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Abstract

This project aims to develop a simulator for generating realistic data from vehi-
cles operating in underground mines, encompassing positional data and sensor
values of the velocity and angle. The project addresses the challenge of analyz-
ing the Hybrid Positioning algorithm within Mobilaris OnboardTM, a navigation
system for underground mines. The absence of the 100% ground truth for ve-
hicle positions in the post-analysis of sensor log files necessitates the creation
of this simulator. The project’s mission includes generating vehicle paths and
corresponding sensor readings, focusing on realism. Additional considerations
include introducing realistic noise and integrating the simulator’s output with
visualization tools. Furthermore, the project aims to develop a tool for com-
paring simulated sensor values with actual sensor data, facilitating algorithm
refinement and development. The project also incorporates time series analysis
to interpret the sensor data generated by the simulator. This approach is crucial
for understanding patterns and trends in the vehicle’s positional and velocity
data over time, providing valuable insights for refining the navigation algorithm.

Keywords:
Time series analysis, Navigation system, Underground mines, Post-analysis.
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Chapter 1

Introduction

1.1 Background

Mobilaris OnboardTM stands out as a valuable tool, providing guidance to
drivers navigating underground mines, similar to how GPS devices assist drivers
on the surface. A pivotal element of the Onboard product is the Hybrid Position-
ing algorithm, commonly called HybridP. This algorithm utilizes the vehicle’s
sensor values and readings from nearby Wi-Fi access points and Bluetooth Low
Energy beacons to determine the vehicle’s position within the mine as accu-
rately as possible.

In mining operations, when vehicles are equipped with Onboard drives, the
logs containing sensor values and algorithm parameters are recorded and stored
in a cloud service. However, a challenge arises in post-analysis because the log
files do not capture the vehicle’s precise position. This limitation stems from
the HybridP’s inability to ascertain the real position with 100% certainty. Con-
sequently, the absence of true positions challenges the team when comparing
and evaluating the positioning algorithm.

1.2 The mine

This thesis focuses on the Kristineberg mine in the Lycksele municipality in
Västerbotten County. The mining operations in the Kristineberg mine have
been ongoing since 1946 and it is known for extracting zinc, gold, silver, copper
and lead from its ore and waste rock. The mine road is a well-designed two-
way road with ample pockets strategically placed to enable smooth passing of
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2 Chapter 1. Introduction

oncoming traffic and it extends to a depth of 1350 meters.

1.3 Purpose
This study aims to create a simulator that generates realistic sensor data to-
gether with realistic positions. The simulator’s output will be logged in a format
consistent with the existing log files. While the log files encompass various cat-
egories of sensor values, extending beyond those illustrated in Figure 1.1, our
focus is specifically on generating velocity, angle and positions [x, y] for each
time step. The log files utilized in this thesis exclusively represent runs from
the Kristineberg mine. Notably, log files often exhibit varying quantities of sen-
sor values due to differences in the duration of drivers’ time spent in the mine.
In the case of the log file depicted in Figure 1.1, the driver’s total time in the
mine is nearly three hours.

hybridp.2b4fbc7a.2023-02-08.05_14_41

time angle directionInd hybridpStable nodeId prevNodeId speed x y

2023-02-08T07:47:52+01:00 -0.2117747 1 true 7633-7634_2 7633 36 2306 1645

2023-02-08T07:47:53+01:00 -0.2057652 1 true 7634-7635_0 7633-7634_2 34 2292 1648

2023-02-08T07:47:54+01:00 -0.2020589 1 true 7634-7635_2 7634-7635_0 33 2283 1650

2023-02-08T07:47:55+01:00 -0.18333082 1 true 7634-7635_5 7634-7635_2 31 2270 1652

2023-02-08T07:47:56+01:00 -0.23457345 1 true 7635-930_1 7634-7635_5 28 2260 1654

2023-02-08T07:47:57+01:00 -0.38740912 1 true 930-931_0 7635-930_1 25 2252 1656

2023-02-08T07:47:58+01:00 -0.2010675 1 true 930-931_1 930-931_0 24 2247 1657

2023-02-08T07:47:59+01:00 -0.2010675 1 false 930-931_1 930-931_0 24 2247 1657

2023-02-08T07:48:00+01:00 -0.60256547 1 true 931-933_4 931-933_3 25 2205 1673

2023-02-08T07:48:01+01:00 -0.64244664 1 true 933-934_0 931-933_4 29 2198 1678

2023-02-08T07:48:02+01:00 -0.65955037 1 true 933-934_1 933-934_0 29 2194 1681

2023-02-08T07:48:03+01:00 -0.6526592 1 true 933-934_2 933-934_1 28 2191 1684

2023-02-08T07:48:04+01:00 -0.704517 1 true 933-934_4 933-934_2 26 2184 1690

2023-02-08T07:48:05+01:00 -0.71235466 1 true 934-936_0 933-934_4 28 2177 1695

2023-02-08T07:48:06+01:00 -0.6950118 1 true 934-936_1 934-936_0 28 2174 1697

2023-02-08T07:48:07+01:00 -0.7138671 1 true 936-938_0 934-936_1 27 2164 1705

2023-02-08T07:48:08+01:00 -0.7094037 1 true 936-938_1 936-938_0 28 2161 1708

2023-02-08T07:48:09+01:00 -0.7168848 1 true 936-938_2 936-938_1 26 2158 1711

Figure 1.1: A segment of a log file from the Kristineberg mine, covering a
duration of 17 seconds. Angle is specified in radians, velocity in kilometers per
hour, x and y in meters.
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1.4 English support
ChatGPT has been utilized to improve the English.





Chapter 2

Theory

This chapter presents the theoretical background that underlies the method
chapter. The theory is essential for understanding the methodology used to
create the simulator, which is the main focus of this thesis.

2.1 Node graph
The node graph, illustrated in Figure 2.1, provides a simplified representation
of the mine map. Bold points represent node IDs, each possessing unique x
and y positions. It is important to emphasize that the separation between
consecutive node IDs does not exceed 5 meters. Furthermore, each node ID
may have a variable number of neighbors. A node ID with more than two
neighbors indicates the initiation of a subroad or a pocket.
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Figure 2.1: Segment within a made-up node graph.
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6 Chapter 2. Theory

2.2 Bézier curve

A Bézier curve is a parametric curve defined by a set of control points. The com-
prehension of a Bézier curve is based on the concept of convex sets. According
to [4], the definitions of a Bézier curve are as follows:

Definition 1. Let the control points be P0, P1,. . ., Pn. The convex hull formed
by the control points {Pi}ni=0 consists of all points that can be written as a convex
linear combination of {Pi}ni=0.

Definition 2. A Bézier Curve for any degree n is defined as

s(t) =

n∑
i=0

(
n

i

)
ti(1− t)n−iPi, t ∈ [0, 1]. (2.1)

Theorem 1. The endpoint interpolation properties of the Bézier curve are
s(0) = P0 and s(1) = Pn.

Theorem 2. The endpoint tangent properties are s′(0) = n(P1−P0) and s′(1) =
n(Pn − Pn−1).

Proof. Since

s(t) = (1− t)nP0 + nt(1− t)n−1P1 +

(
n−1∑
i=2

(
n

i

)
ti(1− t)n−iPi

)
+ tnPn. (2.2)

We can compute the derivative as

s′(t) = −n(1− t)n−1P0 + n
(
(1− t)n−1 − t(n− 1)(1− t)n−2

)
P1 + ntn−1Pn

+

(
n−1∑
i=2

(
n

i

)
(iti−1(1− t)n−i − ti(n− i)(1− t)n−i−1)Pi

)
. (2.3)

Inserting t = 0 gives

s′(0) = −nP0 + nP1 = n(P1 − P0) (2.4)

and inserting t = 1 gives

s′(1) = −nPn−1 + nPn = n(Pn − Pn−1). (2.5)
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Example 1. The red Bézier curve of order 2 in Figure 2.2 consists of 3 control
points.

Figure 2.2: Bézier curve of 3 control points.

The curve connects two endpoints, denoted as P0 and P2. The direction of
the tangent at point P0 is given by the blue dashed line that goes from P0 to P1.
Similarly, the direction of the tangent at point P2 is given by the blue dashed
line that goes from P1 to P2.

2.3 Stochastic process
The definition of a stochastic process is based on the concepts of probability
measure and sample space [8].

Definition 3. A stochastic process X(t) consists of an experiment with a prob-
ability measure P [ · ] defined on a sample space S and a function that assigns a
time function x(t, s) to each outcome s in the sample space of the experiment.

2.3.1 Stationary process

A stochastic process is stationary if the probability density function of any set
of samples does not vary in time. A stochastic process is, in a wide sense,
stationary if its mean function and correlation function do not change by shifts
in time.
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Definition 4. A stochastic process X(t) is stationary if and only if for all sets
of time instants t1, . . . , tm and any time difference τ ,

fX(t1),...,X(tm)(x1, . . . , xm) = fX(t1+τ),...,X(tm+τ)(x1, . . . , xm). (2.6)

Definition 5. A function X(t) is a wide sense stationary stochastic process if
and only if for all t,

E[X(t)] = µX and RX(t, τ) = RX(0, τ) = RX(τ), (2.7)

where RX(τ) is the autocorrelation function of the stochastic process X(t).

2.3.2 Gaussian process

The Gaussian process is a stochastic process in which every finite linear combi-
nation of a collection of stochastic variables is normally distributed. To under-
stand the Gaussian process, the definition of the Dirac delta function according
to [3] is needed.

Definition 6. X(t) is a Gaussian stochastic process if and only if
X =

[
X(t1) . . . X(tk)

]T is a Gaussian random vector for any integer k > 0
and any set of time instants t1, t2, . . . , tk.

Theorem 3. If X(t) is a wide sense stationary Gaussian process, then X(t) is
a stationary Gaussian process.

Definition 7. The Dirac delta function δ(t) is defined as having the following
properties

δ(t) = 0 ∀t , t ̸= 0 (2.8)

and ∫ ∞

−∞
h(t)δ(t) dt = h(0), (2.9)

for any function h(t) which is continuous on the interval [−∞,∞] .

Definition 8. W (t) is a white Gaussian noise process if and only if W (t) is
a stationary Gaussian stochastic process with the properties µW = 0 and the
autocorrelation function RW (τ) = η0δ(τ), where η0 denotes a positive scalar
and δ(τ) is the Dirac delta function.
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2.4 QQ plot
The quantile-quantile plot visualizes how well one empirical cumulative dis-
tribution follows another. To compare the distributions, the two cumulative
distribution functions are the same if and only if their quantiles are the same.
Following [1], the quantile point q for a random variable X is a point that
satisfies

P (X > q) = FX(q) = p, (2.10)

where FX is the cumulative distribution function (CDF) of X. We can find the
inverse of CDF since CDF is monotonically increasing. The QQ plot of two ran-
dom variables X and Y is defined to be a parametric curve C(p) parameterized
by p ∈ [0, 1]:

C(p) =
[
F−1
X (p), F−1

Y (p)
]
. (2.11)

Theorem 4. The QQ plot for two Gaussian distributions is a straight line.

Proof. Assume
X ∼ N(µ1, σ

2
1), Y ∼ N(µ2, σ

2
2).

Let Z ∼ N(0, 1) and Φ(z) = P (Z ≤ z). Denote q1 and q2 to be the pth quantiles
for X and Y respectively. Then we have

p = P (X ≤ q1) = P

(
X − µ1

σ1
≤ q1 − µ1

σ1

)
= Φ

(
q1 − µ1

σ1

)
. (2.12)

Hence, the explicit parameterized QQ plot is given by

q1(p) = µ1 + σ1Φ
−1(p) (2.13)

and
q2(p) = µ2 + σ2Φ

−1(p). (2.14)

The implicit form without Φ−1(p) is given by

q1 − µ1

σ1
=

q2 − µ2

σ2
. (2.15)

Rearranging the equation gives

q1 =
σ1

σ2
(q2 − µ2) + µ1. (2.16)

We can see that (2.16) is the equation for a straight line. The slope of the line
is given by the ratio σ1/σ2.
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2.5 Descriptive statistics
One way to describe the characteristics of a stochastic variable X is by its
moments. According to [2], the moments around the mean value are called
central moments and are defined as

(X − E[X])n, for n = 1, 2, 3, . . . . (2.17)

Central moments are denoted as

µn = E [(X − E[X])n] . (2.18)

2.5.1 Skewness
The skewness for a distribution is defined as the third standardized central
moment

cs =
µ3

σ3
=

E
[
(X − E[X])3

]
σ3

, (2.19)

where σ is the standard deviation. A positive skewness means the distribution is
skewed to the right, while a negative value indicates a leftward skew. A perfectly
symmetrical distribution, on the other hand, will have a skewness value of 0.

2.5.2 Kurtosis
The kurtosis for a distribution is defined as the fourth standardized central
moment

ck =
µ4

σ4
=

E
[
(X − E[X])4

]
σ4

. (2.20)

The kurtosis of a Gaussian distribution is 3. When the kurtosis exceeds this
value, indicated as ck > 3, the distribution is described as leptokurtic. Such
distributions are marked by a more pronounced peak and fatter tails than a
Gaussian distribution, signaling a greater occurrence of extreme values. Con-
versely, if the kurtosis is less than 3, represented as ck < 3, the distribution
is considered platykurtic. Compared to a Gaussian distribution, these distri-
butions are characterized by flatter peaks and slimmer tails, implying a lower
incidence of extreme values.

2.6 Fourier analysis and filters
To understand the concept of filters based on Fourier analysis, let us introduce
the Fourier and Laplace transform following [7].
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Let f be a function defined on all of R with values in C. The definition of
the Fourier transform of f is

F (w) =
1

2π

∫ ∞

−∞
e−jwxf(x) dx, (2.21)

where F : R → C and j is the imaginary number. Note that this assumes that
the integral of the right-hand side in (2.21) is convergent.

Let g be a complex-valued piecewise continuous function on [0,∞). The defini-
tion of the Laplace transform of g is

G(s) =

∫ ∞

0

e−stg(t) dt, (2.22)

where s ∈ R and the integral must converge.

If g is defined on all of R in that case, we assume that g(t) = 0 for every
t < 0. This assumption allows us to present a simple connection between Fourier
transform (2.21) and Laplace transform (2.22). The connection is

G(s) =

∫ ∞

0

e−stg(t) dt =

∫ ∞

−∞
e−j(−js)tg(t) dt = 2πF (−js), (2.23)

which is a helpful conclusion to understanding the relationship between Fourier
and Laplace transform.

2.6.1 Lowpass filter
A lowpass filter is used to filter away signals that are higher than the cutoff fre-
quency. Functional differences in frequency response arise depending on which
filter design is used. The lowpass filter that has been used in this thesis is the
Butterworth lowpass filter. The knowledge of filters that are described below,
following [6].

A transfer function describes the connection between input and output signals
in a linear time-invariant system. The general form of a transfer function is

H(s) =
bmsm + bm−1s

m−1 + · · ·+ b1s+ b0
ansn + an−1sn−1 + · · ·+ a1s+ a0

, (2.24)
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where m denotes the order of the numerator polynomial and n denotes the order
of the denominator polynomial.

The Butterworth filter is determined by a transfer function in the s-domain,
which should contain only poles and no zeros; therefore, its transfer function in
a general form can be concluded from (2.24) as

HBut(s) =
b0

ansn + an−1sn−1 + · · ·+ a1s+ a0
. (2.25)

For the normalized Butterworth filter, the cutoff frequency is ωc = 1 rad/s and
the coefficient of the numerator is b0 = 1. The coefficients of the denominator
are

a0 = 1 (2.26)

and
ak = [cos((k − 1)π/2n)/sin(kπ/2n)]ak−1, (2.27)

for k = 1, 2, 3, . . . , n.

Let us consider the relationship between Butterworth polynomials (2.25) and
the filter’s amplitude response. As (2.26) and (2.27) shows, for n = 1, the
Butterworth filter’s transfer function is

HBut1(s) =
1

s+ 1
. (2.28)

The transfer function (2.28) to its jω-domain form is

HBut1(jω) =
1

jω + 1
. (2.29)

If we assume that ω is the ratio between the current frequency, ωx, and ωc, as

ω(rad/s) =
ωx

ωc
, (2.30)

then, the general form of the amplitude response of the Butterworth lowpass
filter is

|HButn(jω)| =
1√

1 +
(

ωx

ωc

)2n , (2.31)

for n = 1, 2, 3, . . . , N . For Butterworth lowpass filter of order 1 gives N = 1. As
the filter’s order N increases, we will gradually approach the ideal characteristic
even more closely.
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2.7 Simple Moving Average
The Simple Moving Average (SMA) is a popular technique used in time series
analysis. As per its definition, SMA calculates the average of values over specific
time periods. According to [5], the definition formula is

SMA =
p1 + p2 + · · ·+ pn

n
, (2.32)

where n is the number of total periods and pn is the value at period n.





Chapter 3

Method

To address the purpose of the thesis, the initial step involves generating the
[x, y] positions of a vehicle navigating in the mine. Subsequently, realistic sensor
readings corresponding to these simulated positions are generated. Let v∗t and
θ∗t represent the simulated sensor values for velocity and angle at time points t,
respectively. Additionally, let vt and θt denote the true values for velocity and
angle at the same time points. The simulated sensor values are defined by the
following equations:

v∗t = vt + ϵ1t, for t = 1, 2, 3, . . . , n (3.1)

and
θ∗t = θt + ϵ2t, for t = 1, 2, 3, . . . , n, (3.2)

where ϵ1t represents the velocity noise and ϵ2t represents the angle noise for
time points t.

The process of generating realistic sensor values can be segmented into two
distinct problems. The first problem involves creating realistic vt and θt values.
The second problem revolves around generating ϵ1t and ϵ2t values. Introducing
noise is crucial to enhance the realism of the simulated sensor values, ensuring
that velocity and angle exhibit slight variations in each run. Additionally, it
is essential for the simulator to ensure that the output produces realistic sen-
sor values in conjunction with realistic positions when executed from the main
function. Therefore, evaluation methods of historical data are required.

Kari, 2023. 15
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3.1 The primary road
The primary road is a modified segment of the node graph derived from the
Kristineberg mine, as depicted in Figure 3.1. In this adapted version, subroads
have been eliminated. End nodes have one neighbor, while other nodes have
two neighbors. The inception of the primary road occurred at the mine opening
and was truncated, where the road began to exhibit excessive divergence. This
truncation gathers more consistent data, ensuring that vehicles travel along the
same route. The objective is to obtain more precise measurements for historical
data time series analysis.

Figure 3.1: The primary road.
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Figure 3.2: Part of the primary road.

Upon closer examination of the primary road curves, as illustrated in Figure
3.2, it becomes evident that they possess excessive steepness, rendering them
impractical for vehicular navigation and giving rise to unrealistic driving sce-
narios. These steep curves arise from the linear assumption between each node
ID.

3.2 Simulate the roadway
The simulation of the drive incorporates the use of Bézier curves. The rationale
behind employing Bézier curves is to mitigate the presence of unrealistically
steep sections in the primary road. Applying Bézier curves to the primary road
transforms these steep curves into smoother trajectories, resulting in a more
realistic driving experience.

3.3 Improve the roadway
To enhance the adherence of the Bézier curves to the primary road, the primary
roads are segmented into multiple paths and individual Bézier curves are gen-
erated for each path. Nevertheless, a challenge arises as the connection points
between these paths may exhibit unevenness. We refer to Figure 3.3, where two
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Bézier curves have been applied to a made-up road, highlighting the potential
for uneven connection points.
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(a) Two Bézier curves.
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(b) Zooming in at the connecting point of the
two Bézier curves.

Figure 3.3: Two Bézier curves of the made-up road.

To ensure the smoothness of each path, it is necessary for the control points
before and after the connecting point, as well as the connecting point itself, to be
linear. Let the initial control points be denoted as p1 = [x1, y1] and p2 = [x2, y2].
To achieve linearity, it is necessary to introduce the new points p∗1 = [x∗

1, y
∗
1 ] and

p∗2 = [x∗
2, y

∗
2 ], as shown in Figure 3.4. The specifics of these points are detailed

by the following equations:
y∗1 = k2x

∗
1 +m2 (3.3)

and
y∗2 = k1x

∗
2 +m1, (3.4)

where k being the slope coefficient and m indicating the intersection point with
the y-axis. The coordinates of the connecting point between each path are
denoted as [x0, y0]. The coefficient k1 represents the slope of the line from p1 to
[x0, y0], while k2 represents the slope of the line from [x0, y0] to p2. The distance
between the connecting point and p∗1, denoted a, is given by

a =
√
(x0 − x∗

1)
2 + (y0 − y∗1)

2. (3.5)

Similarly, the distance between the connecting point and p∗2, denoted b, is given
by

b =
√
(x0 − x∗

2)
2 + (y0 − y∗2)

2. (3.6)
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The objective is to compute p̄1 and p̄2, where

p̄1 =
[x∗

1, y
∗
1 ] + [x1, y1]

2
(3.7)

and
p̄2 =

[x∗
2, y

∗
2 ] + [x2, y2]

2
. (3.8)

By upgrading the control points p1 and p2 to p̄1 and p̄2 respectively, each Bézier
curve achieves smoothness, as depicted in Figure 3.5.

Figure 3.4: Two Bézier curves of the made-up road with the help points.

(a) Two Bézier curves with the new control
points.

3.4 3.6 3.8 4.0 4.2 4.4 4.6

x-position [m]

5.6

5.7

5.8

5.9

6.0

6.1

6.2

6.3

6.4

y
-p

os
it

io
n

[m
]

(b) Zooming in at the connecting point of the
two Bézier curves with the new control points.

Figure 3.5: Two Bézier curves of the made-up road with the new control points.
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(a) Bézier curve of a curve of the primary road. (b) Bézier curve of another curve of the pri-
mary road.

Figure 3.6: Bézier curves of the primary road. The Bézier curves have the order
of 4.

Figure 3.6 illustrates the implementation of Bézier curves for the primary
road, incorporating the transformation of control points as outlined in Equations
(3.7) and (3.8). The resulting red curves represent the composite Bézier curves
formed by connecting each segment of the primary road. Notably, the smooth
curves of the red line contribute to a realistic driving experience. This red line
is subsequently designated as the roadway.

3.4 Calculate the position, angle and velocity
Within the simulator, a function is dedicated to computing the coordinates [x, y]
based on the given velocity and angle. Another function determines the velocity
and angle from the specified position [x, y]. The transition from velocity and
angle to [x, y] is achieved by utilizing the polar coordinate system,[

xi+1, yi+1

]
= ri+1

[
cos(θi+1), sin(θi+1)

]
. (3.9)

Transitioning from [x, y] to velocity and angle

ri+1 =
√
(xi+1 − xi)2 + (yi+1 − yi)2 (3.10)

and
θi+1 = arctan

(
yi+1 − yi
xi+1 − xi

)
. (3.11)

It is important to note that the first set of values represents the origin.
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3.5 Create a realistic velocity
To model a realistic velocity profile, it is essential for the velocity to decrease
during curves and increase on straight segments. To achieve this, a new angle,
denoted as γ, is introduced and defined by

γk+1 = 180− |θk+1 − θk|. (3.12)

Here, γk represents the angle between two consecutive lines, as Figure 3.7 illus-
trates. The purpose of γk is to provide a straightforward means of determining
whether the vehicle is traversing a curve or a straight line. In a straight line,
γk assumes a value of 180 degrees, whereas a smaller value indicates a slight
difference in angle between successive lines, signifying a curve.

Figure 3.7: Definition of γ and θ.
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Figure 3.8: Relationship between the velocity and angle γ.

The roadway comprises twenty thousand coordinates, resulting in nearly
identical γ values. A linear relationship is established between the velocity and
the angle γ to generate a realistic velocity profile, as depicted in Figure 3.8. The
linear equation is given by:

vk+1 =
maxv − minv

maxγ − minγ
(γk+1 − minγ) + minv. (3.13)

This linear relationship ensures that even slight variations in the angles γ result
in significant changes in velocities, effectively causing a decrease in velocities
during curves. The constants maxv and minv can be easily adjusted based on
the desired values, with the evaluation models of historical data from log files
guiding the selection of optimal parameter values. Similarly, maxγ and minγ

represent the highest and lowest angle values within the roadway, respectively.

To implement the values of the roadway, we study the equation

ti =

∣∣[xi, yi
]
−
[
xi+1, yi+1

]∣∣
vi

≃ 1. (3.14)

Equation (3.14) evaluates the coordinates after a one-second interval and marks
a bold point on the roadway. The choice of one second corresponds to the log
files’ timestep.
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Figure 3.9: Simulated values for a section of the roadway without using SMA.

The spacing between consecutive points in Figure 3.9 signifies the distance
covered by the vehicle in one second. A smaller distance between bold points
indicates a lower velocity, while a longer distance reflects a higher velocity.
Although Figure 3.9 illustrates a decrease in velocity within curves, achieving
more realistic simulated values necessitates a more pronounced reduction in
velocity.

3.6 Simple Moving Average on velocity
We apply Simple Moving Average (SMA) to the velocity data to obtain more
realistic simulated values, see Figure 3.10. The application of SMA results in
a new velocity vector that is diminished in size compared to the original full-
size velocity vector. To ensure compatibility in size, a modified SMA approach
is required. This modification involves centering the new velocity vector and
filling in values both before and after the vector. These additional values can
be identical to the nearest existing values.
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Figure 3.10: Simulated values for a section of the roadway using SMA.

3.7 Model the noise in angle
The examination of the noise in the angle involved the utilization of the But-
terworth filter. The output is divided into raw, noise and filtered signals by
incorporating historical angle data into the Butterworth filter. The objective
of the lowpass filter is to simulate realistic steering wheel movement. Achieving
realistic steering wheel movements entails testing different filters, adjusting fil-
ter orders and selecting appropriate cutoff frequencies. To ensure realism, the
filter must eliminate irregular curves where the wheel’s movement is excessively
constrained.
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Figure 3.11: The raw signal, where the angle is defined in the interval [−π, π].
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Figure 3.12: Filtering the raw signal, where the angle is defined in [−∞,∞].
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Figure 3.11 illustrates that the raw signal is exclusively defined within the in-
terval [−π, π], with a vertical jump occurring whenever the raw signal surpasses
this interval. In Figure 3.12, the raw signal is converted to achieve continuity
within the [−∞,∞] interval. Upon applying the filter, it becomes evident that
the noise introduced by the filter exhibits an increase at curves and a decrease
at straight lines. No rationale is provided for the variation in noise between
straight lines and curves. For the purposes of this thesis, it is assumed that the
noise should remain independent of the substantial movements of the steering
wheel.
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Figure 3.13: Filtering the raw signal of small turnings.

In investigating the noise, we excluded segments where the driver did not
engage in significant turns and concatenated those segments consecutively. This
process seamlessly connected the concluding part of one nearly straight line to
the commencement of the next, repeating this procedure for all relevant sections.
Subsequently, applying a Butterworth filter allowed for the exploration of the
noise. See Figure 3.13 for a visual representation of this method.
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(a) QQ plot Gaussian distribution.
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(b) QQ plot Student’s t-distribution.

Figure 3.14: QQ plot of the angle noise from one log file.
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(a) QQ plot Gaussian distribution.
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(b) QQ plot Student’s t-distribution.

Figure 3.15: QQ plot of the angle noise from another log file.

Utilizing the QQ plot facilitates the determination of the noise distribution.
Figures 3.14 and 3.15 reveal that the QQ plots of the Gaussian distribution
exhibit fat tails. This phenomenon is attributed to the over-dispersion of the
data, where an increased frequency of outliers results in fatter tails. Over-
dispersed data is commonly characterized by a leptokurtic profile, indicating a
higher prevalence of extreme values, see Section 2.5.2. Moreover, Figures 3.14
and 3.15 suggest a better alignment with the Student’s t-distribution, implying
a potential Student’s t-distribution for the data. Built-in functions are used to
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determine the degrees of freedom, which indicate how many values in the results
can vary independently.

3.8 Model the noise in velocity

The method used to model noise in velocity differed from that for angle noise.
In the log files, velocity values are recorded as integers. However, the resulting
velocities are expressed in decimals when filtering the raw signal. This implies
that the noise is solely a consequence of rounding these values to the nearest
integer.

Evaluation methods are essential for modeling velocity noise. Through eval-
uation methods, we can compare simulated values with historical data, aiming
to mimic the historical values closely. The evaluation method depicted in Figure
4.1 illustrates that simulated values in straight lines appear excessively uniform.
Given that historical data are integers, simulated values should exhibit more
variability. To address this, white noise is introduced. The selection of white
noise parameters, specifically a standard deviation of 0.3 for simulated values
equal to or greater than 6.5 m/s and a standard deviation of 0.1 for values less
than 6.5 m/s, has been determined through testing. Incorporating this white
noise into the simulated values enhances their resemblance to historical data, as
shown in Figure 4.2.

3.9 Adding the noise to the simulated values

For each simulated point [xi, yi], which includes noise, the precise distance and
angle to the next noise-free simulated point [xi+1, yi+1] are determined. Subse-
quently, noise in both velocity and angle is applied to these updated values of
distance and angle, measured from the point [xi, yi] to [xi+1, yi+1]. This process
of recalculating the distance and angle at each step is crucial to prevent the cu-
mulative effect of noise, which might otherwise result in a significant deviation
from the intended path on the roadway.

3.10 Evaluation methods

Evaluation methods of historical data are required to know if the simulated val-
ues are realistic. Two different evaluation methods have been employed. The
first evaluation method analyzes the velocity for a section based on the primary
road for the simulated values and the historical log files. The section commences
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and concludes at the same node ID on the primary road. The methodology aims
to identify corresponding matches between the node IDs in the historical data at
the start and end segments of the primary road. The starting segment encom-
passes the primary road’s first 50 node IDs, while the ending segment comprises
the last 50 node IDs. If a node ID in the historical data is found in both the ini-
tial and final segments, the primary road is segmented based on these matches.
In cases of multiple hits in each segment, the segmentation involves the first
hit in the initial segment and the last hit in the final segment. The cut in the
primary road induces changes in the Bézier curves and simulated values in the
evaluation method for each historical log file. The distance from the first to
the last hit can be easily calculated from the velocities by integrating them. To
facilitate a clearer analysis of the first evaluation method, it is necessary to plot
the distance from the start on the x-axis against the velocity on the y-axis.

The second evaluation approach also assesses velocity along a path defined by
the primary road. Unlike the first evaluation method, which examines velocity
along a path starting at the beginning and ending at the end of the primary
road, the second evaluation method analyzes velocities for each node ID on the
primary road. Since log files often include multiple driving instances, extracting
velocities for the corresponding node ID on the primary road from various log
files results in multiple velocities for each node ID.

However, the simulated values are contingent on Bézier curves, rendering the
approach used to identify each node ID for historical data ineffective for simu-
lated values. The algorithm calculates the smallest Euclidean distance between
positions for each ti from Equation (3.14) and each node ID on the primary
road. Subsequently, the algorithm identifies the node ID with the smallest Eu-
clidean distance and matches it with the corresponding simulated values. To
facilitate a more comprehensive analysis using the second evaluation method,
plotting the index of each node ID of the primary road on the x-axis and the
corresponding velocity of each node ID on the y-axis is essential.

For a more thorough examination of the simulated and historical values us-
ing the second evaluation method, it is beneficial to compute the mean and
standard deviation for historical velocities at each node ID. Furthermore, there
is a considerable demand for confidence intervals regarding historical velocity.

In the analysis of the QQ plot for each node ID, the data points exhibit similar
characteristics when compared against both the Gaussian and the Student’s t-
distributions. This similarity is largely attributed to each dataset’s high degrees
of freedom. However, it’s important to note that the data do not align perfectly
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with a Gaussian distribution. Additionally, since each node ID comprises fewer
than 30 data points, the application of the Central Limit Theorem (CLT) is less
straightforward. The CLT typically requires a larger sample size to assume that
the sampling distribution of the mean will be approximately Gaussian. Despite
this, for the purpose of this analysis, confidence intervals are calculated using
the Student’s t-distribution. The formula for the confidence interval is:

Iµ =

(
x̄− ta/2(n− 1)

s√
n
, x̄+ ta/2(n− 1)

s√
n

)
, (3.15)

where x̄ represents the sample mean, n is the number of data points and s is
the standard deviation.
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Results

This chapter presents the output of the simulator.
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Figure 4.1: The first evaluation method from one log file without the noise.
The orange line represents the simulated values, while the blue line depicts the
historical data from a single log file. The simulated values are implemented with
the Bézier curves of order 4.
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Figure 4.1 illustrates the first evaluation method from one log file without
the noise of the simulated values. In the first evaluation method, the simulated
values and historical data start at the same node ID and finish at the same node
ID of the primary road. Initially, the curves of historical data and simulated
values closely align. However, a mismatch between the two becomes apparent
in the curve from the distance 1750 meters from the start.
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Figure 4.2: The first evaluation method from one log file with the noise. The
orange line represents the simulated values, while the blue line depicts the his-
torical data from one log file. The simulated values are implemented with the
Bézier curves of order 4.

Figure 4.2 depicts the same scenario as Figure 4.1 but with the introduction
of noise. By incorporating white noise into the simulated values, it is evident
that the simulated values more closely emulate the historical data. This is
attributed to the fact that historical data are integers, implying that simulated
values should exhibit more oscillation than the historical data.
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Figure 4.3: The second evaluation method from several log files. The light
points represent velocities for each node ID. The red points denote the average
velocity for each node ID, while the green points represent simulated values
corresponding to the node IDs with measured values. The simulated values are
implemented with the Bézier curves of order 4.

The second evaluation method in Figure 4.3 examined velocities for each
node ID along the primary road. It is noticeable that there are differences
between the simulated values and the average velocity of each node ID. This
dissimilarity arises from the choice of parameters maxv and minv in Equa-
tion (3.13), which have been set higher than the average historical velocities
due to the lower historical velocities during braking caused by oncoming traffic.
Furthermore, the simulated values exhibit appropriate braking and acceleration
compared to the historical velocity average. However, it is observed that the
simulated values tend to have slightly steeper acceleration and braking profiles
compared to the average historical velocities.
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Figure 4.4: The 95% confidence interval for the second evaluation method,
considering multiple log files, is depicted. Light points represent velocities at
each node ID, while orange points denote the 95% confidence interval. Green
points represent simulated values corresponding to the node IDs with measured
values. The simulated values are implemented with the Bézier curves of order
4.

The orange points in Figure 4.4 represent the 95% confidence interval for
velocities at each node ID, calculated using Equation (3.15). Green points rep-
resent simulated values corresponding to the node IDs with measured values.
The simulated values have been aligned with the upper bound of the confidence
interval to account for potential braking in the presence of oncoming traffic.
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Figure 4.5: The second evaluation method from several log files. The light
points represent velocities for each node ID. The red points denote the average
velocity for each node ID, while the green points represent simulated values
corresponding to the node IDs with measured values. The simulated values are
implemented with the Bézier curves of order 6.

Figure 4.5 illustrates a scenario similar to Figure 4.3 but with the Bézier
curves of order 6. Notably, the simulated values result in earlier and more
intense braking as well as delayed and more pronounced acceleration compared
to the simulated values in Figure 4.3.
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Figure 4.6: The second evaluation method from several log files. The light
points represent velocities for each node ID. The red points denote the average
velocity for each node ID, while the green points represent simulated values
corresponding to the node IDs with measured values. The simulated values are
implemented with the Bézier curves of order 8.

Figure 4.6 illustrates a scenario similar to Figure 4.3 but with the Bézier
curves of order 8. Notably, the simulated values result in earlier and more
intense braking as well as delayed and more pronounced acceleration compared
to both the simulated values in Figures 4.3 and 4.5.
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Figure 4.7: The second evaluation method from several log files. The light
points represent velocities for each node ID. The red points denote the average
velocity for each node ID, while the green points represent simulated values
corresponding to the node IDs with measured values. The simulated values are
implemented with the Bézier curves of order 2.

Figure 4.7 depicts a scenario similar to Figure 4.3 but with the Bézier curves
of order 2. Notably, the simulated values exhibit excessively narrow slopes in
curves, leading to delayed braking and earlier acceleration compared to Figures
4.3, 4.5 and 4.6.
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Discussion

In the first evaluation method, the simulated values and historical data start
at the same node ID and finish at the same node ID of the primary road. The
evaluation algorithm allows the driver to make varied turns within the specified
interval. Figure 4.2 illustrates a closer alignment between simulated values and
historical data initially, where the acceleration and braking patterns in the sim-
ulated values closely match those in the historical data.

However, the driver executes abrupt and intense braking in multiple instances,
likely prompted by the identification of oncoming traffic. Notably, at the brake
spot, approximately 1750 meters from the start, the driver maintains a low ve-
locity for an extended period, indicative of navigating through a small pocket
to make room for other vehicles. In such scenarios, it is common for the vehi-
cle to maneuver slowly backward and forward within the pocket before exiting.
This additional mileage within the pocket results in the historical data covering
a slightly longer distance than the simulated values. Furthermore, the driver
briefly sustains a low velocity at the hard brake spot around 1600 meters from
the start. This behavior is likely a response to the oncoming driver needing to
navigate through the pocket.

In the second evaluation model, the alignment between simulated values and
historical velocities is evident in Figures 4.3 and 4.4. Notably, numerous data
points in the historical velocity of each node ID are exceptionally low due to
oncoming traffic. This aspect is considered when selecting the parameters maxv

and minv in Equation (3.13). The objective is to ensure that simulated values
surpass the average historical velocity of the node ID, aligning with the upper
limit of the confidence interval.
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Regrettably, the acceleration and braking remain slightly too steep. This can
be attributed to the higher count of node IDs compared to simulated values,
resulting in incomplete results for each node ID. Additionally, the second evalu-
ation model does not differentiate between how vehicles navigate curves. Given
the asymmetry of curves, distinct driving behaviors exist when a vehicle enters
a curve instead of exiting one. Another notable observation is the considerable
variation in the velocity of each node ID in the historical data, stemming from
different vehicles traveling at distinct velocities. For instance, a truck must
maintain a lower curve velocity than a car.

The impact of the Bézier curves order brings about variations in the simu-
lated values as illustrated in Figures 4.3, 4.5, 4.6 and 4.7. The Bézier curves
with an order below 4 yield curves with excessively narrow slopes, leading to
delayed braking and premature acceleration. Conversely, the Bézier curves with
an order exceeding 4 result in overall early and intense braking, coupled with
delayed and forceful acceleration. The optimal outcome is achieved with the
Bézier curves of order 4, where simulated values exhibit well-timed braking and
acceleration.

The assessment techniques reveal that the simulator produces realistic sensor
data along with realistic positions. Nonetheless, assessing the simulated val-
ues against historical data proves challenging, given the significant variations in
historical data stemming from various factors such as oncoming traffic, diverse
vehicles and distinct driving styles present in multiple log files.



Chapter 6

Future research

Although the simulated values appear realistic, further research is necessary to
determine how they compare to the historical data. One possible avenue of
research is to examine the direction of the drivers in each node ID of the sec-
ond evaluation method to identify when they align with the simulated values.
Additionally, creating a simulator that is tailored to different vehicles would
be beneficial, as the historical velocities exhibit significant variation, as demon-
strated in the second evaluation model. Finally, another area of future research
would involve developing a simulator that can accurately identify the optimal
order of the Bézier curve for each curve to generate realistic sensor values.
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