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Abstract

Magnetic Resonance Imaging (MRI) is an essential healthcare technology, with
diffusion MRI being a specialized technique. Diffusion MRI exploits the inherent
diffusion of water molecules within the human body to produce a high-resolution
tissue image. An MRI image contains information about a 3D volume in space,
composed of 3D units called voxels.

This thesis assumes the existence of a probability distribution for the diffu-
sivity within a voxel, the diffusion tensor distribution (DTD), with the diffusivity
described by a family of diffusion tensors. In 2D, these tensors can be described
by 2×2 symmetric positive semidefinite matrices. The objective is to estimate the
DTD of a voxel with neural networks for both 1D and 2D diffusion tensors. We
assume the DTD to be a discrete distribution, with a finite set of diffusion tensors.

The MRI signal is influenced by several experimental parameters, which for
diffusion measurements are summarized in the measurement tensor B. To de-
termine the diffusivity of a voxel, multiple measurement tensors are utilized,
producing various MRI signals. From these signals, the network estimates the
corresponding DTD of the voxel. The network seeks to employ the earth mover’s
distance (EMD) as its loss function, given the established use of EMD as a
distance between probability distributions. Due to the difficulty of expressing
the EMD as a differentiable loss function, the Sinkhorn distance, an entropic
regularized approximation of the EMD, is used instead.

Different network configurations are explored through simulations to identify
optimal settings, assessed by the EMD loss and the closeness of the Sinkhorn
loss to the EMD.

The results indicate that the network achieves satisfactory accuracy when ap-
proximating DTDs with a small number of diffusivities, but struggles when
the number increases. Future work could explore alternative loss functions and
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advanced neural network architectures. Despite the challenges encountered, this
thesis offers relevant insight into the estimation of diffusion tensor distributions.



Sammanfattning

Magnetresonanstomografi (MRI) är ett viktigt verktyg inom hälso- och sjukvår-
den. Diffusions-MRI är en specialiserad teknik inom detta område, som utnyttjar
diffusion av vattenmolekyler i människokroppen för att skapa vävnadsbilder. En
vävnadsbild skapad genom MRI innehåller information om en 3D-volym som
består av 3D-enheter kallade för voxlar.

Denna studie antar existensen av en sannolikhetsfördelning för diffusiviteten
inom en voxel, där diffusiviteten beskrivs av en mängd av diffusionstensorer. I
två dimensioner kan dessa tensorer beskrivas med 2 × 2 symmetriska positivt
semidefinita matriser. Syftet med studien är att uppskatta denna sannolikhets-
fördelning, diffusionstensorfördelningen (DTD), med hjälp av neurala nätverk
för både 1D och 2D-diffusionstensorer. Vi antar att DTD:n karakteriseras av en
diskret distribution med en ändlig mängd diffusionstensorer.

MRI-signalens värde påverkas av flera experimentella parametrar, som i dif-
fusionssammanhang sammanfattas i mättensoren B. För att bestämma diffu-
siviteten hos en voxel, används flera mättensorer för att generera olika MRI
signaler. Dessa signaler används sedan för att estimera den motsvarande DTD:n
för voxeln. Nätverket skulle vilja utnyttja earth mover’s distance (EMD) som
kostnadsfunktion, med tanke på dess etablerade användning som avstånd mellan
sannolikhetsfördelningar. På grund av svårigheten att uttrycka EMD som en
deriverbar kostnadsfunktion, kommer Sinkhornavståndet användas. Det är en
approximation av EMD med en entropisk regulariseringsterm.

Olika nätverkskonfigurationer undersöks genom simuleringar för att identifi-
era en optimal konfiguration. Bedömningen av optimalitet görs med hjälp av
EMD kostnadsfunktionen och hur nära Sinkhornkostnadsfunktionen var till EMD.

Resultaten visar att nätverket presterar med en godtagbar noggrannhet för
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uppskattningar av ett litet antal diffusionstensorer. Men när antalet ökar förlorar
uppskattningarna sin noggrannhet markant. För framtida studier kan utforskning
av andra kostnadsfunktioner eller mer komplexa neurala nätverk vara av intresse.
Trots resultaten bidrar denna studie med relevanta insikter för att förbättra
uppskattningen av diffusionstensorfördelningen.
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Chapter 1

Introduction

This chapter provides a brief background on MRI and diffusion MRI, essential
for understanding the research problem of the thesis. Thereafter, the research
problem is stated, followed by a detailed formulation of the problem the thesis
aims to address. The chapter concludes with an outline of the overall structure
of the thesis.

1.1 Background

MRI, short for Magnetic Resonance Imaging, is a medical imaging technique
that utilizes magnetism to generate images of the anatomy and physiology of the
human body. It provides a non-invasive and radiation-free method for visualizing
internal structures, making it an invaluable tool in the diagnosis and monitoring
of various medical conditions.

Diffusion Magnetic Resonance Imaging (dMRI), a specialized variant of MRI,
leverages the behavior of water molecules to render a detailed depiction of tissue
microstructure, offering insights beyond the reach of conventional MRI tech-
niques.

An MRI image contains information about a 3D volume in space, and it is
composed of 3D units called voxels, similar to how a pixel is a 2D unit of an
image. In diffusion MRI, the diffusion at a point inside a voxel can be modeled
with a second rank tensor, the diffusion tensor D, which can be represented
by a 3 × 3 symmetric positive (semi)definite matrix. Within a voxel, there
exists a set of diffusion tensors describing the diffusivity at different points. By
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2 Chapter 1. Introduction

understanding the diffusivity within the voxel, it becomes possible to infer the
structure of the diffusion medium. The utilization of diffusion MRI on humans
allows for the inference of tissue structures, which can aid in gaining a better
understanding of the pathogenesis of diseases and contribute to the development
of treatment plans [1] [2].

1.2 Purpose of thesis
This thesis aims to investigate whether a machine learning approach, specifically
using neural networks, could be used to estimate the diffusivity within a voxel.

1.3 Problem Formulation
We postulate that there exists a probability distribution f(D) describing the set
of diffusion tensors within a voxel. From the MRI, a diffusion-weighted signal
S(B) is acquired, that given the existence of f(D), will follow the mathematical
relation:

S(B)/S0 =

∫
Pn

e(−Tr(BD))f(D)dD = (Lf )(B), (1.1)

where B is a measurement tensor, represented by a matrix encoding all relevant
information about the diffusion sensitizing gradients, which are experimental pa-
rameters of the MRI, Pn is a set (manifold) of symmetric positive (semi)definite
matrices and S0 is the signal absent of diffusion weighting gradients. Tr(·)
denotes the trace of a matrix, defined as the sum of its main diagonal elements.
We see that this resembles a Laplace transformation of the probability density
function of the diffusion tensors f(D) in the voxel. The analytical solution to
the inverse of the Laplace transform is difficult, and the numerical problem is
ill-posed. Acquiring multiple signals for different values of B will yield the value
of the Laplace transform of the density function for a discrete and finite set of B.
Because of this limited information, it is impossible to obtain a unique inverse
of the Laplace transform; therefore, assumptions need to be made about f(D) [3].

By assuming some characteristics of the density function, this thesis attempts
to estimate the diffusion tensor distributions given a finite set of measurement
tensors B, utilizing machine learning methods, specifically neural networks.

1.3.1 Previous work
Previous attempts have been made to model the diffusion tensor distribution.
These works involve various approaches of theoretical work and experimental
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work. Applying neural networks, as this thesis aims to do, is a novel approach
to this problem [3] [4] [5].

1.4 Thesis outline
Chapter 1 presents the reader with a short overview of the subject of the thesis.
Afterward, the research purpose and the problem formulation of the thesis are
stated.

In Chapter 2 a comprehensive theoretical framework is presented to address
the research question. This chapter describes essential concepts such as rank 2
tensors, diffusion, diffusion tensors, optimal transport, and neural networks.

Chapter 3 details how the thesis aims to produce its results. The neural network
architecture and relevant parameters, which were used for the estimation, are
detailed in this chapter.

Chapter 4 presents the result leading to the suitable neural network and sub-
sequent estimation of the diffusion tensor distribution (DTD) using the said
network.

Chapter 5 offers an analysis of the obtained results and provides insights regarding
potential improvements that could be made.





Chapter 2

Theory

This chapter presents the relevant theoretical background necessary to address
the problem formulation. It covers rank 2 tensors, diffusion, diffusion tensors,
diffusion tensor distributions, optimal transport, and neural networks.

The mathematical background related to rank 2 tensors and a brief overview
of MRI is introduced first. This is followed by diffusion, diffusion tensors, and
diffusion tensor distributions. Subsequently, optimal transport is introduced as
a metric for quantifying dissimilarity between diffusion tensor distributions. The
chapter concludes with a concise overview of neural networks.

2.1 Rank 2 tensors

2.1.1 Definition

The need for a concise and versatile mathematical framework to describe concepts
without a basis has motivated the existence of tensors. A tensor T of type (r,s)
over a vector space V is a multilinear map:

T : V r × (V ∗)s → R, (2.1)

where V* denotes the dual space, the set of all linear maps ϕ : V → R. In finite-
dimensional vector spaces, V and its dual space V ∗ both have equal dimensions.
This equality is significant because it allows for a direct correspondence between
vectors and covectors (elements of dual space) given a scalar product (inner
product) [6].

Nismi, 2024. 5



6 Chapter 2. Theory

Let V1, . . . , Vn and W be vector spaces. Then, a multilinear map is a map

f : V1 × . . .× Vn →W, (2.2)

such that for each fixed index i and fixed (n-1) tuple of vectors, x1, x2, . . . , xi−1,
xi+1, . . . , xn, the map:

Vi →W, xi 7→ f(x1, ..., xi, ..., xn) (2.3)

is linear [6].

An example of a commonly used tensor is the inner product, which gener-
alizes the dot product (scalar product) to more general mathematical spaces
while maintaining its familiar properties. Consider u and v as arbitrary vectors
within a vector space V . The inner product, denoted by ⟨u,v⟩, is a bilinear
(multilinear) map from V × V → R. The bilinearity of the inner product mani-
fests in its preservation of vector addition and scalar multiplication. Consider
an arbitrary vector w ∈ V and a scalar λ ∈ R. With u as a constant, we obtain
preservation of scalar multiplication:

⟨u, λv⟩ = λ⟨u,v⟩ (2.4)

and preservation of vector addition:

⟨u,v +w⟩ = ⟨u,v⟩+ ⟨u,w⟩ (2.5)

This property still applies with v as constant: preservation of scalar multiplica-
tion:

⟨λu,v⟩ = λ⟨u,v⟩ (2.6)

and preservation of vector addition:

⟨u+w,v⟩ = ⟨u,v⟩+ ⟨w,v⟩ (2.7)

Since the inner product is linear in both of its arguments, it is a bilinear map.
These characteristics categorize the inner product as a tensor of type (2,0).

Another example of a tensor is the determinant. Consider a 3×3 matrix, the
determinant can be viewed as a map from its column vectors to a scalar:

det : R3 × R3 × R3 → R. (2.8)

This is multilinear, as can be observed by considering the determinant of a 3× 3

matrix with columns vectors: a =

a1
a2
a3

, b =

b1
b2
b3

, and c =

c1
c2
c3

. If we
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choose an arbitrary column and let the rest of the columns be fixed, then both
vector addition and scalar multiplication are preserved:

det

a1 b1 λc1 + d1
a2 b2 λc2 + d2
a3 b3 λc3 + d3

 = λdet

a1 b1 c1
a2 b2 c2
a3 b3 c3

+ det

a1 b1 d1
a2 b2 d2
a3 b3 d3

 , (2.9)

where d =

d1
d2
d3

 is an arbitrary vector and λ ∈ R. As such, the determi-

nant acts as a multilinear map from the Cartesian product of vector spaces to a
scalar, classifying it as a type (3,0) tensor.

Tensors can be classified by their rank, which is the sum r+ s, and describes the
number of indices needed to describe the tensor. Tensors are usually denoted
with lower and raised indices to indicate the type of tensor. For example, a
type (1,1) tensor could be indicated by T j

i . However, when representing the
tensor with an orthonormal (ON) basis, the distinction between different types of
tensors with the same rank is lost. This means that given an ON-basis, a matrix
can represent a rank 2 tensor and this matrix representation will not distinguish
between the different types of rank 2 tensors, such as type (0,2), (1,1), and (2,0).
For the problem addressed in this thesis, this matrix representation is sufficient.
Hence, when we refer to a tensor, it will be equivalent to being referred to as a
matrix with respect to an ON-basis [6].

2.1.2 Two dimensions

For diffusion in two dimensions, the diffusion matrix will be a 2× 2 symmetric
matrix (further details on diffusion will be elaborated later on). We will denote
vectors and matrices with a bold letter and refer to the vector space of 2 × 2
symmetric matrices, to which the tensor belongs, as M .

2.1.3 Symmetric tensors and suitable basis

For the problem this thesis aims to solve, we are concerned with symmetric
tensors. A symmetric matrix A is characterized by A = AT . To gain a better
understanding of the set of all symmetric matrices, we can consider the vector
space of all 2× 2 symmetric matrices M . In this vector space, where a vector
is a symmetric matrix, it is convenient to describe the vector using a basis.
There exist different choices of bases, but one suitable for this case is the basis
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{e1, e2, e3}, where

e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
1 0

)
, e3 =

(
1 0
0 1

)
. (2.10)

This allows every A ∈ M , to be expressed as A = αe1 + βe2 + γe3, where
α, β, γ ∈ R, so that a matrix A is characterized by the coordinates (α, β, γ).
Consequently, given the basis, the coordinates (α, β, γ) uniquely characterize
the matrix A. Since the basis consists of three linearly independent vectors, the
vector space M is of dimension 3.

2.1.4 Positive semidefinite matrices
An essential requirement for the tensors under consideration is that their matrix
representation satisfies the condition of positive semidefiniteness. A N × N
symmetric matrix M is positive semidefinite if and only if vTMv ≥ 0 for all
v ∈ RN . Alternatively, another equivalent definition is that the eigenvalues of
M must be non-negative. The eigenvalues λ of M, are given by the roots of the
characteristic polynomial of M:

det(M− λI) = 0. (2.11)

Consider a matrix A ∈M in our basis, this can be expressed as:

A =

(
α+ γ β
β −α+ γ

)
. (2.12)

Solving for the roots of the polynomial equation that is described by Equation
2.11, yields the eigenvalues λ1 and λ2:{

λ1 = γ +
√
β2 + α2

λ2 = γ −
√
β2 + α2

(2.13)

To ensure positive semidefiniteness, it is necessary for the eigenvalues to be
real and non-negative. If γ is not greater than or equal to 0, then λ2 would
always be negative. On the other hand, if γ ≥ 0, it guarantees that λ1 is always
non-negative. In order for λ2 to be consistently non-negative, the condition
λ2 = γ −

√
β2 + α2 ≥ 0 must hold, which is equivalent to γ2 ≥ β2 + α2, given

γ ≥ 0. Combining these inequalities gives a set of conditions that define the
requirements for any symmetric matrix A ∈M to be positive semidefinite:{

γ ≥ 0

γ2 ≥ α2 + β2
(2.14)
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These conditions characterize the set of positive semidefinite matrices within
the vector space M . Geometrically, these conditions give rise to a cone-shaped
region in three-dimensional space, centered at the origin and expanding along
the non-negative γ axis. In Figure 2.1, the corresponding cone is depicted, with
each point within the cone representing a positive semidefinite matrix. The
arrows in the figure correspond to the base vectors of M , as defined earlier in
Equation 2.10. Points in the cone will be a matrix A of the form in Equation
2.12, points on the cone, the shell of the cone, will correspond to a matrix B
such as :

B =

(
α+

√
α2 + β2 β

β −α+
√

α2 + β2

)
. (2.15)

Note that points on the cone are uniquely defined by the pair of values (α, β),
and the determinant of the matrix associated with each point is det(B) = 0.

Figure 2.1: Visualization of the subset of positive semidefinite matrices in M .
Each positive semidefinite matrix is characterized by a point within the blue
cone.

This cone exhibits interesting properties related to 2× 2 positive semidefinite
matrices. Three specific points A,B and C within the cone have been highlighted
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to underscore these properties: one along the γ axis, one on the boundary of the
cone, and one inside the cone. These properties will be further described using
these points in Section 2.2.3.

2.1.5 Inner product on M
Incorporating a measure of distance between rank 2 tensors can be facilitated
through the use of an inner product. By defining an inner product for the
vector space M, it becomes an inner product space. An inner product space
is beneficial since it allows for the definition of a distance between elements
of its space. We continue denoting the inner product with ⟨·, ·⟩. Since we can
represent tensors with matrices, one possible inner product between tensors is
the Frobenius inner product. The Frobenius inner product is a commonly used
inner product between matrices because it is easily computable and easy to
interpret. The Frobenius inner product between X,Y ∈M is:

⟨X,Y⟩ = Tr(XTY), ∗ (2.16)

where Tr(·) again denotes the trace of a matrix, which is defined as the sum of
the diagonal elements of a square matrix, i.e. Tr(X) =

∑
i Xii. Explicitly, the

expression of the inner product then becomes:

⟨X,Y⟩ =
∑
j

∑
i

xijyij . (2.17)

The inner product induces a norm || · ||, given by ||X|| =
√
⟨X,X⟩. The norm

measures the magnitude or "size" of a vector. For example, in the Euclidean
norm, the norm of a vector corresponds to the length of the line segment repre-
senting the vector.

Furthermore, when the inner product between two vectors is zero, they are
considered orthogonal to each other. Pairwise orthogonal vectors are linearly
independent, meaning they cannot be expressed as a linear combination of each
other. In the context of the basis defined in Equation 2.10, it can be easily
verified that the basis vectors are pairwise orthogonal and linearly independent.
To simplify the representation of vectors in M , an orthonormal basis can be
used instead of the original basis. This involves normalizing the basis vectors to
have unit length while preserving their orthogonality. Utilizing an orthonormal
basis allows for a more concise and computationally efficient representation of
vectors in M . The following is an orthonormal basis for M :

∗The transpose in this expression is not necessary for our specific vector space of symmetric
matrices but is included for generality, as it is needed for more general vector spaces of matrices.
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e1 =
1√
2

(
1 0
0 −1

)
, e2 =

1√
2

(
0 1
1 0

)
, e3 =

1√
2

(
1 0
0 1

)
. (2.18)

2.2 Diffusion tensors and diffusion tensor distri-
butions

2.2.1 Diffusion
Diffusion, a fundamental process in the natural sciences, refers to the net move-
ment of particles from areas of high concentration to areas of low concentration.
Fick’s first law describes this movement as

J = −D∇C, (2.19)

where J is the net flux vector of the particles, C is the concentration of particles
and D is the diffusion coefficient. The diffusion coefficient is an intrinsic prop-
erty of the medium of diffusion, with its value determined by several variables
including the medium’s microscopic structures, temperature, and the size of the
diffusing particles. Given its sensitivity to these factors, the diffusion coefficient
can be utilized for inferring the physical structure of the medium.

Fick’s first law states that without a non-zero concentration gradient, there
will be no net flux of diffusion. However, microscopic particle motions still occur
in thermodynamic equilibrium. These motions, characterized as random, follow
a Brownian motion [7]. A common measure of the spatial extent of exploration
by a random walker is the mean squared displacement (MSD). MSD measures
the average net distance a particle has traveled during a certain time period and
is defined as:

MSD(t) =
1

N

N∑
i=1

|x(i)(t)− x(i)(0)|2, (2.20)

where xi(t) represents the position of the i-th particle at time t, within an
ensemble of N particles. Physicist Albert Einstein established a link between
the MSD of an ensemble of particles and the diffusion coefficient D described in
Fick’s first law:

MSD(t) = 2nDt, (2.21)

where n is the number of dimensions, and t is the diffusion time. Given that
diffusive particles follow a Brownian motion, the position of a diffusive particle,
xi(t), adheres to a Gaussian distribution. Consequently, the distribution of the
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position of the diffusive particle can be visualized using a Gaussian distribution.
For two-dimensional diffusion, Figure 2.2 displays a Gaussian surface, with
the displacement of the diffusive particle represented by a cross-section for
a specific probability (on the Z-axis). At probability z = 1

4πDte , the radius
of the cross-section represents the mean displacement of a diffusive particle,√
MSD [1] [8].

Figure 2.2: Gaussian distribution describing the position of a particle under-
going diffusion in 2D. At probability z = 1

4πDte , the radius of the cross-section
represents the mean displacement of a diffusive particle,

√
MSD.

In the human body, diffusion occurs with water molecules. However, the motion
of these molecules is not unrestricted; it is hindered by surrounding structures
such as cell membranes, resulting in a movement that deviates from unrestricted
Brownian motion. Comparing the MSD from free motion with the MSD from
observed diffusion can indicate the presence of obstacles during the random walk.
An obstructed random walk would lead to a lower MSD. According to Equation
2.21, this implies that the diffusion coefficient must also be lower or in other
cases, need a more complex mathematical representation than a single scalar
value. Due to the significant difference in the observed diffusion coefficient, it is
noteworthy to distinguish it by referring to it as the apparent diffusion coefficient
(ADC) [2] [1].
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2.2.2 Measuring diffusion with MRI

Due to the reasons mentioned earlier, there is significant interest in studying
the diffusion of water molecules within the human body. Diffusion probing has
become possible through the use of MRI techniques. MRI, Magnetic Resonance
Imaging, is a non-invasive medical imaging technique that utilizes magnetization.
By applying a strong magnetic field, atomic nuclei align with the direction of the
field. When excited by a radiofrequency pulse, these nuclei emit radio signals
as they return to their equilibrium state. By adjusting MRI parameters, these
signals can be modified to emphasize specific tissue properties or characteristics,
leading to various ’weighted’ MRI scans. In the case of this thesis, the signal
received from a diffusion-weighted MRI scan can be described by the formula in
Equation 1.1.

An important concept in MRI are gradients. Gradients are magnetic fields
that can vary in both magnitude and direction across space. These variations are
used to encode spatial information, allowing MRI techniques to create detailed
images of the human body. As seen in Equation 1.1, the signal for each voxel
is a function of a measurement tensor B. The measurement tensor B is a rank
two tensor containing information about the gradient used, such as its strength
and orientation. The equation illustrates that the measurement B tensor has a
significant influence on the diffusion observed in the experiment [9].

2.2.3 Diffusion Tensor and diffusion tensor distribution

In the human body, diffusion frequently involves movement across multiple
directions, influenced by factors such as concentration gradients and physical
barriers. Consequently, the diffusion rate can exhibit variability across these
directions, highlighting the potential anisotropic nature of diffusion in the hu-
man body. A single scalar ADC value proves inadequate for a comprehensive
characterization of such anisotropy. The application of positive semidefinite
symmetric tensors offers a more precise characterization. By using a diffusion
tensor, the scalar diffusion coefficient present in Fick’s first law is extended to
encompass anisotropic media. In 2D a 2× 2 matrix representation of a diffusion
tensor would be:

D =

(
D11 D12

D21 D22

)
, (2.22)

where D12 = D21 because of symmetry. In Figure 2.2 the diffusion could be
represented by a circular cross-section of the Gaussian. This representation
is accurate for isotropic diffusion, but for anisotropic diffusion, the diffusivity
can vary depending on direction. Three-dimensional diffusion tensors are often
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visualized as ellipsoids to illustrate the diffusion rates across different directions.
In 3D, the circular cross-section in Figure 2.2 would be a sphere with radius√
6Dt [1]. In the case of a 2× 2 tensor, this visualization takes the form of an

ellipse. For this visualization, consider the eigenvectors f1 and f2 of the diffusion
tensor D and the corresponding eigenvalues λ1 and λ2. The construction and
properties of such an ellipse are illustrated in Figure 2.3a, where the eigenvalues
and eigenvectors of the diffusion tensor are visualized. It is noteworthy that the
principal axes of the ellipse must align with the eigenvectors of the diffusion
tensor, while the corresponding eigenvalues define the lengths of these axes. Such
a representation offers significant interpretative value: the eigenvalues quantify
the diffusion rate along the directions specified by the associated eigenvectors.
Given the inherently positive semidefinite characteristic of the diffusion tensor, it
follows that these eigenvalues, and consequently the diffusion rates they signify,
will always be non-negative.

In Figure 2.3a, the ellipse corresponds to a point within the cone depicted
in Figure 2.1. To understand the ellipse’s characteristics, consider the following
scenarios of the point A in Figure 2.1. If this point is moved towards the γ
axis, the ellipse progressively rounds, ultimately becoming a circle. Conversely,
when the point moves away from the γ axis, the ellipse flattens, becoming a
line segment at the boundary of the cone. The points corresponding to these
extreme cases are marked in Figure 2.1 as B and C, and their corresponding
ellipses are depicted in Figure 2.3. Additionally, for a point within the cone,
the ellipse enlarges as the point moves away from the origin and shrinks when
approaching it. Rotating a point around the γ axis by an angle θ results in a
corresponding θ

2 -degree rotation of both of the ellipse’s eigenvectors.
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X1

X2

f1f2

λ1

λ2

(a) The ellipse representation of 2× 2 diffusion tensor.

X1

X2

f1f2

λ1

λ2

(b) When the diffusion tensor lies on the
γ axis on Figure 2.1, the ellipse represen-
tation becomes a circle.

X1

X2

f1f2

λ1

λ1

(c) When the diffusion tensor lies on the
boundary of the cone on Figure 2.1, the
ellipse representation becomes a line seg-
ment of length 2λ1.

Figure 2.3: Ellipse representations of 2x2 diffusion tensors. Eigenvectors of the
tensor correspond to the semi-axes of the ellipse and the eigenvalues correspond
to the length of the axes.
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It should be observed that the matrix representation of the tensor, given the
basis selected as described in Equation 2.18, assumes significance due to the

basis vector e3 = 1√
2

(
1 0
0 1

)
, which represents the isotropic component of the

diffusion. In the context of anisotropic diffusion, the ability to separate the
diffusion process into isotropic and anisotropic components provides a more
nuanced understanding.

Before proceeding further, we make the following remark, because Equation 1.1
resembles a Laplace transformation, finding its inversion is a commonly difficult
problem. Therefore, it is necessary to provide a brief overview of the concept of
ill-posed problems in scientific research.

Ill-posed problem

A problem is well-posed if the following conditions are satisfied:

1. There exists a solution.
2. The solution is unique.
3. The solution’s behavior changes continuously with the initial conditions.

The task of inverting the Laplace transform for a discrete, finite set of points to
obtain a unique and stable solution is not possible, thereby categorizing this as
an ill-posed problem. This problem falls into the category of inverse problems,
where one must infer causative factors based on a set of observations. Inverse
problems are often characterized by their ill-posed nature. To address such ill-
posed problems, certain assumptions can be made to either simplify the problem
or reformulate it. This thesis will pursue the latter route, reformulating the
problem according to Equation 2.25 and employing neural networks to estimate
the diffusion tensor distribution (DTD) [10].

Jian and Vemuri [3] suggested the diffusion tensor distribution model, pos-
tulating the existence of an underlying probability measure associated with each
voxel describing these diffusion tensors (see Equation 1.1). A discretized version
is achieved by assuming that within a voxel, there exists a set of diffusion tensors,
{D1,D2, . . . ,DN} for some N ∈ N, where Di is i-th diffusion tensor in the voxel.
Then the associated function, the diffusion tensor distribution, describes the
probability distribution of diffusivity pD : {D1,D2, . . . ,DN} → [0, 1]. It can be
described by:
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pD(D) =

N∑
i

wiδDi
(D), (2.23)

where ∀ i ∈ [1, N ], wi ≥ 0 and
∑

i wi = 1. The Dirac delta function,

δDi
(D) =

{
”∞”, if D = Di

0, otherwise
(2.24)

which is used here, is not a typical function but a linear functional with the
property that

∫
Pn

δDif(D)dD = f(Di). Inserting this into Equation 1.1, gives
us a new equation:

S(B)/S0 =

∫
Pn

∑
i

e−Tr(BD)wiδDi(D)dD =
∑
i

e−Tr(BDi)wi. (2.25)

With the theoretical background explained, the research problem this thesis
intends to address can now be fully stated. Given a set of measurement ten-
sors {Bi}Mi=1, with the corresponding signal values {Si}Mi=1, how can we recover
p(D), i.e., the underlying diffusion tensors {Di}Ni=1 within the voxel and its
corresponding weights {wi}Ni=1, from the relation given in Equation 2.25 ? It
should be noted that the search space for diffusion tensors is limited to the set of
symmetric positive semidefinite 2×2 matrices, as visualized by the cone depicted
in Figure 2.14.

Distances between tensors and tensor distributions

Diffusion tensors can be regarded as elements of the inner product space defined
in Section 2.1.5. Consequently, they enable the establishment of a distance
metric between tensors. Utilizing the norm detailed in the previous section, the
distance between two tensors X,Y ∈M can be defined as follows:

d(X,Y) = ||X−Y||. (2.26)

To estimate the DTD, a distance function is needed to be able to quantitatively
measure the dissimilarity between the target tensor distribution with the esti-
mated tensor distribution. The earth mover’s distance (EMD) serves this purpose
effectively. It is a frequently used distance function for computing distances
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between probability distributions. It is defined as the minimum amount of total
work to transfer one distribution P onto another distribution Q [11].

Intuitively, it can be described by considering the following: imagine you have
piles of dirt in different locations where the sizes of the piles can vary. Then,
imagine you have another set of dirt piles with varying locations and sizes. The
objective is to transform the first set of piles into the second set of piles with the
least amount of total work. Work in this case would be defined as the distance
needed to move a (part of a) dirt pile, multiplied by the height of the fraction of
the pile being moved.

To illustrate this analogy, consider the example with Figure 2.4 and Figure
2.5 showing distribution P and Q, which are both sets of dirt piles. These
distributions are characterized by Equation 2.23, but instead of the diffusion
tensor D, we have a pile of dirt representing scalar diffusivity. The height of
the dirt pile corresponds to its associated probability weight. The earth mover’s
distance is calculated by finding the optimal way to transform P to Q.

Before solving this example problem, we need to introduce the notation. Work is
quantified as the product of two variables, work = fijdij . Here, fij describes the
quantity to be shifted from pile i in distribution P to pile j in distribution Q.
Meanwhile, dij is the distance that must be covered between these corresponding
piles.

Figure 2.4: Example distribution P, with pX(x) ∼ P.
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Figure 2.5: Example distribution Q, with pY(x) ∼ Q.

To solve the example problem and transform distribution P into distribution Q
with minimum total work, we can begin by storing all possible distances in the
matrix

D
′
=


0 2 4 5
2 0 2 3
3 1 1 2
6 4 2 1

 , (2.27)

where D
′

ij = dij . Given the simplicity of our case, we can infer the optimal
transportation by observing the two figures of the distributions (Fig. 2.4, 2.5).
The steps of this transportation include:

• Transport 1/6 from the first pile of P to the second pile of Q, which means
that f12 = 1/6, d12 = 2 ⇒ work = 2/6

• Transport 1/6 from the third pile of P to the third pile of Q, f33 = 1/6,
d33 = 1 ⇒ work = 1/6

• Transport 1/6 from the fourth pile of P to the fourth pile of Q, f44 = 1/6,
d44 = 1 ⇒ work = 1/6

These transportations are illustrated in Figure 2.6. We store all optimal fij values
in matrix F. In cases where the piles coincide in both height and coordinates
with the desired set, no work is done (dij = 0), but these are still stored in F
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and count as transportation:

F =


2
6

1
6 0 0

0 1
6 0 0

0 0 1
6 0

0 0 0 1
6

 . (2.28)

The earth mover’s distance, EMD, would then be the sum of all the work done,
EMD =

∑
j

∑
i fijdij =

2
6 + 1

6 + 1
6 = 2

3 .

Figure 2.6: The transportations required to transform distribution P into distri-
bution Q.

To illustrate the earth mover’s distance in higher dimensions, we can consider
Figure 2.7. It shows two distributions in 2D, P and Q, lying above and below the
plane. These distributions, similarly to the 1D case, can be considered as sets of
dirt piles, where the height and location of a pile may vary. The earth mover’s
distance between these distributions would follow similar logic described for the
1D case, trying to transform the piles of P into the piles of Q. The significant
difference when calculating the EMD between the two cases, is that the distance
function used to define dij , might be different.
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Figure 2.7: Example distributions in 2D, with distribution P above the plane
and distribution Q below the plane. The distributions are represented by a set
of piles.

Moving away from our analogy to the problem under consideration of the thesis,
the set of piles of dirt is now replaced with the set of diffusion tensors. A
pile i of a distribution represents a diffusion tensor Di, with the height of the
pile corresponding to the associated probability weight wi. The problem thus
involves transforming a diffusion tensor distribution P into another diffusion
tensor distribution Q. Denoting the i-th diffusion tensor of the M diffusion tensors
in P as DP

i , and the j-th diffusion tensor of the N diffusion tensors in Q as DQ
j ,

the distance dij between these tensors is defined using the distance function
from Equation 2.26:

dij = d(DP
i ,D

Q
j ). (2.29)

2.3 Optimal transport

In optimization theory, the study of transporting masses efficiently is called
optimal transport. The earth mover’s distance (EMD), described earlier, can be
defined as a transportation problem. As seen with the EMD, optimal transport
is one way to define a notion of distance between probability distributions. To
understand different ways to define distances between probability distributions,
it is necessary to explore this topic.
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2.3.1 Earth mover’s distance
With the previous notation for the earth mover’s distance described in the
previous section, we begin by considering the transportation problem. Math-
ematically the transportation problem of the earth mover’s distance can be
described by solving the optimal flow problem between P and Q with optimal
flow F ∈ RM×N , where fij , the element of F, denotes the flow between DP

i and
DQ

j . P and Q are the diffusion tensor distributions, which can be written as P =

[(DP
1 , w

P
1 ), (D

P
2 , w

P
2 ), . . . , (D

P
M , wP

M )] and Q = [(DQ
1 , w

Q
1 ), (DQ

2 , w
Q
2 ), . . . , (DQ

N , wQ
N )].

The optimal flow problem that describes the problem is:

EMD = min
fij

N∑
j=1

M∑
i=1

fijdij

s.t.
fij ≥ 0 1 ≤ i ≤M, 1 ≤ j ≤ N

F1N = wP

FT1M = wQ

(2.30)

where wP = (wP
1 , w

P
2 , ..., w

P
M )T , wQ = (wQ

1 , w
Q
2 , ..., w

Q
N )T , and we denote the

column vector of M ones with 1M = (1, ..., 1)T .
The sum of the weights from both distributions sum to one because the weights be-
long to probability distributions. The last two equations imply that

∑
i

∑
j fij =∑

i w
P
i =

∑
j w

Q
j = 1, which can be seen by multiplying those equations with

1M
T :

1M
TF1N = 1M

TwP (2.31)
1N

TFT1M = 1N
TwQ. (2.32)

Both the left-hand sides have been reduced to a single scalar value upon multipli-
cation. The left-hand side of the first equation is the transpose of the left-hand
side of the second equation, (1M

TF1N)T = 1N
TFT1M. Since the transpose

of a scalar is the scalar itself, both equations ultimately yield the same value∑
i

∑
j fij , confirming that

∑
i

∑
j fij =

∑
i w

P
i =

∑
j w

Q
j = 1 [11].

2.3.2 Sinkhorn Distance
The Sinkhorn distance, a variant of the earth mover’s distance [12], also measures
the dissimilarity between two probability distributions. It is similarly formulated
as an optimal flow problem, where the distance Dsinkhorn is:

Dsinkhorn =
∑
j

∑
i

fijdij , (2.33)
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but the optimal flow, fij , is the solution of another optimal flow problem. This
new problem extends Equation 2.30 by adding a regularization term, weighted
by the positive regularization parameter λ:

min
fij

(

N∑
j=1

M∑
i=1

fijdij − λ

N∑
j=1

M∑
i=1

(fij log(fij)− fij))

s.t.
F1N = wP

FT1M = wQ.

(2.34)

Note that the condition for the flow fij ≥ 0 is now replaced with fij > 0. This
follows from fij being the argument to a logarithm function. The added term
fij log(fij) corresponds to the Shannon entropy of F in information theory. The
Shannon entropy of a random variable quantifies the average level of uncertainty
of the random variable [13]. As the row and columns sum to one, the flow
matrix F can be interpreted as a specific discrete joint probability distribution
between distributions P and Q, with each entry fij corresponding to the approx-
imated probability that a ’unit’ from point i in P is transported to point j in Q.
Therefore, the regularization term added corresponds to the entropy of the joint
distribution associated with the flow matrix F.

The intuition behind adding this term is to discourage the typical sparse solutions
of the earth mover’s distance that tend to lie on a vertex of the solution space,
which geometrically is represented by a polytope. Instead, by encouraging higher
entropy, the regularization promotes flow matrices with a more evenly distributed
flow, effectively spreading out the transport plan. The strict positivity require-
ment of fij ensures that solutions utilize every transportation path. This results
in solutions that are more computationally efficient, allowing for simpler and
more robust algorithmic approaches. A lower value of λ means less emphasis
on entropy and brings the solution closer to that of the original earth mover’s
distance problem. Additionally, the term −fij in the objective function does
not have any impact on the overall result, it is included solely for simplification
purposes later on.

We can consider looking at the Lagrangian function to find a solution for
the optimal flow, as suggested by [12]:

L(α,β) =
∑
j

∑
i

fijdij − λ
∑
j

∑
i

(fij log(fij)− fij) −

αT (F1N −wP )− βT (FT1M −wQ)

(2.35)
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where α =

 α1

...
αM

 and β =

β1

...
βN

 are dual variables.

The Sinkhorn problem is convex [12], this implies that any local optimum is
globally optimum. By duality theory [14], because the primal problem (Equation
2.34) is convex, the optimal values of the primal and the dual are equal. In
this case, Equation 2.35 serves as the objective function of the Lagrangian dual
problem. Therefore, optimality is found at a stationary point of L

∂L
∂fij

= dij + λ log(fij)− αi − βj , (2.36)

letting ∂L
∂fij

= 0 and solving for fij gives us

fij = e
αi
λ e

−dij
λ e

βj
λ = uikijvj . (2.37)

Let u and v have entries ui = e
αi
λ and vj = e

βj
λ , respectively. Further, let K be

defined by entries kij = e
−dij

λ . Using these definitions, the optimal flow can be
expressed as:

F = Diag(u)KDiag(v), (2.38)

where Diag(·) outputs a diagonal matrix with its input vector as its diagonal.

From a theorem by Richard Sinkhorn [15], it follows that for fixed positive
numbers r1, . . ., rm and c1, . . ., cn and a positive m × n matrix A, a matrix
with only positive entries, there exists a unique matrix S = D1AD2, such
that its i-th row sum is ri =

∑
j Sij and its j-th column sum is cj =

∑
i Sij ,

where
∑

i ri =
∑

j cj . D1 and D2 are m×m and n× n diagonal matrices with
positive diagonals and are unique up to a scalar multiple. An iterative process of
alternately scaling the rows and columns of A to the prescribed row and column
sums of D1AD2 can be used to find D1AD2. This theorem guarantees that
if we have an appropriate scaling algorithm, we can find F since it is a matrix
similar to D1AD2. Therefore, an algorithm to find F can be constructed by
considering the constraints in Equation 2.34, but now replacing the F with the
expression in Equation 2.38:{

Diag(u)KDiag(v)1N = wP

Diag(v)KTDiag(u)1M = wQ.
(2.39)

A simplification will yield
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{
Diag(u)Kv = wP

Diag(v)KTu = wQ.
(2.40)

Given K, wP and wQ, our objective is to find the values of u and v up to the
scaling freedom. The following algorithm [12], which utilizes Equation 2.40, can
be used for this purpose:
1. Initialize v as a vector of M ones, v = (1, 1, ..., 1)T .
2. Update u, so that first equation in Equation 2.40 is fulfilled.
3. Update v, so that second equation in Equation 2.40 is fulfilled.
4. Repeat steps 2 and 3 until some chosen convergence criteria are met.
The convergence criteria can be determined by monitoring the difference in u
and v per iteration until it becomes smaller than a predefined tolerance.

This iterative algorithm will have the following updating rules during the l-
th iteration:

ul+1 =
wP

Kvl
→ vl+1 =

wQ

KTul+1
. (2.41)

The algorithm yields u and v, which are used to construct the optimal flow F
for the Sinkhorn problem using Equation 2.38. However, there arises a challenge
when employing a small λ. While a smaller λ can bring the Sinkhorn distance
closer to the EMD, it may also reduce the entries of K to such tiny values that
when multiplied in the products Kv and KTu, they can be computationally
recognized as zeros, resulting in division by zero errors. This causes the algorithm
to fail. A potential solution to address this numerical instability is explored in
the subsequent section [16].

2.3.3 Log-domain Sinkhorn distance

While the Sinkhorn distance provides a simple approach to approximating the
earth mover’s distance, the iterative algorithm described earlier encounters
numerical issues. One potential solution to this problem is to consider carrying
out the computations of the Sinkhorn algorithm in the log domain. Gabriel Peyré
and Marco Cuturi suggested this idea and their description of the log-domain
Sinkhorn algorithm will be detailed [16]. Consider the dual of the problem
described in Equation 2.34. This dual form can be expressed as shown in [16]:

Q = max
α∈RM ,β∈RN

L(α,β) = max
α∈RM ,β∈RN

M∑
i=1

αiw
P
i +

N∑
j=1

βjw
Q
j −λ

M∑
i=1

N∑
j=1

uiKijvj ,

(2.42)
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where ui = e
αi
λ , kij = e

−dij
λ and vj = e

βj
λ as defined in Equation 2.37.

The idea is to apply an exact block coordinate ascent strategy on the objective
function L, that is optimizing along one direction at a time. We will alternate
updating α and β. Optimization will be done with the help of gradients, the
gradients of L are :

∇αL = wP − u⊙ (Kv) (2.43)

∇βL = wQ − v ⊙ (KTu). (2.44)

Where ⊙ denotes the elementwise matrix multiplication operator. Note that
u = e

α
λ and v = e

β
λ , with the obvious interpretation. Setting the gradients to

zero gives us the following updating rules, which are mathematically equivalent
to the previously described Sinkhorn algorithm:

αl+1 = λ log(wP )− λ log(Ke
β
λ ) (2.45)

βl+1 = λ log(wQ)− λ log(KT e
α
λ ). (2.46)

The second term of both equations resembles a common approximation function
of the minimum function, the soft-minimum: minλ z = −λ log

∑
i e

−zi/λ, where
z ∈ RN . For every λ, the soft-minimum is a differentiable approximation of
min{z1, z2, . . . , zN}. An important property of the soft-minimum is that for any
z, it converges towards min z, as λ→ 0+.

For a simple notation that highlights the dual variables, we can rewrite both the
second terms with the soft-minimum, the first term can be rewritten:

−λ log(Keβ/λ) =


−λ log

∑
j e

βj−d1j
λ

...
−λ log

∑
j e

βj−dMj
λ

 =

minλ((d1j − βj)j)
...

minλ((dMj − βj)j)

 = Minrow
λ (D− 1MβT ),

(2.47)
where Minrow

λ (·) outputs the soft-minimum of each row of the input matrix as a
column vector. During the calculations, we introduced the notation (d1j − βj)j ,
referring to a column vector with (d1j − βj) as its j-th entry, and D referring to
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the matrix with dij as its entries. Similarly, the second term can be rewritten:

−λ log(Keα/λ) =


−λ log

∑
j e

αj−dj1
λ

...
−λ log

∑
j e

αj−djN
λ

 =

minλ((dj1 − αj)j)
...

minλ((djN − αj)j)

 = Mincol
λ (D−α1N

T ),

(2.48)
where Mincol

λ (·) outputs the soft-minimum of each column of the input matrix
as a column vector. The updating rules with the rewritten terms correspond to:

αl+1 = λ log(wP ) + Minrow
λ (D− 1MβT ) (2.49)

βl+1 = λ log(wQ) + Mincol
λ (D−α1N

T ). (2.50)

To prevent the issue of numerical instability, we introduce the "log-exp-sum
trick". This is a common trick to prevent numerical instability when dealing
with logarithms of sums of exponentials. The trick is that the sum can be shifted
with a constant a:

log
∑
i

e−zi = a+ log
∑
i

e−zi+a, (2.51)

where a = mini z. This will force the largest term of the sum of exponentials to
be equal to 1. Applying this technique to a soft-minimum term, we get:

minλz = minλ(z − a1N) + a = a− λ log
∑
i

e(−zi+a)/λ. (2.52)

To apply this technique to the updating rules in Equation 2.49 and 2.50, instead
of shifting with the minimum a, we can shift with the previously computed values
of α and β. Incorporating this leads to the following update rule employed by
the log-domain Sinkhorn algorithm:

αl+1 = Minrow
λ (D− 1MβT −αl1N

T ) +αl +
1

λ
log(wP ) (2.53)

βl+1 = Mincol
λ (D−αl+11N

T − 1MβlT ) + βl +
1

λ
log(wQ). (2.54)

2.4 Neural networks
The estimation of the diffusion tensor distribution (DTD) will be done with
artificial neural networks. A neural network (NN) is a powerful machine learning
tool that excels at pattern recognition and learning from data. By leveraging
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a data-driven approach, it can analyze input information and make accurate
predictions [17]. Artificial neural networks are machine learning models inspired
by the structure and function of the human brain. See Figure 2.8 for an illus-
tration of a neural network. As Figure 2.8 shows, a NN consists of layers of
interconnected nodes or neurons that process input data and produce output
predictions [18].

In a neural network, forward propagation is the process of computing the output
of each neuron in the network by applying a weighted sum of the inputs to the
neuron and passing the result through an activation function. The purpose of the
activation function is to introduce non-linearity to the output. Mathematically,
the forward propagation can be written as:

u(l) = σ(z(l)) = σ(w(l)u(l−1) + b(l)) (2.55)

where u(l) is the output of layer l, σ is the activation function, z(l) is a vector
of weighted sums of the inputs to layer l, w(l) is the weight matrix for layer l,
u(l−1) is the output of the previous layer, and b(l) is the bias vector for layer l [18].

The difference between the output of the forward propagation, which repre-
sents the network’s estimation, and the target output is measured using a loss
function. The role of the loss function is to quantify the dissimilarity between
the predicted output and the target output. Therefore, various types of loss
functions can be employed depending on the specific task and the type of data.

There exists a backpropagation phase, where the first step involves calculating
the loss between the network’s estimation and the target output. Subsequently,
the gradient of the loss function is computed with respect to the network weights.
The network weights will be adjusted to minimize the loss. By applying gradient
descent, the network weights are iteratively modified, gradually reducing the
difference between the network’s estimation and the desired output [18].

To estimate the diffusion tensor distribution (DTD), the forward propagation
phase will take a set of signal values, {Si}Mi=1, generated by a set of measurement
tensors {Bi}Mi=1, as input and estimate the DTD. The output will be the under-
lying diffusion tensors {Di}Ni=1 within the voxel and its corresponding weights
{wi}Ni=1.

Potential loss functions to consider for the backpropagation were presented
in Section 2.3 about optimal transport. But to compute the gradient, the loss
function must be differentiable. Machine learning programming libraries often
employ data structures that keep track of mathematical operations performed on
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them. This allows these structures to be represented as differentiable functions
capable of calculating their gradients. Implementing the earth mover’s distance in
a differentiable manner can be challenging. However, both the Sinkhorn distance
and the log-domain Sinkhorn distance offer straightforward implementations of
differentiable loss functions.

Input #1

Input #2

...

Input #n

Hidden
layers

Input
layer

Output
layer

Prediction

Target
values

Output

Loss function

Figure 2.8: Illustration of a generalized architecture of a multilayer neural
network comprising n input nodes and an arbitrary configuration of hidden
layers and output nodes. The loss function compares the predictions to the
target values, quantifying the prediction error to guide weight adjustments for
improved future predictions.





Chapter 3

Methodology

In this chapter, the details of the estimation of the DTD are presented. The
neural network used for the estimation and the loss function is described. The
loss function was analyzed to gain an understanding of its difference from the
earth mover’s distance. Simulations were undertaken to identify appropriate
parameters for the neural network. The parameter search was done on the 1D
case, and insights were transferred to the 2D simulations.

3.1 Loss function

3.1.1 Implementation
The log-domain Sinkhorn algorithm, used as the neural networks loss function,
described in Section 2.3.3, was implemented following the procedures described
in Algorithm 1. This algorithm takes in as arguments, the weights of both dis-
tributions µ, ν, a matrix with precomputed distances between the distributions,
C, the regularization parameter λ, and the maximum number of iterations for
the algorithm, niter.

The variables u, v were initially set to zero, after which they were updated
according to the update rule in Section 2.3.3. The convergence criterion for
this algorithm was based on the comparison between consecutive values of u;
specifically, the difference between ul and ul+1. If the difference |ul − ul+1|
was found to be smaller than a pre-established threshold value, the algorithm
was terminated, and the resultant loss was returned. Otherwise, the algorithm
terminates and returns the resultant loss after reaching niter iterations. This
threshold value was set to 10−1. In Algorithm 1, the log-exp-sum is defined as
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LSE. In the definition of this function, we add 10−6 to the logarithm’s input to
further stabilize the algorithm. The code is based on [19].

The earth mover’s distance (EMD) serves as a benchmark for the loss function to
support the analysis. To compute the earth mover’s distance, the EMD function
from the Python Optimal Transport (POT) library was utilized [20].

Algorithm 1 Sinkhorn Loss Algorithm

1: procedure SinkhornLoss(µ, ν, C, λ, niter)
2: thresh← 10−1

3: u, v ← 0, 0
4: err ← 0
5: actual_nits← 0
6: for i ∈ {1, 2, . . . , niter} do
7: u1← u
8: u← (1/λ) · (log(µ)− LSE(M(u, v))) + u
9: v ← (1/λ) · (log(ν)− LSE(M(u, v))T ) + v

10: err ← |u− u1|
11: actual_nits← actual_nits+ 1
12: if err < thresh then
13: break
14: end if
15: end for
16: π ← exp(M(u, v))
17: cost←

∑
(π · C)

18: return cost
19: end procedure

20: procedure M(u, v)
21: return (−C + u+ v)/ϵ
22: end procedure

23: procedure LSE(A)
24: return log(

∑
(exp(A)) + 1e− 6)

25: end procedure
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3.1.2 Comparision with EMD

The log-domain Sinkhorn distance aims to approximate the earth mover’s dis-
tance (EMD). Therefore, to gain an understanding of the distances and how
different parameter values are relevant, it is beneficial to compare the two dis-
tances on example problems of optimal transport in 2D. An investigation was
conducted on optimal flow problems between distribution P and distribution
Q, as described in Section 2.3. For these test cases, optimal flow solutions were
derived using both the EMD algorithm and the log-domain Sinkhorn algorithm.
The log-domain Sinkhorn algorithm was applied to the same problem multiple
times, each time with a varied regularization parameter λ, but each with a
maximum of 100 iterations (niter =100 in Algorithm 1). Additionally, each loss
function was tested to see if it could return a zero for equal distributions. This is
important because neural networks try to minimize their loss, and a loss function
that can’t reach zero could be a problem.

The notation D = (α, β, γ), from Section 2.1.3 will be employed to represent the
tensor elements of a given distribution.
Example problem 1 :
Distribution P with 2 tensors:

Tensors : DP
1 = (1, 2, 1), and DP

2 = (1, 6, 2)
Weights: wP

1 = 0.15, wP
2 = 0.85

Distribution Q with 2 tensors:

Tensors : DQ
1 = (2, 1, 4), and DQ

2 = (12, 3, 11)

Weights: wQ
1 = 0.3 and wQ

2 = 0.7

Example problem 2 :
Distribution P with 4 tensors:

Tensors : DP
1 = (3.852, 0.18, 3.196), DP

2 = (0.756, 3.724, 1.124), DP
3 = (3.78, 3.096, 1.228),

and DP
4 = (0.984, 3.572, 2.648)

Weights: wP
1 = 0.143,wP

2 = 0.286, wP
3 = 0, and wP

4 = 0.571

Distribution Q with 4 tensors:

Tensors : DQ
1 = (3.16, 1.032, 3.46), DQ

2 = (3.236, 2.548, 0.136), DQ
3 = (0.764, 3.58, 2.588),

and DQ
4 = (1.292, 2.376, 3.796)

Weights: wQ
1 = 0.5, wQ

2 = 0.375, wQ
3 = 0.125, and wQ

4 = 0
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3.2 Neural Network

There exist many different neural network architectures to explore. However, due
to the challenges associated with an exhaustive investigation, only a small number
of neural networks were examined to determine an appropriate network for the
estimations. The neural networks employed had an architecture comprising M
hidden fully connected layers, each with N hidden nodes, see Table 3.1. The
activation function used was the ReLU function. Figure 3.1 illustrates a neural
network with three hidden layers.

Figure 3.1: A neural network with M = 3 hidden layers.

The neural network takes as its input the signals described in Equation 2.25.
Multiple signals for a voxel’s diffusivity are generated using different measure-
ment tensors B, and all these signals are used as input simultaneously. For
estimating DTD in 1D, the neural network maps these signal values to scalar
diffusivities and their associated weights. To ensure the non-negativity of both
weights and diffusivities, the output from the last layer undergoes an absolute
value function. Subsequently, the segment of the output representing the weights
is normalized to produce values within the range [0, 1]. This ensures the weights
sum up to one, reflecting their probabilistic nature.

For 2D DTD estimation, the neural network maps the input signal values
to the lower triangular matrices of the Cholesky decomposition of the diffu-
sion tensors, along with the tensors corresponding weights. Here, the weights
pass through the absolute value function and are normalized, similar to the 1D
scenario. The Cholesky decomposition of the diffusion tensor D results in a
positive semidefinite matrix being represented as D = LLT, where L is a lower
triangular matrix with real and positive diagonal entries. The neural network’s
output will consist of the three non-zero values of L. This approach ensures
that the network’s output corresponds to a positive semidefinite matrix. During
the gradient calculation of the loss function for backpropagation, the 2D output
is transformed into its respective positive semidefinite matrix to compute the loss.
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In all instances, the Adam optimizer [21] was utilized for the neural networks, and
the chosen loss function was the log-domain Sinkhorn distance. The decay rate
parameters for the Adam optimizer were set to β1 = 0.9, β2 = 0.999. Different
learning rates were experimented with to find optimal performance.

3.3 Simulations

The implementations were developed using Python (version 3.8.5), utilizing
the PyTorch library (version 0.13.1). Simulated data, encompassing both the
diffusion tensors and measurement tensors, was employed to estimate the DTD.
This estimation was conducted for both 1D and 2D cases. For the 1D case, a pa-
rameter search was executed across different combinations of relevant parameters
to identify an optimal configuration. The goal was to glean insights from this
simpler 1D scenario and subsequently apply the findings to the more complex
2D case. Parameters under investigation included the hidden layers (M), hidden
nodes (N), regularization parameter (λ), learning rate (α), and batch size. The
specific values explored for these parameters are detailed in Table 3.1. The
neural networks followed an 80% training, 10% validation, and 10% test data
split.

Table 3.1: Parameters investigated during the parameter search.

M 3, 4, 5
N 22, 100, 200, 250, 280
λ 1

3 ,
1
5 ,

1
8

α 0.01, 0.001, 0.0001, 0.00001
Batch size 8, 16, 32, 64

3.3.1 One dimension

In the 1D scenario, both the diffusion and measurement tensors are rank 0
tensors, effectively reducing them to scalars. The diffusivities are randomly
selected from a uniform distribution within the range [0, 3.2] (µm2/ms). The
weights are initially drawn from a uniform distribution within the range [0, 1],
and are subsequently normalized so that the sum of weights for each voxel
equals 1. What were previously referred to as measurement tensors are now
termed b-values; 300 of these are generated, spaced equally within the range
[0, 3] (ms/µm2). The resultant signals are generated according to Equation 2.25.
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3.3.2 Two dimensions
In the 2D scenario, tensors are represented as 2 × 2 matrices. These are con-
structed based on the matrix’s eigenvalues and the angle between its largest
eigenvector and the x-axis within the Cartesian coordinate system. For the
diffusion tensors, eigenvalues are randomly selected from a uniform distribution
in the range [0, 3.2] (µm2/s). The angle is drawn from a uniform distribution
of [−π, π](rad). Weights are generated using a uniform distribution and subse-
quently normalized, following the procedure employed in the 1D scenario.

For the measurement tensor, six distinct traces are considered: {0, 0.1, 0.7, 1.4, 2.1, 2.5}
(ms/µm2). For each trace, 40 matrices are produced with that trace, except for
the zero trace, which corresponds to the zero matrix. Of these 40 matrices, four
are isotropic, each sharing the same pair of identical eigenvalues. The remaining
36 matrices are anisotropic, each sharing the same pair of distinct eigenvalues.
For the pair with identical eigenvalues, both are set at 0.5. For those with
distinct eigenvalues, the first eigenvalue λ1, is a random pick from [0, 1], with
the second eigenvalue defined as λ2 = 1− λ1. These eigenvalues undergo scaling
based on their respective trace.

Regarding the angles of the measurement tensors, for each trace, the 40 matrices
feature 36 anisotropic matrices whose largest eigenvector’s angle with the x-axis
increases sequentially in increments of π

36 , ranging from π
36 to π. The remaining

four isotropic matrices contain eigenvectors whose largest eigenvector’s angle
with the x-axis is spaced in increments of π

4 , also within the range of [0, π].

Following the generation of diffusion tensors, their corresponding weights, and
the measurement tensors, signal values are subsequently computed following
Equation 2.25



Chapter 4

Results

This chapter presents the results of the investigation of the loss function, the
parameter search, and the estimation of the DTD.

4.1 Comparision with EMD

The solutions to the example problems of finding the optimal distance between
distributions P and Q, described in Section 3.1.2, are presented. The log-domain
Sinkhorn distance is presented for different values of the regularization parameter
λ. The results also include the values of the loss functions applied for equal
distributions.
Example problem 1:

Earth mover’s distance between P and Q = 11.487

Earth mover’s distance between P and P = 0

Earth mover’s distance between Q and Q = 0

Log-domain Sinkhorn distances: Detailed in Table 4.1.
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Table 4.1: Log-domain Sinkhorn distances for distributions P and Q in example
problem 1, described in Section 3.1.2.

λ Between P and Q Between P and P Between Q and Q
1 11.573 0.059 5.250 · 10−5

1
5 11.511 4.529 · 10−9 0
1
10 11.511 5.1 · 10−18 0
1
15 11.553 5.6 · 10−27 0
1
20 11.5465 3.9 · 10−34 0

Example problem 2:

Earth mover’s distance between P and Q = 2.567

Earth mover’s distance between P and P = 0

Earth mover’s distance between Q and Q = 0

Log-domain Sinkhorn distances: Detailed in Table 4.2.

Table 4.2: Log-domain Sinkhorn distances for distributions P and Q in example
problem 2, described in Section 3.1.2.

λ Between P and Q Between P and P Between Q and Q
1 2.725 0.2529 0.1634
1
5 2.568 0.0005 9.4 · 10−8

1
10 2.567 2.5 · 10−7 1.237 · 10−15

1
15 2.567 1.08 · 10−10 1.64 · 10−23

1
20 2.567 4.71 · 10−14 2.2 · 10−31

4.2 Parameter search

From the parameter searches conducted based on Table 3.1, we have compiled
the result for each neural network investigated into several figures. These Figures,
4.1, 4.2, and 4.3, contain the network configurations, which are characterized by
a blue dot. While the network was trained to minimize the Sinkhorn loss, the
primary purpose was to minimize the earth mover’s distance indirectly by the
Sinkhorn loss. Therefore, the two factors used to assess a network configuration
are the network’s best EMD loss and its loss function’s (Sinkhorn) proximity to
the EMD. The axes of the figures correspond to these two factors. The parameter
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searches were conducted on the 1D case and each was done with the following
number of diffusivities 3, 5, and 10.

The network that achieved the lowest EMD loss on average is highlighted
with a circle in the figures. All these circles correspond to the same network
configuration. This optimal network is characterized by the following parameters:
M = 3, N = 250, λ = 1

8 , α = 0.001, batch size = 16. Given these results,
it is determined that both the 1D and 2D estimations will utilize this specific
network.

Figure 4.1: Compilation of the results for parameter searches on 1D with 3
diffusivities. Each blue dot represents a network simulated. The best-performing
network is enclosed by the red circle.
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Figure 4.2: Compilation of the results for parameter searches on 1D with 5
diffusivities. Each blue dot represents a network simulated. The best-performing
network is enclosed by the red circle.

Figure 4.3: Compilation of the results for parameter searches on 1D with 10
diffusivities. Each blue dot represents a network simulated. The best-performing
network is enclosed by the red circle.
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4.3 One dimension
Using the network identified in the parameter search, the following is the result
generated from the estimation of the 1D DTD with the network.

In Figure 4.4, we present validation plots showcasing the network’s predic-
tion loss on the reserved validation dataset after each training epoch. The
depicted plots correspond to estimations of DTDs with 3, 5, and 10 diffusivities.
This selection offers a spectrum from simpler (3) to more intricate (10) cases.
On these plots, the vertical axis represents the loss, while the horizontal axis
indicates the epoch after which the prediction was made. The blue curve corre-
sponds to the Sinkhorn loss of the neural network’s predictions, and the orange
curve represents the earth mover’s distance (EMD) loss of these predictions.

(a) Validation plot for a network trained to
estimate a DTD with 3 diffusivities in 1D.

(b) Validation plot for a network trained to
estimate a DTD with 5 diffusivities in 1D.

(c) Validation plot for a network trained to estimate a DTD with 10 diffusivities in 1D.

Figure 4.4: Neural networks prediction error on the validation dataset per epoch,
where both the Sinkhorn(blue) and the EMD(orange) loss is plotted.

The fully trained neural network was used to estimate the DTD on a test set.
In Figures, 4.5 4.6, 4.7, 4.8, 4.9 and 4.10, the predictions for each number
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of diffusivity is illustrated. For each number of diffusivity, 3, 5, and 10, the
estimations are shown for two random test cases. For these test cases, the figures
show the estimation before the network has trained and the estimation after
the network has trained for all epochs. In these figures, each diffusion tensor is
represented by a bar. The position of the bar corresponds to its diffusivity, while
its height indicates its probability weight. Red bars represent the network’s
predictions, and blue bars represent the target values, the correct diffusion
tensors the network aims to predict.

(a) Prediction on a randomly chosen test
case before training.

(b) Prediction on a randomly chosen test
case after final epoch.

Figure 4.5: Estimation of DTD in 1D with 3 diffusivities on test case 1. Red bars
represent the predicted diffusivity, blue bars represent the correct diffusivity.

(a) Prediction on a randomly chosen test
case before training.

(b) Prediction on a randomly chosen test
case after final epoch.

Figure 4.6: Estimation of DTD in 1D with 3 diffusivities on test case 2. Red bars
represent the predicted diffusivity, blue bars represent the correct diffusivity.
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(a) Prediction on a randomly chosen test
case before training.

(b) Prediction on a randomly chosen test
case after final epoch.

Figure 4.7: Estimation of DTD in 1D with 5 diffusivities on test case 1. Red bars
represent the predicted diffusivity, blue bars represent the correct diffusivity.

(a) Prediction on a randomly chosen test
case before training.

(b) Prediction on a randomly chosen test
case after final epoch.

Figure 4.8: Estimation of DTD in 1D with 5 diffusivities on test case 2. Red bars
represent the predicted diffusivity, blue bars represent the correct diffusivity.
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(a) Prediction on a randomly chosen test
case before training.

(b) Prediction on a randomly chosen test
case after final epoch.

Figure 4.9: Estimation of DTD in 1D with 10 diffusivities on test case 1. Red
bars represent the predicted diffusivity, blue bars represent the correct diffusivity.

(a) Prediction on a randomly chosen test
case before training.

(b) Prediction on a randomly chosen test
case after final epoch.

Figure 4.10: Estimation of DTD in 1D with 10 diffusivities on test case 2. Red
bars represent the predicted diffusivity, blue bars represent the correct diffusivity.



4.4. Two dimensions 45

4.4 Two dimensions

The estimations of the 2D DTD used the optimal network identified from the
parameter search conducted on 1D. Figure 4.11 showcases the validation loss
from this network’s attempt to estimate diffusivities of 3, 5, and 10 in 2D.

(a) Validation plot for a network trained to
estimate a DTD with 3 diffusivities in 2D.

(b) Validation plot for a network trained to
estimate a DTD with 5 diffusivities in 2D.

(c) Validation plot for a network trained to estimate a DTD with 10 diffusivities in 2D.

Figure 4.11: Neural networks prediction error on the validation dataset per
epoch, where both the Sinkhorn(blue) and the EMD(orange) loss is plotted.

In Figures, 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17, the predictions of the fully trained
neural network on the test set are illustrated. Similarly as in the 1D case, for
each number of diffusivity, 3, 5, and 10, two distinct test cases are showcased. For
each test case, estimations before the training and after the training are presented.

Within the figure, each diffusion tensor is represented by an ellipse. The ellipse is
characterized similarly as described in Section 2.2.3. The eigenvectors correspond
to the ellipses semi-axes, and the eigenvalues correspond to the length of the
semi-axes. However, to denote the weight of the tensor, the ellipses are scaled
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by their probability weight. Each ellipse is centered at a point corresponding to
its eigenvalues.

(a) Prediction on a randomly chosen test case
before training.

(b) Prediction on a randomly chosen test case
after final epoch.

Figure 4.12: Estimation of DTD in 2D with 3 diffusivities for test case 1. Red ellipses
depict predicted diffusion tensors, and blue ones the correct tensors. Ellipse sizes are
scaled by their corresponding weight. For the relationship between ellipses and 2× 2
diffusion tensors, see Section 2.2.3.



4.4. Two dimensions 47

(a) Prediction on a randomly chosen test case
before training.

(b) Prediction on a randomly chosen test case
after final epoch.

Figure 4.13: Estimation of DTD in 2D with 3 diffusivities for test case 2. Red ellipses
depict predicted diffusion tensors, and blue ones the correct tensors. Ellipse sizes are
scaled by their corresponding weights. For the relationship between ellipses and 2× 2
diffusion tensors, see Section 2.2.3.

(a) Prediction on a randomly chosen test case
before training.

(b) Prediction on a randomly chosen test case
after final epoch.

Figure 4.14: Estimation of DTD in 2D with 5 diffusivities for test case 1. Red ellipses
depict predicted diffusion tensors, and blue ones the correct tensors. Ellipse sizes are
scaled by their corresponding weight. For the relationship between ellipses and 2× 2
diffusion tensors, see Section 2.2.3.
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(a) Prediction on a randomly chosen test case
before training.

(b) Prediction on a randomly chosen test case
after final epoch.

Figure 4.15: Estimation of DTD in 2D with 5 diffusivities for test case 2. Red ellipses
depict predicted diffusion tensors, and blue ones the correct tensors. Ellipse sizes are
scaled by their corresponding weight. For the relationship between ellipses and 2× 2
diffusion tensors, see Section 2.2.3.

(a) Prediction on a randomly chosen test case
before training.

(b) Prediction on a randomly chosen test case
after final epoch.

Figure 4.16: Estimation of DTD in 2D with 10 diffusivities for test case 1. Red ellipses
depict predicted diffusion tensors, and blue ones the correct tensors. Ellipse sizes are
scaled by their corresponding weight. For the relationship between ellipses and 2× 2
diffusion tensors, see Section 2.2.3.
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(a) Prediction on a randomly chosen test case
before training.

(b) Prediction on a randomly chosen test case
after final epoch.

Figure 4.17: Estimation of DTD in 2D with 10 diffusivities for test case 2. Red ellipses
depict predicted diffusion tensors, and blue ones the correct tensors. Ellipse sizes are
scaled by their corresponding weight. For the relationship between ellipses and 2× 2
diffusion tensors, see Section 2.2.3.





Chapter 5

Discussion and Conclusion

In this chapter, the results of the thesis are discussed and analyzed, followed by a
presentation of the limitations that affected the thesis. Additionally, suggestions
for future research directions are presented.

5.1 Analysis

To determine suitable parameters for the network and its loss function, an
investigation of the loss function and a parameter search were conducted. The
findings revealed that, in certain cases, the Sinkhorn distance provided an accu-
rate approximation. However, it was observed that for specific instances, low
values of the regularization parameter λ did not consistently yield a Sinkhorn
distance closer to the earth mover’s distance (EMD), contrary to what the
theory suggests. This discrepancy might be attributed to numerical issues in
the algorithm. Too high values of λ resulted in difficulty in finding a Sinkhorn
distance of zero between equal distributions. A promising interval for λ, namely
[1/10, 1], was identified, leading to the selection of parameters {1/3, 1/5, 1/10}
for the subsequent network parameter search. During the evaluation of different
networks, the earth mover’s distance was prioritized as the primary loss function
due to its significance in measuring the distance between DTDs. Therefore,
our objective was to ensure that the network’s log-domain Sinkhorn loss closely
approximated the EMD to achieve meaningful results.

The parameter search for 3 diffusivities, as shown in Figure 4.1, did not re-
veal any discernible pattern in the parameters. However, interestingly, for 5
and 10 diffusivities, notable clustering was observed regarding the differences
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between the EMD and Sinkhorn distances. Figure 4.2 demonstrates that for
5 diffusivities, λ = 1

8 and λ = 1
5 form a cluster with the smallest differences

in losses, while λ = 1
3 leads to the cluster with the largest difference in losses.

Similarly, Figure 4.3 illustrates the parameter search for 10 diffusivities, with
λ = 1

5 and λ = 1
8 forming distinct clusters, where λ = 1

8 represents the cluster
with the smallest difference. Additionally, it was observed that clusters with
smaller differences in loss tended to have points with the smallest EMD loss.
Based on these simulations, one might infer that a higher λ value than λ = 1

8
could lead to improved results. However, investigation of the loss with the
example problems indicated that excessively small λ values did not necessarily
result in a Sinkhorn distance closer to the EMD. Consequently, the potential for
significant further improvements was deemed unlikely.

Validation plots for the 1D case, as depicted in Figure 4.4, demonstrated that
most of the learning occurred within the initial 5 epochs, with diminishing
returns observed in subsequent epochs. Subsequently, the validation loss did not
show significant improvements beyond this early stage of training. On the other
hand, the validation plots for the 2D case, shown in Figure 4.11, displayed a
slightly more promising trend regarding further training. However, it is worth
noting that the loss for the 2D case was found to be twice as high as that of the
1D case. This discrepancy could be attributed to the increased dimensionality of
the problem, which may have rendered the 2D case more challenging to solve.

Numerical values of the losses can be challenging to interpret in terms of the
closeness between distributions. Visualizing the estimations offers a more compre-
hensive understanding of the accuracy of predictions. In the 1D case, as depicted
in Figure 4.5, the estimations showed that the network was able to learn the
target distribution to some extent. However, the network struggled to provide
exact estimations beyond this point. Notably, as the number of diffusivities
increased, the estimations appeared to deviate further from the target, despite
having similar numerical loss values. This observation suggests that the network
encounters challenges in dealing with higher dimensionality, impacting its ability
to accurately estimate more complex distributions.

In the 2D case, as illustrated in Figure 4.13, the network at times managed to
predict the correct diffusion tensor. The shape of the ellipse (diffusion tensor),
and the weight, were frequently captured. However, the predictions of the
eigenvalues, which correspond mainly to the positioning of the ellipses, lacked
precision, especially as the number of diffusivities increase. Despite the network’s
efforts, achieving precise estimations, in this case, proved challenging, suggesting
the complexity of the 2D problem for the neural network.
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In conclusion, the estimation of diffusion tensor distributions (DTD) posed
significant challenges for the employed simple neural network architecture. While
the network showcased an understanding of the task and achieved relatively close
approximations for a small number of diffusivities, the estimations struggled to
be exact, highlighting the limitations of the chosen approach. Notably, as the
number of diffusivities increased, the network’s ability to accurately solve the
problem diminished. Subsequent training did not yield significant improvements
for the 1D case, and only minor advancements were observed in the 2D case.
This suggests that the neural network approach, in its current form, may not be
well-suited for tackling high-dimensional DTDs.

5.2 Limitations

The use of the Sinkhorn distance as an approximation of the earth mover’s
distance introduced regularization, potentially blurring fine-grained distinctions
between different transport plans. As a result, the regularized distance may
not capture subtle changes or differences crucial for accurate diffusion tensor
distribution (DTD) estimation, explaining the challenges in achieving a lower
loss beyond the numerical values obtained in the 1D and 2D estimations. We
perhaps noticed this effect in the investigation of the loss function. See Tables
4.1 and 4.2, the log-domain Sinkhorn distance had difficulty in yielding a zero
for equal distributions in many cases.

As mentioned, the neural network architecture used in this study produced
adequate estimations when the dimensions of the problems were low. However,
as the dimensionality of the problem increased, the network’s performance de-
graded, leading to less accurate DTD estimation. This suggests that a simple
deep-learning architecture such as the one employed may be a limiting factor in
effectively handling the complexity of estimating higher-dimensional DTDs.

This study was conducted solely on simulated data, and as such, the results
are based on certain assumptions about the characteristics of the data. The
simulations were designed to mimic specific distributional properties of diffusion
tensors and their corresponding weights. Additionally, the data used in the study
was assumed to be noiseless for the sake of simplicity and to isolate the impact of
the neural network architecture and loss function on DTD estimation. As with
any simulation-based study, the findings may not fully represent the complexities
and variability present in real-world diffusion MRI data. Real data often includes
noise, artifacts, and variations due to subject-specific factors, scanner differences,
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and other confounding factors. Therefore, the generalizability of the neural
network’s performance to real data should be carefully considered.

5.3 Future work

Considering the limitations discussed, several potential avenues for future re-
search are worth exploring to improve the estimation of DTDs.

First, the use of the Sinkhorn distance was identified as a potential limitation.
While it provides an approximation to the earth mover’s distance, exploring other
loss functions that preserve sensitivity to subtle changes in DTDs could lead to
more accurate estimations. Investigating alternative distance metrics inspired
by optimal transport theory may also offer valuable insights into capturing more
nuanced differences between distributions.

Secondly, the challenges faced in handling higher-dimensional complexities sug-
gest the need for more advanced models. Future work could experiment with
exploring other more complex deep learning architectures that could be better
designed to handle higher dimensional DTDs.

Additionally, exploring choices of the measurement tensor B could improve
the data, since the measurement tensor has a significant impact on the sensitivity
of the MRI signal to the diffusivity. This could substantially improve the quality
of the data input to the neural network, consequently enhancing DTD estimation
accuracy.

Evaluating the neural network’s performance under diverse distributional as-
sumptions of the MRI data, beyond the assumptions made in this thesis, is
vital for understanding its robustness and generalizability to real-world datasets.
Additional future work should involve exploring the performance of the neu-
ral network with real-world diffusion MRI datasets to assess its applicability
and generalizability in practical scenarios. Incorporating real data, which may
include noise, artifacts, and subject-specific variations, will provide valuable
insights into the network’s capabilities and limitations, ensuring its relevance and
effectiveness for diffusion tensor distribution estimation in real-world medical
imaging applications.

Lastly, the neural network utilized in this thesis exhibits a limitation in its
real-life application due to the requirement of configuring the network to a
specific number of diffusivities. In practice, it is desirable to take an MRI signal
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of a voxel and accurately determine the number of diffusivities without prior
knowledge. However, the current network’s limitation to autonomously infer the
number of diffusivities higher than the preselected hinders its practical appli-
cability. Addressing this limitation is an interesting avenue for future research.
Developing an approach that enables the neural network to determine the number
of diffusivities from the MRI signal autonomously would significantly enhance
its usability.

In summary, despite the challenges and limitations encountered in this the-
sis, there exist many potential areas to explore, that hold promise for advancing
the field of DTD estimation. Addressing these areas in future research could lead
to more accurate and robust DTD estimation methods, further contributing to
the progress of medical imaging and our understanding of tissue microstructure.
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