated with only LTE, PTE, and STE, it is possible to
accurately recover the expected pore shapes but not the water
diffusivity. Conversely, by introducing oscillating gradients,
the diffusivity estimates, although still uncertain, converge to
the correct values.

In Figure 4D we show the results on a more complex substrate
consisting of a stick compartment, an extra-axonal compartment, a
sphere compartment and a compartment with free diffusion. As for
the simple scenario described above, the estimation of the pores’
diffusivity, in particular one of the sphere compartments, improves
when the mixed protocol is used. This corroborates the idea of
including measurements not only exploring different shapes of the

encoding tensors, but also probing different frequencies [53]. The
results in Figure 4D also exemplify the uncertainty around
inverting the Laplace transform, even for infinite SNR.

6 CONCLUSION

In this work we incorporated the confinement tensor model for
individual subdomains of heterogeneous media into
multidimensional diffusion MRI frameworks. We demonstrated
how considering Brownian motion as taking place under the
influence of a Hookean potential provides sufficient degrees of
freedom to capture the signal modulations arising from water
diffusing in restricted geometries. We argued that the confinement
tensor distribution (CTD) model is a viable alternative to the
diffusion tensor distribution model as CTD relies on the effective
model of restricted diffusion, which makes it more consistent with
the multicompartmental organization of complex tissue when
examined via commonly performed diffusion MRI
measurements. Despite its challenges, incorporating this model
into multidimensional diffusion MRI methods could provide new
insights regarding the structural composition of complex media.
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FIGURE 4 | values for the projections onto the various planes. (C) The distributions of Deff obtained in (B). (D) Results inverting Eq. 11 for a substrate comprising a free
water compartment, a sphere compartment, a stick compartment, and an intra-axonal compartment, with the following weights in the distribution: 0.25, 0.25, 0.4, 0.1.
The substrate ground truth is visualized in the small 3D plot on top. On the left, data encoded with the tensor encoding protocol. On the right, data encoded with the
mixed protocol.
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APPENDIX: NUMERICAL APPROXIMATION
OF THE SIGNAL IN C → 0 REGIME

The matrix inversion in the second exponential in equation (Eq.
8) can become numerically unstable for C→ 0. When working in
the coordinate system determined by the eigenvectors of C, the
matrix Ω is diagonal

Ω �
λ1 0 0
0 λ2 0
0 0 λ3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (18)

We take �v1, �v2, and �v3 to be the eigenvectors of C, defining the new
coordinate system for the experiment. ThematrixRhaving �v1, �v2, and
�v3 as columns, can be used to determine the gradient waveforms used
to collect the data in the new coordinate system through

G′(t) � [G1′(t), G2′(t), G3′(t)]u � Ru G(t). (19)
Then, the signal contribution from the second exponential in Eq.
8 can be written as

exp −Deff

2
Q1(0) Q2(0) Q3(0)[ ] λ−11 0 0

0 λ−12 0
0 0 λ−13

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ Q1(0)
Q2(0)
Q3(0)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎜⎝ ⎞⎟⎟⎠
� exp −Deff

2
Q2

1(0)λ−11( )exp −Deff

2
Q2

2(0)λ−12( )exp −Deff

2
Q2

3(0)λ−13( )
(20)

with

Qi(0) � γ∫
tf

0

dt′ e−λi t′ Gi′(t′) , i � 1, 2, 3. (21)

In the case when the jth eigenvalue λj is small, so is Qj (0)
due to the gradient echo condition, and the evaluation of
the corresponding exponent on the right hand side of
(Eq. 20) is numerically difficult. In this case, one can
make use of the Taylor expansion of the exponential in
(Eq. 21) yielding

exp −Deff

2
Q2

j(0)λ−1j( )
≈ exp −Deff

2
λjα

2
j − λ2jαjβj + λ3j

1
4
β2j +

1
3
αjδj( )[ ]( ), (22)

where

αj � γ∫
tf

0

dτ Gj′(τ) τ (23a)

βj � γ∫
tf

0

dτ Gj′(τ) τ2. (23b)

δj � γ∫
tf

0

dτ Gj′(τ) τ3. (23c)
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