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Abstract

Both integer programming models and heuristic algorithms have been proposed
for finding minimum-energy broadcast and multicast trees in wireless ad hoc net-
works. Among heuristic algorithms, the broadcast/multicast incremental power
(BIP/MIP) algorithm is most known. The theoretical performance of BIP/MIP has
been quantified in several studies. To assess the empirical performance of BIP/MIP
and other heuristic algorithms, it is necessary to compute an optimal tree or a very
good lower bound of the optimum. In this paper we present an integer programming
approach as well as improved heuristic algorithms. Our integer programming ap-
proach comprises a novel integer model and a relaxation scheme. Unlike previously
proposed models, the continuous relaxation of our model leads to a very sharp lower
bound of the optimum. Our relaxation scheme allows for performance evaluation of
heuristics without having to compute optimal trees. Our contributions to heuristic
algorithms consist of the power-improving algorithm successive power adjustment
(SPA), and improved time complexity of some previously suggested algorithms.
We report extensive numerical experiments. Algorithm SPA finds better solutions
in comparison to a host of other algorithms. Moreover, the integer programming
approach shows that trees found by algorithm SPA are optimal or near-optimal.
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1 Introduction

We study the problem of minimum-energy multicast and broadcast in wireless
ad hoc networks. Multicast refers to the process of routing messages from a
source node to a set of destination nodes. Broadcast is the special case of
multicast where the set of destination nodes comprises all nodes other than
the source.

In a wireless environment, broadcast is an inherent characteristic of signal
propagation. As long as an omni-directional antenna is used, transmission
power corresponds to coverage range in all directions. It is thus sufficient to
transmit once in order to deliver a message to all devices within the range. In
[34,35], this property is referred to as the “wireless multicast advantage”. As
a consequence of the property, power required to reach a set of devices is not
the sum, but the maximum of the power for reaching all of them.

The total power requirement of a multicast session is the sum of the transmis-
sion power used by the source and the nodes involved in forwarding messages.
Minimum-energy multicast refers to the problem of finding node transmission
power such that the total power is minimized. In the subsequent text, we use
MEMP to denote this problem. The problem of minimum-energy broadcast is
a special case of MEMP. It has been proved that MEMP is NP-hard [5,13].
Wieselthier et al. [34,35,37] presented several heuristic algorithms for MEMP.
Among these, one is referred to as the broadcast/multicast incremental power
(BIP/MIP) algorithm. This is the most cited algorithm for MEMP.

Research on MEMP has been very active. Wan et al. [31–33] examined the
performance ratio of several algorithms (including BIP and MIP) in Euclidean
metric space. Analysis of approximating the optimal broadcast tree by min-
imum spanning tree (MST) are provided in [3,14,19,27]. Various algorithms
for solving MEMP have been proposed in [4,5,7,10–12,15,19,20,22,24,26,28,33].
Some of these algorithms [4,5,7,10–12,19,20,22,24,26] are intended for solving
the broadcast case of MEMP; others [15,28,33] deal with the more general
case of multicast. For numerical evaluation of algorithm performance, BIP
and MIP trees are often used as benchmark.

Another standpoint of studying MEMP is integer programming. Research fol-
lowing this direction is reported in [2,9]. The aspect of distributed computa-
tion has been addressed in, for example, [5,6,28,36], and many other aspects
of energy-efficient broadcast are discussed in a number of surveys [17,21,30].

A generalization of MEMP is the use of directional antennae. Guo and Yang
[15] proposed heuristic algorithms and an integer programming model for solv-
ing this generalization of MEMP. The authors of [8] provided a simulation
study of several algorithms for MEMP with directional antennae.
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In this paper we present an integer programming approach and new results
on heuristic algorithms for MEMP. Our contributions to applying integer pro-
gramming to MEMP are as follows.

• We present a novel integer programming model for MEMP. The most im-
portant feature of our model in comparison to previously suggested mod-
els is that its continuous relaxation gives a very sharp lower bound of the
optimum. This feature is extremely useful for performance evaluation of
heuristic algorithms when network size does not admit computing optimal
trees.

• We propose to use Lagrangean relaxation and subgradient optimization to
approximate the continuous relaxation of the integer model. This relaxation
scheme allows us to conduct performance evaluation when it becomes time-
consuming to solve the continuous relaxation.

We use the terms integer programming and integer programming approach
in a broad sense. They are hence not limited to setting up and solving an
integer model via a solver. By an integer programming approach, we mean
any procedure that makes use of an integer programming model, such as a
relaxation scheme that computes a good bound of the integer optimum. A
number of previously proposed integer programming models [2,9,15,25] can be
applied to MEMP. The main feature of our model is that it yields a very sharp
lower bound of the optimum. Applying our Lagrangean relaxation scheme
to the model, we are able to evaluate the performance of heuristics without
having to compute optimal trees for networks of non-trivial size. Therefore
our model is more powerful from the performance evaluation standpoint. In
Section 4.2 we compare our model to those in [2,9,15,25] in more detail. In the
same section we provide a numerical illustration of the strength of continuous
relaxation in comparison to these models.

In addition to the integer programming approach, we contribute to heuristic
algorithms for MEMP. These contributions are summarized below.

• We improve the time complexity of several known heuristics. Let N denote
the number of nodes, the improved complexity results are as follows.

(1) BIP/MIP can be implemented to run in O(N2 log N) time instead of the
frequently quoted (e.g., [37]) O(N3) time.

(2) Wieselthier et al. [34,35,37] suggested a power-improving operation called
sweep. Recently, the authors of [15,28,38] presented algorithms adopting
some enhancements of sweep. We prove that, assuming node power levels
are sorted, finding the best power-improving move of an enhanced version
of sweep can be done in O(N2). Our analysis strengthens the complexity
results of algorithm B in [28] by one magnitude, from O(N4) to O(N3).

(3) For omni-directional antennae, our complexity analysis of successive shrink
(see below) improves the complexity of algorithm D-MIDP in [15] from
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O(N3) to O(N2).
• We propose a power-improving operation, called successive shrink. This

operation is a generalization of the algorithm in [11]. As will be clear in
Section 6.2, successive shrink is a very natural complement to enhanced
sweep in [28]. Furthermore, we prove that, once node power levels are sorted,
finding the best power-improving move of successive shrink takes O(N2) for
broadcast as well as the general multicast version of MEMP.

• We suggest to combine enhanced sweep and successive shrink. The combi-
nation results in a strong heuristic algorithm, which we refer to as successive
power adjustment (SPA). Algorithm SPA has a complexity of O(N3).

• We present results of extensive computational experiments. In the experi-
ments we examine the performance of SPA versus the previously suggested
tree-improving algorithms sweep, 1-shrink [11], and B2 [28], based on trees
constructed by BIP/MIP [34,35,37] and algorithm B and M [28]. We apply
our integer programming approach to evaluate all these algorithms. Our ex-
periments show that SPA finds lowest-power broadcast and multicast trees.
Moreover, through the integer programming approach, we are able to show
that the trees found by SPA are close to optimal.

The remainder of the paper is organized as follows. In Section 2, we give
the network model and some notation. Section 3 is devoted to a review of
the BIP and MIP algorithm, and the sweep operation [34,35,37]. Our integer
programming model and the Lagrangean relaxation scheme are presented in
Sections 4 and 5, respectively. In Section 6, we detail algorithm SPA. We
present computational experiments in Section 7. In Section 8, we give some
concluding remarks and propose future research directions.

2 Preliminaries

We use a set of nodes V = {1, . . . , N} to represent networking devices in
a wireless network. The network itself is modeled using a graph G = (V,A),
where A is the set of (directed) potential communication links. Without loss of
generality, we assume that G is complete, i.e., A = {(i, j) : i, j ∈ V, i �= j}. Let
pij denote the (minimum) power required at node i to reach node j. Typically,
pij is a function of the distance between i and j. Denoting this distance by
dij, a widely-used formula is pij = κdα

ij, where α is an environment-dependent
parameter (typically 2 ≤ α ≤ 4), and κ is a constant.

A multicast session is characterized by a source node s ∈ V and a set of
destination nodes D ⊂ V . Broadcast is the special case of multicast where
D = V \ {s}. A destination node in D receives messages from s either di-
rectly, or via some other nodes. Connectivity between nodes is determined
by transmission power. Due to the wireless multicast advantage, node i can,
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via a single transmission, send a message to all nodes j ∈ V for which pij is
less than or equal to the transmission power at i. Therefore, the power nec-
essary to reach a set of nodes equals the maximum power needed to reach all
of them. Problem MEMP amounts to determining transmission power of the
nodes to enable message routing from s to all nodes in D, with the objective
of minimizing the total power.

Remark 1. If power levels are not given in ascending order in the input
data, we need a preprocessing step for sorting, which has a complexity of
O(N2 log N). In the paper we present complexity results for a number of al-
gorithms. If sorting is necessary to obtain a complexity result, the associated
O(N2 log N) running time will be taken into account. �

It is easy to prove that an optimal solution to MEMP can be represented
by a directed tree (i.e., an arborescence) rooted at s. For this reason, all
heuristic algorithms for MEMP construct a solution having a tree structure.
Throughout the paper, we use T as a general notation of a tree spanning V
and rooted at s. Tree T is stored as a vector of length N . The ith element
of this vector, T (i), denotes the parent node of i. A multicast session uses a
subset of the links of T . Links in this subset, and the end nodes of these links,
are called active. Given D and T , the sets of active links and nodes can be
uniquely determined. For broadcast, all nodes and links in T are active.

Although vector T is sufficient to represent a tree, our discussion of heuristic
algorithms necessitates some other structures. These are presented in Table 1.

Table 1
Additional structures of tree T .

Notation Meaning

U i
T The set of upstream nodes of node i. Node j ∈ U i

T if j is in
the path from s to i.

Ci
T The set of child nodes of i, that is, Ci

T = {j ∈ V : T (j) = i}.
Si

T The set of descendant nodes of i. Set Si
T can be derived from

U i
T , as Si

T = {j ∈ V : i ∈ U j
T }.

AT The set of active nodes. Node i is active if it lies in the path
between s and some destination in D. Specifically, i ∈ AT if
i ∈ D or D ∩ Si

T �= ∅.
PT (i) Transmission power at node i. Node i is required to reach

all of its active child nodes, hence PT (i) = maxj∈Ci
T∩AT

pij .

cT Total power of tree T , that is, cT =
∑

i∈V PT (i).

Remark 2. We use the concept of active nodes in computing node power
for multicast, because this concept simplifies our analysis of time complexity.
There are other ways to describe the process of calculating node power. In [28],
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(1) VT = {s}; T (i) = null ∀i ∈ V ; PT (i) = 0 ∀i ∈ V ;
(2) while VT �= V
(3) δ∗ = ∞;
(4) for all i ∈ VT

(5) for all j ∈ V \ VT

(6) if pij − PT (i) < δ∗

(7) i∗ = i; j∗ = j; δ∗ = pij − PT (i);
(8) VT = VT ∪ {j∗}; T (j∗) = i∗; PT (i∗) = max{pi∗j∗ , PT (i∗)};
(9) Compute sets AT and Ci

T ∀i ∈ V ;
(10) PT (i) = maxj∈Ci

T∩AT
pij ∀i ∈ V ;

(11) cT =
∑

i∈V PT (i);
(12) return T and cT ;

Fig. 1. Algorithms BIP and MIP.

for example, the author uses a general function to represent the evaluation of
tree power. In [15,34,35,37], the corresponding procedure is called pruning. �

Remark 3. The structures in Table 1 are introduced for the purpose of making
the presentation of algorithms precise and compact. A solution to MEMP, as
the output of any heuristic algorithm, consists of the tree vector and its total
power. The other structures are used in our presentation when necessary. In
our discussion of algorithm implementation, many of the structures in Table
1 are updated implicitly to improve readability. �

3 BIP/MIP and Sweep

Wieselthier et al. [34,35] proposed several heuristic algorithms. One of them,
developed for solving the broadcast case of MEMP, was named the broadcast
incremental power (BIP) algorithm. For multicast, the corresponding algo-
rithm is consistently called multicast incremental power (MIP). MIP is identi-
cal to BIP except that the former uses additional steps to calculate the power
for multicast.

BIP/MIP is a tree-construction algorithm. It adapts the Prim’s algorithm to
MEMP. Starting from the source s, algorithm BIP/MIP builds up a tree by
adding the node requiring a minimum amount of incremental power in every
step. A formal description of both BIP and MIP is given in Figure 1. In the
figure, VT denotes the set of nodes that have been included in the tree.

The MIP algorithm comprises all steps in Figure 1, whereas the BIP algorithm
does not contain Steps (9)–(10). These two steps calculate node power for
a multicast session. The two steps correspond to a phase called pruning in
[34,35,37]. A commonly cited running time of BIP and MIP is O(N3). Below
we present an improved complexity result for BIP and MIP.
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(1) for all i ∈ V
(2) T ′ = T ;
(3) for all j ∈ V \ {i}
(4) if j /∈ U i

T and pij ≤ PT (i)
(5) T ′(j) = i;
(6) PT ′(i) = maxj∈Ci

T ′ pij ∀i ∈ V ; cT ′ =
∑

i∈V PT ′(i);
(7) if cT ′ < cT

(8) T = T ′; cT = cT ′ ;
(9) Compute sets Un

T ∀n ∈ V ;
(10) return T and cT ;

Fig. 2. Algorithm sweep.

Proposition 1. If node power levels are sorted in the input data, then BIP
and MIP can be implemented to run in O(N2). Otherwise the complexity is
O(N2 log N).

Proof. See Appendix A. �

Analysis of the theoretical performance of BIP and MIP in Euclidean metric
space has been conducted in a number of studies. Wan et al. [32] together with
Klasing et al. [19] showed that the approximation ratio of BIP is in the range
[13/3, 12.15]. Recently, Ambühl [3] improved the upper bound from 12.15 to
6. For MIP, Wan et al. [33] showed that the approximation ratio can be as
bad as N − 2 − O(1). Note that the results in [3,19] are derived for the MST
heuristic, but these results apply to BIP as well due to a lemma in [32].

In addition to BIP, Wieselthier et al. [34,35,37] presented a power-improvement
algorithm, called sweep, for the broadcast case of MEMP. The idea of sweep
is as follows. At node i, the sweep algorithm finds out those nodes that lie
within i’s transmission range, but are currently not child nodes of i. Assigning
such nodes (except those being upstream nodes of i) to be child nodes of i
may result in power saving at the current parents of these nodes. Algorithm
sweep is formalized in Figure 2. In the figure we use T ′ to denote a temporary
tree being examined by sweep.

Remark 4. In our presentation of algorithms, we prioritize clarity over details
of implementation, although the latter is crucial for algorithm complexity. In
the appendices, we will detail the implementation of an algorithm when its
complexity is being analyzed. �

Algorithm sweep goes through all nodes in V according to some order (e.g.,
the natural order 1, 2, . . ., N). Applying sweep more than once may lead
to further improvement. Typically, however, the improvement obtained from
additional rounds of sweep is very small [34]. Moreover, algorithm sweep has
a low time complexity of O(N2) [37]. In case any improvement is found in a
round of sweep, then the power level of at least one node is reduced by at least
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one step. Because there are no more than N2 power levels in total, running
multiple rounds of sweep until no improvement can be found has a complexity
of O(N4), which is much more expensive than the O(N2) complexity of sweep.

4 An Integer Programming Approach

4.1 The model

We use multi-commodity flow variables to represent paths being taken to reach
destinations. A second set of variables is used to express transmission power.
Below we give variable definitions as well as the model, denoted by MEMP-IP.

xd
ij = Flow from source to destination d on link (i, j).

zij =

⎧⎪⎨
⎪⎩

1 if the transmission power of node i equals pij,

0 otherwise.

[MEMP-IP] P ∗ = min
∑

(i,j)∈A

pijzij

s. t.
∑

j:(i,j)∈A

xd
ij −

∑
j:(j,i)∈A

xd
ji =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if i = s

−1 if i = d ∀i ∈ V,∀d ∈ D,

0 otherwise.

(1)

∑
j:(i,j)∈A

zij ≤ 1 ∀i ∈ V, (2)

∑
k∈V :k �=i,pik≥pij

xd
ik ≤ ∑

k∈V :k �=i,pik≥pij

zik ∀(i, j) ∈ A,∀d ∈ D, (3)

xd
ij ≥ 0 ∀(i, j) ∈ A,∀d ∈ D, (4)

zij ∈ {0, 1} ∀(i, j) ∈ A. (5)

Constraints (1) ensure that every destination receives one unit of flow from
the source. A solution in the x-variables is a so called multi-commodity flow,
because flows to various destinations are indexed separately. The transmission
power of a node should be zero or equal to that of one of the outgoing links
(as otherwise the solution cannot be optimal). This observation leads to the
definition of the z-variables, constraints (2), as well as the objective function.

Constraints (3) define the relationship between the two sets of variables. Note
that for any d ∈ D, the flow variable xd

ij indicates whether or not arc (i, j) is
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on the unique transmission path from s to d, and thus the left hand side of
(3) cannot exceed one. Furthermore, xik = 1 for some k for which pik ≥ pij

only if the power at i is at least pij. Since the latter condition is identical to∑
k:pik≥pij

zik = 1, the constraints follow.

4.2 A comparison to some other models

Integer programming models have been presented for MEMP in several works
[2,9,15]. It is therefore interesting to compare our model MEMP-IP to those
suggested in these references. Das et al. [9] proposed three integer program-
ming models. These models apply to both broadcast and multicast versions of
MEMP. The first formulation is a hop-indexed model. The second formulation
uses subtour elimination constraints. In the third formulation, connectivity is
ensured by network flow equations. We are not aware of research work re-
porting implementation of the first two models. The third, flow-based model,
on the other hand, has been extended to formulate MEMP with directional
antennae by Guo and Yang [15], who also presented computational results
of applying the model. We consider omni-directional antennae in MEMP, for
which the model by Guo and Yang [15] reduces to the flow-based model by
Das et al. [9].

Our model MEMP-IP and the flow-based model by Das et al. [9] (as well as the
model in [15]) are similar in terms of the use of flow conservation equations.
However, MEMP-IP differs from the model in [9,15] in several key aspects. The
differences, which are presented below, significantly strengthen the continuous
relaxation.

• Whereas the model in [9,15] uses single-commodity flow, MEMP-IP adopts
a multi-commodity flow representation of a feasible solution.

• The flow model in [9,15] uses node power variables. Some constraints are
used to connect these variables to link-selection variables. Our model de-
scribes node power in an implicit way by exploiting the fact that the optimal
power of a node equals zero, or the power required by one of the outgoing
links.

• MEMP-IP uses inequalities (3) to connect flow variables to power-selection
variables. This representation of the relation of variables was not present in
[9,15].

Integer programming has been applied to the symmetric power assignment
problem (which is different from MEMP) by Montemanni and Gambardella
in [25]. The authors proposed two models, among which a model based on
network flow has a structure similar to that of MEMP-IP and the model
by Das et al. [9]. It is not difficult to adapt this model in [25] to MEMP.
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Concerning the strength of continuous relaxation, the model by Montemanni
and Gambardella performs better than the one by Das et al., because the
former uses the same representation of node power as in MEMP-IP. However,
the continuous relaxation of the adapted model of [25] is still very weak in
comparison to that of MEMP-IP.

In Table 2 we justify numerically the above claim regarding the sharpness of
the lower bound obtained from the continuous relaxation of MEMP-IP. Table
2 uses three groups of 10-nodes, randomly generated networks to compare the
continuous relaxations of our model, the flow-based model by Das et al. [9]
(which is the same as the one by Guo and Yang for omni-directional antennae),
and the model by Montemanni and Gambardella (adapted to MEMP). The
power parameters are generated using α = 2. There are 2, 5, and 9 destination
nodes in the three groups, respectively. Each group contains 100 networks. The
table shows values averaged over the networks in each of the groups. All values
are normalized with respect to the integer optimum, of which the normalized
value is always 100.

Table 2
A numerical comparison between continuous relaxations. (Integer optimum = 100.)

Network Group Continuous Relaxations
(N, |D|) Model in [9,15] Adapted Model of [25] MEMP-IP
(10, 2) 29.84 43.93 99.95
(10, 5) 15.72 26.63 99.88
(10, 9) 10.56 18.33 99.79

From Table 2, it is clear that the continuous relaxation of the model in [9,15]
gives a poor lower bound of the integer optimum – The former is less than
30% of the latter for multicast, and the value drops to 10% for broadcast.
The model by Montemanni and Gambardella leads to a better continuous
relaxation, which, however, is still too weak to be able to estimate the value
of the integer optimum. Our model MEMP-IP, in contrast, results in a very
sharp bound. Thus MEMP-IP outperforms considerably previously suggested
models in the strength of continuous relaxation.

Remark 5. A strong continuous relaxation is a very important feature when
integer optimum is out of reach. It should be pointed out that, in order to
evaluate heuristics, any integer model can be used, as long as the model can
be solved to integer optimality within reasonable time. (This is, for example,
the case for the networks in Table 2.) However, since MEMP is NP -hard, any
exact algorithm for MEMP, including solving an integer model by a solver,
can be no faster than exponential, unless P = NP . Once finding the integer
optimum is no longer computationally feasible due to network size, a model
having a weak continuous relaxation is not useful for performance evaluation.
In contrast, because the continuous relaxation of MEMP-IP is so tight, we can
apply a (computationally efficient) relaxation scheme to obtain a very good
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lower bound of the optimum in order to examine the numerical performance
of heuristics. Thus our model can be used for performance evaluation without
computing the integer optimum, whereas the previously suggested model can-
not. At present, optimal trees of MEMP can be computed for networks of 50
nodes or less. For larger networks, performance evaluation has been conducted
between heuristics only (e.g., [15]). In the next section we present a Lagrangean
relaxation scheme, which enables performance evaluation when network size
does not admit computing optimal trees. The relaxation scheme allows us to
show via computational experiments, that the algorithm we present in Section
6 finds close-to-optimal solutions for networks for which optimal trees cannot
be obtained. We also remark that an interesting topic for further investigation
is to generalize our model to handle MEMP with directional antennae. �

For the broadcast case of MEMP, the authors of [2] presented an integer
programming model of set-covering type, and proposed a solution approach
based on Lagrangean heuristic. In [2], some computational experiments have
been conducted to compare this approach to solving the flow-based model of
[9,15]. The results show that, within the same amount of computing time, the
approach in [2] leads to better trees (when optimum could not be obtained
because of network size).

The model in [2] does not use an explicit tree representation. Instead, the
model relies on an implicit set that contains all spanning trees. A Lagrangean
heuristic is a suitable approach for trees spanning N nodes (i.e., broadcast),
because generating a tree is handled in one of the subproblems. More pre-
cisely, the heuristic involves solving a sequence of the minimum arborescence
problem, which is polynomially solvable. For the multicast version of MEMP,
however, this subproblem becomes NP -hard, as it turns out to be a type of
prize-collecting Steiner tree problem. For this reason, it is difficult to apply
the approach in [2] to the general case of MEMP.

5 A Lagrangean Relaxation Scheme

When there are many nodes and destinations, even the continuous relaxation
of MEMP-IP becomes out of reach of a solver. To overcome this difficulty, we
propose a Lagrangean relaxation scheme aimed at approximating efficiently
the continuous relaxation. Our numerical results in Section 7 demonstrate that
this scheme approximates the continuous relaxation very well, and thereby
gives a high-quality bound of the integer optimum.

We relax the flow conservation constraints (1) using Lagrangean multipliers
λd

i , i ∈ V, d ∈ D. For λ = λ̄, the resulting relaxation reads
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L(λ̄) = min
∑

(i,j)∈A

pijzij +
∑
d∈D

∑
i∈V

λ̄d
i

⎛
⎝ ∑

j:(i,j)∈A

xd
ij −

∑
j:(j,i)∈A

xd
ji

⎞
⎠ +

∑
d∈D

(λ̄d
d − λ̄d

s)

s. t. (2), (3), (4), and (5).

By defining c̄d
ij = λ̄d

i − λ̄d
j for all (i, j) ∈ A, the relaxation can be stated as

L(λ̄) =
∑

d∈D c̄d
ds +min

∑
(i,j)∈A pijzij +

∑
d∈D

∑
(i,j)∈A c̄d

ijx
d
ij, subject to (2), (3),

(4), and (5). It is then clear that the relaxation decomposes by node. At node
i the relaxation amounts to solving the following subproblem.

Li(λ̄) = min
∑

j:(i,j)∈A

pijzij +
∑
d∈D

∑
j:(i,j)∈A

c̄d
ijx

d
ij (6)

s. t.
∑

j:(i,j)∈A

zij ≤ 1,

∑
k∈V :k �=i,pik≥pij

xd
ik ≤ ∑

k∈V :k �=i,pik≥pij

zik ∀j : (i, j) ∈ A,∀d ∈ D,

xd
ij ∈ {0, 1} ∀j : (i, j) ∈ A,∀d ∈ D,

zij ∈ {0, 1} ∀j : (i, j) ∈ A.

The above subproblem can be solved to optimality by a greedy-type algorithm.
Because at most one of the z-variables can be one, we can compute Li(λ̄) by
enumerating the set of possible power levels at node i, that is, setting zij = 1
for one j at a time and minimizing (6) in the flow variables. Due to the second
set of constraints, at most one x-variable of any destination can be one. This
set of constraints also enforces that, if zij = 1, then variable xd

ik can be set
to one only if pik ≤ pij. Among such flow variables, it is optimal to select the
one having the most negative coefficient in the objective function. Performing
this computation for all z-variables gives Li(λ̄). In Figure 3 we give a formal
description of the algorithm for solving the Lagrangean relaxation. In the
figure we use {x̄, z̄} to denote an optimal solution for λ = λ̄.

Proposition 2. The procedure in Figure 3 can be implemented to run in
O(N2|D|), provided that node power levels are sorted.

Proof. To establish the result, observe first that Steps (8)–(12) are executed
at most once for every i ∈ V . Among these steps, the most expensive one is
(10), which is of O(N). Since Step (10) repeats for every d ∈ D, the complexity
of Steps (8)–(12), for all i ∈ V , is of O(N2|D|). Next, note that none of (1) or
(6) is the computational bottleneck. Therefore, what remains to be analyzed
is the for-loop (4). Assume that the nodes in V \{i} are processed in the order
j1, j2, . . . , jN−1 such that pij1 ≤ pij2 ≤ . . . ≤ pijN−1

. Denoting the result of the
inner minimization in Step (5) by qd

ij = mink∈V \{i},pik≤pij
c̄d
ik, Step (5) amounts

to computing qd
ijl

= min{qd
ijl−1

, c̄d
ijl
} for every d ∈ D, followed by computing
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(1) L(λ̄) =
∑

d∈D c̄d
ds; z̄ij = 0 ∀(i, j) ∈ A; x̄d

ij = 0 ∀(i, j) ∈ A,∀d ∈ D;
(2) for all i ∈ V
(3) Li(λ̄) = 0;
(4) for all j ∈ V \ {i}
(5) p̂ij = pij +

∑
d∈D min{0, mink∈V :k �=i,pik≤pij c̄d

ik};
(6) Find j∗ ∈ argminj∈V :j �=i p̂ij ;
(7) if p̂ij∗ < 0
(8) z̄ij∗ = 1; Li(λ̄) = p̂ij∗ ; L(λ̄) = L(λ̄) + Li(λ̄);
(9) for all d ∈ D

(10) Find k∗ ∈ argmink∈V :k �=i,pik≤pij∗ c̄d
ik

(11) if c̄d
ik∗ < 0

(12) x̄d
ik∗ = 1;

(13) Return L(λ̄), x̄, and z̄;

Fig. 3. The procedure for solving the Lagrangean relaxation.

p̂ijl
= pijl

+
∑

d∈D min{0, qd
ijl−1

}. Hence Step (5) runs in O(|D|) times, and the
result follows. �

For arbitrary values of λ, L(λ) is a lower bound of the integer optimum. To
obtain a best possible bound, we would like to maximize L(λ) over λ (i.e.,
to solve the Lagrangean dual). Note that, because the integrality requirement
does not affect L(λ), the maximum of L(λ) equals the optimum of the contin-
uous relaxation.

We use a subgradient optimization procedure to maximize L(λ). A subgradient
of L(λ) at λ̄ is ξ̄ = {ξ̄d

i , i ∈ V, d ∈ D}, where

ξ̄d
i =

∑
j:(i,j)∈A

x̄d
ij −

∑
j:(j,i)∈A

x̄d
ji − bd

i . (7)

In (7), bd
i is 1 if i = s, -1 if i = d, and 0 otherwise. The Lagrangean multipliers

are then updated by taking a step in the direction of the subgradient:

λ̄′ = λ̄ + γ
P̄ − L(λ̄)

||ξ̄||2 ξ̄. (8)

In (8), the step size, γ(P̄ −L(λ̄))/||ξ̄||2, follows a commonly-used formula (e.g.,
[1]). Here, P̄ is an upper bound of the optimum of the Lagrangean dual, and
γ is between zero and two.

Since subgradient optimization converges asymptotically, the standard stop-
ping criterion is a maximum allowed number of iterations. We use RELAX to
denote the algorithm of solving Lagrangean relaxation repeatedly in subgra-
dient optimization. Algorithm RELAX delivers a lower bound of the integer
optimum. We formalize algorithm RELAX in Figure 4. In the figure, R denotes
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(1) l = 0; λd
i = 0 ∀i ∈ V, ∀d ∈ D; L∗ = 0;

(2) while l < R
(3) Solve the Lagrangean relaxation L(λ).
(4) if L∗ < L(λ)
(5) L∗ = L(λ);
(6) Compute a subgradient according to equation (7).
(7) Update λ according to equation (8).
(8) l = l + 1;
(9) return L∗;

Fig. 4. Algorithm RELAX.

the (pre-defined) number of iterations in subgradient optimization.

It follows from equations (7)-(8) and Proposition 2 that one iteration of RE-
LAX runs in O(N2|D|) time. Since sorting is required prior to running algo-
rithm RELAX, the overall algorithm complexity is of O(N2×max(log N, |D|)).

Remark 6. To obtain convergence, R may have to be large. However, because
R is a pre-defined constant, it is not involved in the analysis of algorithm com-
plexity. The values of R used in our computational experiments are specified
in Section 7. �

To achieve good convergence in subgradient optimization, P̄ should be close
to the optimum of the Lagrangean dual. If P̄ equals this optimum, γ should
be set to one. In our implementation, P̄ is the total transmission power of the
solution found by the MIP algorithm. The initial value of γ is set to 1.0, and
the final value is 0.001. We reduce the value of γ in each subgradient iteration
by a constant scaling factor, which is derived from the initial and final values
of γ, and the number of subgradient iterations R. Computational experiments
show that L∗ found by our subgradient optimization procedure almost equals
the optimum of the continuous relaxation of MEMP-IP.

6 A Strong Heuristic Algorithm for MEMP

6.1 Enhanced sweep

We discuss two enhancements that can be used to improve the sweep algo-
rithm. Throughout the rest of the paper, we refer to sweep with the two
enhancements as enhanced sweep.

The first enhancement is the use of a search space (for tree construction or
power improvement) in which a node may increase its transmission power to
generate test trees. Raising the power at node i, the node can reach additional
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nodes. If these nodes become child nodes of i, the total power reduction at
their ex-parent nodes may pay off the extra power required at i. Clearly,
improvement of this type is not possible in the original sweep algorithm.

Several previously suggested algorithms adopt the idea to examine whether
the total power can be reduced by allowing one node to increase its power. For
broadcast, increasing the power of a node is used in the local search heuristic
presented by Kang and Poovendran in [18], two algorithms (named B and B2)
proposed by Nguyen in [28], as well as the algorithm presented by Yuan in
[38]. The idea is also useful for multicast (to which algorithm B2 in [28] is
applicable).

In Figure 5 we illustrate the first enhancement for broadcast in a small network
of 10 nodes. In this example node 7 is the source. Figure 5(a) shows the initial
tree. Two examples of increasing node power are shown in Figures 5(b) and
5(c), respectively. In Figure 5(b), node 7 increases its power to reach node 4.
As a result, five nodes, 2, 3, 6, 9, and 10, can reduce their power. In Figure 5(c),
node 3 extends its transmission range to cover node 8. Power saving occurs at
nodes 2, 6, and 7.
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(b) Enhanced sweep at node 7
      and for power level  74p
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(a) Initial broadcast tree (c) Enhanced sweep at node 3
      and for power level  38p

Fig. 5. Examples of the first enhancement of sweep.

The second enhancement of sweep addresses multicast. An algorithm adopting
this enhancement keeps a tree spanning all N nodes, but evaluates the tree
power based on the multicast group, i.e., computes the power necessary to
reach nodes in D. This idea has been discussed by Guo and Yang [15] in their
algorithm, called D-MIDP, for MEMP with directional antennae.

The original sweep evaluates tree power under the broadcast assumption.
Pruning, which correctly determines the power for multicast, is invoked af-
ter sweep in [34]. Thus a straightforward way to implement the second en-
hancement is to embed the MIP Steps (9)–(10) in Figure 1 into a tree-search
procedure. This strategy is used by algorithm D-MIDP in [15].

In Figure 6 we formalize the procedure of applying one round of enhanced
sweep (i.e., examining all nodes and power levels), and choosing the best power-
improving enhanced sweep to obtain a new tree. In the figure, T ′ is a temporary
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(1) T ∗ = T ; cT ∗ = cT ;
(2) for all i ∈ V
(3) for all j ∈ V \ {i}
(4) T ′ = T ; PT ′ = PT ;
(5) for all k ∈ V \ {i}
(6) if pik ≤ pij and k /∈ U i

T

(7) T ′(k) = i;
(8) Compute sets AT ′ and Cn

T ′ ∀n ∈ V ;
(9) PT ′(n) = maxm∈Cn

T ′∩AT ′ pnm ∀n ∈ V ; cT ′ =
∑

n∈V PT ′(n);
(10) if cT ′ < cT ∗

(11) T ∗ = T ′; cT ∗ = cT ′ ;
(12) return T ∗ and cT ∗ ;

Fig. 6. The procedure of computing the best power-improving enhanced sweep.

tree under evaluation, and the tree returned by the procedure is denoted by
T ∗.

Remark 7. Algorithms B and B2 in [28] are mainly intended for the broadcast
case of MEMP. Algorithm B is not a tree-improvement algorithm, but a tree-
construction algorithm. In addition, algorithm B uses the strategy of selecting
the best power-improving move (obtained from sweep with the first enhance-
ment). Algorithm B2, on the other hand, performs a tree update as soon as
a power-improving move is detected. Applying algorithm B2 to multicast in-
volves computing the total power of multicast trees. When generating a test
tree, it may happen that a node does not have any destination as descendant,
or its most power-demanding child node does not lead to any destination. In
such cases computing the correct power level corresponds to pruning. In this
sense the second enhancement is also present in algorithm B2. We also remark
that the D-MIDP algorithm in [15] does not use the first enhancement (which
is not directly applicable to directional antennas), but a one-link exchange
strategy to search in the solution space. �

When it comes to time complexity, the procedure in Figure 6 gives an impres-
sion of O(N3). This complexity has been used to derive the overall complexity
of algorithm B in [28]. Our contribution to enhanced sweep is a new complex-
ity result. Provided that node power levels are sorted (see Remark 1, Section
2), there is a faster, O(N2) implementation of the procedure in Figure 6.

Proposition 3. Finding the best power-improving move of enhanced sweep
can be implemented to run in O(N2) for broadcast and multicast.

Proof See Appendix B. �

The above O(N2) result leads to an improvement of the complexity of algo-
rithm B in [28]. The currently known complexity result of this algorithm is
O(N4). If the O(N2) implementation of enhanced sweep is used, the complex-
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ity of algorithm B is reduced to O(N3).

Corollary 4. Algorithm B in [28] can be implemented to run in O(N3).

Proof Algorithm B constructs a tree successively from scratch. Assume that
the current tree spans nk nodes. To expand the tree, algorithm B applies
enhanced sweep to all the nk nodes. At every node, the algorithm considers
power levels greater than or equal to the current power, and generates new
trees using enhanced sweep. Among the new trees, algorithm B selects the
one having minimum power and including at least one more destination in
comparison to the current tree. The algorithm stops when the tree includes
all destination nodes. Assume that the numbers of nodes in the sequence of
trees constructed by algorithm B are n1, n2, . . ., nk, . . ., nk∗ . In Appendix B,
we prove that at one node, finding the best power-improving enhanced sweep
can be implemented to run in O(N). Therefore, for a tree containing nk nodes,
the complexity of constructing the next tree in the sequence is of O(N)× nk.
Consequently, the overall complexity is O(N)× (n1 +n2 + . . .+nk + . . .+nk∗)
≤ O(N)×∑N

n=1 n = O(N3). The O(N3) result is obviously not affected if node
power levels have to be sorted in preprocessing, because sorting has a lower
complexity. �

6.2 Successive shrink

Enhanced sweep searches for power saving by actively increasing node power.
An alternative search strategy is to decrease the power of a node, and as-
sign those child nodes that become disconnected due to power reduction to
some new parent nodes. For the broadcast case of MEMP, the authors of [11]
presented a concept called r-shrink, and developed an algorithm for r = 1
(i.e., 1-shrink). This 1-shrink algorithm has been embedded into a simulated
annealing heuristic in [26]. In 1-shrink, the most power-demanding child of a
node is moved to become a child of another node.

We propose a power-improving operation, which we refer to as successive
shrink, for both broadcast and multicast versions of MEMP. Successive shrink
does not perform its shrink operation for any particular r, but moves all
child nodes of a node, one by one, to new parents. Given a tree T , succes-
sive shrink steps though the nodes one by one, and processes the child nodes
of each node. Consider node i, for which the current set of child nodes is
Ci = {j1, j2, . . . , j|Ci|}. Assume that the nodes in Ci are sorted such that
pij1 ≤ pij2 ≤ . . . ≤ pij|Ci|

. Successive shrink removes node j|Ci| from Ci and
assigns a new parent to j|Ci|, such that the power increment at the new parent
is minimized. All nodes, except i and descendants of j|Ci|, are candidate par-
ents. After the new parent has been found, i reduces its power. Next, a new
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parent is found in the same manner for node j|Ci|−1. This process is repeated
until j1 is assigned to a new parent. At this stage i becomes a leaf and its
power is reduced to zero. Note, that after r child nodes have been moved, the
change in total power can be positive, zero, or negative. When processing the
child nodes of a node, successive shrink does not stop even if the total power
becomes temporarily worse, because an improvement may be obtained at a
later stage.

(b) Successive shrink at 
      node 8 for child 1
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(a) Initial broadcast tree (c) Successive shrink at 
      node 8 for child 5

(d) Successive shrink at 
      node 8 for child 2
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(e) Successive shrink at 
      node 8 for child 9

Fig. 7. Examples of successive shrink.

In Figure 7 we illustrate successive shrink at node 8 of the depicted network.
Node 6 is the source. The initial broadcast tree is shown in Figure 7a, and the
child nodes of 8 are moved one by one in Figures 7(b) to 7(e). In this process,
the total power can increase as well as decrease relative to the initial tree. For
example, in the successive shrink operation for obtaining the tree in Figure
7(b), the power reduction at node 8 is smaller than the power increment at
node 10. So the total power increases. The tree in Figure 7(d), on the other
hand, improves the initial tree in total power.

At every node, successive shrink processes its child nodes starting from the
initial tree T (i.e., T is not updated even though some power-improving moves
have been found). We suggest to use the strategy of updating T by the best
power-improving move of successive shrink. Thus the output is the minimum-
power tree found after all nodes and their child nodes have been processed.

Remark 8. Successive shrink is a natural complement to enhanced sweep. In
enhanced sweep, a node can become the new parent of multiple nodes. The
original parents of these nodes are typically different. Successive shrink acts
conversely, i.e., to let the child nodes of a node go to multiple, different parents.
A tree returned by successive shrink can seemingly be found using a sequence
of enhanced sweep. However, this would require enhanced sweep to accept
non-improving moves. Note that enhanced sweep is not designed to accept a
tree having worse total power (nor does any previously suggested algorithms
using enhanced sweep). Thus a tree generated from successive shrink may not
be obtained by any sequence of power-improving enhanced sweep. Consider
node i and its most power-demanding child node j|Ci|. In successive shrink,
assigning a new parent node, say k, to j|Ci| is often equivalent to an enhanced
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(1) T ∗ = T ; cT ∗ = cT ;
(2) for all i ∈ V
(3) T ′ = T ; PT ′ = PT ;
(4) Compute sets Sn

T ′ and Cn
T ′ ∀n ∈ V ;

(5) while Ci
T ′ �= ∅

(6) Find k ∈ argmaxn∈Ci
T ′pin;

(7) T̃ ∗(i) = null ∀i ∈ V ; cT̃ ∗ = ∞;
(8) for all j ∈ V \ {i, k} \ Sk

T ′
(9) T̃ = T ′; T̃ (k) = j;

(10) Compute sets AT̃ and Cn
T̃
∀n ∈ V ;

(11) PT̃ (n) = maxm∈Cn
T̃
∩AT̃

pnm ∀n ∈ V ; cT̃ =
∑

n∈V PT̃ (n);
(12) if cT̃ < cT̃ ∗

(13) T̃ ∗ = T̃ ; cT̃ ∗ = cT̃ ;
(14) T ′ = T̃ ∗; cT ′ = cT̃ ∗ ;
(15) if cT ′ < cT ∗

(16) T ∗ = T ′; cT ∗ = cT ′ ;
(17) Compute sets Sn

T ′ and Cn
T ′ ∀n ∈ V ;

(18) return T ∗ and cT ∗ ;

Fig. 8. The procedure of computing the best power-improving successive shrink.

sweep move at k. However, if the total power becomes worse after assigning j|Ci|
to k, then this assignment will be excluded from enhanced sweep. Successive
shrink, on the other hand, will (tentatively) accept the new tree, and continue
moving the remaining child nodes of i. We also remark that successive shrink,
like enhanced sweep, is a generalization of sweep, as any update that can be
achieved in sweep is among the moves considered by successive shrink. �

We formalize the procedure of finding the best power-improving move of suc-
cessive shrink in Figure 8. In the algorithm description, T ′ is the minimum-
power tree after all child nodes of a node have been processed. (At each node,
T ′ is reset to be the initial tree T before the child nodes are processed.) When
processing a child, T̃ is used to denote the tree resulting from moving this
child to a new trial parent, and T̃ ∗ is the minimum-power tree obtained in all
trials. Finally, tree T ∗ is the output.

At a first glance, successive shrink, as shown in Figure 8, appears to be com-
putationally expensive. But we can prove that a fast implementation runs in
O(N2). Thus successive shrink has the same complexity as enhanced sweep.

Proposition 5. Provided that node power levels are sorted, finding the best
power-improving move of successive shrink can be implemented to run in
O(N2) for broadcast and multicast.

Proof See Appendix C. �

D-MIDP in [15] is an O(N3) tree-improving algorithm for MEMP with di-
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(1) T ∗ = T ; cT ∗ = cT ; l = 0; status = true;
(2) while l < N and status = true
(3) (T ∗

E , cT ∗
E
) = EnhancedSweep(T ∗);

(4) (T ∗
S , cT ∗

S
) = SuccessiveShrink(T ∗);

(5) if cT ∗
E

< cT ∗ and cT ∗
E

< cT ∗
S

(6) (T ∗, cT ∗) = (T ∗
E , cT ∗

E
);

(7) else if cT ∗
S

< cT ∗ and cT ∗
S

< cT ∗
E

(8) (T ∗, cT ∗) = (T ∗
S , cT ∗

S
);

(9) else
(10) status = false;
(11) l = l + 1;
(12) return T ∗ and cT ∗ ;

Fig. 9. Algorithm SPA.

rectional antennae. The algorithm uses a one-link exchange strategy in its
search for new trees. For omni-directional antennae, successive shrink general-
izes this one-link exchange strategy. Proposition 5 leads to the following result
for algorithm D-MIDP.

Corollary 6. Given an initial tree, algorithm D-MIDP [15] runs in O(N2) for
broadcast and multicast using omni-directional antennae.

Proof See Appendix D. �

Note that in the proof of Corollary 6, we do not need to assume that power
levels are sorted. As a consequence of the corollary, for omni-directional an-
tennae, the computational bottleneck in D-MIDP is not its power-improving
operation, but rather the procedure used to construct the initial tree, because
the latter often has a higher complexity than O(N2).

6.3 Successive power adjustment

We propose a new tree-improving heuristic algorithm. The algorithm, which
we refer to as successive power adjustment (SPA), makes use of both enhanced
sweep and successive shrink. The algorithm selects, in every iteration, the best
of the trees returned by enhanced sweep and successive shrink. This is repeated
for at most N iterations. In Figure 9 we summarize algorithm SPA.

Remark 9. Algorithm SPA has a structure that is not shown in the figure,
where the algorithm picks the best tree found by two separate (and quite dif-
ferent) procedures. Note that enhanced sweep at a node can be (and should
be) implemented as to set its tentative power to maximum, followed by de-
creasing the tentative power successively down to the current level. (In fact,
this implementation is crucial for proving Proposition 3.) Successive shrink
at a node decreases the power from its current level step by step to zero.
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Thus a time-efficient implementation of SPA amounts to, at every node, going
through all power levels from maximum to zero, giving arise to the name of
the algorithm. This implementation merges enhanced sweep and successive
shrink at each node. �

Corollary 7. Algorithm SPA runs in O(N3).

Proof The result follows directly from the time complexity of sorting node
power levels (O(N2 log N)), Propositions 3 and 5, and Figure 9. �

7 Computational Experiments

We use networks of 10, 20, 50, and 100 nodes in the numerical experiments.
The number of destination nodes varies from a few (small multicast group) to
N − 1 (broadcast). For every combination of N and |D|, 100 networks have
been generated using the instance-generation procedure suggested in [34,35].
For each network, we use two sets of transmission power, for α = 2 and α = 4,
respectively. The total number of networks in the experiments is 2,800.

We compare algorithm SPA to a host of heuristic algorithms. For performance
evaluation, we use either the optimum or algorithm RELAX. The latter is used
if obtaining optimal trees by CPLEX [16] is not computationally feasible. Ta-
bles 3-4 give an overview of the heuristic algorithms used in the computational
experiments. In each table, algorithms for tree construction and tree improve-
ment are summarized in the upper right and lower left parts, respectively.
The tables also show the time complexity of these algorithms. The lower right
parts of the tables summarize combinations of algorithms.

Table 3
A summary of the heuristic algorithms for minimum-energy broadcast.

Tree-Construction Algorithms
Algorithm BIP [34,35,37] B [28]

Complexity O(N2 log N) O(N3)

Tree-Improvement Algorithms
Algorithm Complexity Combinations
Sweep [34,35,37] O(N2) BIP + sweep –
1-shrink [11] O(N4) BIP + 1-shrink –
B2 [28] O(N3) BIP + B2 B + B2
SPA O(N3) BIP + SPA B + SPA

Remark 10. Algorithm B2 uses enhanced sweep in its search for better trees.
In this algorithm, the tree is updated as soon as a power-improving move
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Table 4
A summary of the heuristic algorithms for minimum-energy multicast.

Tree-Construction Algorithms
Algorithm MIP [34,35,37] M [28]

Complexity O(N2 log N) O(N4) × |D|

Tree-Improvement Algorithms
Algorithm Complexity Combinations
Sweep [34,35,37] O(N2) MIP + sweep M + sweep
B2 [28] O(N3) MIP + B2 M + B2
SPA O(N3) MIP + SPA M + SPA

of enhanced sweep is found. In [28], algorithm B2 was intended mainly for
solving minimum-energy broadcast. The author of [28] indicated that algo-
rithm B2 can be adapted to multicast. We have implemented this idea in our
computational study, so the algorithm applies to broadcast and multicast. Al-
gorithm M, also presented in [28], is developed specifically for multicast. In
one iteration, algorithm M uses a path (consisting of one or multiple links) in
order to augment a tree to include at least one more destination and possibly
some non-destination nodes. The set of candidate paths contains the shortest
paths between nodes, as well as some additional paths derived from the short-
est ones. In [28], it has been shown that algorithm M outperforms MIP with
sweep. On the other hand, the time complexity of algorithm M is high. �

Remark 11. We do not report results of combining algorithm B with sweep
or 1-shrink, because sweep and 1-shrink can rarely improve a tree constructed
by algorithm B. For multicast, sweep is not performed at all nodes, but those
included in the multicast trees, i.e., trees constructed by MIP (after pruning)
or by algorithm M. �

Remark 12. The authors of [11] did not discuss the complexity of 1-shrink.
In [11], the suggested implementation stops when no improvement is possible
using 1-shrink. This strategy has been used in our implementation as well.
From the discussion in [11], it can be easily derived that one round of 1-shrink
runs in O(N2). (One round of 1-shrink means to examine every node once, and
assign a new parent to the most power-demanding child node if this leads to an
improvement in total power.) The O(N4) overall complexity follows then from
the fact that there will never be more than N2 rounds. (See the discussion of
sweep at the end of Section 3.) However, we note that reducing the maximum
allowed number of rounds (e.g., to N) has no impact on algorithm performance
in practice. Therefore the same numerical results of 1-shrink can be obtained
with a complexity no higher than O(N3). �

In our experiments, all test networks of 10 and 20 nodes could be solved to
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optimality by CPLEX. For 50-nodes networks, instances with few destinations
(|D| ≤ 10) permit exact solutions. For the rest of the test networks (more
specifically, networks with N = 50 and |D| ≥ 25, and networks with N = 100),
the solver did not manage to find the optimum, and therefore we use the lower
bound provided by algorithm RELAX for performance evaluation. This lower
bound tells how much the solutions from the heuristic algorithms deviate from
optimum in the worst case. We applied algorithm RELAX to small networks
as well (for which optimal trees have been computed), in order to examine the
quality of the lower bound. The numbers of subgradient iterations in algorithm
RELAX are 2,000, 5,000, 10,000, and 50,000 for networks of 10, 20, 50, and
100 nodes, respectively.

In Tables 5 and 6 we present the computational results. A row in the ta-
bles shows results averaged over 100 networks. We present the performance
of the continuous relaxation of MEMP-IP and algorithm RELAX (both in
comparison to optimum) under columns ’LP’ and ’RELAX’, respectively. For
the results of heuristic algorithms, those that are best in performance are
highlighted in bold. Examining the results leads to the following observations.

Table 5
Performance evaluation for minimum-energy broadcast.
N α LP RELAX BIP BIP + B B +

Sweep 1-shrink B2 SPA B2 SPA
Deviation from optimum (%)

10 2 0.21 0.22 13.87 6.74 4.77 1.32 0.68 1.66 0.90 0.66

20 2 1.89 1.92 23.93 17.11 13.74 6.45 1.90 5.46 4.07 2.90
10 4 0.08 0.09 5.37 1.85 1.39 0.44 0.14 0.20 0.14 0.14

20 4 0.38 0.47 6.42 3.32 2.40 1.71 1.04 1.82 1.00 0.80

Deviation from bound by RELAX (%)
(Pessimistic estimation of deviation from optimum)

50 2 – – 35.91 28.20 24.64 19.22 13.26 17.56 15.91 14.59
100 2 – – 45.09 36.66 32.74 28.34 21.52 25.37 23.27 21.45

50 4 – – 10.92 7.29 6.40 5.62 5.14 6.40 5.72 5.56
100 4 – – 11.30 7.83 6.68 6.49 5.52 6.90 6.03 5.81

• For tree construction, algorithms B and M have significantly better perfor-
mance than BIP and MIP for broadcast and multicast, respectively. The
difference in performance is particularly evident for multicast, for which the
trees constructed by MIP are often more than 20% away from optimum,
whereas for algorithm M, the deviation from optimum is in most cases less
than 10%. (This achievement comes, however, at a cost of considerably
higher time complexity.)

• For tree-improvement, algorithm SPA has the best performance. For broad-
cast, sweep and 1-shrink improve considerably the trees constructed by BIP.
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Table 6
Performance evaluation for minimum-energy multicast.
(N , |D|) α LP RELAX MIP MIP + M M +

Sweep B2 SPA Sweep B2 SPA
Deviation from optimum (%)

(10, 2) 2 0.05 0.06 7.84 5.95 0.41 0.13 0.75 0.63 0.49 0.47
(10, 5) 2 0.12 0.12 10.68 6.16 0.59 0.26 1.41 1.20 0.40 0.29
(20, 5) 2 0.35 0.38 16.82 13.14 5.15 1.72 3.45 3.23 2.20 1.62

(20, 10) 2 1.08 1.09 22.78 16.41 5.91 1.73 5.26 5.21 3.98 2.75
(50, 5) 2 1.38 1.43 28.71 25.62 11.16 4.51 5.82 5.62 4.02 2.99

(50, 10) 2 3.15 3.18 28.01 23.20 9.93 3.87 6.31 5.96 5.09 4.31
(10, 2) 4 0.00 0.02 4.66 3.45 0.26 0.00 0.42 0.07 0.07 0.07
(10, 5) 4 0.04 0.08 5.15 2.62 0.23 0.18 0.70 0.67 0.18 0.02

(20, 5) 4 0.10 0.12 4.68 3.18 1.06 0.63 1.11 1.04 0.65 0.48

(20, 10) 4 0.31 0.36 7.43 4.70 2.12 1.37 2.28 2.25 1.37 1.15

(50, 5) 4 0.21 0.25 13.04 11.76 5.46 5.14 2.74 2.57 1.98 1.87

(50, 10) 4 0.68 0.72 8.76 6.55 3.63 2.63 1.71 1.62 1.31 1.27

Deviation from bound by RELAX (%)
(Pessimistic estimation of deviation from optimum)

(50, 25) 2 – – 31.95 25.59 16.63 10.79 13.57 13.37 12.64 11.71
(100, 5) 2 – – 39.27 37.18 16.07 9.43 7.31 7.12 6.13 5.51

(100, 10) 2 – – 41.24 37.99 22.07 13.91 12.82 12.65 11.38 10.26

(100, 50) 2 – – 41.77 34.94 26.87 20.37 21.75 21.57 20.41 19.11

(50, 25) 4 – – 9.24 6.67 4.95 4.17 4.07 3.95 3.35 3.05

(100, 5) 4 – – 16.14 15.16 8.71 7.15 3.40 3.15 2.53 2.17

(100, 10) 4 – – 12.58 10.93 6.90 5.30 3.63 3.41 3.08 2.85

(100, 50) 4 – – 10.93 7.95 5.93 5.19 5.64 5.50 4.77 4.41

Among these two algorithms, 1-shrink performs better, but the difference is
fairly small. For multicast, only small improvement can be obtained using
sweep. Both sweep and 1-shrink are outperformed significantly by algo-
rithms B2 and SPA. Comparing further algorithm B2 to algorithm SPA
(both having a complexity of O(N3)), the latter yields noticeably better
solutions for α = 2. For α = 4, the difference in performance is small.

• The solutions found by algorithm SPA are near-optimal. In performance
evaluation using optimal trees, algorithm SPA produces solutions that de-
viate from optimum by a few percent or less. For networks where the bound
from algorithm RELAX is used for evaluating performance, trees from algo-
rithm SPA are no more than 10% above optimum in most cases, and about
20% in two cases. Note that performance evaluation using the bound by
RELAX gives a pessimistic estimation of the deviation from optimum (i.e.,
the true deviation is smaller).
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• One interesting observation is, that for algorithm SPA, best solutions are
sometimes found from the trees of BIP/MIP, and sometimes from those
constructed by algorithms B and M. Such a behavior is quite common when
applying a search heuristic to an NP -hard problem – The final solution
is more dependent on the initial solution than the quality of this initial
solution. Overall, results from BIP/MIP and SPA together are comparable
to those found by combining algorithm B and M to SPA. Algorithm M has
a much higher complexity (O(N4|D|)) than MIP’s O(N2 log N) and SPA’s
O(N3), thus algorithms MIP and SPA form a cheaper yet effective approach
in comparison to algorithm M (or algorithms M and SPA).

• The continuous relaxation of the integer programming model MEMP-IP
gives a very tight lower bound. The deviation from integer optimum is less
than 2% in most cases. Furthermore, the bound from algorithm RELAX is
almost identical to that of the continuous relaxation. In conclusion, our in-
teger programming approach is effective for evaluating heuristic algorithms.

• A large value of α gives more rapid growth in transmission power with
respect to distance, making it easier to identify and exclude non-optimal
links. We can therefore expect better results when α = 4. This is indeed the
case – All algorithms perform considerably better when α = 4.

Table 7
A comparison between enhanced sweep (ES) and successive shrink (SuS).

(N , |D|) α BIP/MIP + B/M +
ES SuS ES SuS

(50, 25) 2 11.69 (87) 17.99 (13) 12.37 (18) 12.02 (25)
(50, 49) 2 14.03 (89) 22.39 (11) 15.67 (10) 15.02 (30)
(100, 50) 2 21.49 (89) 26.92 (11) 20.13 (31) 19.90 (40)
(100, 99) 2 22.63 (83) 29.81 (17) 22.68 (22) 22.44 (42)
(50, 25) 4 4.22 (26) 4.63 (9) 3.25 (5) 3.30 (10)
(50, 49) 4 5.24 (33) 5.96 (11) 5.72 (2) 5.59 (9)
(100, 50) 4 5.40 (52) 5.82 (19) 4.67 (8) 4.51 (20)
(100, 99) 4 5.63 (52) 6.27 (15) 5.94 (7) 5.88 (15)

In Table 7 we provide results of additional experiments to show the perfor-
mance of enhanced sweep and successive shrink. The experiments are made for
some networks of 50 and 100 nodes. In the experiments we use either enhanced
sweep or successive shrink (but not both). In addition to the percentage de-
viation from the bound by RELAX (as in Tables 5 and 6), Table 7 shows the
numbers of networks (among a total of 100) for which a procedure performs
better than the other within parentheses. The lowest percentage number of
each row is highlighted in bold. We observe that none of two procedures out-
performs the other for all network groups. For initial trees constructed by BIP
and MIP, the average performance of enhanced sweep is consistently better
than that of successive shrink. The latter finds however trees of lower power
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in some cases. When initial trees come from algorithms B and M, successive
shrink performs slightly better for all but one network group.

8 Conclusions

We have presented some advances in computationally approaching optimal or
near-optimal solutions to minimum-energy broadcast and multicast in wire-
less networks. Our computational machinery consists of a novel integer pro-
gramming model (MEMP-IP), a bounding algorithm (RELAX), and a strong
heuristic algorithm (SPA). In addition we have strengthened complexity re-
sults of some previously proposed algorithms.

The integer programming model is very useful for performance evaluation of
heuristic algorithms, particularly because its continuous relaxation yields a
very sharp bound. Moreover, this bound can be approximated effectively and
efficiently by algorithm RELAX. Algorithm SPA outperforms a host of other
algorithms in the computational experiments. For networks used in the experi-
ments, the solutions found by SPA are near-optimal. Furthermore, the running
time of algorithm SPA is comparable to that of some earlier algorithms. Fi-
nally, we would like to remark that the research presented in this paper may be
of interest in studying problems related to MEMP, such as source-independent
broadcast over a single tree [29].
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Appendix A

In Figure 10, we present an O(N2) implementation for constructing a broad-
cast tree in BIP/MIP. This implementation requires that power levels are
sorted in the input data. In the figure, ji

k denotes the kth node in the sorted
power sequence at node i, i.e., piji

1
≤ piji

2
≤ . . . ≤ piji

k
≤ . . . ≤ piji

N−1
.

The underlying idea of the implementation is to, for the sorted sequence at
each node, keep track on the index corresponding to the current node power.
In the figure, these indices are stored in vector K. To augment the tree, the al-
gorithm starts from the current index of every node (if the node is in the tree),
and moves forward, until a node that is not part of the tree is encountered.

(1) T (i) = null ∀i ∈ V ; PT (i) = 0 ∀i ∈ V ; K(i) = 0, i = 1, . . . , N − 1; l = 1;
(2) while l < N
(3) δ∗ = ∞;
(4) for all i ∈ V
(5) if T (i) �= null or i = s
(6) j = ji

K(i);
(7) while T (j) �= null or j = s
(8) K(i) = K(i) + 1; j = ji

K(i);
(9) if pij − PT (i) < δ∗

(10) i∗ = i; j∗ = j; k∗ = K(i); δ∗ = pij − PT (i);
(11) T (j∗) = i∗; PT (i∗) = pi∗j∗ ; K(i∗) = k∗; l = l + 1;
(12) return T ;

Fig. 10. An O(N2) implementation for constructing a broadcast tree in BIP/MIP.

It is obvious that, except the while-loop (7), all the computational steps run
in O(1). The purpose of the while-loop is to find the first non-tree node
in the sorted sequence (of node i). Note that the value of K(i) of any i is
monotonously non-decreasing, and the sorted sequence at any node has N −1
elements in total. So the overall complexity of this loop is of O(N2) for tree
construction. Thus the procedure in Figure 10 runs in O(N2).

Once the broadcast tree has been constructed, computing its total power for
broadcast as well as multicast runs in O(N) [28]. Therefore the overall time
complexity of BIP/MIP is of O(N2). However, if sorting has to be carried out
prior to running BIP/MIP, the complexity becomes O(N2 log N).

Appendix B

We show that finding the best power-improving move of enhanced sweep can
be implemented to run in O(N) at one node. Proposition 3 follows then im-
mediately.

Given a tree T , consider enhanced sweep at node i. To obtain the O(N)
running time, the power of node i is first increased to the maximum, and then
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successively reduced. Setting the power to maximum lets node i take over
all nodes (except the upstream nodes of i) as its new child nodes. The new
child nodes are then moved, one by one in descending order of their power
requirement at i, back to their original parent nodes in tree T . Along with
moving child nodes from node i, the set of active nodes and tree power are
updated accordingly. Algorithm implementation is given in Figure 11. The
trial tree is denoted by T ′. The set of active nodes is represented by binary
vector AT ′ (i.e., AT ′(j) = true if node j is active, otherwise AT ′(j) = false).
Let m be the most power-demanding and active child of node i in tree T .
Vector M contains nodes in V \{i} that require larger power than that for m.
Nodes in M are sorted in ascending order by power. Vector M is empty (i.e.,
its length is zero) if node i does not have any active child in T . To save space,
for some computations in Figure 11 we have used verbal description instead
of pseudo-code, as long as the time complexity of the computations is obvious
and does not affect the overall complexity. Also, to ease the presentation, we
assume that pi,M(0) = 0.

(1) T ∗ = T ; cT ∗ = cT ; j∗ = null; T ′ = T ;
(2) Update T ′: All nodes, except upstream nodes of i, become child nodes of i;
(3) Compute vectors M , AT ′ , and PT ′ ;
(4) l = |M |; PT ′(i) = pi,M(l); cT ′ =

∑
j∈V PT ′(j);

(5) while l ≥ 0
(6) j = M(l);
(7) n = T (j); T ′(j) = n; cT ′ = cT ′ − (PT ′(i) − pi,M(l−1));
(8) if AT ′(j) = true
(9) repeat

(10) AT ′(n) = true;
(11) if pnj > PT ′(n)
(12) cT ′ = cT ′ + (pnj − PT ′(n)); PT ′(n) = pnj ;
(13) j = n; n = T ′(n);
(14) until AT ′(n) = true
(15) if cT ′ < cT ∗

(16) j∗ = j; cT ∗ = cT ′ ;
(17) l = l − 1;
(18) if j∗ �= null
(19) Construct tree T ∗ from T and j∗;
(20) return T ∗ and cT ∗ ;

Fig. 11. Finding the best power-improving move of enhanced sweep at node i in
O(N) time.

In Steps (2)-(4), all nodes, except the upstream nodes of node i (and i itself),
become child nodes of i. Vectors M , PT ′ , and AT ′ are constructed accordingly,
and the total power is computed. Note that the power of node i is set to reach
the last node in list M , no matter this node is active or not. There is no
doubt that Steps (2)-(4) run in O(N). In the while-loop starting at Step (5),
all nodes in list M are moved back, one after another, to their original parents
in the initial tree T . The power of node i decreases by one step in each of
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the move operations. When node j is moved to become a child node of n (its
original parent in T ), the power of node n is updated if node j is active. In
this case node n is marked as active in Step (10). Moreover, if n was inactive
before Step (10), then some of its upstream nodes may be inactive as well,
and the state and power of these nodes must be updated. This job is done in
the repeat-loop starting at (9).

Tree T ∗ and parameter j∗ are updated in Step (16) in case of improvement.
Note that the tree vector T ′ is not saved (which would require O(N) in com-
plexity) in this step. Instead, the tree vector is constructed later (outside the
while-loop) from T and j∗ in Step (19). Moreover, it is worth remarking that
when all elements of M have been moved, the check performed in Step (15)
corresponds to the (original) sweep operation.

From the discussion above, it is clear that the implementation in Figure 11
runs in O(N) if this complexity holds for the while-loop (5). Within this loop,
all the computational operations run in O(1). So the only possible obstacle
is the repeat-loop (9). For node j, the operations within the repeat-loop may
have to be executed multiple times. However, note that the state of at least
one node is set to active within the loop, and the loop ends as soon as an
active node is encountered. Because there are N nodes, the operations within
the loop require no more than O(N) in total. In conclusion, the overall time
complexity is of O(N).

For a tree that does not span all nodes in D, a slight modification of the
implementation in Figure 11 can be used to find the best move of enhanced
sweep that augments the tree to include at least one additional destination.
The modification involves stopping moving nodes if M no longer contain any
non-tree destination, or, equivalently, to redefine the content of M . Also, the
trial trees should not be compared to the initial tree, but among themselves
(i.e., to set cT ∗ = ∞ in Step (1)). The modifications do not change the O(N)
complexity. Therefore, for a partial tree T with nT nodes, tree augmentation
using the best move of enhanced sweep runs in O(N) × nT .

Appendix C

We prove that finding the best power-improving move of successive shrink can
be implemented to run in O(N2). We use T and T ′ to denote the initial tree
and a trial tree, respectively. Tree T ′ is stored as a vector and as adjacency
lists. The latter enables us to update the parent of a node in O(1) and to
perform depth-first search (DFS) in O(N) time. In the presentation of the
O(N2) implementation, the adjacency lists are updated implicitly with every
update of the vector T ′ to improve readability.

Our O(N2) implementation of successive shrink uses some structures and
quantities that have not been defined earlier. For convenience, in Table 8
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we summarize the key structures and quantities (including those defined pre-
viously).

Table 8
Structures and quantities related to tree T ′.

Notation Meaning
PT ′ A vector containing node transmission power.
cT ′ Total power used by tree T ′.
AT ′ A binary vector indicating node state (active or inactive).
ji
k The kth node in the sorted power sequence at node i, i.e.,

piji
1
≤ piji

2
≤ . . . ≤ piji

k
≤ . . . ≤ piji

N−1
.

Eligible A binary vector of length N . A node is eligible if it can be a
candidate parent. Consider successive shrink at node i and a
new parent is to be found for i’s child node j, then all nodes
but i, j and the descendants of j are eligible.

Induced A vector of length N containing induced power. At an ac-
tive node, the induced power is zero. At an inactive node,
induced power is the total additional power needed at its
upstream nodes if this node becomes active (i.e., has some
destination as descendant). Consider an inactive node i.
Starting from i and moving upward to source s, let the
sequence of nodes being visited be i, a, b, c, d, . . . , s. With-
out any loss of generality, assume that d is the first ac-
tive node in the sequence. The induced power at i equals
pai + pba + pcb + max{0, pdc − PT ′(d)}.

For multicast, the notion of induced power is crucial to obtain the O(N2)
running time. Once vector Induced has been computed, evaluating a candidate
parent runs in O(1).

Figure 12 outlines the O(N2) implementation. The computational operations
are specified by verbal description in the outline. Later we will discuss some of
the computations in more detail to analyze time complexity. For convenience,
the (suggested) time complexity of some computations is given in brackets.

The steps within the for-loop (2) perform successive shrink at node i. In Step
(3), the trial tree T ′ is reset to be the initial tree T . The child nodes of node
i are then moved one by one to new parent nodes in the for-loop (4). This
loop goes through all nodes in V \ {i}, in descending order of their power
requirement at node i. Due to the check in Step (6), however, only child nodes
of i will be considered for the shrinking operation.

The sequence of computations in successive shrink for a child node j is as
follows. First, vector Eligible is computed. Node j is then detached from node
i in Step (8). (After this step, T ′ is a forest of two trees, one rooted at source s,
and the other rooted at node j.) Vectors AT ′ and Induced are then computed.
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(1) [O(N)] T ∗ = T ; cT ∗ = cT ;
(2) for all i ∈ V
(3) [O(N)] T ′ = T ;
(4) for k = N − 1 : 1
(5) [O(1)] j = ji

k;
(6) [O(1)] if T ′(j) = i
(7) [O(N)] Compute vector Eligible;
(8) [O(N)] T ′(j) = null;
(9) [O(N)] Compute vector AT ′ ;

(10) [O(N)] Compute vector PT ′ ;
(11) [O(N)] Compute vector Induced;
(12) [O(1)] δ∗ = ∞;
(13) for every eligible node n
(14) [O(1)] if Induced(n) + max{pnj − PT ′(n), 0} < δ∗

(15) [O(1)] δ∗ = Induced(n) + max{pnj − PT ′(n), 0}; n∗ = n;
(16) [O(1)] T ′(j) = n∗;
(17) [O(N)] Compute vector AT ′ ;
(18) [O(N)] Compute vector PT ′ ;
(19) [O(N)] cT ′ =

∑
n∈V PT ′(n);

(20) [O(1)] if cT ′ < cT ∗

(21) [O(N)] T ∗ = T ′; cT ∗ = cT ′ ;
(22) return T ∗ and cT ∗ ;

Fig. 12. Finding the best power-improving move of successive shrink in O(N2) time.

Next, all nodes that are eligible to be the new parent of node j are examined
in the for-loop (13). At each eligible node, the power increment if node j (i.e.,
the tree rooted at node j) becomes a child is calculated. The node at which
the power increment is minimum is selected as the new parent. The resulting
tree is evaluated against the best tree found so far.

If node j is inactive, then the power increment is zero no matter which node
becomes its new parent. In our implementation, the new parent node is selected
as if node j is active. Doing so minimizes the additional power required at
upstream nodes of j, when later on j is considered to be a candidate parent
of another child node of i.

The for-loops (2) and (4) in combination with Step (6) define a loop over
all links in T ′. Thus the steps within the for-loop (2) are executed at most
N − 1 times in total. As a consequence, the implementation runs in O(N2),
provided that the time complexity given in the figure for every individual
step is correct. For some of the computational steps in Figure 12, the time
complexity is obvious. Below we discuss those computational steps for which
the time complexity is less straightforward.

• Step (7): First, all nodes are marked eligible. Then nodes i, j, and descen-
dants of j are marked non-eligible via a DFS of the tree rooted at j.

• Step (8): In this step, j is detached from i, and updating the adjacency lists
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accordingly runs in O(N).
• Step (9): Initiate AT ′(n) to false for all n ∈ V . We then start from each

d ∈ D, set AT ′(d) = true, and traverse upward in T ′ (i.e., visit d’s upstream
nodes one by one). As long as the process of traversing nodes encounters
an inactive node n, it sets AT ′(n) = true. The process stops as soon as it
encounters an active node (because all upstream nodes of this node must
have been marked active previously), or reaches source s, or reaches node
j. Note the similarity between this process and the way of marking active
nodes in enhanced sweep, and consequently Step (9) runs in O(N).

• Step (11): Only the tree rooted at source s needs to be considered in this
step, because nodes in the tree rooted at j are non-eligible. Starting from s, a
DFS is performed, and the vector Induced is computed alongside performing
the DFS.

Appendix D

The one-link exchange strategy in D-MIDP amounts to removing a tree link
and moving the child node that becomes disconnected from the tree to a
new parent node. The new parent node is selected such that the total tree
power is minimized. When this one-link exchange strategy is applied to omni-
directional antennae, it suffices to examine, at each node, the link connecting
the node to its most power-demanding active child. (One-link exchange for
other links will obviously not lead to any power improvement.)

Successive shrink can be adapted to implement the one-link exchange strategy.
For each i ∈ V , the adapted procedure goes through all child nodes of i to find
the one that is active and most power-demanding. The search runs in O(N)
(without assuming that node powers are sorted). For this particular child, the
steps within the if-statement (6) in Figure 12 are executed to find the new
parent node. Hence the O(N2) overall time complexity.

35


	Linköping University Postprint title page - Elsevier.pdf
	memp

