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Abstract

Predicting protein structures has long been an area of active research in the field of
bioinformatics. Great strides have recently been made in this area by googles DeepMind
team. They developed an AI called AlphaFold which is able to make the most accurate
predictions of protein structures as of date. With the advent of AlphaFold some consider
the problem solved. There is however an area in protein prediction that has lagged be-
hind, that of multi conformational prediction. There are proteins that can take on one
out of several active forms in the body. Making predictions for these are harder than for
single conformational proteins due to an increase in complexity and a lack of data. A
promising solution to this problem is to introduce noise to the input data AlphaFold uses
to create a wider range of predictions. In this thesis multi conformational prediction with
different methods to introduce noise is evaluated. Dropout, disclosing templates, untar-
geted Multiple sequence alignment(MSA) subsampling and targeted MSA subsampling
were used. It was concluded introducing noise did indeed improve the prediction of mul-
tiple conformations. Among them, MSA subsampling seemed to be the most effective,
especially untargeted MSA subsampling. Dropout also seemed to slightly improve the
results while excluding template information did little to nothing. AlphaFold was unable
to predict both structures for 6 out of 16 structures, even with introduced noise. No clear
reason for why this could be determined, but the leading hypothesis is that AlhpaFold
was unable to extract sufficient information about both conformations from the MSA
data for these proteins.
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1 Introduction

1.1 Motivation

Proteins are biological machines that carry out a plethora of vital functions in life. These
functions range from communication, transportation, structural, catalytic and defensive. Un-
derstanding how proteins work is thus vital for understanding how we, and life in general work.
To understand how a certain protein operates, one must first know its 3D-structure. A protein
is made of small molecules called amino acids. These amino acids are then linked together to
form a chain called a primary structure. A proteins secondary structure is created when the
amino acid chain transitions from a 2D- to a 3D-structure by folding. Sometimes a protein can
take on many different secondary structures. These different 3D-structures are known as the
proteins different conformations and they determine the proteins function. Just like a tools
shape determines its use. we don’t use a saw to hammer in a nail, the shape of the saw is
simply unfit to carry out that task. Determening a proteins structre is therefore determental
to understanding its role in the body.

Protein structures are determined experimentally though x-ray crystallography methods
[1, 2], nuclear magnetic resonance [3] and electron cryo microscopy [4]. These methods are
however time-consuming and expensive. It is therefore no surprise that only 200,988 protein
structures out of the 229,580 745 entries on uniprotKb (as of Januari 2023) has been determined
[3]. A better alternative is therefore needed to speed up protein structure prediction. The
development of computer prediction algorithms has long been an active area of research and
has recently had a major breakthrough [5]. Googles deepmind team has consistently predicted
protein structures for proteins with a single conformation with high accuracy using their
AlphaFold1 and AlphaFold2 models [6, 7].

Being able to determine protein structures more rapidly will boost our understanding of
biology. It will also increase our ability to design proteins ourselves [8, 9]. These boosts will
in turn greatly help in the development of new drugs, both for therapeutic proteins and small
molecules that target proteins. Advances in predicting structures for proteins with mulitple
conformations has been slower then for those with only one conformation however. To gain
the most benefits from protein predictions, we want to be able to predict all types of proteins.
It is therefore important to also develop tools to predict structures for multi-state proteins as
well.
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1.2. Aim

1.2 Aim

The aim of this thesis is to explore Google Deepminds AlphaFold2s ability to predict the
structures of multi conformational proteins. Different settings will also be used in order to
determine which combination yields the best predictions.

1.3 Research questions

1. Does vanilla AlphaFold2, with full Template and MSA data, have the ability to correctly
predict multi conformatonal Proteins?

2. Can the AlphaFold2s ability to predict mulitconformational proteins be imporoved by
introducing noise in the model?

3. How does the following Three methods of introducing noise affect AlphaFold2 ability to
predict multi conformational protein structures?

a) MSA subsampling
b) excluding templates data
c) dropout

1.4 Delimitations

In this thesis the following delimitations will be made;

1. Predictions will be carried out on the IOMemp data set [10]

2



2 Theory

2.1 Protein folding problem

The protein folding problem is a question of how a specific chain of amino acids can rapidly
and consistently fold into the same 3-dimensional structure [11]. An amino acid sequence has
an enormous conformational space, which means that it can theoretically fold into countless
different structures. A sequence of 100 amino acids has 99 peptide bonds and thus 198 different
phi and psi angles [12]. If we assume that each phi and psi can take on three different angles,
we get 3198 different possible conformations. To go though each of these conformations with
a sampling rate of one conformation per millisecond would take more time then the lifetime
of the universe. Proteins in the real world will however fold into the desired structure in a
matter of milli or even microseconds. How can a protein know which structure to fold into
out of all the possible conformations and how can it be done so quickly? This conundrum is
known as Levinthal’s paradox [13] and it illustrates that the folding process of proteins are
not easily understood. There must be a force that guides the protein to fold to a particular
conformation to explain experimental observations.

An early insight into how proteins find their correct conformation came in 1973, when
Christian Anfinsen proved the thermodynamic hypothesis [14], which states that the amino
acid sequence is the only factor that dictates how a protein folds. Anfinsen proved this theory
by synthesizing an amino acid sequence in vitro and compared its structure to the same se-
quence created in vivo. The two structures were identical, proving nothing beside the sequence
is required for it to fold correctly. The driving force guiding a protein during its folding process
must thus be physical and chemical interactions between the amino acids in a protein.

An amino acid consists of 2 important parts, the backbone and the side chain. The back-
bone is the same for every amino acid and allows them to connect. The side chain on the other
hand alters between different amino acids, making them the deciding factor in how a sequence
will fold. Chemical bonds can bind two side chains together which will affect the structure on a
local level. The structure can also be influenced on a global level via Van der whaal forces and
hydrophobic interactions. Hydrophobic side chains want to hide from water and will clump
together, leaving the hydrophilic side chains at the surface facing the water [15]. Hydrophilic
side chains therefore tend to be at the proteins surface while the hydrophobic ones hide in its
interior. This only answers what forces determine a proteins structure however, not how its
final structure is selected.

3



2.1. Protein folding problem

A protein’s final structure is the state with the highest stability. Proteins are driven towards
this state via the laws of physics. A proteins stability depends on the interactions within it,
which can be modeled with mathematical functions called energy functions [16, 17]. If the
energy level for all conformations of a protein is plotted, an energy landscape will have been
made [18]. The most stable structure within this energy landscape corresponds to the lowest
energy, see figure 2.1. Thus, making finding the best structure from an energy function an
optimization problem. These energy functions have been useful when predicting the structure
of proteins.

Figure 2.1: The energy landscape for a protein[19]

The y-axis shows the energy level of the protein. The lower the energy the more stable it is.
The black line shows the energy level for different conformations for the protein. The global
minimum of the black line is the proteins native state, which is the conformation found in the
body.

There are three separate groups in protein structure prediction algorithms, template-based
modeling, free modeling and mixed modeling [20, 21]. Free modeling programs tries to opti-
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2.2. AI

mize an energy function to predict the structure of an amino acid sequence [22]. Template
based methods on the other hand uses information available on databases in order to acquire
additional information to work with [23]. Proteins with similar sequences tend to also have
similar structures. Thus using known structures of proteins with similar sequences gives refer-
ence points to base the predictions on. Template based approuches creates better predictions
than free modeling but are dependent on known structures. Free modeling are however better
at predicting novel proteins, which dont have any templates available. The third group is when
template and free modeling are mixed to get the best of both worlds. During the last couple
of years AI models have been incorporated with these approaches and has had great Succes in
predicting protein structures.

2.2 AI

AI[24] are computer programs that can learn and perform advanced tasks, such as painting
pictures, writing text and predicting protein structures. There are many different AI archi-
tectures that are used for different applications, but they are all based on Neural networks.
Neural networks are a combination of a computer structure known as a graph, modeled after
neurons in brain tissue, and machine learning.

2.2.1 machine learning
A machine learning program [25] is given inputs and outputs. It then learns how to process the
input data to make predictions matching the given output data. This learning process needs
computational power and lots of data, which can be hard to come by. If these resources are
available, the program can throughout the learning process gain the ability to predict unknown
output for new input data. How does a computer learn though?

The program will have a few parameters that it can adjust, which is how it alters the
processing of input data. If we take the linear equation y = m + kx as an example. The
parameters that will be adjusted by the program is m and k. At first the values of these
parameters will be randomized and the generated output will not match the given output.
To make the prediction better, the difference between the predicted and given output will be
calculated in what is called a cost function. The parameters is then iteratively changed to
minimize the cost function, thus making the predictions better over time. A machine learning
algorithm can learn through the tweaking of these parameters. They are however not always
as simple as a linear equation. Machine learning in neural networks for example, where the
parameters are divided among a network of nodes.

2.2.2 Neural networks
A neural network is modeled after the brain, which is made of a complex web of interconnected
neuron cells [26]. These neurons recive signals from one or more other neurons that is then
summed together. If the sum exceeds an internal threshold, a output signal will be sent to
one or more other neurons. In a neural network [27], a Neuron is represented as a Node in
a graph and these nodes are connected to each other with edges. A node has an internal
step function which transforms the input signals to an output signal. This step function often
takes the shape of a sigmoid function [28]. The nodes are then assembled into different layers
where signals flow from one layer to the other, see figure 2.2. The first layer is called the
input layer, since it receives the input data, while the last is called the output layer. All layers
in-between are hidden layers. The flow of information thought these hidden layers are hidden
from humans, leaving ous uncertain of how a neural network reaches its prediction.

For the neural network to learn, some parameters in it must be iteratively adjusted. For
this purpose, weights are added to the signals that are being sent between the nodes. This
is illustrated in figure 2.2 as Wij. A high weight will amplify the signal while a low weight

5



2.2. AI

Figure 2.2: Neural network layout. Wij is the weight for edge ij[27]

weakens the signals. Adjusting all the weights in a network are not a straightforward process
however. The cost function will only have access to the output layer. This means adjusting
the weights for the output layer is easily done while it is harder for the other layers. This is
solved with the backpropagating algorithms [29] which propagates the error back through the
network one laye at a time, starting with the output layer and finishing at the input layer.

A neural network architecture called the transformer was first proposed in 2017 in a paper
called “Attention is all you need” by Ashish Vaswani ET all [30]. The transformer specializes
in transforming an input sequence to another output sequence. This could for example be
translating a sentence in Frence to English or transforming and audio file of a conversation to
a text sequence of that conversation. The transformer consists of two parts, the encoder and
the decoder. The encoder is a recurrent neural network [31], which can extract information
from a sequence of tokens where their position matters. A sentence is an example of such a
sequence. “David took the dog out for a walk” has a different meaning then “The dog took
David out for a walk” despite including the same words. The decoder is also a recurrent neural
network that takes the information from the encoder and transforms that information into a
new sequence. Another important component that makes transformers work is the notion
of attention, which is a mechanism for telling the network which part of the input is more
important. For a protein sequence the attention should be on the amino acids that are most
inportant for the structure. Transformers has been used by the Google Deepmind team to
create AlphaFold, which has become the state-of-the-art protein prediction software.

2.2.3 AlphaFold2
Googles deepmind team first took part in Critical Assessment of Structure Prediction 13, a
biannual protein prediction competition [32], with their AlphaFold [6] model back in 2018
[33]. They came out victorious, but this didn’t stop them from entering again two years later
with a revised version. AlphaFold2[7] was a big upgrade from AlphaFold1 and impressively
got double the score compared to the second place team at casp14 [34]. The bioinformatic
community was filled with speculations about how AlphaFold2 generated such high-accuracy
predictions after the competition. Six months later in 2021, After much anticipation, Google
Deepmind made AlphaFold2s source code publicly available. This led to many research teams
starting to tinker with the program and by CASP15 most teams used different versions of
AlphaFold2 [35].

6



2.2. AI

The winner of CASP15 was the Wallner group led by Björn Wallner [36]. They were able to
utilize AlphaFold2s excellent scoring function together with massive subsampling. AlphaFold
is able to assess and rank its own predictions. By running AlphaFold with different settings
and creating a large number of predictions for a protein combined by looking at the best ranked
predictions, Björns team were able to create the best predictions at CASP15. A key setting
used by the Wallner group was to including dropout during prediction. Dropout is a method
where nodes in the neural network will randomly be turned off [37]. This is usually done to
avoid overfitting data during the training process. Björns team turned it on during prediction
however, which introduced more uncertainty in the model and thus generated a bigger variety
of predictions. But how does AlphaFold actually work?

AlphaFold2 can be divided into three steps, preprocessing, Evoformer and the structural
model. These steps can be seen in figure 2.3 where the steps are marked with 1, 2 and 3.

Figure 2.3: Overview of alhpafold2 architecture[7]

2.2.4 Step1: Preprocessing
During the preprocessing phase, different databases are queried in order to generate additional
information to base the structure predictions on. This information comes in the form of
multiple sequence alignment (MSA) [38] and templates [39].

Multiple sequence alignment is a method to infer the similarity between three or more
sequences. A MSA can be structured as a matrix, where different sequences are put on the
rows and the amino acids of a sequence are on the columns. The idea is that sequences with
evolutionary relationships are often similar. This is because the structure of a certain protein
is preserved between species to keep the proteins function. For the structure to stay the same
for proteins with the same purpose in different species, key amino acids must remain the same
between them. This means that alot of structural information can be inferred from a MSA
matrix.

A template is an experimentally determined protein structure stored in a file format called
pdb. AlphaFold2 queries databases after templates that are probable to have similar structures
to the input sequence. Both structures that are similar to the whole sequence or where only
parts of the sequence are similar is usuful. These known structures can be used as a good
reference point when making predictions. Lets for example say AlphaFold finds a template
with a sequence that is similar to the first 30 amino acids in the sequence it’s trying to predict.
This gives AlphaFold a good guess on how these 30 amino acids will fold. Templates are
used in this way in order to create a pair representation, which represents how far away in
space the amino acids in the sequence are from eachother. The pair representation from the
preprocessing phase is an initial guess of how the structure might look. This first guess is then
improved during the second phase of AlphaFold.

7



2.3. multi state prediction

2.2.5 Step2: Evoformer
The Evoformer is designed to extract more information from the MSA and template data.
This is done by 2 transformers calculating the attention on the preprocessing data, one for the
MSA and the other for the templates.

The MSA transformer first computes attention for the rows of the MSA matrix struc-
ture, figuring out which sequences are more informative. Atttention is then calulated for the
columns, identifying which amino acid pairs are more related. The most important part of this
process is that information from the pair representation is used when calculating the attention
for the rows, thus improving the result.

The transformer for the pair representation works in a similar way, the attention is however
focused on the distance between amino acids in the input sequence. This will improve the pre-
diction of which amino acids are in close contact with each other. To maximize the extraction
of information from the preprocessing data, the MSA matrix and pair representation will be
passed though multiple layers in the evoformer. Each layer is a different nerual network with
different weights. At CASP14 the preprocessing data went through 48 layers in the evoformer
passed to the final phase.

2.2.6 Step3: structural model
After the evoformer, AlphaFold2 has built a model of interactions within the sequence. The
MSA capture the variation in the sequence and the pair representation captures which amino
acids are likely to interact with each other. Now it’s time to build a structure, which is done in
the third part of the model. In the structural model, amino acids are represented as triangles.
These triangles can be both translated and rotated in a 3d space by the structural model. Just
as with the evoformer, the structural model is a transformer that transforms the MSA and pair
representation into 3D coordinates of all the amino acids in the sequence. After the structural
model is finished, a structure prediction has been made together with confidence values. The
confidence values represent how confident AlphaFold is that its prediction is correct. The
MSA, pair representation and 3d structure will then be feed back to the evoformer in order
to do further refinements on the predictions. This recycling is done 2 times before arriving at
the final prediction.

2.3 multi state prediction

The development of prediction methods for protein structures has historically been focused
on single state proteins, which only have one functionally active structure. There are however
also proteins that have multiple active structures known as conformations[40]. Predictions
for multi conformational proteins have lagged behind those for single conformational proteins.
This is due to two reasons. Firstly, it is easier to predict only one structure. Secondly, there
is a lack of data.

As of 2018, the protein data bank only contained the structures for 96 multi conformational
proteins [41]. This is in contrast to the over 200 000 protein structures that are available on
Protein Data Bank. Despite this, reseach teams have started developing methods to predict
structures for these proteins. These methods use AlphaFold as a basic tool and use different
ways to manipulate the MSA input [42, 43, 44, 45, 46]. The idea is that conformational
information can be found within the MSA data, if they are handled correctly. Supported
for this idea comes from a study demonstrating that protein fold-switching can be achieved
though amino acid substitutions [47].

Carrier proteins are a type of transport membrane proteins that have 2 different con-
formations [48], an inward facing (IF) and an outward facing (OF) structure. The carrier
proteins can transport molecules across a cell membrane due to having these 2 different states,
this is illustrated in figure 2.4. These proteins are a good starting point to make predictions

8



2.4. TM-score

on since they only have 2 conformations, which only involve rearrangement of their trans-
mambrane region. Meaning that the two conformations are similar to eachother structurally.
Both conformations are also biologically important which means that they should be strongly
represented in MSA data. A dataset comprising of 16 high quality transport membrane pro-
tein structure pairs were curated in a dataset called IOMemP [49]. The dataset contained
PDB files, representing the structure, and fasta files, representing the amino acid sequence.
The sequences in the fasta files for the two conformations where not fully identical to each
other, which might make a difference for AlphaFolds predictions. The OPMemp dataset was
developed in order to benchmark different multi conformational protein prediction methods.

Figure 2.4: How Carrier proteins work

Glucose transporter with two conformations. A) Outward Facing(OF) conformation that lets a
glucose bind to the active site from outside the cell membrane. B) Inward Facing conformation(IF)

that lets the glucose be released into the cell interior. C) Start over the process by switching back to
OF state. The transmambrane region is the part of the protein that resides inside the cell

membrane.[48]

To be able to compare different alternative conformation prediction methods agains ea-
chother using the IOmemp dataset, a evaluation metric is needed. The standard evaluation
metric to use is the TM-score.

2.4 TM-score

Template modeling score (TM-score) is a topological assessment for the similarity of two
protein structures[50]. The scoring function used to calculate the TM-score can be seen in
equation 2.1. The function will go over the amino acids in both sequences one at a time
and calculate how similar their position is. The first amino acids of both sequences are first
compared, then the second and so on until the Lt pair. Lt is the nr of alinged amino acids in
the two proteins. Next lets look at what happens inside the summation symbol.
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2.4. TM-score

di is the distance between the ith matching pair of amino acids while d0 is set based on Lt

in order to normilize the distances. The expression 1

1+( di
d0
)
2 will approuch 0 when the distances

between the residue pairs get bigger while on the other hand approuch 1 when the distance
are closer together. The summation of this expression will therefore be closer to Lt the more
similar the two proteins are. The TM-score is lastly normilised to a nummber between 0 and
1 by deviding the summation by Lt.

d0 becomes bigger the bigger Lt is. This is intended to make TM-score length indepenednt,
thus making comparisions for TM-score between structures with different lengths possible.
This is however not entirely accurat since the constants in equation 2.2 was optimised using
structures with a length between 50-300. The length independent attribute thus only hold
true for structures whithin this lengths.

TM − score =Max

⎡⎢⎢⎢⎢⎢⎣

1

Ln

Lt

∑
i=1

1

1 + ( di

d0
)
2

⎤⎥⎥⎥⎥⎥⎦
(2.1)

d0 = 1.24 3
√
Lt − 15 − 1.8 (2.2)

Jinrui Xu and Yang Zhang made a statistical study of TM-scores using structures from the
Protein Data bank in 2010[51]. They found that two structures with a TM-score bigger then
0.5 are mostly in the same fold while the opposite is true for structures with a TM-score lower
than 0.5. Two structures with a score lower than 0.17 corresponds to random chosen unrelated
proteins. A TM-score of 1 means a perfect match. Things get a little more complicated when
evaluating multi-conformational proteins however.

To evaluate predictions for proteins with multiple conformations, a TM score for each
conformation is required. First evaluate how similar the predicted structure is compared to
the first conformation, then do the same for the second and so on. The conformation with the
highest TM-score is the one the prediction is most similar to. This can then be illustrated by
plotting the TM-scores against each other in a scatter plot. A good result for such a plot with
two conformation would show a line of dots where the two ends of the line is projected to a
high TM-score on either the x- or y-axis. The dots at the ends of the line are the predictions
for one of the two states. The dots inbetween these points are potential transition states. A
transition state is one of the conformation that a protein has to go though in order to transition
between one of its active conformation to another.
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3 Method

In all parts of the method the programming languige python was used. Python was used to
create scripts to launch MSA calculations on Sigma supercomputer, launch ALphaFold preic-
tion on Berzelius supercomputer, create TM-scores for the prediction, make MSA subsampling
and plot the prediction.

3.1 Data and Preprocessing

The source code for AlphaFold2 was downloaded from thier website. Files containing informa-
tion about the proteins structure and amino acid sequence where downloaded in the form of
pdb and fasta files from IOMemp GitHub page [10]. IOMemp contained 16 transport proteins
with two conformations each. A total of 32 fasta and PDB files where therefore downloaded,
one for each conformation. MSA files were then precomputed from these fasta files by run-
ning AlphaFold2 with -seq_only flag turned on. This was done to reduce the required cpu
computation when predictions were run, which is limited at the NSC Berzelius supercom-
puter at Linköping’s technical university. Another supercomputer cluster called Sigma was
thus used instead for this purpose. AlphaFold failed to generate a complete set of MSA files
for the 6gv1A structure, missing the bfd_uniref_hits.a3m file. To solve this issue the Al-
phaFold/Data/pipeline.py file was altered to ignore the faulty MSA file. This was only done
for the 6gv1A structure. Figure 3.1 shows all the proteins and there conformations in the
IOMemp data set.
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3.1. Data and Preprocessing

Figure 3.1: If and Of conformations of proteins in IOMemp dataset[49]
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3.2. Prediction

3.2 Prediction

Structure predictions using AlphaFold was carried out over the NSC Berzelius supercom-
puter using the precomputed MSAs as well as the fasta files from the IOMemp data set. All
predictions were run with model_preset=monomer_all and nstruct=100. This means that
AlphaFold used 5 different models for predicting the protein structure for the given fasta file.
100 relaxed and 100 unrelaxed predictions were made for each model, giving a total of 1000.
Predictions were made using both the fasta file for the IF structure as well as for the OF
structure. Predictions were made for the structures in the IOMemp dataset with different
MSA subsampling methods as well as with different AlphaFold settings.

Two different methods for subsampling the MSA data were used. The first approach is
an untargeted subsampling of the MSA data, which was achieved by randomly selecting a
subset of columns from the MSA matrix. All amino acids except for the first row is then set
to x, which indicate unambiguous. A subset consisting of 30 % of the MSA columns were
constructed this way. The second method is on the other hand a targeted subsampling of
the MSA data. The amino acid positions in the IF and OF pdb files were compared to find
regions that differ from each other between the two conformations. The comparison was done
using the protein data banks pairwise structure alignment tool, using TM-align. Noise was
then introduced in the MSA matrix based on the difference, where more noise was inserted at
areas with a bigger difference.

The difference between amino acids for the two conformations were saved in a vector,
where the index in the vector represents the amino acid number in the protein sequence. Each
amino acid in one of the sequences was given a value between 0 and 1, where 0 indicates no
difference while 1 indicates a big difference. To create this vector a dist maps for the IF and
OF structures were created. These distance map were then compared to eachother to get how
big the difference were between the two conformations. Two different vectors were for each
protein this way. One containing all amino acids in the IF fasta file and one containing all the
amino acids in the OF fasta file.

The next step for the targeted subsampling was using the created vectors to introduce
targeted subsampling in AlphaFolds MSA data. AlphaFold saves its processed MSA data in
a dictionary called processed_feature_dict, which can be found in the file pipeline.py[52]. To
reduce the runtime of the Evoformer, AlphaFold compresses the MSA data with a method
called clustering. N rows in the MSA matrix are selected as cluster centers. The distribution
of amino acids for surrounding rows are then calculated and saved for each column. Noise is
introduced into processed_feature_dict by randomizing these distributions. The noise vector
is used to determine how many of the N cluster centers will be tweaked with for each row.
For example, if entry 14, representing amino acid nr 14 in the amino acid sequence, in the
noise vector has a value of 0.7. Then 70% of the cluster centers for column 14 will have their
distribution randomized.

Predictions were made with AlphaFold using no MSA subsampling, untargeted MSA sub-
sampling and targeted MSA subsampling. For each of the different MSA subsampling methods
the following 4 different sets of settings were used; No template and no dropout, No template
and dropout, template and no dropout, template and dropout. This gave a total dataset of
12 different AlphaFold runs, labeled 1 to 12, for each conformation in the IOMemp dataset,
see image 3.2.

3.3 Evaluation

A pair of TM-scores were calculated for each prediction made by AlphaFold. One in comparison
with the IF pdb file from the IOMemp dataset and the other for the OF pdb file. Since
predictions were made using both the fasta files for the IF and OF structure, four sets of TM
scores were created for each protein in the IOMemp dataset. Two different plots were created
using the TM scores, box and scatter plots. 16 box plots were made for each AlphaFold setup,
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3.3. Evaluation

Figure 3.2: Format of result data

each containing a box plot for each of the 4 sets of TM scores. The second plot that was
created was a scatter plot for the IF Tm score and OF Tm score. The dots in the scatter
plot were also colored by their confident value. AlphaFold saves how confident it is in its
predictions as a score between 0 and 1. The closer to 1, the more confident. These scores are
saved in a nested python dictionary structure by AlphaFold for a prediction as a pickle file.
The brighter the color of the dot in the plot, the higher its associated confidence value.

The proteins in the IOMemp dataset have sizes ranging from 200 to 1100 amino acids. This
lies outside the range of 50 to 300 long proteins that the TM-score function was optimized for.
A set value of 3.5 for the d0 variable was manually set when calculating the TM-scores. This
will make the TM-scores for different proteins comparable.
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4 Results

4.1 Vanilla AlphaFold

Vanilla AlphaFold is defined in this repport as running AlphaFold with full MSA information,
no dropout and Template information. This gives AlphaFold the most information to work
with when predicting the protein structures and doesent introduce noise. In figure 4.1, 16
subplots illustrates box plots of the TM scores for the predictions made with vanilla AlphaFold.
Each subplot represents the result of one protein from the IOMemp dataset. The name of the
IF/OF structure for this protein is written in the title for each subplot. The result shown in
figure 4.1 contains 4 boxplots. IF1 and OF1 shows the TM-score from the prediction gained
when the fasta file for the IF structure was used as input for AlphaFold. The box plots for
IF2 and OF2 were on the other hand made using the OF fasta files.

Figure 4.2 also shows 16 subplots. However, these show scatterplots of the TM values from
the comparison to the IF structure against the TM values for the OF structure. The y axis
shows the IF TM-score while the x axis shows the OF TM-score. The TM scores used to
create this plot only used the predicted structures from when the IF fasta file was used with
AlphaFold2. The dots in the scatter plot were colored based on the confidence score AlphaFold
gave the corresponding prediction. The brighter the color of the dot the higher AlphaFolds
confidence score is. The value in the bracket which can be seen in the title of each subplot is
The TM score between the correct IF- and the correct OF structure. Both conformations has
correctly been predicted by AlphaFold if there are dots with values close to 1 on the y-axis
aswell as dots with values close to 1 on the x-axis. The best result is if a line of dots from
the top left corner down to the bottom right corner can be seen with values close to 1 one
both axis. Dots in the middle of this line represents transition states, which are conformations
that the protein need to go though when transitioning from one of the states to the other. All
scatter plots in the result should be interpeted in this way.
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4.1. Vanilla AlphaFold

Figure 4.1: Boxplot for TM scores
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4.1. Vanilla AlphaFold

Figure 4.2: Boxplots for predictions using Template information
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4.2. AlphaFold with noise

4.2 AlphaFold with noise

In the following subsections, four scatter plots will be presented. The TM score for the
OF structure, y-axis, is plotted against the TM score for the IF structure, x-axis. In these
plots predictions for full MSA information, untargeted MSA subsampling and targeted MSA
subsampling will be illustrated. Predictions with full MSA information will be plotted with
red dots, untargeted MSA subsampling will use blue dots and targeted MSA subsampling is
illustrated with green dots.

4.2.1 Template information
All predictions in figure 4.3 was carried out with Template information.

Figure 4.3: Predictions using Template information
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4.2. AlphaFold with noise

4.2.2 Template and Dropout turned on
All predictions in figure 4.4 was created with template informaion and the dropout setting
turned on.

Figure 4.4: Predictions using Template information and Dropout
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4.2. AlphaFold with noise

4.2.3 Template turned off
All predictions in plot 4.5 was carried out without Template information.

Figure 4.5: Predictions without template information

20



4.2. AlphaFold with noise

4.2.4 Template turned off and dropout turned on
All predictions in plot 4.6 was done without template information and dropout turned on.

Figure 4.6: Predictions without template information and dropout
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4.3. Close inspection of specific structures

4.3 Close inspection of specific structures

This Figure 4.7 shows all the predictions for the structures 7mjsX/7n98A. The first row shows
All predictions using untargeted MSA subsampling, the second show predictions using targeted
subsampling and the third shows predictions with full MSA information. The predictions in
the first column used no template information, the second used no template information and
dropout, the third used template information and the fourth used template information and
dropout. Figure 4.9 ,4.10 and 4.8 illustrate the same thing but for the structures 6e9nB/6e9oB,
6fhz/3vvsA and 6xmsA/6xmuA instead.

Figure 4.7: All Predictions for 7mjsX/7n98A
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4.3. Close inspection of specific structures

Figure 4.8: All Predictions for 6e9nB/6e9oB
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4.3. Close inspection of specific structures

Figure 4.9: All predictions for 6fhz/3vvsA
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4.3. Close inspection of specific structures

Figure 4.10: All predictions for 6xmsA/6xmuA
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5 Discussion

5.1 Results

The fasta files for the IF and OF structure in the IOMemp dataset were often not fully
identical. A few amino acids in the fasta files usually differ from each other. I therefore
wanted to investigate how much the predictions were affected using the IF or OF fasta file.

In figure 4.1 we can see that the predicted TM-score when using the fasta file for the
IF structure compared to using the fasta file for the OF structure look almost the same for
most proteins. This can be seen since the box for IF1 and IF2 look similar to each other for
most structures. The same is true for the boxes for OF1 and OF2. However, the TM-score
for subplots 5,8 and 15 are more spread out for the IF fasta files while the opposite is true
for subplot 16. This is due to the IF and OF fasta files having a bigger difference for these
structures. The more spread-out TM values means a bigger spread of the predictions which
increases the chance that we find transition states in-between the two predicted conformations.
Since the if fasta file has more spread-out TM-scores in general, the scatter plots in the rest
of section 4 will use the results from doing predictions with the IF fasta files. The figure 4.8
will instead use the prediction from the OF fasta file, since subplot 16 in figure 4.1 had nicer
TM-score for the OF file. The same general conclusion could be drawn from looking at the
box plots for AlphaFold runs with Template Dropout, No Template and No Template dropout
settings. Those plots were not included in the report to keep it shorter.

5.1.1 Can vanilla AlphaFold predict multi conformational proteins?
My first research question was if AlphaFold could predict multi conformational proteins when
run with full MSA information, Template information and no dropout. The results of these
predictions can be seen in figure 4.1 and 4.2.

Vanilla AlphaFold does not do a good job at predicting multi conformational proteins.
Only subplots 2, 4, 8, 9, 10, and 15 in fig 4.2 show promising results. This means that only 6
out of 16 structures show promising results. Out of the promising results only 4,8,9,15 show
predictions that could fit a negative linear regression line, which is the wanted outcome. 15
has outliers and 2 has a big gap in predictions.
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5.1. Results

These conclusions are also reflected in figure 4.1. The structures that had good predictions
have TM-scores that are high for both the IF and OF structures while the others get low
TM-scores for both the IF and OF structure or only get good TM-score for one of Them.

5.1.2 Does noise improve the predictions?
Introducing noise does improve predictions. In figure 4.3 predictions for the different MSA
subsampling methods are included in the plot. Now 10 out of 16 plots show promising results,
which is an increase of 4 plots. The new proteins that got a good prediction can be seen in
subplots 11,12,13 and 16. The proteins that vanilla AlphaFold where able to predict both
structures for have also improved. Either by decreasing the number of outliers, increasing the
TM score for either the IF or OF structure predictions or by increasing the nr of transition
state. Removing Template information and introducing dropout during prediction also seem
to improve the predictions if one looks at figure 4.4, 4.5 and 4.6. It is however hard to
easily say if there is a major difference between using dropout or excluding templates in these
figures. Looking at the figures in section 4.3 makes it easier to answer if dropout and template
information’s significant.

5.1.3 Which noise method works best?
The result of using different noise methods have varied heavily between different structures.
Figure 4.7, 4.8, 4.9 and 4.10 have been handpicked in order to show the four different scenarios
that occurred. Figure 4.7 shows a scenario where both structures were predicted regardless
of which MSA subsampling method was used. The second scenario can be seen in figure
4.8, where full MSA information performed poorly while both MSA subsampling methods
performed well. The third scenario can be seen in figure 4.9 where only the untargeted MSA
subsampling yielded a good result. The last scenario can be seen in figure 4.7 where no method
gave good results.

Untargeted MSA subsampling performs best out of the noise methods while Targeted
MSA subsampling comes in at a second place. This conclusion is based upon the fact that
untargeted subsampling is the only method that successfully predict both structures for a few
of the proteins. Targeted and no subsampling were never able to generate good results while
untargeted failed to do so. Dropout does improve the predictions, albeit not as much as the
MSA subsampling methods. This is most clearly illustrated in figure 4.8 subplot 10, where
dropout helps predict both structures. The most common result from dropout is however that
AlphaFold is able to find more transition states between the IF and OF structures with it
turned on. This can be seen when subplot 7 and 8 is compared in figure 4.8.

Running AlphaFold with or without templates usually yielded comparable results. Using
templates did however help find both structures for 6nc7A/6nc9A and 6gciA/4c9jB, which
can be seen if subplots 2 and 8 are compared in fig 4.5 and 4.3. The reason these two
structure predictions improve with templates while others don’t probably lie in the template
data AlphaFold is able to query after. If AlphaFold gets access to templates that resemble
both structures, it would not be surprising if it makes it easier to predict both structures.

An interesting question to ask is, why does AlphaFold fail to predict both structures for
some of the structures while succeeding at others. It does not seem to be any connection
between how similar the IF and OF structures are and AlphaFolds ability to predict both
structures. The figures in section 4.2 shows the TM-score between the IF and OF structures
above each subplot. Subplot 1 has a low TM-score of 0.39 and fails while subplot 4 also has
a low TM-score of 0.38 and succeeds. Subplot 6 has on the other hand a higher TM-score of
0.65 and fails while subplot 16 succeeds while also having a higher TM-score of 0.61. I also
looked into if there was any correlation between protein length and a successful prediction and
found none. My hypothesis to why some structures are successfully predicted while others
are not, comes down to the MSA data. Some structures might simply have more meaningful
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5.2. Method

information about the possible conformations within their MSA data. Figuring out if this is
the case is however very hard to do due to the nature of neural networks. It is impossible to
look inside the evoformer of AlphaFold and see what it has been able to conclude about the
MSA dataset.

5.2 Method

The method used in this thesis has both good replicability and reliability. The fasta and
PDB files used in this thesis is publicly available at IOMemps GitHub [10], the software that
calculates TM-scores is free to download, AlphaFolds2 source code has been made open sourced
and a computer with a gpu is needed to be run alphafold. Anyone with the right hardware
should therefore be able to modify AlphaFolds source code in order to make predictions with
MSA subsampling on the proteins in IOMemp.

The results generated by this method are stochastic. The MSA subsampling methods
was done with randomness, dropout selects random weights in AlphaFolds neural networks to
disable, AlphaFolds clustering of MSA data is formed with randomness and the template and
MSA data AlphaFold finds when querying databases will look different in the future when new
data is uploaded to said databases. The exact same predictions will therefore not be reached
if the method is rerun. Similar results should however be attained since 1000 predictions were
made for each dataset. Carrying out more predictions will eliminate the stochastic of the
results presented in this thesis to some extent. The result would of course have been even
more reliable if more predictions had been made, like 10 000. This would however increase
the time to generate the predictions, which is why it was decided that 1000 predictions were
satisfactory.

Plotting the TM-score of the predictions compared to the IF- against the OF-structure and
then manually analyzing the results by eye is not a reliable way to validate the results. There
was alot of data to analyze. Finding patterns and drawing general conclusions by analyzing the
48 scatter plots that were created to visualize the results is prone to human error. There is a
possibility that an expert with more experience in the subject would draw different conclusions
than i did. I was unable to find a more objective measurement for multi conformational protein
prediction results, which is why i used this method.
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6 Conclusion

This thesis has explored AlphaFold2s ability to predict protein structures for multi confor-
mational proteins as well as how different methods to introduce noise to the AI affects this
ability. Two different MSA subsampling methods, dropout during prediction and the exclusion
of template data was explored to this end. AlphaFold did a poor job of predicting multi confor-
mational proteins without introduced noise. Having noise introduced did however improve the
results. MSA subsampling was the most effective, especially the untargeted version. Dropout
also improved the results, albeit not as much. There was minor difference between using
template data or not, but for a few cases template data did help. The most successful com-
bination of settings with AlphaFold to make multi protein predictions is therefore untargeted
MSA subsampling with template data and dropout turned on.

Even with noise AlphaFold was not able to predict both the IF and OF structure for
all proteins that was examined in this thesis. My leading hypothesis is that the MSA data
for some of the proteins does not contain enough information for AlphaFold to infer both
structures. This is however hard to verify. There is therefore a lot of work left to do before
multi conformational protein prediction can be considered solved. Future work in the area
could be to increase the number of known structures for multi conformational proteins. A
bigger data set would be helpful in developing new and better methods. Trying out more
methods of MSA subsampling would also be a good idea since it was the most promising
method. Exploring a method to implement noise in the template data could also be a good
idea. AlphaFold has a distogram describing the distance distribution between amnio acid pairs
in the protein. There is potential to introduce noise here. Then there is also the possibility to
explore other methods of predicting proteins outside of AlphaFold2.
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