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Abstract

Classification of data from repeated measurements is useful in various disci-
plines, for example that of medicine. This thesis explores how classification
trees (CART) can be used for classifying repeated measures data. The reader is
introduced to variations of the CART algorithm which can be used for classify-
ing the data set and tests the performance of these algorithms on a data set that
can be modelled using bilinear regression. The performance is compared with
that of a classification rule based on linear discriminant analysis. It is found
that while the performance of the CART algorithm can be satisfactory, using
linear discriminant analysis is more reliable for achieving good results.
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Sammanfattning

Klassificering av data från upprepade mätningar är användbart inom olika disci-
pliner, till exempel medicin. Denna uppsats undersöker hur klassificeringsträd
(CART) kan användas för att klassificera upprepade mätningar. Läsaren intro-
duceras till varianter av CART-algoritmen som kan användas för att klassificera
datamängden och testar prestandan för dessa algoritmer på en datamängd som
kan modelleras med hjälp av bilinjär regression. Prestandan jämförs med en klas-
sificeringsregel baserad på linjär diskriminantanalys. Det har visar sig att även
om prestandan för CART-algoritmen kan vara tillfredsställande, är användning
av linjär diskriminantanalys mer tillförlitlig för att uppnå goda resultat.
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Chapter 1

Introduction

The classification problem refers to the problem of finding to which of a set of two
classes an input vector belongs to [3]. A problem of this kind can be solved by
constructing a function g, such that g(x) ∈ S, where x is an observation vector
of a sample with unknown class label and S = {1, 2} is a set of class labels [1].
This function is called a classifier and is constructed based on training data,
which is a set of measurements (x, y), where y is the class label of a sample x.

The decision tree algorithm (CART), first introduced in 1984 by Breiman et
al. [6], works by identifying a series of binary split points in a data set that are
used to separate the data into different classes. Due to its simplicity and being
easy to interpret, the algorithm is one of the most commonly used classification
models [6]. The traditional CART algorithm as presented in [1] does not consider
dependence between the variables, which in cases where the data consists of
multiple measurements collected from the same samples or objects at different
time stamps, and consequently does not capture this property. Collection of
this kind of data, also referred to as repeated measurements data, is common
in various disciplines, including medicine, finance and environmental studies.
An example of this in the field of medicine is to classify tumours as benign or
malignant based on its growth in size, as the classification of the tumour affects
the required treatment for the patient.

Repeated measures data of multiple samples within the same class can be
modelled according to the Growth Curve model, also known as the bilinear
regression model. This model describes the change of a dependent variable over
time [5].

The focus of this thesis is to explore how decision trees can be used to
classify repeated measures data that follow the Growth Curve model, as well as
estimating how well it can perform on a given data set. The suggested solutions
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2 Chapter 1. Introduction

for this problem will be compared with a method which uses linear discriminant
analysis to classify the data.



Chapter 2

Theory

The following chapter describes the necessary theory to understand the results
presented in Chapter 3.

2.1 Modelling the data

A data set used for this thesis can be described as a p × n matrix X =
(x1, · · · ,xn), where n is the number of individuals and p is the number of
repeated measurements of a certain characteristic of each individual. Let each
measurement in t = (t1, t2, ..., tp) be a variable of the data used for constructing
a decision tree. For each individual in X there will then be a set of measurements
xT
i = (xi,t1 , ..., xi,tp) = (xi,1, ..., xi,p) which will be referred to as the measure-

ment vector of an individual. In addition, xj is the acquired measurement for
the sample at a time j.

Assume that the p measurements on each individual are multivariate normal
distributed with a covariance matrix Σ and that the measurements between
different individuals are independent [5]. Each individual belongs to one of two
groups, and the growth of the measured property of each group can be modeled
as a polynomial of degree q − 1. Then the mean for each group can be written
as

µi = β0i + β1it+ β2it
2 + . . .+ β(q−1)it

q−1, i = 1, 2. (2.1)

The Growth Curve model is for this set of data then given by

X = ABC + E, E ∼ Np,n(0,Σ, I),

Holmberg, 2024. 3



4 Chapter 2. Theory

where the first n1 rows of X correspond to the measurements of samples be-
longing to group one and the rest of the rows belonging to group two, A is a
p×q within individual design matrix and C is a 2×n between individual design
matrix and are defined as

A =


1 t1 · · · tq−1

1

1 t2 · · · tq−1
2

...
...

. . .
...

1 tp · · · tq−1
p

 , C =

(
1′
n1

0′
n2

0′
n1

1′
n2

)
, (2.2)

where n1 and n2 are the number of samples from group one and two, respectively.
In matrix C, 1′

ni
and 0′

ni
are vectors of ones and zeroes with length ni.

The matrix B is a q × 2 parameter matrix such that

B =
(
β1 β2

)
=


β01 β02

β11 β12

...
...

βq1 βq2

 .

The parameter matrix B and the covariance matrix Σ are not always known
and must be estimated by using for example the maximum likelihood estimator
[4]. If A and C have full rank, the maximum likelihood estimators for B and
Σ are given by

B̂ = (A′S−1A)−1A′S−1C′(CC′)−1,

and
Σ̂ =

1

n
(X−AB̂C)(X−AB̂C)′,

where S = I−C(CC′)−1C [4].
The two groups can be described by their probability density functions f1(x)

and f2(x). A likelihood based decision rule is then to assign a sample x to Group
1 if

p1f1(x) > p2f2(x) (2.3)

holds true and to Group 2 otherwise. Here, p1 and p2 are the prior probabilities
that an individual belongs to groups 1 and 2, respectively. For the purpose of
this thesis, assume p1 = p2. The functions f1(x) and f2(x) are functions given
by

fi(x) = (2π)
p
2 |Σ|− 1

2 exp{1
2
tr{Σ−1(x−Aβi)(x−Aβi)}}. (2.4)

Given (2.3) and (2.4) the linear classification function is given by

L(x;β1,β2,Σ) = (β1 − β2)
′A′Σ−1x− 1

2
(β1 − β2)

′A′Σ−1A(β1 + β2).
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Hence, the plug in classification rule is that x is classified to group 1 if L(x; β̂1, β̂2, Σ̂) >
0 and to group 2 otherwise. For more details see [4].

2.2 Decision Trees
Decision trees are classifiers constructed by repeatedly splitting a training data
set into two subsets, which both contain at least one sample [2]. These subsets
will be referred to as internal nodes and the training data as the root node. The
aim of each split is to make the samples in the consecutive subsets more similar
than in the parent subset. After enough splits, all samples in a node will belong
to the same class, and the algorithm will not do any more splits. Each split of
a node corresponds to a rule where one or a combination of the features xt is
compared to a threshold τ .

2.2.1 Impurity function
The empirical probability that a random sample (x, y) in node k containing n
samples, belongs to class 1 and 2 can be given by

πkm = P (y = m,x ∈ k) =
1

n

n∑
i=1

1(yi = m) where m ∈ {1, 2}.

Using these probabilities, it is possible to define the impurity of a node as a
measurement of the number of distinct classes the samples in a node belong to
and with what proportions [1]. A function that measures the impurity of a node
Q(k) is therefore such that Q(k) is the largest when all classes 1 and 2 have
equal proportions in k and 0 when all samples in k belong to the same class.

There are several possible functions for Q(k). One possible function to use
in classification problems is the the gini index [2] given as

Q(k) =
∑

m∈{1,2}

πkm(1− πkm).

There are other possible impurity functions, but it is not necessarily the case
that the choice of impurity function has a great impact on the final tree [2].

Considering a node k, which has a possible split s that divides it into kl and
kr. A given proportion pl of the samples in k will go to kl and a proportion pr
into kr. It is then possible to define a measurement for how good the split is as
the decrease in impurity,

∆Q(s, k) = Q(k)− plQ(kl)− prQ(kr).
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2.2.2 Finding the best split of a node
The best split s for a node k is one that yields the greatest decrease in impurity
[1]. To find s, define a set K of possible binary splits. In general K consists
of thresholds corresponding to all distinct values for all variables. This means
that for each variable t in a data set, the algorithm checks the value for each
sample. Every value that does not already exist in K for the specified variable
is added to K.

For each sample, the algorithm checks if the value x at the given variable t is
greater or equal to the threshold c, where c is a value in K corresponding to t.
If the inequality holds true for given sample, the sample will belong to a subset
kr and else to subset kl. For each possible split s, the decrease in impurity is
calculated and the split with the greatest decrease in impurity is chosen as the
best split for a given node.

Example 2.2.1. To illustrate, consider a node with the data shown i Table 2.1.
The set of possible thresholds K would be each of the unique values for each of
the variables j. Then to find the best split, the algorithm would, for each value
c in K, check if xj ≥ c, where xj is the value of a sample corresponding to a
given variable. This threshold is then used to categorize the samples into two
nodes. For example, from table 2.1, we can see that a value in K corresponding
to variable x1 is 4. The algorithm then asks if the value x1 ≥ 4 for a given
sample. If it is true, the sample x belongs to kl and to kr otherwise.

Table 2.1: Example data consisting of labelled data with two variables.
Sample 1 2 3 4 5 6 7 8 9 10
j = 1 1 2 2 2 4 2 3 5 5 7
j = 2 3 1 2 5 3 4 6 3 4 1
Group 1 1 1 1 1 2 2 2 2 2

The resulting subsets the threshold 4 for variable 1 are kl = {5, 8, 9, 10} and
kr = {1, 2, 3, 4, 6, 7}. The decrease in impurity for this split is given by

∆Q(s, k) =
1

4
− 4

10
· 3
16
− 6

10
· 8
36

=
1

24

This is repeated for each value in K until the largest possible ∆Q(s, k) is found.

Considering that the variables in repeated measures data are dependent, the
general method of finding the best split is likely to not give the best results.
Instead, a split on a combination of the variables might lead to a better classifier.
Breiman et al. [1] suggest three methods of how to combine variables to make
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such a split. Two of these; to search for a best linear combination split (CART-
LC algorithm), and to add new variables, might be useful for classifying repeated
measures data.

The procedure of finding a best linear combination is that for each non-pure
node there is a set of coefficients a = (a1, ..., aT ) such that the sum of squares of
the coefficients is 1. The best split, that yields the greatest decrease in impurity,
is assumed to be of the form

T∑
i=1

aixti ≤ τ,

where τ ranges over all possible values and a is the corresponding best set of
coefficients. This method is suggested for data with a strong linear structure
[1]. The algorithm for finding the best split of linear combination of a node
is shown in Algorithm 1. A benefit of the decision tree algorithm is that it is

Algorithm 1 CART-LC algorithm
L = 0
while TRUE do

L = L+ 1
for Repeated measurements t in X do

Let the current split sL be v ←
∑T

t=1 atxt such that v ≤ τ
for γ in {−0.25, 0, 0.25} do

Search for the δ that maximizes the goodness of the split
v − δ(at + γ) ≤ τ

end for
Let δ∗, γ∗ be the combination that resulted in the best split.
Let at = at − δ∗, τ = τ − δ ∗ γ∗

end for
Change τ to maximize the goodness of sL. Keep at constants.
if |∆Q(sL) = Q(sL−1)| ≤ ϵ then

Exit While-loop
end if

end while

possible to introduce a large number of variables and select the best variables
to classify the data. These variables can correspond to aspects or properties of
the data that were difficult to detect using only the original variables. There is
no obvious method of adding new features to the data, and it instead relies on
previous understanding of the nature of the data [1].
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2.2.3 Using a tree for classification

Once a tree has been constructed with a set of terminal nodes k̃, a class m ∈
{1, 2} can be assigned to each terminal node k ∈ k̃. The class assigned to a
given terminal node is the class m that maximizes the probability a random
sample in a terminal node k belongs to the assigned class. In the case that the
proportions in k are equal, an arbitrary class can be chosen.

The performance of a classifier is determined by how well it can predict the
class of unlabeled samples. A simple way to estimate the performance is to cal-
culate the accuracy for a set of samples that has not been used for constructing
the classifier. The accuracy is given by the sum of correctly predicted samples
divided by the total number of samples used for estimating the performance.

2.2.4 Finding the right sized tree

A decision tree that continues to split nodes until all terminal nodes are pure
nodes will produce good results on the training data, but is unlikely to produce
equally satisfying results when tested on a new set of samples. This happens
as training data usually contains information which is not useful for predicting
the class. Since the amount of samples in an impure node is limited, there can
be cases where a split is found even if it does not hold true for the data set
as a whole. To avoid such a split from occurring and possibly decreasing the
accuracy of the model, the size of the tree should be limited.

There are different suggestions for finding what sized tree will lead to the
highest accuracy. A possible solution to avoid this problem is to set a threshold
γ and deciding not to split a node if the decrease in impurity was less than γ.
This solution is, however, unsatisfactory [1], as a split with a small decrease in
impurity may be followed by a split that has a large decrease in impurity.

It can instead be argued that pruning is a satisfactory method to determine
the right size of the tree [1]. The first step in pruning is to grow a sufficiently
large tree Tmax. For each set of parent node and descendant nodes, the decrease
in impurity is calculated, and the nodes are merged for the set with the smallest
decrease in impurity. This gives a new tree T ∗ with a set of nodes T̃ ∗ and an
overall misclassification cost

R(T ) =
∑
k∈T̃∗

n(k)Q(k),

where n(k) is the number of samples in a node k and Q(k) is the impurity of a
node k. The process is repeated until the tree consists of 1 node and the tree
with the lowest misclassification cost is selected as the best tree.
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Bootstrap Aggregating

A suggested method for improving the accuracy of a tree structured classifier
is to use ensemble methods [2]. The main idea of ensemble methods is to use
the average of multiple classifiers in order to reduce the variance in the set of
observed data. This thesis will use an ensemble method which is closely related
to the CART algorithm; boostrap aggregating.

In boostrap aggregating, commonly known as bagging, classifiers are con-
structed using different training data sets. A given training data set used in the
bagging algorithm is a sample from the original training data set with replace-
ment [3]. The data sets are constructed using the bootstrap algorithm [2], in
accordance to the pseudocode depicted in Algorithm 2 .

Algorithm 2 The Algorithm for Boostrap
Data: X = {xi, yi}ni=1

for i in 1, ...n do
Sample l uniformly on the set of integers 1, ..., n
Set x̃i = xl and ỹi = yl

end for
Return {x̃i, ỹi}ni=1

On each of the data sets, a decision tree is trained and returned, which is
seen in Algorithm 3. Finally, when predicting a new sample, the final prediction
is the average of the predicition from all of the classifiers, as seen in Algorithm
4.

Algorithm 3 The Algorithm for Boostrap Aggregating
Data: X = {xi, yi}ni=1

Z is a user-defined constant.
for z in 1, ...Z do

Run the algorithm for bootstrap to obtain a sample data set X(z)

Learn a decision tree on data set X(z)

end for
Return Decision trees trained on Z data sets.
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Algorithm 4 The Prediction using Boostrap Aggregating Algorithm
Data: Z tree models and test data x
for z in 1, ...Z do

Predict ŷ(z)(x) using tree z
end for
Return ŷ(x) by averaging the values of ŷ(z)(x)

This chapter presented the Growth Curve model and the theoretical back-
ground to variations of classification trees as well as the equation of the linear
classification function. How well different classification trees perform when ap-
plied to a simulated data set will be evaluated by comparing the accuracy of
different decision trees with the accuracy of the linear classification function.



Chapter 3

Results

This chapter presents the results from applying the theory described in Chapter
2 onto a simulated data set. In Section 3.1, the simulated data set and the results
from constructing decision trees using 20 samples are presented. In Section 3.2,
the same algorithms are applied to a data set consisting of 100 samples, and in
Section 3.3 a greater number of samples is used. Section 3.4 presents the results
based on using further derived variables to construct decision trees.

3.1 Simulation of data and CART algorithm us-
ing 20 samples

The growths of two groups were simulated, where the growths of the means of
each group are as described in (2.1) with the parameter matrix

B =


2.7 3.8
1.0 0.3
−0.2 −0.1
0.01 0.01

 , (3.1)

and for repeated measurements at t = 1, 2, · · · , 10, the within individual
design matrix A is given by

A =

1 1 · · · 1
...

...
. . .

...
1 10 100 1000

 . (3.2)

The model of the two groups corresponding to the matrices in (3.1) and (3.2)
is depicted in Figure 3.1.

Holmberg, 2024. 11



12 Chapter 3. Results

Figure 3.1: True models of simulated data with 10 consequtive measurements.

It is visible from Figure 3.1 that the groups are more similar in the interval
2 ≤ t ≤ 5 and diverge at t = 1 and t ≥ 6, with the groups diverging more as t
increases.

For 10 individuals from each group, the between-individual design matrix C
is given by

C =

(
1′
10 0′

10

0′
10 1′

10

)
.

For this model, let the covariance matrix be

Σ =


1.0 0.5 0.52 · · · 0.5p−1

0.5 1.0 0.5 · · · 0.5p−2

...
...

...
. . .

...
0.5p−1 0.5p−2 0.5p−3 · · · 1.0


which corresponds to setting the covariance of two consecutive variables to
cov(t, t + i) = 0.5i for i = 0, · · · , 9. Finally, given the model above, the re-
peated measurements for 20 samples were simulated. The growth curves of the
simulated samples are seen in Figure 3.2.

In Figure 3.2, it seen that while the recorded values at time t9 and t10 differ
between the two groups, the groups are not easily distinguishable at earlier
values of t.
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Figure 3.2: Simulated data using the true model in (3.1) and (3.2).

With the 20 simulated samples used as training data, it is possible to con-
struct a decision tree for classifying the samples. The rpart() function from
the rpart package 1 was used in Rstudio to construct a classification tree, with
default values. Decision trees were constructed using the first 6, 8 and 10 con-
secutive measurements as variables.

An example of a classification tree using all 10 measurements is shown in
Figure 3.3. The tree in Figure 3.3 consists of a single split at t = 9. As the two
groups are linearly separable at this time, the chosen variable is not unexpected.
However, since the two groups differ more from each other at t = 10, it might
have been a more desirable variable to choose for classifying the samples. The
reason for why the split is not at the latter time is likely due to t = 9 and t = 10
resulting in equally good accuracy when tested on the provided training data
and t = 9 simply being the first variable that was tested, or it was a random
choice between the two variables.

The tree structure was similar for 8 and 6 measurements. In both cases, the
tree consisted of a single split at times 8 and 6 respectively. Since the difference
between the groups increases when t increases, it is reasonable that the split for
each of the classification trees is when t is the latest. Furthermore, since the
difference between the groups is smaller when t is smaller, it can be expected

1https://cran.r-project.org/web/packages/rpart/rpart.pdf
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Figure 3.3: Classification tree constructed using 20 samples of training data and
10 consecutive measurements.

that the accuracy of the trees decreases as less repeated measurements are used.
The classification tree using the CART-LC algorithm was constructed using

the ODT () function from the ODRF package 2. The function uses the algo-
rithm described in Algorithm 1 and results in a classification tree using linear
combinations of variables. Classification trees using each of the bootstrap ag-
gregating algorithms presented in Algorithms 2, 3 and 4 were also constructed,
and the corresponding accuracy was estimated. The accuracy of each of the
models was tested by simulating an additional 5000 samples from each group,
predicting to which group the samples belong and measuring how many times
the models predicted the correct group. The results of the accuracy for the
different methods can be seen in Table 3.1

When simulating the data, it is possible to state the covariance between con-
secutive variables. This is represented by a covariance matrix and might have
an impact on the accuracy of the classifier. To see how big of an impact the
dependence has on the performance of the classifier, the decision trees were con-
structed and evaluated for training data sets simulated with different covariance

2https://cran.r-project.org/web/packages/ODRF/ODRF.pdf
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matrices

Σ =


1.0 ρ · · · ρp−1

ρ 1.0 · · · ρp−2

...
...

. . .
...

ρp−1 ρp−2 · · · 1.0

 ,

for different ρ.
The results in Table 3.1 show that using decision trees with a training sam-

ple size of 20 can produce models where the accuracy of the classification is
almost comparable to that of a linear discriminant analysis. From these results,
however, it does not appear to be the case that modifying the dependence be-
tween the variables has an impact on the accuracy of the decision tree. The
number of repeated measurements used for the classification has an impact on
the accuracy for the given models. This can be compared with the results of the
linear discriminant analysis, in which the accuracy of the classification increases
as the covariance between the variables increases.

Whether the decision tree is a good classifier is highly dependent on the
training data, which would explain why some decision trees performed signifi-
cantly worse when the covariance between the variable was changed. It can also
explain why some decision trees have an accuracy below 0.5, as it is a possible
outcome if the training data used for constructing the decision tree does not
reflect the data accurately.

An additional issue was that due to the small number of training data sam-
ples, the classifier from the CART-LC algorithm was such that all samples were
classified as the same class. This is reflected in the results seen in Table 3.1,
as the estimated accuracy for the models using the CART-LC algorithm are
around 0.5 regardless of the number of repeated measurements used.

3.2 CART algorithm using 100 samples

It is expected that if more training samples are used for constructing the model,
the accuracy of the classifier will increase. When constructing a tree using a
100 as the training sample size, the decision tree overall performed better when
classifying the data. This is mainly due to more training data providing a better
estimate of the chosen threshold as well as decreasing the probability that the
training data does not reflect the data that is measured. The results are seen
in Table 3.2.

Figures 3.4 shows an example of what a CART-LC decision tree can look like
graphically. In Figure 3.4, the variable proj1 is −0.175t2 + 0.033t3 + 0.015t6 +
0.069t9 − 0.982t10. There were, however, cases when no combination of vari-
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Table 3.1: Classification accuracy of different methods using 20 samples of train-
ing data. The methods tested are the standard CART algorithm (CART), the
bootstrap aggregating algorithm (Bagging), the CART tree using a linear combi-
nation of variables (CART-LC) and linear discriminant analysis for the growth
curve model (LDA for GCM). Each of the algorithms is tested for different
values of dependence between the repeated measurements and for 10, 8 and 6
consecutive measurements.

Cov (t, t+ 1) CART Bagging CART-LC LDA for GCM
10 repeated measurements, t = 1, 2, ..., 10

0.1 0.919 0.978 0.507 0.996
0.2 0.933 0.933 0.507 0.993
0.3 0.631 0.632 0.507 0.989
0.4 0.985 0.986 0.507 0.986
0.5 0.876 0.835 0.507 0.985
0.6 0.993 0.920 0.507 0.981
0.7 0.894 0.894 0.507 0.981
0.8 0.925 0.921 0.507 0.995
0.9 0.960 0.960 0.507 0.995

8 repeated measurements, t = 1, 2, ..., 8
0.1 0.607 0.743 0.499 0.868
0.2 0.923 0.911 0.499 0.855
0.3 0.623 0.623 0.499 0.850
0.4 0.688 0.771 0.499 0.842
0.5 0.772 0.817 0.499 0.842
0.6 0.727 0.834 0.499 0.845
0.7 0.504 0.586 0.499 0.853
0.8 0.783 0.825 0.499 0.878
0.9 0.700 0.813 0.499 0.932

6 repeated measurements, t = 1, 2, ..., 6
0.1 0.567 0.589 0.494 0.640
0.2 0.343 0.490 0.494 0.643
0.3 0.586 0.772 0.494 0.644
0.4 0.546 0.657 0.494 0.653
0.5 0.430 0.699 0.494 0.662
0.6 0.652 0.605 0.494 0.662
0.7 0.745 0.666 0.494 0.678
0.8 0.542 0.561 0.494 0.770
0.9 0.595 0.721 0.494 0.772
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Table 3.2: Classification accuracy of different methods using 100 samples of
training data. Each of the standard CART algorithm (CART), the bootstrap
aggregating algorithm (Bagging) and the CART tree using a linear combination
of variables (CART-LC) is tested for different values of dependence between the
repeated measurements and for 10, 8 and 6 consecutive measurements.

Cov (t, t+ 1) CART Bagging CART-LC
10 repeated measurements, t = 1, 2, ..., 10

0.1 0.963 0.990 0.982
0.2 0.976 0.979 0.972
0.3 0.981 0.979 0.993
0.4 0.972 0.976 0.995
0.5 0.979 0.979 0.992
0.6 0.978 0.978 0.992
0.7 0.981 0.981 0.970
0.8 0.978 0.978 0.951
0.9 0.981 0.990 0.991

8 repeated measurements, t = 1, 2, ..., 8
0.1 0.823 0.826 0.891
0.2 0.830 0.812 0.833
0.3 0.815 0.828 0.876
0.4 0.827 0.790 0.584
0.5 0.813 0.830 0.849
0.6 0.826 0.715 0.837
0.7 0.824 0.760 0.771
0.8 0.860 0.856 0.822
0.9 0.860 0.856 0.832

6 repeated measurements, t = 1, 2, ..., 6
0.1 0.586 0.583 0.632
0.2 0.610 0.622 0.788
0.3 0.580 0.580 0.468
0.4 0.574 0.571 0.648
0.5 0.564 0.583 0.731
0.6 0.602 0.621 0.403
0.7 0.589 0.591 0.701
0.8 0.611 0.626 0.735
0.9 0.636 0.676 0.814
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ables occured for classifying the data. This was particularly the case when 10
repeated measurements was used to classify the data, in which case the linear
combination tree often consists of the final measurement as the variable where
a good threshold can be found and no other variable was considered necessary.

Figure 3.4: A CART-LC tree produced when using 100 samples of training data.

3.3 CART algorithm on a higher number of sam-
ples

The linear combination of variables algorithm was tested on more training data
than 100 samples and the results are seen in Table 3.3. The results seem to
imply that by increasing the number of training samples, the accuracy of the
model increases. However, this is not necessarily the case, as in Table 3.3 for
the covariance 0.5 and 0.6 the accuracy of the model decreases when increasing
the number of training samples from 400 to 600. The reason for not attempting
to use more training samples was that the time it took to simulate training data
was too long.
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Table 3.3: Classification accuracy of CART-LC trees for 200, 400 and 600 sam-
ples of training data. The CART-LC algorithm is tested for different values of
dependence between the repeated measurements 10 consecutive measurements
(t = 1, 2, ..., 10).

Cov (t, t+ 1) 200 400 600
0.1 0.977 0.994 0.995
0.2 0.984 0.991 0.992
0.3 0.969 0.992 0.982
0.4 0.986 0.952 0.988
0.5 0.953 0.988 0.980
0.6 0.955 0.978 0.970
0.7 0.983 0.978 0.982
0.8 0.981 0.948 0.983
0.9 0.982 0.995 0.995

3.4 CART algorithm using more features
As described in the Chapter 2, another method for attempting to account for the
dependence in between the variables is to add new features to the data set which
would account for this dependence. Some of the features that were added were
the coefficients of an estimation of a linear fit for the repeated measurements
and the coefficients of an estimation of a quadratic fit, cubic fit, and quartic fit
in addition to the predicted values for each of these estimates. The estimated
accuracy for the models constructed using these features are seen in Table 3.4.
The main idea was to use the repeated measurements to find derived features
that would better describe the difference between the two groups.

The results in Table 3.4 show that the accuracy of the trees constructed
with training data consisting of more variables is not clearly better than when
no additional information was included. Using 10 repeated measurements, the
results were, in fact, lower than when only the original measurements were used.
This could be due to the additional variables being good at distinguishing the
data samples within the training data, but not the data set as a whole. For 8
and 6 measurements, the accuracy of the decision trees in Table 3.4 were overall
higher than those in Table 3.2, which seems to imply that some of the additional
information was useful, but not as good as using the last measurement.
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Table 3.4: Classification accuracy of trees using 100 samples as training data.
The standard CART algorithm (CART) and the bootstrap aggregating algo-
rithm (Bagging) is tested for different values of dependence between the repeated
measurements and for 10, 8 and 6 consecutive measurements. The training data
includes variables such as the coefficients for the estimation of a polynomial fit.

Cov(t, t+ 1) CART Bagging
10 repeated measurements

0.1 0.988 0.937
0.2 0.978 0.982
0.3 0.500 0.501
0.4 0.970 0.970
0.5 0.977 0.977
0.6 0.978 0.978
0.7 0.979 0.979
0.8 0.978 0.978
0.9 0.980 0.980

8 repeated measurements
0.1 0.841 0.848
0.2 0.829 0.806
0.3 0.820 0.834
0.4 0.832 0.779
0.5 0.809 0.819
0.6 0.831 0.823
0.7 0.830 0.756
0.8 0.871 0.899
0.9 0.871 0.899

6 repeated measurements
0.1 0.604 0.556
0.2 0.537 0.544
0.3 0.572 0.537
0.4 0.500 0.542
0.5 0.569 0.587
0.6 0.607 0.621
0.7 0.689 0.506
0.8 0.596 0.613
0.9 0.648 0.701
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Discussion

When comparing the results of the standard CART algorithm, boostrap ag-
gregating and the CART-LC algorithm with those of the linear discrimination
analysis for classification of repeated measurements, it becomes evident that the
linear discrimination analysis works better than decision trees for classifying us-
ing a smaller training data set. Even if cases did occur where the decision tree
algorithm performed better than the linear discrimination analysis, the results
showed that a decision tree is more likely to perform worse. However, there
might be decision tree algorithms which have not been explored in this thesis
which would work well for small sample sizes as well.

The results of this thesis show that for the given true models, with 10 sim-
ulated measurements, it is possible to, by using the standard CART algorithm,
construct a function that correctly classifies samples into one of two classes up
to 98.1% of the time. By extending the CART algorithm and using bootstrap
aggregating, the accuracy of the final function can be at least 99% for certain
data sets. It is, by using the CART-LC algorithm, possible to increase the
accuracy of the final model to 99.5%.

As increasing the size of the training data tends to increase the accuracy
of the decision tree, it is likely possible to further improve upon the accuracy
in all cases. Similarly, an increased number of repeated measurements would
probably improve the performance of the model. From the results in this thesis,
it is not possible to estimate to what extent the accuracy can be improved using
any of these suggestions.

An unexpected result is that the accuracy of the decision trees using linear
combination did not necessarily increase when using more samples. A possible
explanation for this result is that though the number of samples is few, the
training data provided the information needed for the classifier to be as good
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as it can be. This argument would also mean that the misclassified samples are
outliers, and it would not be possible for the decision tree to classify the samples
correctly regardless of the tuning performed on the splits.

The benefit of decision trees is that they are, given that bagging is not used,
easy to interpret. In some instances, this benefit may outweigh the fact that
they are not the classifiers with the highest accuracy. This means that decision
trees may still be a good choice as a classifier, particularly when there is a larger
amount of data.

A limitation of this thesis is that only one true data model was used for
testing the classifiers. The model was such that the difference between the
classes is large when t = 10. To be able to generalize the results of this thesis,
it would be needed to test the results for a variety of data sets.

There are expansions to the basic CART algorithm that may produce better
results. These are for example using the random forest algorithm. In addition,
there may exist properties of the data which were not explored in this thesis.
These explorations are, however, outside of the scope of this thesis.
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