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Abstract

This thesis explores text-to-SQL generation using Large Language Models within a finan-
cial context, aiming to assess the efficacy of current benchmarks and techniques. The cen-
tral investigation revolves around the accuracy of the BIRD-Bench benchmark and the ap-
plicability of text-to-SQL models in real-world scenarios. The research explores why mod-
els are not showing significant performance improvements on this benchmark.

The methodology adopted involved a thorough manual analysis of inputs and outputs
from two distinct text-to-SQL models: a baseline zero-shot model and the DIN-SQL model,
within the financial domain of the BIRD-Bench benchmark. The purpose was to identify
and understand the limitations inherent in the dataset and the models themselves.

Findings revealed that the best performing model on the original data was the DIN-
SQL model, achieving an accuracy of 40.57%, a performance that raises questions due to
its limited efficacy. Upon manual analysis, various types of noise were identified in the
dataset, including string capitalization errors, faulty true SQL queries, grammatical errors,
mismatches between questions and database schema, and language ambiguities. This led
to the curation of two new datasets: one with cleaned questions and SQL queries, and
another with only cleaned SQL queries, correcting a total of 52/106 data points.

Subsequent runs of the models on these new datasets showed that data quality signifi-
cantly impacts model performance. The completely cleaned dataset nearly eliminated the
performance gap between the two models, with all models showing a 10%-17% increase in
accuracy. Interestingly, on the dataset with only cleaned SQL queries, the performance of
the models flipped with the basic zero-shot model now outperformed the DIN-SQL model.

Further analysis of BIRD-Bench’s development set across different domains indicated
the presence of noise in other areas of the benchmark as well. This suggests that while
BIRD-Bench closely resembles real-world scenarios, it falls short in offering a detailed un-
derstanding of model performance against different types of noise.

The thesis introduces the concept of classifying noise in natural language questions,
aiming to prevent the entry of noisy questions into text-to-SQL models and annotate noise
in existing datasets. Experiments using GPT-3.5 and GPT-4 on a manually annotated
dataset demonstrated the viability of this approach, with classifiers achieving up to 0.81
recall and 80% accuracy.

Additionally, the thesis explored the use of LLMs for automatically correcting faulty
SQL queries. This showed a 100% success rate for specific query corrections, highlighting
the potential for LLMs in improving dataset quality.

The implications of these findings are substantial, emphasizing the need for noise-
specific benchmarks and enhanced annotations in datasets like BIRD-Bench. This research
underscores the importance of addressing specific noise challenges and developing more
sophisticated text-to-SQL models.

In conclusion, the thesis offers significant insights into the performance and limitations
of text-to-SQL models, setting the stage for future research. This includes creating spe-
cialized datasets, enhancing annotations, focusing on identified noise types, developing
user-input guardrails, and improving text-to-SQL models overall. Such advancements are
expected to significantly improve the functionality and practical application of text-to-SQL
technologies across various industries.
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Keywords

• Chaining: In the context of language models and machine learning, the process of link-
ing multiple models or tasks in a sequence to achieve more complex objectives or out-
puts.

• Classification: Process in machine learning for recognizing, differentiating, and under-
standing ideas or objects.

• Data Quality: The measure of data’s condition, often in terms of accuracy, complete-
ness, reliability, and relevance.

• Few-Shot Learning: Machine learning with a very small amount of training data.

• Language Model: Models that understand or generate human language.

• Large Language Model: Advanced, complex language models with a large number of
parameters.

• Machine Learning: Field of computer science dealing with algorithms and statistical
models for task execution without explicit instructions.

• Noise: Unwanted or irrelevant data or disturbances that can affect model performance
or data quality.

• Prompt: An input or instruction given to a language model or computer program to
elicit a response or an action.

• Prompt Engineering: The practice of crafting inputs or instructions to effectively inter-
act with and guide language models.

• SQL (Structured Query Language): A domain-specific language for programming and
managing data in a relational database management system.

• Text-to-SQL: Converting natural language text into Structured Query Language
queries.

• Zero-Shot Learning: A machine learning approach where a model makes predictions
without explicit training on the task.
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Abbreviations

• API: Application Programming Interface

• BIRD-Bench: BIg Bench for LaRge-scale Database Grounded Text-to-SQL Evaluation

• GPT: Generative Pre-trained Transformer

• LLM: Large Language Model

• NLP: Natural Language Processing

• SQL: Structured Query Language
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1 Introduction

In an era where data-driven decisions play an essential role, the potential of Large Language
Models (LLMs) offers exciting opportunities. This research is a joint venture between SEBx,
an independent innovation studio initiated by SEB, and Combient Mix, a firm specializing in
data science and analytics which is part of Silo AI, Europe’s largest private AI lab. It explores
the integration of LLMs with structured data sources or more specifically SQL databases. The
study assesses the ability of LLMs to communicate with relational databases through gener-
ating SQL queries, and what the limitations are for current techniques. It also explores how
well current benchmarks and datasets measure the success of such models, and investigates
how they can become more robust towards noise in natural language questions. The over-
arching goal is to explore state-of-the-art technology to transform banking operations and
applications. By enabling users to interact with databases through natural language queries,
one removes the need for expert knowledge effectively extending the power of data analysis
to a broader audience.

1.1 Motivation

In recent years, the emergence of LLMs, including platforms like ChatGPT, has fundamen-
tally altered global perspectives on artificial intelligence and machine learning, reshaping
their perceived impacts on society. The versatility of LLMs encompasses a wide array of
tasks and domains, encouraging numerous organizations within various industries to ex-
plore their potential applications. However, these models exhibit limitations for a number of
tasks, including but not limited to arithmetic solutions [1], factual retrieval [2] and updating
their world knowledge [3]. Such challenges have lead to the emergence of a distinct research
domain dedicated to exploring the potential of integrating LLMs with external tools [2]. No-
tably, efforts to improve factual retrieval capabilities have culminated in research focusing on
the synergy between LLMs and different databases [4, 5, 6].

Established in 1972 and subsequently standardized by ANSI and ISO in 1986, SQL (Struc-
tured Query Language) remains the predominant language for relational databases in 2023
[7, 8]. Its pervasive adoption indicates its integration into numerous business systems, high-
lighting the importance of interfacing LLMs with existing SQL databases. This area presents
a promising avenue for enterprises, by empowering users to address questions and queries
related to internal organizational data and knowledge stored in structured databases using
natural language, removing the need for expert knowledge.

The capabilities of LLMs to understand and generate SQL queries from questions in natu-
ral language, commonly referred to as text-to-SQL conversion, represent the key idea behind
interfacing LLMs with relational databases. However, the current capabilities of LLMs in text-
to-SQL generation are not yet sufficient for a variety of practical applications. This is evident
from the benchmark scores of the two most commonly used benchmarks for text-to-SQL, the
SPIDER SQL benchmark as well as the BIRD-Bench benchmark, where existing text-to-SQL
models struggle to achieve high levels of accuracy [9, 10]. A more concrete illustration of
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1.2. Aim

the difficulties language models sometimes face with text-to-SQL conversion can be found in
Figure 1.1. It contrasts an incorrect SQL query produced by an LLM with the correct query
for retrieving the number of crimes committed in a specific district in 1995 based on an ac-
count ID. The true SQL query includes an inner join between the district and account tables,
correctly referencing the account_id, whereas the generated SQL query fails to identify the
need for a JOIN and instead incorrectly references the district_id. The figure demonstrates
LLMs limitations in text-to-SQL conversion and motivates the need for better techniques.

Figure 1.1: An example of a question an LLM struggles in accurately converting.

The focus of this thesis is to investigate the extent to which current benchmarks, such as
the SPIDER SQL and BIRD-Bench benchmarks, accurately capture the performance of LLMs
in text-to-SQL conversion, particularly given the low accuracies models have demonstrated
on these benchmarks. Benchmarks play a crucial role in evaluating and comparing the ca-
pabilities of various models, particularly in ensuring they can address a wide array of user
queries. However, the inherent ambiguity and complexity of natural language pose signifi-
cant challenges in developing and evaluating text-to-SQL models that are robust and gener-
alize effectively to real-world scenarios. By thoroughly examining the performance of LLMs
against the current text-to-SQL benchmarks, this research aims to provide insights into the
strengths and weaknesses of existing models. It seeks to identify specific types of questions
and queries where LLMs commonly fail and to understand the underlying reasons for these
failures. By pinpointing the shortcomings of current approaches, this research will contribute
to the development of more robust and effective text-to-SQL conversion techniques.

1.2 Aim

The primary aim of this thesis is to critically assess and enhance the accuracy of LLMs in
text-to-SQL conversion, by evaluating their performance against current benchmarks such as
BIRD-Bench. This study will focus on identifying the limitations and gaps in these bench-
marks, understanding the specific challenges LLMs face in various query types, and explor-
ing the reasons behind their underperformance in certain scenarios. The objective is to con-
tribute to the development of more robust and effective text-to-SQL conversion techniques,
thereby improving the generalizability and reliability of LLMs in interpreting and processing
natural language queries into SQL commands. This evaluation will include an analysis of
how well these benchmarks account for noise in natural language questions and the quality
of data inputs. The research will also explore the models’ abilities to identify, classify, and
correct data quality issues within the benchmarks, thereby contributing to the development
of more robust benchmarks for real-world applications.

4



1.3. Research questions

Ultimately, this thesis aims to improve the ability of models in integrating with structured
data. It strives to provide insights and methodologies that can be leveraged by enterprises,
especially in the banking sector, to enhance their operations and decision-making processes
through the effective use of LLMs.

1.3 Research questions

1. What is the comparative performance, in terms of accuracy, between a baseline zero-
shot text-to-SQL model and the text-to-SQL model DIN-SQL when applied to financial
data in the BIRD-Bench benchmark?

2. How does the overall quality of data influence the performance of text-to-SQL models
when applied to financial data in the BIRD-Bench benchmark?

3. How do different types of noise and data quality issues impact the performance of text-
to-SQL models?

4. To what extent are large language models capable of accurately identifying and catego-
rizing data quality issues within a text-to-SQL benchmark?

5. To what extent can large language models accurately correct data quality issues within
a text-to-SQL benchmark?

The quality of data in the research questions refer to grammatical formulation, ambiguity,
specificity, and alignment with the database schema. Correct grammar is essential for models
to accurately interpret and process queries. Ambiguity in questions can lead to multiple in-
terpretations, while specificity ensures that queries are neither too vague nor overly detailed.
A crucial aspect is the alignment of questions with the database schema, as mismatches can
result in difficulty in measuring the results. Addressing these elements of data quality is key
to enhancing the performance of text-to-SQL models.

1.4 Delimitations

It is important to acknowledge the specific boundaries within which this study operates. The
research primarily examines the interaction between selected advanced LLMs and relational
SQL databases. This focus limits the study to this particular type of databases, and the find-
ings might not fully extend to other database types.

In assessing the performance of text-to-SQL models, the study makes use of the BIRD-
Bench benchmark. The choice of the benchmark is deliberate; however, it means that other
available benchmarks in the field are not within the scope of this research. Furthermore, the
research is predominantly centered on the financial domain of the BIRD-Bench benchmark
due to the collaboration with SEBx and Combient Mix. This domain-specific focus ensures
detailed and relevant findings for banking operations but may not encapsulate the challenges
or potentials in other domains.

Another key area of this thesis is prompt engineering. While prompt engineering has
broader applications outside the text-to-SQL domain, these are not explored extensively in
this study. Additionally, the thesis examines how data quality, particularly in terms of gram-
matical formulation, ambiguity, and specificity, affects model performance. However, it does
not delve into other dimensions of data quality such as completeness, consistency, or timeli-
ness.

It is also crucial to note that the research is conducted within the technological limits and
capabilities of LLMs as of 2023. Any advancements in technology that occur post-study are
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1.4. Delimitations

not considered. This time-bound nature of the research implies that future developments
could alter some of the findings or their applicability.

Geographical and cultural differences in language, which can significantly impact the ap-
plication of natural language processing technologies, are not a central focus of this study.
The study focuses on text-to-SQL models applied only on questions in the English language.
Thus, the research findings may have limited applicability in varying global contexts. Ad-
ditionally, while the study acknowledges the importance of ethical considerations and data
privacy in the interaction between AI and databases, these aspects are not the primary focus
of the research.

By setting these boundaries, the thesis aims to offer a focused and in-depth analysis within
its defined areas, contributing valuable insights to the field of AI and machine learning, par-
ticularly in how LLMs interface with SQL databases in the financial sector.

6



2 Theory

This chapter provides an outline of the foundational theory of the project. It begins with a
background on SQL, the relational database language, examining its key components. This is
followed by an introduction to current state-of-the-art language models, with a particular em-
phasis on the roles of the attention mechanism and transformer architecture. Further sections
describe in-context learning, underscoring its importance in enhancing a model’s adaptive
capabilities. Continuing with the same topic, the chapter subsequently explains prompt en-
gineering, providing an in-depth examination of different logic and guidance methods. It
also covers self-correction techniques for LLMs and introduces the reader to the domain of
text-to-SQL generation. It concludes with a review of influential related works, offering a
perspective on the field’s progression and current standing.

2.1 Structured Query Language (SQL)

This subsection is dedicated to introducing the Structured Query Language (SQL). Originat-
ing from Edgar F. Codd’s research [11], SQL was developed and introduced by IBM’s research
department in the 1970s. Today, it remains the most widely used database programming lan-
guage globally [12, 8].

2.1.1 The Relational Database System

Previous to relational databases, the database systems used were either based on a hierarchi-
cal model, where the system was built on a tree based structure, or a network model where
the system was connected through pointers and links. Both of these systems had a lack of
flexibility and were complex to query data from, which led to Codd’s research on relational
models where these issues where addressed. The initial concept was released 1970 [11].

The relational database system is grounded in set theory, where sets S1, S2, ..., Sn are in-
terconnected through a relation R. These sets correspond to database tables within a specific
domain; for example, Californian Schools could represent a domain within the broader US
School database. Each table in the database contains a Primary Key, a unique identifier allow-
ing for the distinct access of each data item row. To establish relationships between tables
within the domain, the Foreign Key is used. This key is a column whose values may appear in
multiple tables. For instance, both the district and account tables might include the foreign
key district id, indicating that each account is registered in a specific district. In this scenario,
district id serves as the primary key for the district table and a foreign key for the account
table.

The relational database system encompasses various other theoretical concepts, which,
however, will not be explored or presented in this project [11]. To demonstrate the structure
of a relational database like SQL, a database schema is often utilized. This schema acts as a
blueprint for the database’s domain, providing either a graphical or textual representation of
the data model. It effectively illustrates the interrelationships among different entities, such
as through entity-relationship diagrams [13].
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2.1. Structured Query Language (SQL)

2.1.2 The Language of SQL

The actual language of SQL, initially named SEQUEL and later renamed to SQL, was pre-
sented by Donald D. Chamberlin and Raymond F. Boyce in 1974 and was based on the re-
lational database system [12]. The SQL language leverages a simple, English-like syntax for
data definition, manipulation, and query operations. SQL’s syntax consists of declarative
statements, enabling users to specify what data is required rather than detailing the proce-
dures for retrieving it. This language is characterized by its use of English keywords and
a straightforward structure, making it accessible not only to professional programmers but
also to those with less technical expertise. The essence of SQL lies in its ability to interact with
relational databases in an inuitive and readable format through various operations like CRE-
ATE for creating a database table, SELECT for data querying, JOIN for connecting database
columns over different tables, COUNT for counting the number of entries based on a con-
straint, and SUM for summarizing the numerical values of a particular column.

SQLite is a relational database management system that implements a significant subset
of the SQL language. However, SQLite deviates in minor functionality aspects from SQL,
resulting in increased simplicity. The data types used in SQLite are INTEGER for integer
values, TEXT for characters and textual strings, REAL for decimal numbers, BLOB for mixed
numerical and textual data, and None for empty input [14, 15]. In Listing 1, three examples of
SQLite queries are provided, each demonstrating different functionalities:

• Example 1: Creating a User Table with columns for UserID, Username, and Email.

• Example 2: Querying all columns and rows from the Users Table.

• Example 3: Querying all rows from the Employees table where the column value for
department is “Marketing.”

1 # Example 1.
2 CREATE TABLE Users (
3 UserID INTEGER PRIMARY KEY,
4 Username TEXT NOT NULL,
5 Email TEXT
6 );
7

8 # Example 2.
9 SELECT * FROM Users;

10

11 # Example 3.
12 SELECT * FROM Employees
13 WHERE Department = 'Marketing';

Listing 1: Three examples of SQLite-queries.

2.1.3 SQL Queries are not Unique

An intriguing aspect of SQL, especially relevant in the context of text-to-SQL conversion,
is the non-uniqueness of SQL queries. In other words there can be multiple, syntactically
different SQL queries, all capable of producing the same result set. This non-uniqueness is
important in understanding and developing efficient text-to-SQL conversion methodologies.

Central to this trait is the expressive flexibility of SQL. SQL is designed to be a declara-
tive language, focusing on the “what” rather than the “how” of data retrieval. This design
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philosophy allows for various ways to specify a desired outcome. For instance, consider a
database containing information about employees. To retrieve the names of all employees
in a specific department, one could use a simple SELECT statement with a WHERE clause.
Alternatively, the same result could be achieved using a more complex JOIN operation if the
relevant information is spread across multiple tables.

Furthermore, SQL’s support for functions, subqueries, and different types of joins (INNER
JOIN, LEFT JOIN, etc.) adds more layers of complexity and flexibility. Different combinations
of these elements can lead to queries that look entirely different yet yield identical results.
For example, aggregation functions like SUM and COUNT can be used in conjunction with
GROUP BY clauses in various ways to produce the same summary information from a data
set.

For text-to-SQL conversion, this non-uniqueness presents both challenges and opportu-
nities. From a challenge perspective, it means that a text query could be correctly translated
into multiple different SQL queries, making it difficult to define a single, correct conversion.
This situation demands robust models capable of understanding the nuances of both natural
language and SQL syntax to recognize equivalencies in query semantics.

On the opportunity side, this non-uniqueness allows for a degree of flexibility in design-
ing algorithms for text-to-SQL conversion. Central for a generated query is that it retrieves
the correct information, but the non-uniqueness opens the door for optimizing queries not
only for correctness but also for efficiency, readability, or adherence to specific syntax styles
preferred by an organization. Moreover, it allows the development of systems that can adapt
to different database schemas or query optimization strategies, enhancing the versatility and
applicability of text-to-SQL technologies.

2.2 Large Language Models

Recently, LLMs have had a significant impact in the fields of Natural Language Processing
(NLP) and machine learning, and made a noticeable imprint across a wider range of tech-
nological innovations such as text generation, chatbots and coding assistants [16, 17]. This
shift started with the introduction of transformer-based architectures, including the Genera-
tive Pre-trained Transformers (GPT) [18] and the Bidirectional Encoder Representations from
Transformers (BERT) [19], both launched in 2018. These models acted as precursors for later
advancements in the domain, leading to the introduction of ChatGPT in November 2022 [16].
This development further elevated the global acknowledgment of LLMs. In the following
section, we will explore the core mechanisms that support these models. Specifically, we
will examine the contributions of the transformer architecture, the attention mechanism, and
in-context learning, which are all integral to the functionality and efficacy of LLMs.

2.2.1 The Transformer Architecture

In 2017, the Transformer architecture was introduced, aiming to enhance the encoder-decoder
framework of recurrent language models, which traditionally relied on Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM) networks [20]. The idea behind
the Transformer architecture is to completely focus on the attention mechanism and avoid
recurrence which enhances the potential for parallelization. The transformer architecture is
built on two stacks of encoders and decoders. Each stack contains six identical layers, with
the encoder layers containing two sub-layers each. In contrast, the decoder stack is structured
with three sub-layers in each of its six layers.

The purpose of the encoder-decoder architecture is for the encoder to process the input
data and generate a contextual representation. This representation is then utilized by the
decoder to generate or transform data based on the context provided. Before reaching the
encoder, in NLP tasks, individual tokens, such as words, are transformed into vectors using
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an embedding layer. This layer consists of a matrix of vectors, each corresponding to a token
in the vocabulary, which are trained to semantically represent the tokens [21].

The sub layers of the encoder and decoder both consists of a multi-head attention layer
and a feed forward layer, but the decoder also has a masked multi-head attention layer which
can be seen in Figure 2.1. The masked multi-head attention layer in the Transformer ar-
chitecture allows the model to selectively attend to specific positions in the input sequence,
effectively diminishing the influence of non-targeted values [20].

Because of its performance in NLP tasks such as machine translation, document genera-
tion and syntactic parsing and its capacity to attend to long data sequences the transformer
architecture was used in the original GPT model [18]. Owing to its efficiency in harnessing
parallelism, the Transformer architecture has extended its applicability beyond NLP. It is now
utilized in domains like computer vision, specifically in recognition tasks, video processing,
multimodal tasks, and three-dimensional analysis [22].

Figure 2.1: The Transformer model architecture [20].

2.2.2 Attention

When the Attention mechanism was introduced, existing models struggled to process long
inputs accurately; they tended to focus too much on the values at the beginning and end of
the sequence [20]. To solve this problem, the Attention mechanism was introduced which
enabled models to focus on different parts of the input sequence, assigning more importance
to certain elements while processing others. The mechanism improved their ability to un-
derstand context, relationships, and dependencies within the data, thereby enhancing their
performance in tasks such as language understanding and translation through amplifying
their potential and ability to understand context.
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There are various attention mechanisms in the field, but the one predominantly employed
in the Transformer architecture combines a method known as scaled dot-product attention
within a structure referred to as multi-head attention. The architectures of scaled dot-product
attention and multi-head attention are illustrated in Figure 2.2.

In the context of the Transformers architecture, equation 2.1 defines the operation of the
scaled dot-product attention mechanism, which involves the manipulation of three distinct
vectors referred to as queries (Q), keys (K), and values (V). To explain further:

• Queries (Q) signify the current word or token under examination.

• Keys (K) offer representational context for these queries, signaling the connections be-
tween the data values and their corresponding query.

• Values (V), on the other hand, are the data points corresponding to the aforementioned
keys.

This architecture is similar to traditional dot-product attention. However, it introduces a
scaling factor, represented by

a

dk, correlating to the dimensionality of the key vector K.
The coefficient 1?

dk
is introduced to counteract small gradients, ensuring the stability of the

softmax function, especially as the magnitude of
a

dk increases.

Attention(Q, K, V) = so f tmax(
QKT
a

dk
)V (2.1)

Within the multi-head attention framework (equation 2.2), the scaled-dot attention is repeti-
tively employed across each head (h), as depicted to the right in Figure 2.2. In the mechanism,
the input is split into multiple parts (or “heads”), and each head performs the attention op-
eration independently of the others which increases the capacity of the attention mechanism
without affecting the computational cost. Furthermore, this architecture allows each head
layer to learn and focus on different data patterns of the input data, which results in a more
expressive and powerful model. Proceeding the multi-head calculations the layers are con-
catinated and projected through a linear layer [20].

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KWK

i , VWV
i )

(2.2)
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Figure 2.2: Scaled Dot-Product Attention (left). Multi-Head Attention (right) [20].

2.2.3 GPT

The Generative Pre-trained Transformer (GPT), a type and family of LLMs, is constructed
using a decoder-based transformer model and undergoes a two-step training process: unsu-
pervised pre-training followed by supervised fine-tuning. Initially, the model is pre-trained
with a vast body of unlabeled text, followed by the fine-tuning phase involving manually
annotated training examples [18]. The initial version of GPT, developed by OpenAI, made
its debut in 2018, equipped with 110 million parameters [23]. Thereafter, the number of pa-
rameters has increased for each model released, where GPT-3 was trained on 175 million
parameters (Table 2.3.) [24]. However, the most recent model GPT-4, released in March 2023,
has an unconfirmed amount of parameters which has led to inquiries about the sources of
its data and parameters. There have been speculations of the model being trained on signifi-
cantly more parameters than its predecessing models [25]. Although the specific parameters
of GPT-4 are not publicly available, studies have compared GPT-4 to its earlier versions. Open
AI reports in a study that GPT-4 surpasses GPT-3.5 in few shot scenarios in several recognized
benchmarks such as MMLU [26], GSM-8K [27] and HumanEval [28, 29]. Furthermore, using
questions from the U.S. Multistate Bar Examination (MBE), a standard test for obtaining a
law degree, GPT-4 was subjected to an external evaluation outside OpenAI. Remarkably, it
demonstrated the ability to pass this exam with a 75.7% success rate, using only zero-shot
prompting. This performance surpasses that of the model implemented in ChatGPT at the
time, which scored 49.2% [30]. Additionally, GPT-4’s performance was assessed in the medi-
cal domain using questions from the United States Medical Licensing Examination (USMLE).
The USMLE is a multi-step exam that is essential for medical licensing in the United States. In
these tests, GPT-4 attained an overall average accuracy of 83.76% through zero-shot prompt-
ing. This result is notably higher than that of the GPT-3.5 model, which scored 49.62% in
similar conditions [31].

An identified phenomenon resulting from an increased number of paramters is emergent
abilities [32], which suggests that an LLM, could gain knowledge of how to perform new tasks
without having specifically been fine-tuned at that particular task. This could result in that a
model with a significantly higher amount of parameters, potentially such as GPT 4, has the
ability to perform tasks at a higher performance than a smaller model such as GPT-3.5, which
could one explanation to the performance differences presented in the studies above [32].
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Table 2.1: Comparison of GPT Parameters [25, 33].

Models GPT GPT2 GPT3 GPT4
Release Year 2018 2019 2020 2023
Parameters 110M 1.5B 175B Unconfirmed

Another factor that affects how the GPT-models perform is the release of updated versions
over time. It is still vague how and when these updates are being launched to the public,
and as Chen et al. [34] mentions there is a need to frequently measure these differences in
performance over time. It has been shown that the performance of GPT 4 in arithmetic tasks,
such as deciding if an integer is a prime or not, decreased from an accuracy of 84 % to 51.1 %
between the March and June updates in 2023 [34]. At the same time GPT 3.5 had a large im-
provement from 49.6 % to 76.2 % accuracy in the same task from the same periodical updates.
Because of the significant changes over a relatively short time there is a need to continuously
evaluate the GPT models over time. In Table 2.2, the most recent versions of the GPT models
are presented along with their release notes, release dates, and the dates when their train-
ing data were collected. It should be noted that as of December 22, 2023, when accessing
the OpenAI API, the gpt-3.5-turbo and gpt-4 endpoints default to the models released in June
2023, specifically gpt-3.5-turbo-0613 and gpt-4-0613, respectively [35, 36].

Table 2.2: Release information for GPT-3.5 and GPT-4 versions [35, 36].

Model Version Release Notes Release Date Training Data
GPT-3.5 gpt-3.5-turbo-1106 [37] New version of GPT-3.5 Turbo

supporting a 16K context win-
dow. Improved instruction fol-
lowing, JSON mode, and paral-
lel function calling.

2023-11-06 Up to Sep 2021

gpt-3.5-turbo-0613 [35] Snapshot of gpt-3.5-turbo from
June 13th 2023. Will be depre-
cated on June 13, 2024.

2023-06-13 Up to Sep 2021

gpt-3.5-turbo-0301 [35] Snapshot of gpt-3.5-turbo from
March 1st 2023. Will be depre-
cated on June 13th 2024.

2023-03-01 Up to Sep 2021

text-davinci-003 [38] Better quality and consistency in
language tasks than curie, bab-
bage, or ada models. Will be
deprecated on Jan 4th 2024.

2022-11-28 Up to Jun 2021

GPT-4 gpt-4-1106-preview (GPT-4-Turbo) [37] More capable, cheaper GPT-4
Turbo model with a 128K con-
text window.

2023-11-06 Up to Apr 2023

gpt-4-0613 [36] Snapshot of gpt-4 from June
13th 2023 with improved func-
tion calling support.

2023-06-13 Up to Sep 2021

gpt-4-0314 [36] Snapshot of gpt-4 from March
14th 2023 with function calling
support. Will be deprecated on
June 13th 2024.

2023-03-14 Up to Sep 2022

gpt-4-32k-0613 [36] Snapshot of gpt-4-32k from June
13th 2023 with improved func-
tion calling support.

2023-06-13 Up to Sep 2023

gpt-4-32k-0314 [36] Snapshot of gpt-4-32k from
March 14th 2023 with function
calling support. Will be depre-
cated on June 13th 2024.

2023-03-14 Up to Sep 2024

2.2.4 In-Context-Learning

The Attention mechanism within LLMs enables more efficient context-based learning in com-
parison to recurrent neural models, this is due to several factors. Firstly, the attention mech-
anism allows the architecture to focus on several aspects of the data through paralleliza-
tion. Secondly, precursor models such as RNN and LSTM networks process data sequen-
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tially, resulting in that there may be limitations when processing longer data dependencies,
due to vanishing gradients, whereas these limitations are reduced because of parallelliza-
tion in attention. This increases the capacity for In-Context Learning (ICL) in LLMs. ICL
emerges through the mechanism of prompting, a process in which user interaction is com-
pleted through natural language instructions [39]. ICL refers to the ability of LLMs to learn
from the immediate context they are given (in the form of a prompt) without updating their
underlying parameters. Essentially, the model adjusts its responses based on the specific
context provided within a session or prompt, without requiring traditional training or fine-
tuning. This enables LLMs to adapt to new information or specific tasks by simply using
relevant context. In the following texts, the concepts of zero-shot and few-shot learning will
be explained which suggests two different approaches of giving an LLM a context.

Zero-shot Learning

In an LLM equipped with a substantial number of parameters and trained on an extensive
corpus of textual data, the capacity emerges for responding to queries based solely on the
question itself [40], without the need for additional contextual information. This ability to
perform tasks without task-specific labeled examples is referred to as zero-shot learning [41].
Moreover, the employment of zero-shot learning techniques can offer the advantage of reduc-
ing the need for redundant information, thereby mitigating excessive costs associated with
token and API usage [42].

Table 2.3: Examples of zero-shot learning, tested on the GPT-2 model [41].

Question Generated Answer Accuracy
Who wrote the book the origin of species? Charles Darwin 83.4%

Panda is a national animal of which country? China 76.9 %
Who came up with the theory of relativity? Albert Einstein 76.4 %

Few-shot Learning

In what is called few-shot learning, an LLM is provided with learning examples or in the
context of text-to-SQL conversion example questions accompanied by their corresponding
accurate answer, thereby establishing a labeled data context. Brown et al. proposes that the
efficacy of few-shot learning improves more rapidly with model size in comparison to zero-
shot learning [40]. This implies that a larger LLM exhibits enhanced capabilities of in-context
learning [40].

Studies have shown that the selection of examples is crucial and that it correlates to the
performance output of the model. When the examples where selected based on similarity,
through nearest neighbor, it has been shown that the performance of the model increased
compared to when prompted with random examples [43]. Furthermore, it has been discov-
ered that the ordering of the examples in the prompt affects the performance [44]. An example
of few-shot learning can be seen in Table 2.4, where the LLM infers what to respond based on
a previous example. The text in italics corresponds to the input prompt, and the bold text the
output from the LLM.

Table 2.4: Few-Shot Learning with a Language Model [40].

A “whatpu” is a small, furry animal native to Tanzania. An example of a sentence
that uses the word whatpu is: We were traveling in Africa and we saw these very cute
whatpus. A "Burringo" is a car with very fast acceleration. An example of a sentence
that uses the word Burringo is:

In our garage we have a Burringo that my father drives to work every day.
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2.2.5 Hallucinations

The rapid improvement of Natural Language Generation (NLG) have enabled LLMs to cre-
ate well written and grammatical complex texts that often tend to be considered trustworthy.
However, studies have shown that the models are prone to generate non-factual texts,
hallucinations, that deviates from reality and facts [45, 46]. Additionally, detecting hallucina-
tions presents a challenge due to the textual fluency and well-structured nature of the gener-
ated content, which can often lead users astray [46]. Even the current state-of-the-art models,
GPT 3.5 and GPT 4 from OpenAI, suffers from hallucinations. One solution to this problem
could be to connect the LLM with an external knowledge base to ensure that correct facts are
available to the model [47].

Table 2.5: Hallucination generated from ChatGPT [47].

Prompt Where do people smoke more on average than in Russia?

ChatGPT Generation

There are several countries where people smoke more on average
than in Russia. According to data from the World Health Orga-
nization, the following countries have higher smoking rates:
Indonesia: 55.2%, China: 52.9%, Serbia: 47.5%, Serbia and Mon-
tenegro: 45.6%, Montenegro: 45.6%, Greece: 44.5%, Bosnia
and Herzegovina: 41.8%, Kazakhstan: 41.3%, Kosovo: 41.3%,
Moldova: 40.9%. Note that these Figures are estimates and may
vary.

Hallucination
The generated answer includes the wrong statistics (compared
with statistics from the prevalence of current tobacco use from
the World Bank statistics [48]).

2.3 Prompt Engineering

Prompt engineering refers to the practice of crafting, refining, and optimizing inputs (or
prompts) to obtain desired outputs from machine learning models, particularly large-scale
language models [49]. This has become an area of particular interest with the rise of models
like OpenAI’s GPT series, where the choice of prompt can significantly influence the quality,
accuracy, and relevance of the model’s response [50].

The importance of prompt engineering stems from its ability to make use of the huge
potential of LLMs. By setting a context or giving explicit directions, prompts act as naviga-
tional tools, ensuring that the resulting outputs are aligned with user intentions. The sheer
volume of data and knowledge LLMs are trained on necessitates this guidance; without a
well-structured prompt, a model might provide generic or off-target responses or might even
generate false or fabricated information in the form of hallucinations [51]. In contrast, with
effective prompt engineering, the output can be remarkably tailored, sharp, and aligned with
the user’s intent. Additionally, prompts can be tailored to guide an LLM in ways beyond
just determining the output form or refining the input information. With carefully crafted
prompts, one can introduce new interaction methods [49]. For instance, an LLM might be
directed to draft a synopsis of a historical event or simulate a virtual assistant’s conversa-
tional flow. Or, more importantly, by crafting better prompts one can significantly increase
an LLMs ability to perform complex reasoning [1, 52]. The subsequent parts of this section
describe the fundamental components of prompt engineering and the current state-of-the-art
reasoning techniques.
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2.3.1 Prompt Templates

A prompt template can be conceptualized as a textual string comprising one or several input
slots containing dynamic variables. These variables are subject to alteration based on the con-
text and specific requirements of the prompt. In implementation contexts, where the LLM is
integrated through an API or a locally stored model, this adaptability of the prompt template
significantly enhances usability and scalability for varying coding scenarios. The definition of
prompt template engineering can be considered as "The process of creating a prompting function
fprompt(x) that results in the most effective performance on the downstream task." [53].

1 prompt_template = PromptTemplate.from_template(
2 "Tell me a {adjective} joke about {content}."
3 )
4 prompt_template.format(adjective="funny", content="chickens")
5

6 Output:
7 'Tell me a funny joke about chickens.'

Listing 2: An example of a prompt template [54].

2.3.2 Prompt Chaining

There are complex tasks where LLMs show limited performance, for instance in artithmetic
tasks, debugging software code or writing long complete essays in a single run [2, 55]. There-
fore, the concept of prompt chaining was initiated where problems are divided into subtasks,
where each subtask can be completed by an independent run of an LLM. Moreover, prompt
chaining facilitates the incorporation of human feedback between steps, potentially enhanc-
ing overall performance. Studies have shown significant benefits of this method: participants
reported an 82% improvement in task outcome quality when utilizing chaining. Addition-
ally, it provided enhanced controllability, increased transparency, and improved debuggabil-
ity. Notably, the subdivided subtasks also served as a safeguard against model hallucinations
[55].

2.3.3 Prompt Techniques

A prompt technique constitutes a strategic combination of prompt templates and prompt
chaining, aimed at enhancing the performance of LLMs in a variety of tasks. This section will
provide an examination of the specific prompting techniques Chain of Thought and different
types of Self-Correction strategies.

Chain of Thought

Chain of thought prompting is a method meant to enhance the reasoning capabilities of LLMs
[1]. Although scaling up language models has provided numerous benefits, they still strug-
gle when confronted with tasks demanding more complex reasoning, such as arithmetic or
commonsense reasoning. The core idea behind chain of thought prompting is to combine
two distinct techniques to better language models abilities on such tasks. The first of these
involves the generation of natural language rationales, which act as intermediate steps guid-
ing the model to the answer. The second is in-context few-shot learning through prompt-
ing, wherein the model learns a new task only through getting acquainted with a handful of
input-output examples that demonstrate said task, thereby avoiding the need for extensive
training.
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Figure 2.3: The difference of a standard prompt versus a chain of thought prompt [1]. The
highlighted blue text is the chain of thought part of the prompt triples used to instruct the
model to perform reasoning. The part of the answer highlighted in green is the specific part
of the model response corresponding to the chain of thought prompt.

At its core, chain of thought prompting operates by prompting the language model with
prompts formulated as triples: these comprise an input, a chain of thought, and an output
as can be seen in Figure 2.3. Here, the chain of thought serves as a sequence of intermedi-
ate natural language steps, crafted to steer the model towards the final output. The method
has excelled in empirical evaluations, showcasing its superiority over standard prompting
techniques for reasoning tasks. For instance, the technique broke the previous record on the
GSM8K benchmark of math word problems when the original paper was released back in
January 2022 and has also performed well on newer text-to-SQL benchmarks [6]. The tech-
nique introduced a new standard in prompting for reasoning tasks and surpassed previous
records of state-of-the-art performance, and the concepts behind it still serve as a backbone
for newer state-of-the-art approaches [56, 57, 58, 59].

Self-Correction for Large Language Models

LLMs efficacy is often undermined by undesired and inconsistent behaviors, such as hallu-
cinations, unfaithful reasoning, and toxic content [45, 3]. A promising approach to address
these issues is self-correction, where an LLM is prompted or guided to correct problems in
its own output [60]. Self-correction in LLMs like GPT-4 involves them refining their initial
responses to enhance accuracy and relevance. Initially, the LLM generates a response based
on the given prompt. However, this response may contain errors or inaccuracies. In the
next step, the LLM is prompted to revise its response to correct the identified mistakes. This
could involve altering phrases, adding information, or changing perspectives based on the
nature of the errors. This self-correcting mechanism is used to make LLMs more reliable and
accurate in responding to diverse prompts.

2.4 Text-to-SQL

Text-to-SQL is a technique within the field of NLP that focuses on translating natural lan-
guage statements into SQL queries. At a fundamental level, it allows users to interact with
databases using common language rather than technical SQL commands [61]. For instance, if
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a user asks, "How many products are in the inventory?", a text-to-SQL system would generate
a SQL query like:

1 SELECT COUNT(*) FROM inventory;

Listing 3: Basic SQL Query.

The mechanism underlying this process faces several complexities [42]. Firstly, under-
standing the user’s intent is central, which involves extracting relevant entities and condi-
tions from the input text. Next, the system confronts the challenge of schema mapping. This
phase involves associating elements from the natural language query, such as "products", to
their database counterparts, which could be a table of items or a related entity using some
other name. Subsequently, after grasping the user’s intention and mapping it to the database
schema, the system begins the SQL generation phase. The generated query can range from
a straightforward SELECT statement to something considerably more complex, potentially
containing multiple joins, conditions, and aggregations.

The possible use cases of text-to-SQL are many. It enables non-experts to engage with
databases without the need to master SQL. This feature is particularly attractive for chatbots
and virtual assistants, which can make use of text-to-SQL to obtain data from databases in
response to user queries. Moreover, in the realm of business intelligence, such a technique can
empower users to ask data-driven questions in their natural everyday language, streamlining
the data analysis process.

With the evolution of deep learning and the arrival of architectures like BERT and GPT, the
text-to-SQL domain has witnessed considerable advancements [62, 56, 6, 61]. Furthermore,
datasets such as Spider and BIRD-Bench provide benchmarks for text-to-SQL, helping in the
evaluation and continual refinement of these systems in ongoing research endeavors [61, 6].

2.5 Classification

Text classification, an important aspect of NLP, has garnered increased attention due to the
evolving capabilities of LLMs. The potential of these models in classifying both text and code
presents an area for research and evaluation [63].

The definition of classification could be described as "The subject of classification is concerned
with the investigation of relationships within a set of ’objects" in order to establish whether or not the
data can validly be summarized by a small number of classes (or clusters) or similar objects" [64].
Classification has a fundamental role in machine learning, in particular, supervised machine
learning, where a model is trained on labeled data to be able to predict and classify new data
into these labels

In classification, the outcomes of predictions are categorized into four types: True Positive
(TP) and True Negative (TN), which are correct predictions for the presence and absence of a
feature, respectively. False Positive (FP) occurs when a feature is incorrectly predicted to be
present, while False Negative (FN) happens when a feature’s presence is incorrectly predicted
as absent. Essentially, TP and TN represent correct predictions, whereas FP and FN signify
errors in prediction. To visualize these predicted categories a confusion matrix is often used
which is displayed in Table 2.6 [65, 66].

There are different metrics of how accurately a model classifies data and this section will
describe four of these supervised classification metrics and their purpose.
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Table 2.6: The structure of a confusion matrix with two classes [64]

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

2.5.1 Classification Metrics

When using classification in supervised machine learning the aim is to minimize the error
when classifying. To measure this the four most common metrics are Accuracy, Recall, F-1
Score, and Precision, which will be presented below.

Accuracy

Accuracy is a widely used and straightforward metric for evaluating classification models, as
it calculates the ratio of correct predictions to the total number of predictions made [67].

Accuracy =
True Positives + True Negatives

Total Observations
(2.3)

Recall

Recall, also known as sensitivity in psychology, represents the ratio of correctly identified
positive cases (TP) to the total actual positive cases. This metric is particularly vital in medical
diagnostics, as it measures the model’s ability to accurately identify true cases of illnesses,
emphasizing the importance of not missing any real positive cases [65].

Recall =
True Positives

True Positives + False Negatives
(2.4)

Precision

In data mining, precision, also referred to as confidence, measures the proportion of actual
positive cases (TP) in all predicted positive cases, including false positives (FP). It essentially
calculates the model’s accuracy in correctly predicting positive instances [65].

Precision =
True Positives

True Positives + False Positives
(2.5)

F-1 Score

The F1-score, or F-measure, is a statistical tool that combines precision and recall into a single
metric by calculating their harmonic mean. This mean is particularly effective for ratios, as
it tends to penalize extreme values. The F1 score is often preferred when both false positives
and false negatives are significant, providing a balanced view of a model’s performance in
handling positive cases. This makes it a usable metric, especially in situations where relying
solely on either precision or recall might be misleading. [68, 69].

F-1 Score = 2 ˚
Precision ˚ Recall
Precision + Recall

(2.6)

2.6 Related Work

This section focuses on two central areas in the text-to-SQL domain. The first subsection
outlines the primary benchmarks and datasets used for evaluating text-to-SQL systems. The
following Subsection, 2.6.3 Text-to-SQL Methods, presents the various methods that have been
proposed to convert natural language queries into SQL statements. Together, these sections
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provide a structured overview of the foundational and recent works that inform the discus-
sions and investigations in this thesis.

2.6.1 Text-to-SQL Benchmarks & Datasets

The Spider-dataset [61] is a large-scale cross-domain text-to-SQL dataset that was annotated
by 11 Yale students in 2018. The dataset consists of 10,181 questions and 5693 unique SQL
queries in 200 databases with multiple tables across 138 different domains, the total size of
the dataset is approximately 950 MB. Following the release of the WikiSQL dataset in 2017
[70], the Spider dataset emerged as the subsequent significant text-to-SQL dataset and is now
among the most frequently employed datasets for benchmarking in this domain [62, 56, 42].
One of the core objectives of the Spider dataset is to increase the complexity of data in com-
parison to WikiSQL. It goes beyond merely utilizing SELECT and WHERE clauses, incorpo-
rating more elaborate queries that encompass GROUP BY, ORDER BY, and HAVING clauses
within nested queries [61]. Each SQL-query has been divided into 4 levels of complexity:
easy, medium, hard and extra hard. The complexity is decided based on the number of SQL
components, selections and conditions. For instance the more clauses of GROUP BY, ORDER
BY and INTERSECT or nested sub-queries an SQL query contains, the harder the prompt is
considered. The spider paper describes the difficulty of hard as: "For example, a query is con-
sidered as hard if it includes more than two SELECT columns, more than two WHERE conditions,
and GROUP BY two columns, or contains EXCEPT or nested queries. A SQL with more additions
on top of that is considered as extra hard." [61].

Another text-to-SQL dataset is BIRD-Bench [6], which aims to be more realistic than Wik-
iSQL and Spider. The data is collected from real-world scenarios and maintains their original
form. The dataset contains 12,751 unique question-SQL pairs in 95 different databases over 37
different domains. With its size of 33.4 GB it is substantially larger than its predecessors. Each
question of the dataset is labeled within the difficulties of simple, moderate or challenging.
The complexity level of each query has been annotated by an English native speaker with
degrees above bachelor’s level and who has database-related knowledge. The annotators
have evaluated the query based on the factors of question comprehension, schema linking,
external knowledge acquisition and reasoning. Each question is also labeled with an optional
evidence value, which is a string that provides a context of the query that could otherwise be
hard for an LLM to understand on its own [6].

2.6.2 A Closer Look at BIRD-Bench

This section offers a more in-depth examination of the BIRD-Bench dataset as it is described
by its authors, by exploring its construction methodology, the process employed for question
annotation, and the implementation of external knowledge and difficulty grading to enhance
its relevance and challenge for real-world applications [6].

Dataset Overview

The BIg Bench for LaRge-scale Database Grounded Text-to-SQL Evaluation (BIRD-Bench)
dataset is an extensive and diverse dataset for assessing text-to-SQL capabilities. It contains
12,751 distinct question-SQL pairs, spanning across 95 different databases and accumulating
a total size of 33.4 GB. BIRD-Bench covers 37 professional fields, offering a wide variety of
domains such as blockchain, hockey, healthcare, and education, thereby providing a compre-
hensive platform for testing and improving text-to-SQL technologies.

The dataset is divided into a training set with 11,218 data points and a development set
with 1,533 data points. The development set encompasses 10 domains, while the training set
extends over 27 domains.
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Dataset Construction

BIRD-Bench’s construction involved a multi-source approach to obtain databases with com-
plex schemas and substantial real-world value distributions. Recognizing the limitations of
synthetic databases due to privacy concerns, the creators sourced 32% of the BIRD-Bench’s
databases from Kaggle, known for its challenging and noisy data. Another 48% were ob-
tained from the CTU Prague Relational Learning Repository, providing multi-relational data
for machine learning research. The remaining 20% of databases were constructed similarly to
DuSQL, involving the synthesis and standardization of schemas and generation of database
constraints. This diverse sourcing led to a collection of 95 databases across 37 domains, en-
suring a wide representation of real-world scenarios.

Question Annotation

For question annotation, native English speakers with database knowledge and above bach-
elor’s level degrees were employed. They were provided with ER diagrams and database
description files for understanding the databases and were then asked to write questions in
natural language regarding the contents of the databases provided. These questions were
evaluated by text-to-SQL experts, and only the questions of those receiving at least two votes
for validity were included. This rigorous process ensured that the questions were valid and
challenging, contributing to 12,751 pairs of text-to-SQL data.

SQL Annotation

The SQL annotation process involved skilled data engineers and database students who were
rigorously tested before they were employed. Each annotator was initially asked to write the
corresponding queries to 10 predefined questions, and only those who scored a 9 out of 10 for
those examples was qualified to continue writing SQL queries for the dataset. A double-blind
technique was then used to check the validity of the written SQL queries. This approach
included two independent annotators generating SQLs for the same question, after which
the generated SQLs were executed against the corresponding database. Those retrieving the
same information from the database were included in the dataset. Those who’s information
diverged where checked and modified by experts until they agreed on the SQLs format. The
idea of this approach was to significantly reduce annotation errors.

External Knowledge

The inclusion of external knowledge in BIRD-Bench, as reflected in the ’evidence’ entries of
the dataset, is a necessity for accurately mapping natural language instructions to database
elements according to the authors. This can for example be contextual insights about what
a column with an ambiguous name in a database table refers to, or how a financial figure is
calculated when mentioned in a question. The creators of BIRD-Bench have systematically
categorized this knowledge into four distinct types:

• Numeric Reasoning Knowledge: Involves basic math operations and their composi-
tional use, like percentages and ratios.

• Domain Knowledge: Pertains to specific knowledge in different domains necessary for
generating effective SQL queries.

• Synonym Knowledge: Ensures the correct conversion of differently phrased questions
to SQL.

• Value Illustration: Provides detailed descriptions of database values, their types, cate-
gories, and mappings.
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Difficulty

The BIRD-Bench dataset introduces a nuanced system for classifying the difficulty of text-
to-SQL examples, categorizing them into three levels: simple, moderate, and challenging,
making up 30%, 60%, and 10% of the examples respectively. This approach expands on pre-
vious methods, such as those used in SPIDER, by incorporating a broader range of factors
beyond just SQL complexity.

In this system, SQL annotators evaluate each example across four key dimensions, each
scored on a scale from 1 to 3. The first dimension, Question Understanding, gauges how eas-
ily the intent of the question can be grasped, with 1 indicating straightforward questions and
3 denoting highly ambiguous ones. The second dimension, Knowledge Reasoning, assesses
the extent of external knowledge required to translate the question into SQL. Here, a score
of 1 suggests no additional knowledge is needed, whereas a score of 3 indicates a significant
need for complex external knowledge.

The third dimension, Data Complexity, examines the complexities of the database schema
and the data size. A simple schema and data set would score 1, while a highly complex
schema, difficult to understand even with descriptions, would score 3. The final dimension,
SQL Complexity, rates the syntactic complexity of the SQL query itself, with 1 being a simple
query and 3 being a highly complex one with numerous functions.

Each of these dimensions contributes equally to the overall difficulty assessment of an
example. By aggregating the scores across these dimensions, examples are sorted into the
respective difficulty categories. This comprehensive method of evaluating difficulty offers a
more detailed and multi-faceted analysis for text-to-SQL tasks, allowing for a deeper under-
standing of the challenges involved in different types of queries.

Example Data Point

The example entry in Listing 4 demonstrates the dataset’s structure. For instance, the ques-
tion is classified as ’simple’. The ’evidence’ field provides external knowledge or specific
references to the relevant data points (e.g., "A12 refers to unemployment rate 1995"), while
the SQL field contains the query needed to retrieve the answer. This structure demonstrates
BIRD-Bench’s emphasis on real-world applicability and the need for understanding both the
database schema and its values.

1 {
2 "question_id": 91,
3 "db_id": "financial",
4 "question": "The average unemployment ratio of 1995 and
5 1996, which one has higher percentage?",
6 "evidence": "A12 refers to unemploymant rate 1995; A13
7 refers to unemploymant rate 1996",
8 "SQL": "SELECT DISTINCT IIF(AVG(A13) > AVG(A12), '1996',
9 '1995') FROM district",

10 "difficulty": "simple"
11 },

Listing 4: Example of an entry in the BIRD-Bench dataset [9].

2.6.3 Text-to-SQL Methods

This chapter discusses advancements in Text-to-SQL methods, highlighting the development
of models like DIN-SQL and DAIL-SQL that enhance the ability of LLMs to generate complex
SQL queries.
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In the article DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction
the authors presents an approach to text-to-SQL generation where a complex task is di-
vided into smaller sub-tasks and thereby closing a performance gap between fine-tuned and
prompting methods when generating complex SQL-queries with LLMs [56]. Evaluating the
prompting technique on the Spider-dataset [61], the authors achieves an execution accuracy
of 85.3 % with GPT-4 and 78.2 % using the CodeX Davinci model. In the article it is pre-
sented that the major factors where text-to-SQL queries fail with the CodeX Davinci model
are Schema-Linking (37 % of failures), JOIN-queries (21 % of failures) and wrong columns (15
% of failures) which often occured when a GROUP BY clause was required. The DIN-SQL
model is comprised of four distinct modules: (i) Schema Linking Module, tasked with man-
aging database references and natural language queries; (ii) Classification & Decomposition
Module, which categorizes each query into one of three complexity levels—easy, non-nested
complex, or nested complex; (iii) SQL-generation Module, further subdivided into three spe-
cialized sub-modules each focusing on the generation of queries corresponding to the men-
tioned complexity levels; (iv) the Self-Correction Module, which instructs the LLM to identify
and correct errors within the generated SQL queries [56].

Another, text-to-SQL model is presented in the article Text-to-SQL Empowered by Large Lan-
guage Models: A Benchmark Evaluation [62] where zero-shot and few-shot prompting methods,
but also fine-tuned models in a text-to-SQL context are evaluated. The article presents the
DAIL-SQL model which scored the highest execution accuracy upon publication [62]. The
article evaluates five different examples of zero-shot prompting in a text-to-SQL setting; Basic
Prompt, Text Representation Prompt, OpenAI Demonstration Prompt, Code Representation
Prompt, and Alpaca SFT Prompt. The Code Representation Prompt scored an execution ac-
curacy of 75.6 % together with LLM CODE-DAVINCI-002. The code representation prompt
was created through a "Create Table prompt" which can be seen in Figure 5.

The few-shot prompting methods that are evaluated are the following Full-Information
Organization, SQL-Only Organization and DAIL-SQL. The DAIL-SQL model employs mask-
ing on both the target and example questions to diminish noise and enhance understanding
of their general structure. After masking, the questions are converted into embeddings. The
Euclidean distance is then used to measure the similarity between the target question and
each of the example questions. In addition, DAIL-SQL generates SQL queries through a pre-
liminary model using the target question. The generated query, called s’, is an approximation
of the desired query s*. Thereafter the Euclidean distance between s’ and the true label query
si is calculated. Subsequently, the example questions with the smallest Euclidean distance
are chosen, given that the query distance is below a predefined threshold τ. In doing so, the
model effectively organizes question-to-SQL mappings, determining which examples should
be provided to the LLM for the creation of the few-shot prompt [62].

The DAIL-SQL model achieved an execution accuracy of 86.2% on the Spider dataset. The
model’s accuracy was further enhanced to 86.6 % by incorporating self-consistency; however,
this improvement was time-consuming, as noted by the authors. The article also showcases
results from open-source models that were fine-tuned on the Spider dataset. Notably, when a
fine-tuned model was combined with zero-shot prompting, the highest accuracy of 69.1% was
attained using the LLaMA-33B model in conjunction with the Code Representation Prompt
[62].
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1 CREATE TABLE continents (
2 ContID int primary key,
3 Continent text,
4 foreign key(ContID) references countries(Continent)
5 );
6

7 CREATE TABLE countries(
8 CountryId int primary key,
9 CountryName text,

10 Continent int,
11 foreign key(Continent) references continents(ContID)
12 );
13

14 /* Answer the following: How many continents are there? */
15 SELECT

Listing 5: Code Representation Prompt [62].
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3 Method

This chapter outlines the methods applied throughout the research process. Firstly, Sec-
tion 3.1 Overview provides an introduction to the research design and the general approach
adopted during the investigation. Next, Section 3.2 Data Collection & Datasets offers com-
prehensive insights into the dataset used, as well as the evaluation metrics and validation
processes implemented.

Subsequently, in Section 3.3 Text-to-SQL Models, the practical aspects of the research are ex-
plained. This includes a discussion on the choice of LLMs and the specific text-to-SQL models
employed in our experiments. Section 3.4 Text-to-SQL Experiments then elaborates on the ex-
perimental methodology. The progression of our methodology is further explained in Section
3.5 Result Analysis, where we describe the process used to analyze the experimental results.
Thereafter, in Section 3.6 Question Classification the next phase of experiments is explained
by examining LLMs capabilities as classifiers. Finally, Section 3.7 Correcting SQL Queries ad-
dresses the methods employed for correcting data points within our research framework.

The prompting templates and SQL-analysis spreadsheets used and created during the
method are attached in the project’s GitHub repository1 .

3.1 Overview

An illustration over the research process of this thesis is presented in Figure 3.1. The method-
ology was initiated with a thorough review of literature in prompt engineering and current
text-to-SQL implementations, followed by a search to identify a suitable dataset for the exper-
imental phase. The next stage of the process consisted of developing an evaluation pipeline
for the experiments, along with the construction of the text-to-SQL models zero-shot, few-
shot, and DIN-SQL. Subsequently, the first series of experiments were conducted, followed
by a thorough analysis of the results obtained. Insights from this analysis led to a focus
on investigating model performance on cleaned and noise-free versions of the dataset. This
approach was then evaluated through a second series of experiments, accompanied by fur-
ther analysis of the experiment results. The second analysis generated the proposition to use
LLMs to improve data quality in text-to-SQL tasks, which led to classification and correction
experiments. Finally, when the four different experiment iterations had been finalized, the re-
sults were summarized. The findings are presented in chapter 4 Results and further assessed
in chapter 5 Discussion.

1https://github.com/niklaswretblad/Text-to-SQL-Generation
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Figure 3.1: The research process of the project.

3.2 Data Collection & Datasets

A comprehensive literature study was conducted to identify the most relevant datasets for
text-to-SQL research. The literature study centered around a detailed analysis of the three
most popular datasets in the text-to-SQL field: WikiSQL, Spider, and BIRD-Bench, to deter-
mine their suitability for this research. The datasets are described in Section 2.6.1 Text-to-SQL
Benchmarks & Datasets, but some of their characteristics will be mentioned again in this Sec-
tion in order to proberly motivate the choice of dataset and benchmark.

As described in Section 2.6.1 Text-to-SQL Benchmarks & Datasets, WikiSQL is a prominent
dataset in the text-to-SQL domain that was released in 2017, featuring over 24,241 tables
and 80,654 natural language questions [70]. Each question is linked to a corresponding SQL
query and a Wikipedia table. The primary focus of WikiSQL is to test the ability of models
to translate natural language questions into SQL queries based on a table schema, without
necessitating complex SQL operations or in-depth understanding of database content. The
queries in WikiSQL are therefore fairly simple, only containing simple SELECT and WHERE
operations without nested queries or JOIN operations.

Spider, in contrast, presents a more complex scenario with its collection of 200 databases
and 10,181 questions. Notable for its cross-domain diversity, Spider challenges models with
a variety of SQL structures and keywords across multiple tables. This dataset requires a
deeper understanding of database schema and the generation of complex SQL queries. How-
ever, similar to WikiSQL, Spider does not emphasize the understanding of the actual content
within the databases.

26



3.2. Data Collection & Datasets

Figure 3.2: The complexity of BIRD-Bench compared to other benchmarks [6].

BIRD-Bench (BIg benchmark for laRge-scale Database) represents a significant advancement
in the text-to-SQL field. It comprises 12,751 pairs of text-to-SQL data across 95 databases,
with a total size of 33.4 GB and covering 37 professional domains. BIRD-Bench is designed to
fill the gap between academic research and real-world applications by emphasizing the com-
prehension of database values. It introduces challenges such as dealing with dirty database
contents, requiring external knowledge to link natural language questions with database con-
tents, and the efficiency of SQL queries in large databases. Despite progress in text-to-SQL
models like Codex and ChatGPT, BIRD-Bench underscores ongoing challenges, with even the
most advanced models achieving only 40.08% execution accuracy compared to 92.96% for hu-
man performance. This dataset is vital for testing and improving the practical applicability
and efficiency of text-to-SQL models in real-world scenarios.

Because of its complexity and greater alignment with real-world use cases BIRD-Bench
was selected for this research. Its focus on database values and the unique challenges pre-
sented by large-scale databases make it an essential dataset for driving forward the practical
application of text-to-SQL methods in industry settings.

3.2.1 The Financial Domain in BIRD-Bench

The clients of the project, Combient Mix and SEBx, were exclusively interested in use-cases of
text-to-SQL in finance and banking. BIRD-Bench, as part of its development set, hosts a do-
main specific to finance and banking called financial. Rather than investigating a text-to-SQL
models ability across all domains in the BIRD-Bench dataset, this research therefore centered
around the data found in the financial domain of the benchmark. The domain is composed of
106 question and query pairs and have questions spanning all three types of difficulties found
in the benchmark. More specifically, 63 out of the 106 questions were regarded as simple,
37 as moderate and 6 as challenging. The financial domain in BIRD-Bench is based on the
BERKA-dataset [71], which is part of the larger The CTU Prague Relational Learning Repository
[72]. The BERKA-dataset was published in 1999 and consists of financial information from a
Czech Bank, containing over 5300 clients and over 1 million transactions [71].
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Database Schema

Figure 3.3: Database schema of the financial domain from the BIRD-Bench benchmark [71].

Figure 3.3 displays the database schema for the financial domain. This schema contains vari-
ous tables, such as those for loans, transactions, accounts, cards and clients, all reflecting the
financial orientation of the database. Descriptions of what information these tables contain
are presented in Table 3.1. The database consists of 55 columns distributed across eight dis-
tinct tables. While the majority of the column names are intuitively understandable, some
present interpretative challenges, as evident in the schema shown in Figure 3.3. An illus-
trative example is the district table, which incorporates 16 unique columns. This includes
a column titled district_id along with 15 other columns, ranging from A2 to A16. The latter
columns’ names do not readily convey the nature of the data they hold, making them less
intuitive to understand. In practice, a database schema will often be accompanied by a data
dictionary or documentation that explains each table and column in detail. Such documen-
tation would typically provide the context needed to fully understand the meaning of each
element in the schema, the range of possible values for fields with unspecified types, and the
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business logic underlying the relationships. Without this additional documentation, fully in-
terpreting and effectively using the database can be challenging as illustrated by the column
names in the districts table. In the theoretical framework outlined in Section 2.6.2 A Closer
Look at BIRD-Bench on BIRD-Bench, it is highlighted that the dataset includes a unique fea-
ture for each question termed hint. This feature is designed to offer insights or supplementary
information corresponding to the specifics detailed in such database documentation.

Further, the lines in Figure 3.3 between the tables represent relationships, where the nature
of the relationship is indicated by the shape of the tail end of the lines where they connect to
each table. A one-to-many relationship is indicated by the line beginning with a single line
and the one digit above it, and then ending in a crow’s foot (three lines) at the opposite
end. For example, an account can have multiple orders, transactions, dispositions, and loans
associated with it, but each of those entities is only linked to one account. An account can
have many loans, but one loan is exclusively only linked to one account, which makes sense.
Further, clients and accounts are related through the disposition table in a many-to-many
relationship. An account can have many different clients associated with it, for example,
one client listed as the owner of the account and multiple other clients listed as users for the
account. This could for example be practical for sharing an account in a family, where one
parent could be the owner of the account and then multiple other family members listed as
users. A single client can also be related to many different accounts in the other way around.

Table 3.1: Table descriptions of the tables in the database of the financial domain [9].

Table Name Description

loan Contains details of loans.
order Holds information about monetary orders.
trans Represents financial transactions.
account Contains account information.
disp Links clients to accounts (dispositions).
card Contains details about cards issued.
client Holds client information.
district Contains details about districts or regions.

3.2.2 Analysis and Comparison of Domains

The BIRD-Bench authors have previously published results that measure the success of mod-
els across the entire training and development sets, however, these published results do not
provide a granular understanding of how the financial domain compares to the other do-
mains within the benchmark [9]. This lack of domain-specific insight posed a challenge for
this research in comprehensively comparing the performance of models within the financial
domain with previously gathered results on the development and training sets. It also made
it difficult to understand the specific nature of the financial domain because of the lack of
available comparisons. The finance domain only amounts to about 0.8% of the total data
points in the BIRD-Bench dataset and about 7.5% of the total data points in the development
set which further motivates this problem. Therefore, an in-depth analysis and comparison
of the different domains in the development set of the benchmark were performed. This
analysis involved three key parts to provide a more detailed perspective:

1. Receiving old log files from the author of the DIN-SQL model, where the model in-
puts and outputs had been logged on the entire development set. Analyzing these
logs enabled the measurement and comparison of the accuracy of the DIN-SQL model
across each domain in the development set, providing insights into the model’s domain-
specific strengths and weaknesses.
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2. Investigating the databases in the benchmark by collecting and measuring the number
of tables and columns in each database. This process also involved a comparative anal-
ysis of the database sizes, in terms of both tables and columns, against the accuracy
achieved by the DIN-SQL model in each domain from the previous step. The objec-
tive was to discern any potential correlation between the size of the databases and the
models’ accuracy.

3. The analysis included a detailed enumeration of the questions categorized by their diffi-
culty level across each domain. Additionally, the proportion of each difficulty level was
evaluated in relation to the accuracy of the DIN-SQL model, as established in the pre-
vious step. This methodical approach was aimed at assessing the impact of a domain’s
overall question difficulty on the performance of text-to-SQL models. Such insights are
crucial in understanding the varying challenges posed by different domains and how
they influence model accuracy.

3.3 Text-to-SQL Models

This section will present the two text-to-SQL models, Baseline: Zero-Shot Model and DIN-SQL
Model, used in the experiments and what LLM and hyperparameters that were applied to
generate the predicted SQL queries. Both models are composed out of different prompts and
prompting techniques built on top of openAIs LLM APIs.

3.3.1 Choice of Large Language Model

The core of the research conducted centers around the use of LLMs, and the same is true
for the models created. All models described in this section at the core utilizes an LLM in
order to convert a question in natural language into a SQL query. The LLMs used in the
experiments are GPT-3.5-Turbo and GPT-4, chosen because they are the highest-performing
publicly available models in the text-to-SQL benchmarks of BIRD-Bench and Spider [9, 10].

GPT-3.5-Turbo was employed during preliminary testing and in most of the experiments,
due to its cost-effectiveness and high performance. GPT-4 was used exclusively for compar-
ing its performance with that of GPT-3.5-Turbo.

The default GPT-3.5-Turbo model was utilized in all experiment runs, except those em-
ploying the DIN-SQL prompting technique. For these, the GPT-3.5-Turbo-16k variant was
used to accommodate the longer token length of DIN-SQL’s prompting template.

In all of our experiments, we consistently set the temperature hyperparameter to 0. This
decision was based on observations that increasing the temperature often resulted in a de-
crease in the accuracy of SQL conversion. Specifically, higher temperature settings were
found to compromise the structural integrity of the SQL output, frequently resulting in out-
puts that did not adhere to correct SQL structure. Moreover, at elevated temperatures, the
model tended to include extraneous reasoning and text, thereby disregarding previous in-
structions and further diminishing the quality and precision of the SQL conversion.

3.3.2 Baseline: Zero-Shot Model

The zero-shot model acts as the baseline of the study since it presents the most basic struc-
ture and idea of a text-to-SQL model using LLMs. The idea is to first compose a prompt that
integrates the question, the associated database schema, an instruction directing the LLM
to generate valid SQL, and the hints or external knowledge sourced from the BIRD-Bench
dataset. Subsequently the model is prompted to generate a SQL query. The zero-shot prompt
template can be seen in Listing 6. It begins with an instruction that the database schema will
be provided in the form of CREATE_TABLE statements, followed by a variable that repre-
sents the database schema of the database the question we are trying to convert refers to.
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Thereafter, an instruction telling the LLM to use valid SQL syntax to answer the provided
question is written. Subsequently, the LLM is informed about the intention of the hint, along
with variables representing the actual question and hint. Lastly, to avoid extensive and un-
necessary output, the LLM is instructed to generate nothing other than the actual SQL query.

1 Database schema in the form of CREATE_TABLE statements:
2

3 {database_schema}
4

5 Using valid SQL, answer the following question based on the
6 tables provided above.
7

8 Hint helps you to write the correct sqlite SQL query.
9 Question: {question}

10 Hint: {evidence}
11 DO NOT return anything else except the SQL query.

Listing 6: Zero-Shot Prompting Template.

Database Schema

In order for an LLM to generate a correct SQL query when provided with a question, it needs
to know the specific details of the database it refers to. For instance, it needs to know the
names of the tables inside the database, the names of the columns of the tables, the different
relationships between the different entities and so on. Hence, the schema of the database is
provided to the LLM within each prompt as can be seen in Listing 6. Further, a database
schema can be expressed in a multitude of different formats, but previous studies has shown
that expressing the schema in the form of SQL CREATE_TABLE statements improved accu-
racy compared to other formats [73]. This format is demonstrated in Listing 7. The zero-shot
model and all other models implemented in this research therefore expressed all database
schema in the form of CREATE_TABLE statements.

3.3.3 DIN-SQL Model

DIN-SQL refers to Decomposed In-Context Learning of Text-to-SQL with Self-Correction, which
is, at the time of writing, the top-performing text-to-SQL prompt engineering method [56]. It
addresses challenges in converting natural language queries to SQL by decomposing the pro-
cess into smaller, manageable sub-problems. The aim of the model structure is that it should
be especially effective for complex queries involving multiple joins or nested structures. The
methodology consists of four main modules:

1. Schema Linking Module: It identifies references to database schema and condition
values within natural language queries. This step is crucial for generalizing across do-
mains and synthesizing complex queries.

2. Classification & Decomposition Module: This module classifies queries into one of
three categories: easy, non-nested complex, and nested complex. It also detects the ta-
bles to be joined and any sub-queries for nested queries. The categorization is essential
for the subsequent SQL generation process.

3. SQL Generation Module: Depending on the query class, different processes are em-
ployed. For easy class queries, simple few-shot prompting is used. For non-nested com-
plex class queries, an intermediate representation, like NatSQL, bridges the gap between
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1 CREATE TABLE account
2 (
3 account_id INTEGER default 0 not null primary key,
4 district_id INTEGER default 0 not null,
5 frequency TEXT not nuLl,
6 date DATE not null,
7 foreign key (district_id) references district (district_id)
8

9 );
10

11 CREATE TABLE card
12 (
13 card_id INTEGER default 0 not null primary key,
14 disp_id INTEGER not null,
15 type TEXT not null,
16 issued DATE not null,
17 foreign key (disp_id) references disp (disp_id)
18 );

Listing 7: CREATE_TABLE statements corresponding to the account and card tables in the
BIRD-Bench dataset [9].

the query and SQL statement. The nested complex class involves multiple intermediate
steps, including solving sub-queries before generating the final SQL.

4. Self-correction Module: This module corrects minor mistakes in the generated SQL
queries, such as missing or redundant keywords. Two types of prompts, generic and
gentle, are used depending on the model (CodeX or GPT-4) to direct the correction pro-
cess.

Figure 3.4: The architecture of the DIN-SQL model [56].

These modules are composed of distinct prompting templates, each specialized for each spe-
cific task. When a question requires conversion into SQL, it is processed sequentially by a
pipeline consisting of these four unique modules. Each template, or submodule, is dedicated
to addressing a particular aspect of the larger challenge of transforming a question into SQL
format. This methodology uses a small number of carefully selected few-shot learning exam-
ples within each prompting template. These examples are drawn from the training datasets
of relevant benchmarks, providing targeted guidance to help the conversion process.
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3.4 Text-to-SQL Experiments

This section outlines the structure, methodology, and evaluation of the text-to-SQL experi-
ments conducted as part of this study. The core objective of these experiments was the de-
velopment and assessment of a pipeline for converting natural language questions into SQL
queries, primarily leveraging various text-to-SQL techniques based on LLMs. The experi-
mental process commenced with an input question framed in natural language. This question
was then run through a systematic pipeline, involving multiple prompts and distinct calls to
an LLM, specifically tailored to optimize the conversion into a SQL query. Upon successful
conversion, the resulting SQL query was executed against the corresponding database. Due
to the non-uniqueness of SQL queries, where different queries can yield identical results,
the success of a generated query was determined by comparing the data obtained from the
database from the true query with that retrieved by the generated query. This comparison
was done automatically through code implementation. A match between the data retrieved
was deemed a success, and accuracy was determined by the ratio of successful matches to the
total number of both successes and failures. The experiments utilized the web-based software
Weights and Biases for logging results and metrics. This platform is designed for monitoring,
visualizing, and optimizing machine learning model hyperparameters [74].

Following the implementation of the evaluation pipeline, which integrated the text-to-
SQL models with the LLM API, database, and evaluation functionality, the initial iteration
of experiments was conducted. Each experiment recorded a set of data for each data point,
encapsulated as:

question, true SQL query, predicted SQL query, success, difficulty (3.1)

In addition to the data in table (3.1), further metrics, including model accuracy and hy-
perparameters, were documented either iteratively throughout each experiment or as cumu-
lative values at the conclusion of the experiment.
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3.5 Result Analysis

After the first iteration of experiments, the results of the data Table (3.1), presented in Sec-
tion 3.4 Text-to-SQL Experiments, were analyzed for each model. Every data point was read
through to find patterns between the question, true SQL queries, model, and predicted query.
The concluded patterns and results of the first iteration can be seen in Section 4.2 First Round
of Experiments. A significant observation was the compromised quality of the data. Parts of
the dataset had quality issues due to ambiguous questions or erroneous true SQL queries.

Consequently, the analysis led to a new phase of the methodology where the financial
domain of the BIRD-Bench dataset was corrected. The correction process included a detailed
analysis of each data point’s question and true query, specifically investigating the grammat-
ical and semantic aspects of the questions, as well as assessing the specificity or ambiguity of
these questions in relation to the corresponding data retrieved by the true queries. However,
there is a significant probability that this process was exposed to cognitive bias, which will be
discussed in Section 5.2 Method. The dataset before and after the first iteration of corrections
are attached in the GitHub repository2.

Subsequent to the data correction process, a further iteration was conducted to evaluate
the impact of this enhanced data quality on the SQL query generation by the LLM. The out-
comes of this analysis, presenting the relationship between data quality and generated query
accuracy, are detailed in Section 4.3 Analysis of Experiment Results.

3.6 Question Classification

Upon evaluating the models with both the initial and modified datasets, it became evident
that dataset variations significantly influenced performance. Consequently, this created the
incitament for a more thorough data analysis, leading to an additional methodological phase.
This phase involved categorizing through manual question annotation and systematically
classifying them using the language model through a sequence of experimental runs.

3.6.1 Annotating Question Quality

During the process of analyzing the results, a pattern of data quality issues was recognized.
In a significant portion of the dataset, the questions and SQL queries were clear and unam-
biguous. However, many data points contained unclear and ambiguous questions, likely
impacting the text-to-SQL model’s performance. Some questions had subtle ambiguities that
might affect the model, though it’s uncertain to what extent. Additionally, certain questions,
despite being understandable with knowledge of the database structure, were unanswerable
due to the database’s limitations.

To organize these patterns, four distinct quality categories were established to classify the
questions presented in Table 3.2.

2https://github.com/niklaswretblad/Text-to-SQL-Generation
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Table 3.2: Annotated question quality classes.

Category Description
0 Correct question. May still contain minor errors in language or minor

ambiguities that do not affect the interpretation and generation of the
SQL query.

1 The question is unclear, ambiguous, unspecific, or contains
grammatical errors that surely are going to affect the interpretation

and generation of the SQL query
2 Indecisive, badly formulated questions that could or could not affect

the text-to-SQL conversion
3 The question is wrongly formulated when considering the structure of

the database schema. The information that the question is asking for is
not possible to accurately retrieve from the database.

After establishing the categories, the financial domain of the BIRD-Bench dataset underwent
an annotation process. Two graduate students within AI and Machine Learning initially an-
notated the dataset independently, based on the concluded categories. Their annotations
were then cross-examined to agree upon a definitive set of labels, which were subsequently
applied to the dataset.

3.6.2 Classification Models

Following the annotation of question quality, a series of classification experiments were con-
ducted. In these experiments the LLM was prompted to sort the questions into the prede-
fined categories. The experiments examined a single prompt template classifier, but also a
reasoning model where chaining was implemented. This section will elaborate on these ex-
periments.

Base Classifier

The classification experiments were initiated with a less complex approach where the LLM
was prompted to categorize the questions into two categories. The first class (0) was a correct
question representing the first category presented in Section 3.6.1 Annotating Question Quality.
The second class (1) was an incorrect or ambiguous question representing categories 1-3 of
the concluded categories. To give the LLM more detailed instructions and context, few-shot
learning was employed, wherein the language model was primed with fabricated question
examples—crafted by the annotators—for each category to establish a foundational context.
The examples were created to mirror the issues identified in the patterns, based on research
presented in Section 2.2.4 Few-shot Learning that emerged from the analysis of the results. Ad-
ditionally, experiments were conducted using examples that embodied both class 0, which
denotes correct questions, and class 1, indicating incorrect questions. These experiments in-
cluded examples representing each class individually, as well as examples that encompassed
both class 0 and class 1. Additionally, the database schema, BIRD-Bench hint, and lastly the
question of each data point was provided. The results of these experiments are presented in
Section 4.5 Question Classification and the prompts used are provided on the project’s GitHub
repository3.

When the LLM’s ability to classify two categories had been examined, the ability to clas-
sify the four individual categories was evaluated, see Table 4.3. In these experiments the
same prompt and information was provided, only that the categories were presented with
their number. These results are also provided in Section 4.5 Question Classification.

3https://github.com/niklaswretblad/Text-to-SQL-Generation
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Considering the results of these experiments featured true positives, false positives, as
well as true negatives, the applied evaluation metrics encompassed accuracy, recall, F1-score,
and precision.

Reasoning Classifier

The initial classifier solely produced a numerical grade as its output, which could be viewed
as limiting since research has indicated that instructing an LLM to explicitly articulate its rea-
soning or thoughts in responses can enhance its logical capabilities [1]. The second classifier
was designed to leverage this approach. It involved a two-step process: first, the LLM was
prompted to think and reason about the potential grade for a question. Second, the output
from the first step was used as input to the second step, where the LLM was instructed to
assign a grade to the question based on the reasoning it had formulated in the prior step.
In both steps, the LLM was also provided with the database schema corresponding to the
given question in addition to the classification scheme found in Table 3.2. The full prompt
templates used can be found on the project’s GitHub repository3.

3.7 Correcting SQL Queries

During the result analysis described in Section 3.5 Result Analysis, a subset of the questions
and queries from the BIRD Bench dataset was identified as being incorrect or poorly formu-
lated. Therefore, a small study was performed to investigate the capability of an LLM in
correcting faulty SQL queries. If this would be possible, one could automatically remove the
noise in the form of incorrect SQL queries from the data by using an LLM. The study there-
fore aimed to assess the effectiveness of an LLM in enhancing the accuracy of text-to-SQL
datasets by measuring its success in correcting incorrect SQL queries.

The data consited of incorrect SQL queries, along with their corresponding questions and
accurate counterparts. Analysis of the results revealed 16 true SQL queries that were formu-
lated incorrectly. Notably, seven of these queries shared a common error type. Therefore 10
incorrect SQL queries were used which contained 10 unique errors in total.

After the data had been collected, a prompt was constructed with the purpose of instruct-
ing the LLM to pinpoint and correct SQL queries that were either syntactically incorrect or
logically flawed in their interpretation of database relations. To ease the correction process,
the prompt was also provided with three additional pieces of information:

• Database Schema: The schema for the relevant database was given in detail in the form
of CREATE_TABLE statements. The schema is essential for understanding the structural
relationships within the database, and so is crucial for the LLM to accurately correct and
formulate the queries.

• Natural Language Question: Together with each SQL query the corresponding natural
language question was given. The question sets the context for what information the
query is intended to retrieve, guiding the correction process.

• Hint: The evidence provided for each of the data points from the BIRD dataset used
for this study was also provided, aiding the LLM in correctly interpreting the database
schema and relations.

The prompt ended with an instruction telling the LLM to correct the given SQL query. After
some initial experiments, it was shown that the LLM often wanted to correct given dates, val-
ues, names and numbers even though they were correctly stated in the query. An instruction
telling the LLM to assume that all dates, values, names and numbers in the questions and
SQL queries are correct were therefore added to the prompt as well.
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To evaluate the effectiveness of the LLM in correcting SQL queries, the data fetched by
both the generated and the true SQL query were manually compared. If the two queries
returned exactly the same data, the generated query was considered as good.
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4 Results

This section presents findings from the experimental studies. It begins with exploring the per-
formance of the implemented text-to-SQL models in their first evaluation with the original
dataset. This is followed by a quantitative analysis of the revised dataset, featuring selected
data point examples from the correction process. Thereafter, results from the second itera-
tion of experiments are presented, where the text-to-SQL models have been assessed on the
corrected dataset.

The next part of the result chapter includes performance metrics, presented through plots
and heatmaps, from the classification experiments, emphasizing the accuracy of both the base
and reasoning classifiers. The section culminates in the presentation of findings from the
ablation study. For additional resources including plots, the model’s prompting templates,
and the project code and plots are available at the GitHub repository1.

4.1 Comparison Between Domains in BIRD-Bench

This section presents the results of the analysis and comparison of the different domains in
the development set of BIRD-Bench as described in Section 3.2.2 Analysis and Comparison of
Domains. The chart in Figure 4.1 serves as a visual representation of a comparative analysis
between the domains. It displays the number of tables and columns across the various do-
mains in the development set, with the finance domain highlighted. Additionally, the plot
captures the accuracy rates achieved by the DIN-SQL prompt engineering model across the
different parts of the development set as denoted by the green bars. As can be seen in the
Figure, the financial domain is not an outlier when it comes to any of the three values de-
picted, but holds close to the averages. The mean accuracy of the DIN-SQL model across
all the domains is 37%, whereas the accuracy on the financial domain is 32%. The average
amount of tables across the development set is 7.3 and the average amount of columns is 78.3.
The financial domain in turn consists of 55 columns distributed across eight distinct tables.
Further, no clear relationship between the number of columns and tables and the accuracy of
the DIN-SQL model can be observed.

1https://github.com/niklaswretblad/Text-to-SQL-Generation
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4.1. Comparison Between Domains in BIRD-Bench

Figure 4.1: Table counts, column counts and DIN-SQL model accuracy across the domains in
the BIRD-Bench development set with the financial domain highlighted in red and orange.

The bar chart presented in Figure 4.2 displays the distribution of question difficulties across
the different domains of the development set in BIRD-Bench. Each domain is represented
by a bar segmented into three color-coded parts, symbolizing the different levels of question
difficulty: green for simple, yellow for moderate, and red for challenging. The length of each
colored segment within a bar corresponds to the proportion of questions at that difficulty
level, allowing for an at-a-glance assessment of the complexity mix within each domain.

Observing the bar chart, we notice significant variations in the difficulty distribution
across different domains. For instance, the domain codebase_community has a higher pro-
portion of simpler questions. Conversely, the domain thrombosis_prediction display a more
balanced mix, with a noticeably larger representation of challenging and moderate questions
compared to the other domains. A common trend across most domains is the smaller pro-
portion of challenging questions, although there are notable exceptions where these more
difficult questions form a significant part of the domain.

The model accuracy is overlayed on the question difficulties as blue bars. It compares the
complexity of questions in a domain and the corresponding accuracy achieved.

The distribution of question difficulties and accuracies across domains follows the intu-
itive trend that a larger proportion of simpler questions leads to higher accuracy, but there
are some outliers to this trend. For example, although codebase_community has a larger pro-
portion of simple questions than superhero, but DIN-SQL performed better on the superhero
domain suggesting that an abundance of simpler questions doesn’t automatically lead to bet-
ter performance. Another example is the low performance on the formula_1 domain despite
the large proportion of simple questions. The same goes for the domains student_club and
card_games, and especially notable is the california_schools domain with its low performance.

To summarize, the findings reveal a general correlation between the complexity of ques-
tions in a domain and the model’s performance, but this is not always evident challenging
the assumption that simpler questions always lead to higher accuracy or that a predominance
of difficult questions results in lower accuracy.

39



4.1. Comparison Between Domains in BIRD-Bench

Figure 4.2: Percentage of questions by difficulty and DIN-SQL model accuracy across the
domains in the BIRD-Bench development set.
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4.2 First Round of Experiments

This section presents the results from the first iteration of experiments. The graph attached in
Figure 4.1 presents the execution accuracy results from the evaluation of the text-to-SQL mod-
els, presented in 3.3 Text-to-SQL Models, on the financial domain of the BIRD-Bench dataset.
The Figure displays the results of the three models: Zero-Shot with GPT-3.5, DIN-SQL with
GPT-3.5 and Zero-Shot with GPT-4. The chart indicates a similar level of performance across
all models. However, it’s important to highlight the performance gap observed between the
zero-shot and the DIN-SQL model. The zero-shot model using GPT-3.5 achieved an execution
accuracy of 36.19%, while the DIN-SQL model showed an almost five percent larger accuracy
of 40.57%. Additionally the zero-shot model based on GPT-4 reached a similar accuracy of
38.09%.

Figure 4.3: Execution accuracy of the implemented models on the financial domain of the
BIRD-Bench dataset.
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4.3 Analysis of Experiment Results

This section details the corrections applied to the BIRD-Bench dataset’s financial domain, fol-
lowing the analysis introduced in 3.5 Result Analysis. Table 4.1 quantifies the enhancements,
including the number of revised unique data points, questions, and true standard queries, im-
proving the dataset’s accuracy and reliability for future text-to-SQL model training and eval-
uation. The errors corrected are divided into six categories. Semantic Errors - Questions are
phrased in ways that mislead their interpretation. Vauge/Ambiguous questions - Questions are
posed in ways that complicate making an unambiguous interpretation. Incorrect SQL (True)
- The true SQL queries fail to retrieve the intended data. Question and True Query Diverging
- The phrasing of questions and their corresponding true queries do not match to retrieve
the same data. Synonyms - Word choices in questions may cause confusion or be miscon-
strued as SQL functions. String Capitalization, Mismatches in the capitalization of questions
and database entries affect query execution due to SQL’s case sensitivity.

Table 4.1: Statistics over erroneous data points and type of errors found during the result
analysis.

Statistic Value
Unique data points corrected 52/106
Questions corrected 44
True queries corrected 26

Type of Error # of Errors Found
Semantic Errors (Poor English) 23
Vague/Ambiguous Questions 17
Incorrect SQL (True) 19
Question and True Query Diverging 5
Synonyms 2
String Capitalization 7

4.3.1 Result Analysis Examples

This section will provide examples of data points that were of poor quality and in different
ways affected the generation of the SQL query. First, an example of a question that is ambigu-
ous and unspecific will be presented, along with an explanation of how these formulations
affect prediction accuracy. Subsequently, an example of a poorly formulated true query and
its suggested correction will be displayed. Lastly, an example is provided of a question that
does not comply with the structure of the database.
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Example 1: Ambiguity in Natural Language Interpretation

In this example, we explore how ambiguities in natural language can significantly impact
the interpretation of a language model, leading to divergences between the predicted SQL
query and the intended true query. The challenge lies in the natural language question’s am-
biguity, specifically in the phrase “List all the withdrawals...” This ambiguity revolves around
determining which columns to return when executing the SQL query.

The phrase is interpreted differently by the language model and the true query. The
true query interprets the request as needing to return only the IDs of all transactions (i.e., a
specific column from the transactions table). In contrast, the text-to-SQL model interprets
the same instruction as a command to return all columns, using the star command (’*’), for
all relevant transactions. This discrepancy highlights a fundamental challenge in text-to-SQL
conversion: natural language often lacks the specificity required for unambiguous SQL
query formulation. It raises an essential question: Which columns should be returned when the
command is to list all transactions?

Question:

1 List all the withdrawals in cash transactions that
2 the client with the id 3356 makes.

Listing 8: Question from the entry with id 159 from the financial domain of BIRD-Bench.

True Query:

1 SELECT T4.trans_id
2 FROM client AS T1
3 INNER JOIN disp AS T2 ON T1.client_id = T2.client_id
4 INNER JOIN account AS T3 ON T2.account_id = T3.account_id
5 INNER JOIN trans AS T4 ON T3.account_id = T4.account_id
6 WHERE T1.client_id = 3356
7 AND T4.operation = 'VYBER'

Listing 9: True query from the entry with id 159 from the financial domain of BIRD-Bench
with the interpreted column to be returned highlighted.

Predicted Query:

1 SELECT *
2 FROM trans
3 INNER JOIN disp ON trans.account_id = disp.account_id
4 WHERE disp.client_id = 3356
5 AND trans.operation = 'VYBER'

Listing 10: Predicted query with id 159 from the financial domain of BIRD-Bench with the
interpreted column to be returned highlighted.
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Example 2: Data Quality Issue

The second example provides a further illustration of data quality issues within the financial
domain of the BIRD-Bench dataset, viewed in Listing 11 to 13. It details a question along-
side its initially formulated incorrect true query and the revised true query, which has been
corrected following the data result analysis process outlined in section 3.5 Result Analysis. To
understand the SQL code presented in the listings correctly, it is recommended to review the
database schema presented in Figure 3.3. The true query provided in the BIRD-Bench dataset
uses an INNER JOIN SQL command over the district_id column in the account and client
tables. This is however not the correct column value to join over since there is no unique
database relation between client and account through distict_id, one client could have multi-
ple accounts and a certain account could have multiple clients as users and each client and
account have their own district_id. Therefore, this would possibly result in duplicate values
being incorrectly selected. To modify this into a correct query, in Listing 12, an INNER JOIN
is done through the disp table instead. Through which each account and its corresponding
client has a unique relation.

Question:

1 What is the average loan amount by male borrowers?

Listing 11: Question from the entry with id 132 from the financial domain of BIRD-Bench.

True Query:

1 SELECT
2 AVG(T3.amount)
3 FROM
4 client AS T1
5 INNER JOIN account AS T2 ON T1.district_id = T2.district_id

6 INNER JOIN loan AS T3 ON T2.account_id = T3.account_id
7

8 WHERE
9 T1.gender = 'M'

Listing 12: True query from the entry with id 132 from the financial domain of BIRD-Bench
with the faulty INNER JOIN commands highlighted.
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Corrected true Query:

1 SELECT
2 AVG(T1.amount)
3 FROM
4 loan AS T1
5 INNER JOIN account AS T2 ON T1.account_id = T2.account_id
6 INNER JOIN disp AS T3 ON T2.account_id = T3.account_id

7 INNER JOIN client AS T4 ON T3.client_id = T4.client_id
8 WHERE
9 T4.gender = 'M'

Listing 13: Corrected version of the query from the entry with id 132 from the financial do-
main of BIRD-Bench with the corrected INNER JOIN commands highlighted.

Example 3: Database Schema Non-Alignment

The third example, shown in Table 4.2, illustrates a question improperly aligned with the
database schema’s structure, leading to the LLM lacking the necessary information for a
valid prediction. This particular question overlooks the possibility of clients having multiple
dispositions, as well as multiple disposition IDs. The structure of the database schema can
be viewed in Figure 3.3.

Question Feasibility

Table 4.2: Feasibility of the posed question based on the current database schema, highlight-
ing the one-to-many relationship between client and disposition.

Question Feasibility

What is the disposition id of the client who
made $5100 USD transaction on 1998/9/2?

Not feasible with current schema
due to one-to-many relation between
client and disposition.
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4.4 Experiments on the Cleaned Datasets

In this section, the results of our experiments with text-to-SQL conversion on the cleaned
version of the financial dataset described in Section 4.3 Analysis of Experiment Results are pre-
sented. The focus was on assessing the impact of dataset quality on the performance of var-
ious models. Three variations of the financial domain dataset from BIRD-Bench was used:
the original dataset with noise in both questions and SQL queries, a cleaned version of the
dataset where noise was removed from both components, and a partially cleaned version
where only the SQL queries were corrected.

The analysis involved three models: Zero-Shot with GPT-3.5, DIN-SQL with GPT-3.5 and
Zero-Shot with GPT-4. The results, visualized in the accompanying bar plot in Figure 4.4,
indicate significant findings regarding the robustness and adaptability of these models in
varying conditions of data cleanliness.

Interestingly, on the original noisy dataset, the zero-Shot approach using GPT-3.5 showed
approximately 5% lower accuracy compared to the DIN-SQL model. However, when the
data was cleaned of noise, the performance gap between the zero-Shot GPT-3.5 and DIN-SQL
models narrowed considerably, with the zero-Shot model trailing by a mere 0.5% in accuracy.
Remarkably, in the scenario where only the SQL queries were corrected, the zero-Shot GPT-
3.5 model excelled, achieving an accuracy of 42.45%, which is slightly higher than the 41.51%
accuracy of the DIN-SQL model.

Figure 4.4: Execution accuracy of the different models on the different datasets.

Furthermore, the experiments revealed that GPT-4’s zero-Shot model benefited most signif-
icantly from the noise removal, although all models substantially improved their perfor-
mance. The models demonstrate improved performance on both the dataset with cleaned
questions and queries and the dataset with solely cleaned SQL queries.
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4.5 Question Classification

This section details the outcomes of the question classification experiments discussed in Sec-
tion 3.6 Question Classification. It includes graphical representations of the data from both the
base and reasoning classifiers.

4.5.1 Question Annotation

The annotations of questions in the Financial domain of the BIRD-Bench development dataset
are displayed in Table 4.3. Out of a total of 106 questions, 64 were determined to have no sig-
nificant effect on how the LLM and prompting models generate SQL queries. In contrast, 42
questions were identified as potentially or definitively influencing the SQL query generation
process.

Table 4.3: Number of annotations in each classification category. The definition of each cate-
gory can be viewed in Table 3.2.

Category No. Annotations
0 64
1 25
2 5
3 7
1 & 32 5

4.5.2 Base Classifier

As detailed in section 3.6.2 Base Classifier, the base classifier was subjected to two distinct
experiments, the outcomes of which are discussed in this section. The first experiment, uti-
lizing the categories defined in Table 3.2, grouped questions into two broad classifications:
those with no significant impact on the LLM (categorized as 0), and those whose formu-
lations could potentially mislead the LLM’s interpretation (categorized as 1). The second
experiment focused on assessing the classifier’s ability to categorize questions into the origi-
nal four categories as presented in Table 3.2. This section elaborates on the performance and
findings of these two experimental evaluations. When reviewing and analyzing the results
of the classifiers it should be taken into consideration that the baseline model, of only classi-
fying questions into class 0 as a correct question, has an accuracy of 60.3%. This is based on
the 64 questions that have been annotated as correct into class 0, presented in Table 4.3, and
the total number of questions is 106.

Classification - Two Categories

This section contains the results from three distinct experiments where questions were cat-
egorized by the base classifier as either correct (0) or incorrect/ambiguous (1), the latter in-
corporating the three different types of faults or errors detailed in section 3.6.1 Annotating
Question Quality. Figure 4.5 and 4.6 presents a comparison of the experiments across the four
key metrics — accuracy, precision, recall, and F-1 score. The first Figure, 4.5, displays the
experiments titled GPT-3.5-Turbo with Correct Examples, GPT-3.5-Turbo with Incorrect Examples
and GPT-3.5-Turbo with Correct & Incorrect Examples. Whereas the second Figure 4.6, the same
three different experiments when tested on the GPT-4 LLM.

In the experiments, completed with the GPT-3.5-Turbo model, when provided with ex-
amples annotated as correct (0), achieved a modest 54% accuracy rate. This rate improved

2Of all the annotations there were 5 questions that were considered to be of both categories 1 and 3.
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to 66% when the model was fed examples of only questions annotated as incorrect or am-
biguous (1), whereas when provided with correct and incorrect examples the model’s per-
formance in terms of accuracy reduced to 56%. In regards to precision, the GPT-3.5-Turbo
showed a precision of 42% with annotated correct examples, marginally increasing to 52%
with annotated incorrect examples, and reduced to 47% when provided with correct % and
incorrect examples.

The recall metric varied noticeably. GPT-3.5-Turbo achieved a high recall of 81% with cor-
rect examples but saw this figure drop to 41% with incorrect examples, and increase again
to 68% when provided with correct and incorrect examples. Further, the GPT-3.5-Turbo ob-
tained an F1-Score of 55% with correct examples, which decreased to 45% with incorrect
examples, and increased to 52% when provided with correct and incorrect examples.

In summary, the GPT-3.5-Turbo model’s performance fluctuated based on the type of
examples used. It demonstrated higher accuracy and recall rates with incorrect examples,
but these gains were not consistent across other metrics like precision and F1-score. The
balanced use of correct and incorrect examples did not necessarily lead to better overall
performance, highlighting the complexity and variability in the model’s response to different
prompting examples.

GPT-3.5-Turbo

Figure 4.5: Accuracy, precision, recall and F-1 Score metrics of the three classification experi-
ments of two categories with GPT-3.5-Turbo.

The performance metrics of GPT-4 classifiers showed notable differences compared to their
GPT-3.5 counterparts. When analyzing accuracy, classifiers prompted with correct examples
reached a 72% accuracy rate. This increased to 74% with incorrect examples and peaked at
80% when trained with both. Similarly, precision metrics indicated a 60% score for classi-
fiers with positive examples, 66% with incorrect examples, and 75% when both types were
used. Regarding recall, classifiers with correct examples attained 57%, those with incorrect
examples reached 51%, and those prompted with a mix achieved 65%. Finally, examining
the F-1 score revealed that classifiers prompted with correct examples achieved 58%, those
with incorrect examples also reached 58%, and those prompted with both types of examples
achieved a higher score of 70%.
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To summarize, the GPT-4 classifiers exhibit varied performance based on the type of
prompting examples used. The highest accuracy and F-1 scores were observed when both
correct and incorrect examples were used, indicating that a balanced prompting approach
approach yields the most effective results.

GPT-4

Figure 4.6: Accuracy, precision, recall and F-1 Score metrics of the three classification experi-
ments of two categories with GPT-4.
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Classification - Four Categories

The results of the experiments using the base classifier are displayed in Figures 4.8, 4.9, 4.10
and 4.11. These experiments focused on classifying the four categories discussed in the sec-
ond paragraph of the 3.6.2 Base Classifier section. The two models evaluated are based on
the same prompt template, in which they have been provided a definition of each category
together with at least one example of each category. The full prompt template is available at
the project’s GitHub 3.

In the bar plots of Figure 4.7, the weighted averages for accuracy, precision, recall, and F-1
scores are compared for both models. These averages reveal that the performance disparity
between the GPT-4 and GPT-3.5 models is slight, with each model showing minor superiority
in different areas. Specifically, the GPT-4 model demonstrates higher accuracy and F-1 scores,
whereas the GPT-3.5 model outperforms in precision and recall.

The results are depicted for the GPT-3.5 and GPT-4 model experiments, through two
visual representations. Bar plots contrasting the actual category distribution against model
predictions are shown on the left, while heatmaps depicting confusion matrices of the classi-
fication performance are displayed on the right. The diagonal of the heatmaps in Figures 4.9
and 4.11 shows that the GPT-4 classifier classifies a higher number of questions of category 0
correctly, but the GPT-3.5 model classifies categories 1 and 2 with higher accuracy.

Weighted Averages

Figure 4.7: Weighted averages of the models using GPT-3.5-Turbo and GPT-4.

3https://github.com/niklaswretblad/Text-to-SQL-Generation
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4.5. Question Classification

GPT-3.5-Turbo

Figure 4.8: True counts vs correct pre-
dictions by the model based on GPT-
3.5-Turbo.

Figure 4.9: Heatmap over classifica-
tion results generated by the model
based on GPT 3.5-Turbo.

GPT-4

Figure 4.10: True counts vs correct
predictions by the model based on
GPT-4.

Figure 4.11: Heatmap over classifica-
tion Results generated by the model
based on GPT-4.

4.5.3 Reasoning Classifier

In this section, the results of the reasoning classifier model described in Section 3.6.2 Reasoning
Classifier are presented. The classifier was tasked to classify questions into two distinct cate-
gories, and experiments using both the GPT-3.5-Turbo and GPT-4 models where performed.
The classification was based on the quality of the questions, with 0 denoting a question with-
out errors, and 1 indicating an erroneous question according to the different types of errors
within the questions as described in 3.6.1 Annotating Question Quality.

Figure 4.12 contains the results of the two different models. As can be seen in the fig-
ure, GPT-4 demonstrated a higher accuracy with a score of 0.68, compared to GPT-3.5-Turbo,
which had an accuracy of 0.65. Despite GPT-4’s superior overall accuracy, GPT-3.5-Turbo
excelled in precision with a score of 0.73, against the 0.58 of GPT-4. This implies that when
GPT-3.5-Turbo classified a question as containing errors, it was more likely to be correct in
that assessment.

The recall score highlighted a significant difference between the models. GPT-4’s recall
was 0.69, indicating its strength in identifying a broader range of errors within the questions.
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In comparison, GPT-3.5-Turbo had a recall of just 0.19, suggesting that it missed a substantial
number of errors that GPT-4 could identify.

The F1-Score showed GPT-4 with a score of 0.63, signifying a balanced classification per-
formance. On the other hand, GPT-3.5-Turbo had an F1-Score of 0.30, reflecting its lower
effectiveness in identifying errors across the range of questions.

The results from this experiment offer a comprehensive view of the models’ capabilities
in question classification, with GPT-4 outperforming GPT-3.5-Turbo in most metrics. GPT-4’s
higher accuracy and recall indicate a more robust model for identifying both the presence and
type of errors in questions. GPT-3.5-Turbo’s higher precision suggests that while it may not
identify as many errors, its classifications are more likely to be correct when it does identify
an error.

Figure 4.12: Accuracy, precision, recall and F-1 Score for the reasoning classifier using both
the GPT-3.5-Turbo and GPT-4 language models.

4.6 Correcting SQL Queries

From the subset of queries examined, ten unique errors were identified and targeted for cor-
rection using the LLM. Upon conducting the ablation study, GPT-4 demonstrated a high de-
gree of proficiency in correcting the faulty SQL queries. Out of the ten queries, nine were
accurately corrected by the LLM. The success of these corrections was verified by comparing
the data retrieved by both the corrected and the original true SQL queries, which matched
precisely in these cases.

Upon further examination of the single query that GPT-4 failed to correct, it was discov-
ered that the “hint” or external knowledge provided by the dataset, contained inaccuracies.
Once the hint was revised to reflect the correct information, GPT-4 successfully corrected the
last of the ten faulty queries.
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5 Discussion

In the discussion chapter, a comprehensive analysis of the results, methodologies, and
broader implications of the project will be undertaken. The discussion will begin with a
detailed examination of the findings from the 4 Results chapter, considering them from mul-
tiple perspectives. This will be followed by an evaluation of the methodologies detailed in
the 3 Method chapter, including a reflection on how these approaches may have influenced
the outcomes of the experiments. Lastly, the discussion will expand to consider the work in
a wider context, exploring the broader implications, relevance, and potential applications of
the research, situating it within the larger academic and societal landscape.

5.1 Results

This section reviews the findings from the 4 Results chapter, offering a concise overview of our
research outcomes. We begin by discussing the performance of models within the financial
domain, highlighting how they fare in this specific context. Following this, we examine the
impact of data quality on text-to-SQL models, emphasizing the importance of data quality in
these systems.

Our exploration then extends to the different pitfalls and types of noise encountered in
text-to-SQL conversion, identifying common challenges in this area. We also discuss potential
noise in other domains in BIRD-Bench, broadening our understanding of model performance
across the entire benchmark.

The next part of our discussion focuses on strategies for addressing noise and dirty val-
ues in BIRD-Bench and in text-to-SQL processes, underscoring the importance of effective
data management. We then discuss the capabilities of LLMs in classifying and correcting
data quality issues, evaluating their effectiveness in maintaining data accuracy and integrity
within text-to-SQL conversion tasks.

5.1.1 Performance of Text-to-SQL Models Within the Financial Domain

In this subsection, the analysis delves into the performance nuances of text-to-SQL models,
specifically within the financial domain. The exploration is aimed at understanding the chal-
lenges observed in the financial domain, and whether those challenges are unique or reflect
a more general trend affecting text-to-SQL models.

When reviewing the execution accuracies from the first iteration shown in Figure 4.3,
there’s a notable difference of nearly 5% in execution accuracy between both models based
on GPT-3.5, the zero-shot model and the DIN-SQL model, within the financial domain. The
zero-shot model achieved an execution accuracy of 36.19%, in contrast to the DIN-SQL model,
which performed better at 40.57%. Similarly, the zero-shot model using GPT-4 showed a sim-
ilar accuracy of 38.09%.

An overarching observation across all models is the overall low accuracy rates, with less
than half of the queries being accurately converted to SQL in the financial domain. This
raises an important question: Are the challenges in the financial domain particularly hard, or
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do these trends reflect a broader issue across the entire BIRD-Bench dataset and text-to-SQL
models in general?

Various factors could be the cause of the low accuracy performance of the models. One as-
pect, that has not been quantified in these experiments, is the database structure and database
relationship complexity of the domain, which could have a significant impact on the accuracy
of SQL generation. For instance, viewing the Financial domain’s database structure and re-
lations in Figure 3.3, it is evident that the column names of A2-A16 of the district table, is
not substantial enough to understand what each column represents. Another example, from
the same figure, is how the disp (disposition) table is crucial to understand to connect each
account to a customer.

Additionally, another aspect to consider is whether the pretraining data for the LLMs
includes information from the BIRD-Bench dataset domains. GPT-3.5, as detailed in Table
2.3, utilized 175 billion parameters for training, indicating extensive data usage. GPT-4, ad-
vancing further, is believed to be trained with even more parameters and data. However,
the specifics of their training data remain uncertain [75]. If these models were trained with
data from specific database domains, they might inherently understand the structure of these
databases, including tables, columns, and their interrelations. This understanding could en-
hance their ability to accurately generate SQL queries for related questions. Potentially this
could be the reason for the low performance in the financial domain. The potential biases
introduced by the training data and their impact on model performance will be further ex-
plored in the upcoming Section 5.3.2 Bias.

Lastly, a third factor that was not considered in the initial phase of the experiments, was
how the data quality of the question and the true SQL query of each data point affected
the SQL generation of the models. An ambiguous formulated question could complicate
the interpretation and misguide the LLM, resulting in a faulty generated SQL query, which
would have a significant impact on the model’s accuracy. The presence of noise could have
obscured the results.

To expand the perspective of how the model’s performance in the financial domain stands
in comparison to other domains as explained in Section 4.1 Comparison Between Domains in
BIRD-Bench. Further we could review Figure 4.3, showing the results of the first iteration, and
4.1, displaying comparative results of DIN-SQL between different domains. When comparing
Figure 4.3 and 4.1 it can be observed that the DIN-SQL performance in the financial domain
differentiates between the two plots. The execution accuracy of the model presented in Figure
4.1, is 32%, whereas in this project the DIN-SQL model implemented had an accuracy of
40.57%. Considering neither the implementation of the models nor the data is differentiating,
it is interesting that the performance of the models is varying. However, the DIN-SQL model
was published and tested in April 2023 [56], whereas the DIN-SQL model in this project
was tested on the 11th of October. As mentioned in Section 5.2.3 Validity it has been proven
that GPT’s performance changes over time and between updates [34]. Therefore, there is a
significant possibility that the underlying GPT-3.5-Turbo model has changed between these
occasions. This subject will be discussed further in Section 5.2.3 Impact of GPT’s Updates.

To deepen the comparative analysis between the domains, Figure 4.2, displaying the dis-
tribution of question difficulty across different domains, can be observed. From the plot, it
can be concluded that there is no clear correlation between the DIN-SQL model’s accuracy
in each domain and each domain’s number of tables or columns in the BIRD-Bench develop-
ment dataset. When comparing the financial domain in the context of the other domains, it
can be determined it obtains 55 columns across 8 different tables, whereas the mean of the
domains analyzed in Section 4.1 Comparison Between Domains in BIRD-Bench is equivalent to
78.3 columns and 7.3 tables. Hence, it is not an outlier in terms of the number of tables and
columns. When further examining Figure 4.2, depicting the question difficulty distribution
of each domain, the financial domain does not stand out in either term of question difficulty
or how the question difficulty distribution affects the accuracy in comparison to the other
domains.
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From these observations, it becomes clear that the difficulties faced by text-to-SQL mod-
els in the financial domain are not unique to it. Similar performance patterns, irrespective
of question difficulty or database structure in terms of the number of tables and columns,
are evident across the BIRD-Bench dataset. This suggests that the challenges in convert-
ing natural language queries to SQL are not solely domain-dependent but are reflective of
broader trends affecting text-to-SQL models in various contexts. Therefore, addressing these
challenges and enhancing the accuracy of these models requires strategies that go beyond
domain-specific optimizations, focusing instead on fundamental aspects of data quality and
text-to-SQL model design.

5.1.2 Impact of Data Quality on Text-to-SQL Models

In Section 5.1.1 Performance of Text-to-SQL Models Within the Financial Domain, it was discussed
that there appears to be no direct correlation between the size of a database and the accuracy
of the DIN-SQL text-to-SQL model. Furthermore, it was also reasoned that a distinct relation-
ship between the difficulty of the questions in a domain and the accuracy of the queries was
not consistently evident. While the trend for some domains suggested that more challenging
questions may lead to lower accuracy, this was not a uniform occurrence, and sometimes the
opposite was true. This led to question what other factors might be influencing the accu-
racy of these models, beyond what had been previously examined in the domain comparison
and analysis described in Section 3.2.2 Analysis and Comparison of Domains. It was theorized
that various factors within the database structure other than the size, such as the conventions
for naming columns and tables, and the nature of the relationships among different entities,
could influence the effectiveness of the models. Additionally, there’s a possibility of bias in
the LLM towards specific themes or domains. For instance, if the LLMs has been predomi-
nantly trained on articles about football, it might exhibit enhanced proficiency in executing
text-to-SQL queries in the european_football_2 domain of BIRD-Bench, relative to other do-
mains and topics. Furthermore, there could be a probability of the LLMs being trained on
specific database domains used in the BIRD-Bench as well. Lastly, it was argued that the
quality of the data itself could be a critical aspect to consider. The presence of noise, either
in the natural language questions or in the SQL queries, could perhaps significantly impact
the model’s performance across different domains. Different levels of noise in the different
domains could be a contributing factor to the ambiguous nature of the trends across the do-
mains.

In the analysis of the results from the first round of text-to-SQL experiments, various
errors were identified in the financial dataset as can be seen in 4.3 Analysis of Experiment
Results. Within the dataset, 52 out of 106 distinct data points were identified to contain errors,
which more specifically included errors in 44 questions and in 26 true SQL queries. After
correcting the errors, the text-to-SQL models were run again on the new and corrected version
of the dataset. The initial results on the original dataset showed that the DIN-SQL model
outperformed the zero-shot baseline by approximately 5-6%. However, upon rerunning the
models on the dataset with corrections, an interesting shift was observed. The performance
gap between the DIN-SQL and the zero-shot model significantly narrowed, with the zero-
shot model trailing behind by only about 0.5%.

To further understand the influence of data quality, we continued on a more nuanced
analysis. A third dataset was created to properly test the models robustness towards noisy
questions, which consisted of the original, uncorrected questions paired with the corrected
SQL queries. The results from this dataset presented another interesting finding: the zero-
shot model achieved a 42% accuracy rate, surpassing the DIN-SQL model, which scored 41%.
This outcome suggests that the DIN-SQL model, or similar techniques used in the benchmark,
may be overfitting to noise present in the data.

The findings from these experiments underscore the significant role of data quality in text-
to-SQL model performance. Noise in the data, whether in the form of ambiguities, inaccura-
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cies, or complexities in the natural language questions, or errors in the SQL queries, evidently
affects the accuracy and reliability of these models. The correction of such noise not only im-
proves the overall performance but also brings to light potential issues of overfitting in more
sophisticated models like DIN-SQL. These insights emphasize the need for meticulous data
curation and validation in the development and evaluation of text-to-SQL models, ensuring
that they are not only accurate but also robust to the variances in real-world data.

5.1.3 Different Pitfalls and Types of Noise in Text-to-SQL

In our result analysis Section 4.3 Analysis of Experiment Results, the financial domain of the
BIRD-Bench dataset was carefully examined and several categories of errors was identified
that could potentially impair the accuracy and efficiency of text-to-SQL conversion. The types
of noise identified in the dataset were broadly categorized into semantic errors, vague or
ambiguous questions, incorrect SQL queries, divergences between questions and their cor-
responding SQL queries, synonyms causing confusion, and issues with string capitalization.
This section aims to dissect these different types of noise, drawing from the previous compre-
hensive analysis of the financial domain in the BIRD-Bench dataset. By doing so, the aim is to
illuminate the path towards more robust, accurate, and efficient text-to-SQL models, capable
of transforming the way one interacts with and extract value from data in complex domains.

The first significant aspect of this is capitalization sensitivity. In the result analysis de-
scribed in 4.3 Analysis of Experiment Results, seven data points in the financial domain of
BIRD-Bench was found to have issues with the capitalization of values, where the capitaliza-
tion of a value did not match between the given question and true SQL query. SQL queries,
specifically those dealing with string data types, are case-sensitive. This characteristic de-
mands that the capitalization in the string within the query must precisely match the data’s
capitalization as stored in the database. For instance, querying for a name with SELECT *
FROM Users WHERE Name = ’John Doe’ will yield no results if the name in the database is
stored as “john doe”. This poses a unique challenge for text-to-SQL models, which need to
either adapt the input queries to the database’s case sensitivity, standardize them to a com-
mon format or use something like fuzzy string matching to allow for non-exact matches of
strings. Fuzzy string matching, also known as approximate string matching, is a technique
used to determine how similar two sequences of characters are. It typically involves algo-
rithms that compute the distance or difference between two strings, such as the number of
insertions, deletions, or substitutions required to transform one string into another. This
technique is widely used in applications like spell checking, plagiarism detection, and data
deduplication, where exact matches are not necessary and near-matches are acceptable. The
investigation of string-matching methodologies, due to their complexity and scope, is left for
future work to explore in more detail.

Another crucial factor is the alignment of the query with the database structure. The
questions asked must correspond accurately to the existing database schema. Frequently,
queries fail or return incorrect results because they reference non-existent table or column
names or misunderstand the relationships between different data entities. An example of
a non-aligned query from the financial domain of BIRD-Bench could be, “List out the no. of
districts that have female average salary of more than 6000 but less than 10000?” This question
presumes that there is a way to calculate the average salary for only the females living in a
certain district, which there isn’t. In the database, the district table has a column A11 which
corresponds to the average salary of all people living in the district, but this number also
includes average salary for males. In other parts of the database, there is no information
about salaries. Therefore, calculating the female average salary of a district is not possible
given the database’s structure. Such discrepancies necessitate that text-to-SQL models not
only understand the natural language query but also correctly map it to the relevant database
schema. If a question is posed that requires information or relationships not present in the
schema, the model cannot generate a valid SQL query to answer it. Attempting to create a
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query from a question outside the schema’s scope is of no use, as the necessary data points
or relationships simply do not exist in the database. Therefore, it’s crucial to align questions
with the schema’s capabilities to ensure meaningful and accurate SQL query generation.

The text-to-SQL models also face the challenges of dealing with grammatical and semantic
formulations as well as language ambiguities. Humans can easily understand and interpret
queries even if they are not grammatically perfect, such as the question “Who be the oldest em-
ployee?” Despite its grammatical flaws, it is generally understood by human listeners. How-
ever, it’s important to note that there is a threshold beyond which a question becomes too am-
biguous or poorly structured to be interpretable, leading to confusion or incorrect results. For
instance, a query like “Oldest employee what time?” lacks sufficient context and clarity, making
it challenging for both humans and text-to-SQL models to discern its intended meaning. This
highlights the need for a balance between models accommodating linguistic variances and
users maintaining a level of clarity and structure essential for accurate query interpretation.
As such, enhancing the ability of these models to handle a wide range of linguistic inputs,
while also recognizing the limits of interpretability, is crucial in the development of more
robust and effective text-to-SQL conversion systems.

In another way, the ambiguity inherent in language apart from linguistic errors poses a
significant challenge. Take, for instance, a query like “What was the most recent order?” Here,
the ambiguity lies in interpreting “most recent” – does it mean the latest order by date, the last
recorded entry, or some other criterion? This requires sophisticated handling by text-to-SQL
models. Many different such ambiguities exist in natural language apart from the example
above, and text-to-SQL models must either have mechanisms in place to resolve these am-
biguities or seek additional information for clarification in order to ensure a correct answer.
19 questions in the financial domain of BIRD-Bench were found to contain such ambiguities
during the result analysis as described in Section 4.3 Analysis of Experiment Results, and most
of those ambiguities were related to uncertainties in which column or table to be returned
from the query. For instance, in Listing 8 question 159 from BIRD-Bench’s development set,
which begins with “List all the withdrawals...”, exemplifies this ambiguity. It’s unclear whether
the query should return every column associated with withdrawal transactions or just the IDs
of these transactions. While there have been initiatives to address such ambiguities in natural
language processing, particularly in text-to-SQL conversion [76], there remains a significant
need for further research to effectively resolve these issues.

Another pitfall that is worth noting in the text-to-SQL domain is the use of synonyms or
similar terms, which can lead to significant issues in accurately translating natural language
questions into SQL queries. This is because different words or phrases, while similar in mean-
ing, may correspond to distinct concepts or operations in the context of a database. An exam-
ple of this in the financial domain of BIRD-Bench is the question “What is the sum that client
number 4’s account has following transaction 851? Who owns this account, a man or a woman?”.
For this example, the text-to-SQL model incorrectly interprets the word “sum” as an instruc-
tion to aggregate transaction amounts by using the SUM() SQL operator, leading to a query
that calculates the sum of amounts instead of retrieving the account balance. The correct ver-
sion, however, uses the term “balance” which accurately maps to the trans.balance field in
the database, thereby fetching the specific balance of an account after a particular transac-
tion. The example underscores the importance of precise language in querying databases to
ensure accurate data retrieval. Previous research has explored the handling of synonyms in
text-to-SQL contexts [77], yet the advancement of robust synonym recognition and interpre-
tation within these models remains a significant area for future investigation.

Each pitfall detailed in this section represents unique and intricate challenges in the quest
to create robust text-to-SQL models. Central to these challenges is the task of managing noise
and imperfectly formed queries, underscoring the complexities involved in deciphering and
processing natural language with its inherent ambiguities. This highlights the multifaceted
and diverse nature of the task, where each issue represents a separate domain of research in
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its own right. Addressing these challenges are promising areas for future research, where
solutions are needed to build robust and trustworthy text-to-SQL models.

5.1.4 Potential Noise in Other Domains in BIRD-Bench

The discovery of significant noise in the financial domain of the BIRD-Bench benchmark
raises concerns about the potential for similar issues in the other 36 domains. In this sec-
tion we assess the likelihood and implications of noise in the rest of the dataset.

Our analysis of the domains in the BIRD-Bench dataset, described in Section 4.1 Com-
parison Between Domains in BIRD-Bench, revealed interesting insights into the trends across
its domains. In particular, the financial domain closely aligns with the average metrics ob-
served across all domains. This domain has a near-average number of tables and columns
and a slightly below-average accuracy rate for the DIN-SQL model. Specifically, while the
mean accuracy of the DIN-SQL model across all domains is 37%, the financial domain’s accu-
racy stands at 32%. This finding suggests that the challenges we encountered in the financial
domain might not be unique and could be reflective of broader trends within the dataset.
Variations in question difficulty across the different domains were also notable. While some
domains, like codebase_community, predominantly feature simpler questions, others, such as
thrombosis_prediction, present a more balanced mix of question complexities. This diversity
in question difficulty does not consistently translate to corresponding accuracy levels in the
DIN-SQL model. For instance, domains with a higher concentration of simple questions do
not always yield higher accuracies. Similarly, the presence of more challenging questions
does not invariably result in lower model performance. Although a general trend was ob-
servable, the outliers indicate a lack of clear correlation between question complexity and the
performance of text-to-SQL models. This finding is intriguing, as it contradicts the intuitive
assumption that more complex questions would pose greater challenges for text-to-SQL mod-
els in accurately converting them into SQL queries. Worth adding is that no trend between
the complexity in terms of the size of a database and the accuracy of the DIN-SQL model
could be found either.

A couple of reasons might explain the absence of this correlation. Firstly, the question
difficulties supplied by BIRD-Bench perhaps do not accurately reflect the actual difficulties
of the questions. When annotating the question difficulties, the annotators of the questions
where asked to rank the question from 1-3 in four different categories as described in Section
2.6.2 A Closer Look at BIRD-Bench: question comprehension, schema linking, external knowl-
edge, and SQL complexity. The overall score would then determine the overall difficulty of
the question. Although thorough, this approach may not have fully captured the actual dif-
ficulty for text-to-SQL models to handle each question. The reliance on human annotators
introduces subjectivity, potentially leading to inconsistent difficulty ratings. A task that ap-
pears challenging to a human in various areas may not align with the challenges a text-to-SQL
model encounters.

Secondly, the absence of a clear trend might also be attributed to the presence of noise not
only in the financial domain but in other domains as well. Therefore, on a surface level, it
seems likely that noise is also present in the other parts of the dataset. Further, the quality of
question annotation in BIRD-Bench, raises several concerns that warrant attention. Despite
the involvement of native English speakers with database knowledge, there are indications
of poor-quality English in some questions. This raises questions about the effectiveness of
the selection criteria for annotators or the validation process. The requirement for questions
to receive at least two votes for validity seems insufficient, as evidenced by the presence of
noise and linguistic issues in the financial domain. This observation suggests that similar
issues might exist in other domains within the dataset.

Furthermore, the SQL annotation process in BIRD-Bench, while rigorous, is not immune
to potential issues. The involvement of skilled data engineers and students, coupled with
the implementation of a double-blind technique for validity checks, indicates a strong com-
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mitment to dataset quality. However, the discovery of errors in 19 out of 106 queries in the
financial domain points to potential shortcomings in the annotation process for SQL queries.

As mentioned, the presence of noise in the dataset could have obscured the identification
of real trends. This is particularly relevant in the financial domain and may further mask
the actual challenges models face. While the BIRD-Bench annotations provide a structured
framework, they may not accurately reflect the real-world difficulties encountered in text-
to-SQL tasks. This calls for a cautious interpretation of model performance across different
domains, as the existence of noise in the dataset could have a significant impact on the per-
ceived effectiveness of various models.

5.1.5 Addressing the Noise and Dirty Values in BIRD-Bench and in Text-to-SQL

In addition to the aforementioned categories of noise in Section 5.1.3 Different Pitfalls and
Types of Noise in Text-to-SQL, a significant challenge arises from the presence of “dirty” data
within the BIRD-Bench benchmark. As noted by the dataset authors, this aspect is an inten-
tional feature, designed to mimic the imperfect nature of real-world databases, and does not
only capture differing string capitalizations but other types of dirty values in the databases
as well. However, our analysis reveals a critical limitation in the way this aspect is handled.
Not all questions in the dataset are associated with dirty values, and those that are, lack clear
annotations. This inconsistency presents a substantial obstacle in accurately assessing model
performance in handling dirty data, as showcased by the string capitalization issues found
in the result analysis described in Section 4.3 Analysis of Experiment Results. This also holds
true for the other types of noise that were found in the dataset, like the semantic errors or
questions not aligning with the database schema. There is at the moment no way to measure
a model’s effectiveness against noise. Currently, performance is measured through overall
accuracy across the entire dataset, which fails to provide insights into how well a model
copes with the nuances of dirty data or noise. As was shown by the model’s performances
in the result Section 4.4 Experiments on the Cleaned Datasets and as discussed in Section 5.1.3
Different Pitfalls and Types of Noise in Text-to-SQL, the current benchmarks do not seem to be
sufficient in measuring model performance. When the noise was removed from the dataset,
the baseline zero-shot model almost performed as well as the current SOTA prompt engineer-
ing technique, suggesting that techniques and models are overfitting to the noise. Being able
to measure how a model copes with noise and dirty values is clearly particularly important
for text-to-SQL models, where precise data handling is paramount for generating accurate
and reliable SQL queries.

To address this gap, we propose three potential solutions. The first is the creation of
separate datasets dedicated exclusively to evaluating a model’s performance on handling
the dirty database values and different kinds of noise mentioned in the discussion Section
5.1.3 Different Pitfalls and Types of Noise in Text-to-SQL. For example, a dataset for measuring
a model’s robustness towards string capitalizations would consist of question/query pairs
with an intentional non-matching capitalization of values, to provide a focused environment
to test and refine models’ capabilities in this specific aspect.

Secondly, the existing BIRD-Bench dataset could be enhanced by annotating whether
question/query pairs contain dirty values and or different kinds of noise or not. This would
allow for a more granular and targeted analysis of model performance, enabling researchers
to distinguish between general model accuracy and proficiency in handling dirty data and
noise. For example, if all the questions with semantic errors were annotated as such, one
could measure the model accuracy on those questions separately and therefore easily de-
velop a robust model towards semantic errors.

Lastly, the third solution involves ensuring that the questions input into the text-to-SQL
models are inherently free from noise. This approach would force users to input ’perfect
questions,’ which would include developing a classification mechanism to identify and flag
suboptimal or ’bad’ questions before they are inputted into the model. Once a problematic
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question is detected, the LLM could then prompt the user to reformulate their query, guiding
them toward crafting a clearer, more precise question. This proactive strategy would not
only improve the overall quality of the input data but also reduce the burden on the model
to handle dirty data and noise. By integrating such a feature, one could possibly significantly
enhance the efficiency and accuracy of text-to-SQL models but most of all make them more
reliable, safe, and more robust towards noise.

5.1.6 The Need for External Knowledge

The design and outcomes of the BIRD-Bench dataset demonstrates that the integration of
external knowledge in text-to-SQL conversion is essential. BIRD-Bench performs this in-
tegration by providing “hints” or external knowledge alongside each question-query pair.
These hints serve as clarifications for things like ambiguous column names or instructions on
computing specific metrics. For example, in the dataset’s financial domain, understanding
what columns A2-A16 in the districts table represent is needed since the names themselves
does not provide any information. A notable example from the dataset demonstrates that
the query to discern the higher unemployment rate between 1995 and 1996 requires knowing
what ’A12’ and ’A13’ stand for, where A12 is the average unemployment rate in 1995 for a
district, and A13 the average rate for 1996. Without this additional context, formulating the
SQL query accurately becomes a significant challenge.

The impact of including hints in the dataset is therefore reflected in model performance.
BIRD-Bench’s own analysis shows a substantial increase in accuracy when these hints are
used, highlighting the dependency of current models on supplementary information for op-
timal performance [9].

However, this raises questions about the application of text-to-SQL models in real-world
scenarios, such as corporate environments, where pre-provided hints or external knowledge
might not be available. This gap leads to the issue of how necessary knowledge for accurate
query answering can be obtained. For instance, a company looking to use a text-to-SQL
model for its internal databases might not have this essential external information readily
available.

One potential solution is to supply comprehensive database documentation to the text-
to-SQL model, including detailed declarations and descriptions for each table and column.
But this approach is not without challenges. The context length limitation of current LLMs
might restrict how much information can be effectively used. Additionally, where adequate
documentation is lacking, the task of manually creating such detailed descriptions can be
resource-intensive and daunting.

Future work of this field should explore whether LLMs could autonomously generate or
infer the necessary external knowledge. With recent advancements, like OpenAI’s models
capable of conducting web searches to answer queries, there’s potential for these models
to autonomously acquire relevant information. This capability could significantly enhance
the accuracy of text-to-SQL models in real-world applications. However, the feasibility and
accuracy of LLMs in autonomously sourcing and applying external knowledge in the context
of text-to-SQL conversion require extensive exploration.

In summary, the BIRD-Bench dataset not only underscores the critical role of external
knowledge in text-to-SQL tasks but also opens up avenues for research in improving the
autonomy and practical applicability of these models. As the field evolves, exploring these
aspects will be crucial in bridging the gap between theoretical capabilities of models and their
practical, real-world utility.

5.1.7 LLMs Capabilities in Classifying Data Quality Issues

Due to the findings made in the previous experimental phase of the importance of data qual-
ity and its impact on text-to-SQL generation, a new experimental phase was initiated. The
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aim of these experiments was to evaluate the ability of LLMs to acknowledge poor data qual-
ity and the accuracy of how this could be classified. This is highly relevant for the use case of
this project.

If an LLM could accurately classify questions with poor quality, such questions could
be identified and stopped before they are inputted into a text-to-SQL model. This would
remove the need for a text-to-SQL model to be robust towards noise. After a poor question is
identified the user could be prompted to create a better question, therefore guiding the user
in posing better questions, thus increasing the performance of the text-to-SQL model. The
ability of classification models to accurately identify incorrect questions is of high importance,
especially considering the demonstrated effect of noisy data on text-to-SQL models. Thus, a
heightened sensitivity of the model, signified by superior recall performance, is essential.

The methodology of this experimental phase is described in Section 3.6 Question Classifi-
cation, Beginning with experiments in binary classification, followed by an extension to four-
category classification. The performance results of the presented models can be weighted
towards the baseline model, classifying all questions as class 0, presented in Section 4.5.2 Base
Classifier, achieving an accuracy of 60.3%.

Ability to Classify Two Categories

The comparison of two-category classification models, as presented in Section 4.5.2 Classifica-
tion - Two Categories and illustrated in Figures 4.5 and 4.6, demonstrates distinct performance
characteristics across accuracy, precision, recall, and F1-Score metrics. Notably, the GPT-4
model, when provided with few-shot learning examples of both class 0 and 1, outperforms
all other experiments with GPT-3.5 and GPT-4 in three of the metrics with an accuracy of 80%,
precision of 75%, and F1-Score of 70%.

In contrast, the GPT-3.5 model, when prompted with few-shot learning examples of class
0, excels in recall with an 81% score, indicating, as described in Section 2.5.1 Classification
Metrics, its strength in identifying actual positive cases, meaning incorrect questions. This
heightened ability to more accurately identify incorrect instances of class 1 could possibly
be attributed to it being instructed on “correct examples” representing class 0. By gaining a
clear understanding of the traits that define “correct examples”, the model is better equipped
to identify patterns that diverge from these examples. Furthermore, it is worth noting that
the model with the same prompt template using GPT-4, even though significantly higher
performing than GPT-3.5 when compared and evaluated in different benchmarks [26, 28, 27,
30, 31], is performing significantly worse in terms of recall, at 51%. This could be an indication
that the GPT-3.5 model is more actively using the few-shot learning examples provided when
executing its task than GPT-4. Additionally, it suggests that GPT-3.5 more effectively uses
examples of a correct pattern to classify and distinguish incorrect patterns than GPT-4. This
attribute, a higher recall, is essential in the current use case of the report, where the aim of
the classifiers is to distinguish vague questions that could affect a text-to-SQL model and
implicate reduced accuracy in SQL generation. Therefore, the GPT-3.5 model with examples
of class 0 would be the preferable model for this particular use case.

However, in other use cases where identifying incorrect data points would not be of the
highest priority, the most prominent classification model would most likely be GPT-4 with
few-shot learning examples of class 0 and 1, providing a more balanced classifier with higher
accuracy, precision and F1-score.

The construction of prompt templates is a critical factor in influencing model perfor-
mance. Upon examination of the prompt templates from the project repository1, the varia-
tions between the models’ performances are attributed to the nature of the examples included
in the prompts—whether they are examples of class 0, incorrect questions, class 1, correct
questions, or both class 0 and 1. The inclusion of correct examples appears to enhance the

1https://github.com/niklaswretblad/Text-to-SQL-Generation
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GPT-3.5 model’s sensitivity to correctly identifying positive instances, as illustrated in Figure
4.5. However when provided a mix of class 0 and 1 examples its performance is reaching a
mediocre level in between the models with distinctive examples.

On the contrary, when the GPT-4 model is provided with a combination of both correct
and incorrect examples, it achieves a more balanced performance across all four evaluation
metrics—accuracy, precision, recall, and F1 score. This suggests that while GPT-3.5 can effec-
tively process distinctive information in the prompts, its performance becomes more average
without any notable strengths when faced with a mix of good and bad examples. This ob-
servation underscores the significance of prompt design, indicating that different LLMs may
derive benefits from diverse prompt structures.

Ability to Classify Four Categories

The subsequent experiments focused on the four-category classification, as depicted in Fig-
ures 4.7 through 4.11. An examination of Figure 4.7, which illustrates the weighted averages
for accuracy, precision, recall, and F-1 score of the GPT-3.5 Turbo and GPT-4 classifiers, reveals
minor variations in their performances. The GPT-3.5 model slightly outperforms in precision,
with a score of 51% compared to GPT-4’s 50%, and in recall, scoring 59% over GPT-4’s 57%.
On the other hand, the GPT-4 model achieves marginally better accuracy, at 71%, compared
to 69% for the GPT-3.5 Turbo. These figures suggest subtle differences between the two mod-
els without indicating significant disparities. Notably, despite that GPT-4 is outperforming
GPT-3.5 in several benchmarks [26, 28, 27, 30, 31], GPT-4’s performance is comparable to that
of the GPT-3.5 Turbo, showing minimal or no variation when responding to the same prompt
template.

When further examining the bar plots in Figure 4.8 and 4.10, and the heatmaps of each
model’s specific classification results in Figure 4.9 and 4.11, it is evident that the GPT-3.5-
Turbo model has a higher variation in its distribution of correct predictions, it predicts 55
questions correctly into category 0, 7 questions correctly into category 1 and 1 question cor-
rectly into category 2. Whereas the GPT-4 model predicts 62 questions correctly into category
0, 2 questions correctly into category 1, and 1 question correctly into category 3. This shows
that the GPT-3.5-Turbo model and GPT-4 model does not differentiate distinctively, but look-
ing at category 1 of both the heatmaps it shows that the GPT-3.5-Turbo model is more accu-
rate in the prediction of this particular category, whereas GPT-4 is more accurately classifying
questions of category 0. This is an interesting observation considering that the models have
been given the same prompts. Due to the black-box nature of both these models, it is difficult
to conclude the reason for this. The transparency of the model architectures will be discussed
further in the Section 5.3.3 Implications of OpenAI’s Shift from Open Source to Closed Source.

In summarizing the outcomes of the four-category classification experiments, the varia-
tions between the GPT-3.5-Turbo and GPT-4 models are marginal, despite p the significant
difference in their training parameters. These subtle distinctions reveal that the GPT-3.5
model excels in precision and recall, whereas the GPT-4 model demonstrates greater accu-
racy in its predictions. Furthermore, the GPT-4 model is more adept at correctly classifying
questions in category 0, whereas the GPT-3.5 model shows heightened accuracy in predicting
category 1.

Comparing Two Class Against Four Class Classification

When weighing the two different experiments of two-category classifications against four-
category classifications, it shows that the GPT-4 model is the more balanced model, when
provided with few-shot learning examples of class 0 and 1, in classifying two categories. This
is in comparison to its GPT-3.5 representative that, when given examples of class 0, achieves
the highest recall of all two-category classifiers. On the contrary, when classifying four cat-
egories the models differ only slightly. When comparing accuracy, precision, and recall in
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two-category classifications to the weighted averages of the same metrics in four-category
classifications of the GPT-4 model it is evident that the model is more efficient in categoriz-
ing two options rather than four options. Overall, when wanting the highest performance in
terms of accuracy, precision, and F-1 score, the two-category classifier of class 0 and 1 using
GPT-4 would be the best alternative, whereas the two-category classifier with examples of
class 0 using GPT-3.5 would be the option if one would want a high recall, which is preferred
in the project’s use case. Using a four-category classification results in a more detailed classi-
fication which could give richer insights and analysis, which could be needed in certain use
cases, of what attributes the questions possess. However, as shown by the experiments, this
is done at the cost of a lower performance

Reasoning Classifier

The reasoning classifier is based on chain-of-thought reasoning, a method where the LLM
is prompted to contemplate and reason about the appropriate classification for a given ques-
tion. Subsequently, the insights from this contemplation are used in a secondary phase where
the LLM conclusively classifies the question. This methodology aims to make use of the en-
hanced reasoning capabilities of LLMs, as suggested by previous research [1].

However, our experimental findings revealed that the Reasoning Classifier did not per-
form as well as the baseline classifier. This result is somewhat unexpected, given the ad-
vanced reasoning skills attributed to the latest LLMs. Several underlying reasons might ex-
plain this discrepancy. Firstly, the two-step process of first reasoning and then classifying
introduces an element of complexity. Here, the LLM is tasked not just with understanding
and classifying data quality issues, but also with articulating its reasoning process in a clear
and coherent manner. This additional complexity can increase the likelihood of errors or
misinterpretations during the reasoning step, which could then impact the final classification
outcome.

Secondly, the inherent limitations of GPT-3.5-Turbo and GPT-4 also play a role. While
these models are proficient in a broad spectrum of tasks, their performance can fluctuate
based on the specific nature and intricacies of the task. Additionally, the reasoning process
employed by the LLM might introduce ambiguities or subjective interpretations. These may
not always align seamlessly with the expected classification scheme, potentially leading to
inaccuracies in the final classification. This is particularly relevant in instances where the
reasoning process is subject to multiple interpretations.

5.1.8 LLMs Capabilities in Correcting Data Quality Issues

The results of the small study provide encouraging evidence regarding the capabilities of
LLMs in addressing data quality issues through the correction of faulty SQL queries. The
study observed a great success rate, with the LLM accurately correcting 10 out of 10 iden-
tified faulty queries. The high level of accuracy indicates that LLMs hold the potential for
enhancing the quality of text-to-SQL datasets by identifying and correcting incorrect SQL
queries.

Despite these promising results, there remains an important area to explore: the LLM’s
behavior with already correct SQL queries. It is essential to investigate whether the model
tends to over-correct, potentially transforming correct queries into faulty ones. This aspect
is crucial for practical applications, as indiscriminate corrections could lead to data integrity
issues or noise in the data, defeating the purpose of using an LLM for data quality enhance-
ment. We leave this for future work.

Further work is also needed to understand the limitations and potential biases of LLMs
in this context. For instance, how does the model perform with different types of databases
or more complex query structures? The ablation study only investigated 10 different errors
and SQL queries, and while the LLM succeeded in correcting all of those this might not mean
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that it can correct every other error that might exist in a SQL query. Are there other types of
errors or database schemas that the LLM struggles with? Additionally, exploring the LLM’s
performance in a real-world scenario, where queries and database structures are more varied
and complex, would provide valuable insights into its practical applicability and limitations.

In conclusion, the findings from this ablation study are promising and indicate that LLMs,
like GPT-4, possess the potential to improve the quality of text-to-SQL datasets. However,
further research is necessary to thoroughly understand the capabilities and constraints of
these models across a broader range of queries, domains, and error types. This in-depth
understanding is a prerequisite for their practical application in correcting datasets.

5.2 Method

This section will analyze the methodology of the project and review critically how the project
was carried out from the research process to the experimental process.

5.2.1 Methodological Considerations

In the process of correcting the financial domain after the first iteration of experiments, a
comprehensive approach to correct and annotate data points was undertaken, ensuring the
dataset’s relevance and accuracy for text-to-SQL models. However, during this phase, a po-
tential source of bias was identified. The correction of data points was done next to the gen-
erated SQL queries from the DIN-SQL model experiment, which might have unintentionally
influenced the correctors decision-making. This setup could have led to cognitive biases, sub-
tly aligning the correctors perception and correction of the data with the predictions of the
model, potentially introducing confirmation bias. Since the correction was done next to the
DIN-SQL model outputs, intuitively, the effect of this bias would be that the DIN-SQL model
would perform better, since the data points were corrected with the model’s outputs next to
it.

Even though the effect of the bias when running the models again on the cleaned dataset
would be that the DIN-SQL model would perform better, it’s worth noting that the zero-
shot model still closed the performance gap between itself and the DIN-SQL model as can
be seen in Section 4.4 Experiments on the Cleaned Datasets. This observation is significant as
it suggests that despite the potential bias introduced during data correction, the zero-shot
model demonstrated a robust improvement in performance. However, the presence of bias
cannot be overlooked, as it might have affected the results to some extent.

Future research should consider more strict methods for data annotation and correction
to minimize the influence of such biases. This could include the separation of data correc-
tion from model output views or employing more sophisticated methods to ensure unbiased
data processing. The goal is to achieve a balance where data quality is enhanced without
inadvertently favoring any particular model or approach.

5.2.2 Replicability

To ensure the replicability of this study, the methodology detailed in the 3 Method chap-
ter should be followed. The implementation code, including the evaluation pipeline, the
prompts, and the API connections to the LLM, is available on the project’s GitHub page2.
Additionally, the BIRD-Bench dataset utilized in this project can be found in the project’s
GitHub repository and is also accessible via the official BIRD-Bench website3.

2https://github.com/niklaswretblad/Text-to-SQL-Generation
3https://bird-bench.github.io/
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5.2.3 Validity

This section will disclose the factors that could have affected the validity of the study. Firstly,
the impact of GPT’s updates will be discussed, thereafter the references used in this study
will be discussed from a critical viewpoint.

Impact of GPT’s Updates

As highlighted in the reliability section of this thesis, Section 5.2.4 Reliability, the GPT models
are subject to continuous updates and alignments by OpenAI, often without explicit notifi-
cations to end-users. This characteristic of the GPT models, while ensuring progressive en-
hancement and alignment with ethical standards, introduces an element of unpredictability
in the model’s behavior over time.

The evolving nature of these models means they might not only improve in terms of
capabilities and performance but also alter how they process and interpret the input data.
Such modifications, although beneficial for the model’s effectiveness and ethical alignment,
add a layer of complexity to the validity aspect of studies involving GPT. Specifically, the
same input processed by a Language Model at different time intervals might result in varied
outputs. This variation poses a significant challenge for researchers, by complicating the
interpretation of model results over time.

Because of this, the experiments conducted for this thesis were meticulously planned to
minimize the potential impact of these evolving GPT models. To ensure consistency and to
mitigate the effect of any potential model updates, all experiments within each iteration and
category were conducted on the same day.

For instance, the initial set of text-to-SQL model experiments was conducted in a single
day. This approach was replicated for the subsequent experiments on the cleaned versions
of the dataset and for the different classification experiments. Conducting the experiments in
this manner ensured that each set of results was obtained from a model in a consistent state,
thereby reducing the likelihood of variances due to model updates.

This methodology, while not completely eliminating the possibility of model drift affect-
ing the results, significantly minimized its impact. By structuring the experiments in this
manner, the study aimed to ensure that the findings and conclusions drawn are as reliable,
valid and replicable as possible, given the constraints posed by the dynamic nature of GPT
models.

Source Criticism

In conducting this study, we primarily relied on peer-reviewed articles and papers, which are
widely regarded as credible and reliable sources in academic research. Peer-reviewed sources
undergo careful examination by experts in the field, ensuring that the research methodology,
data analysis, and conclusions meet high standards of academic rigor and integrity. This
vetting process significantly reduces the risk of including inaccurate or biased information,
thus lending considerable weight to our research findings and discussions.

However, alongside these peer-reviewed sources, we also incorporated recent papers pub-
lished on platforms like Arxiv4. These papers, while not yet subjected to the formal peer-
review process, were included due to their relevance, timeliness, and potential contributions
to the field of text-to-SQL generation. Arxiv, and similar repositories, play a pivotal role in
disseminating cutting-edge research rapidly, offering access to the latest findings and theo-
retical advancements.

The inclusion of non-peer-reviewed sources, however, necessitates a careful approach to
source criticism. The absence of peer review means that these documents have not been
evaluated for their scientific accuracy or validity by independent experts. Consequently, there

4https://arxiv.org/
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might be a higher risk of encountering unverified claims, methodological flaws, or biased
interpretations in these papers. This is not to diminish the potential value of these sources
but rather to acknowledge the different levels of examination they have undergone compared
to peer-reviewed literature.

To mitigate the risks associated with using non-peer-reviewed sources, we employed
several strategies:

Critical Evaluation: Each non-peer-reviewed paper was critically evaluated for its method-
ology, data analysis, and conclusions. We paid special attention to the soundness of the
research design and the robustness of the arguments presented.

Cross-Verification: Wherever possible, findings and theories presented in non-peer-reviewed
papers were cross-verified with peer-reviewed literature. This helped in ensuring that the
conclusions drawn were consistent with the established body of knowledge.

Expert Consultation: In some cases, we consulted with domain experts to gain insights
into the validity and relevance of the non-peer-reviewed papers.

In conclusion, while the inclusion of non-peer-reviewed sources from platforms like Arxiv
introduced challenges in terms of source credibility, these sources provided valuable insights
into the latest trends and unexplored areas in the field of text-to-SQL generation. Their
inclusion was carefully balanced with a rigorous approach to source criticism, ensuring the
overall integrity and credibility of our research.

5.2.4 Reliability

Within the scope of our study, there are specific challenges concerning the reliability of our
results. These challenges stem primarily from the inherent nature of the LLMs and their
operational frameworks.

One of the fundamental issues is the inability to set a seed for the LLMs. In computational
experiments, setting a seed is a common practice to ensure that results are reproducible, as
it allows the random number generator to produce the same sequence of numbers across
different runs, thereby ensuring consistency in outcomes. However, with the current state
of LLMs provided by OpenAI, this level of control is not available. Consequently, achieving
perfect reliability of results becomes difficult, as each run of the model might yield slightly
different outcomes due to variations in the underlying stochastic processes.

Moreover, these models are subject to continuous updates and alignments by OpenAI,
often without explicit notifications to the end-users [34]. This evolving nature means that
the models might change over time, not just in terms of their capabilities and performance
but also in how they process and interpret input data. These changes, while potentially
improving the model’s overall effectiveness and alignment with ethical guidelines, further
compound the challenge of reliability. As researchers, we might find that the same input pro-
cessed by an LLM at different time points yields different outputs, making it challenging to
replicate studies precisely.

Despite these challenges, it is important to acknowledge the significance of these LLMs.
They are currently among the best models available for a wide range of natural language
processing tasks, including text-to-SQL conversion. Their widespread use across industries
and academia attests to their capabilities and the value they add in various applications. In
our research, while acknowledging the limitations in reliability, we still aimed to measure
the performance of these models on text-to-SQL tasks. The research conducted in this thesis,
therefore, provides valuable insights into the capabilities of these models at a specific point
in time, under specific conditions.
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In conclusion, while perfect reliability in experiments involving LLMs such as those pro-
vided by OpenAI is challenging, the insights gained from such research are still valuable.
They contribute significantly to our understanding of the capabilities and limitations of cur-
rent LLMs in specific applications like text-to-SQL tasks. Future research in this area should
continue to explore these models, while remaining cognizant of and transparent about the
challenges related to reliability.

5.3 The Work in a Wider Context

In this section, the broader implications, relevance, and potential applications of the research
will be explored, situating it within the larger academic and societal landscape.

5.3.1 Democratizing Data Access

The evolution of text-to-SQL models represents a central step towards democratizing data ac-
cess. This democratization is rooted in the transition from traditional data querying methods,
which necessitate specialized knowledge and technical expertise, to more intuitive, natural
language-based interactions.

Traditionally, extracting insights from databases required a substantial understanding of
programming languages, or more specifically the SQL language. This created a significant
barrier to entry, restricting data analysis and insight generation to a limited group of experts.
However, with the implementation of text-to-SQL models, this barrier is being removed.
These models enable users to interact with databases through natural language queries, ef-
fectively translating everyday language into complex SQL queries. This advancement sig-
nificantly lowers the threshold for engaging with data, allowing individuals without formal
training in computer science or data analysis to explore and use database resources. And
so the ability to query data using natural language extends the power of data analysis to
a broader audience. It democratizes data access by making it more inclusive, as individu-
als from various professional backgrounds, educational levels, and even non-technical fields
can now capitalize on the power of data. This inclusivity not only promotes a diverse range
of perspectives in data analysis but also encourages a more data-informed decision-making
process across different sectors. In the public sector, it could lead to more informed policy-
making, as officials can directly interact with data to understand trends and public needs. In
the private sector, businesses of all sizes could leverage data to drive innovation and com-
petitiveness, without the need for extensive investment in technical training or resources.
Furthermore, in the educational realm, it could provide an invaluable tool for students and
researchers, enabling data-driven learning and research. This democratization of data access
has profound implications for society and various industries. As text-to-SQL technology con-
tinues to advance, its potential to further democratize data access is huge. Future develop-
ments could see even more sophisticated and user-friendly interfaces, making data querying
as simple as having a conversation. This progression will not only enhance the accessibility
of data but also has the potential to transform how we interact with and perceive data in our
daily lives.

On the other hand, the rise of text-to-SQL systems and LLMs in data analysis point to a
shift in the employment landscape, particularly in roles traditionally centered around data
management and analysis. These technological advancements automate tasks that previ-
ously required human intervention, leading to a profound shift in the nature of certain job
functions.

The automation brought about by these systems can be seen as a double-edged sword.
On one hand, it significantly increases efficiency, reduces the potential for human error, and
allows for the handling of larger datasets than would be feasible manually. This automation
enables businesses and organizations to process and interpret data at unprecedented scales,
leading to more informed decisions and strategies.
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On the other hand, there are implications for the workforce that currently specializes in
these tasks. As machines take over functions like basic data querying and analysis, there
is a potential reduction in the demand for roles that primarily focus on these skills. This
shift necessitates a reevaluation of the skill sets valued in the workforce. It underscores the
importance of adaptability and continuous learning, encouraging professionals to diversify
their skills beyond the tasks that can be automated.

Moreover, this shift can lead to the creation of new roles and opportunities. As the barriers
to data access lower, there is a growing need for professionals who can interpret and utilize
data in innovative ways, transcending traditional data analysis. Roles may evolve to focus
more on strategic decision-making, data interpretation in context, and the ethical implications
of data use.

In essence, the democratization of data analysis through text-to-SQL systems and LLMs
not only broadens access to data but also reshapes the professional landscape. It challenges
existing paradigms of work and necessitates a forward-looking approach to education and
professional development, emphasizing the integration of technical skills with critical think-
ing and ethical considerations in data use.

5.3.2 Bias

When conducting research there is always a risk of introducing bias in the methodology. In
this study, there is also a risk that bias has already been introduced in the LLMs used for the
text-to-SQL models. Because of OpenAI’s limiting transparency of training data used to train
the LLM models, discussed in Section 5.3.3 Implications of OpenAI’s Shift from Open Source to
Closed Source, unknown biases within the training data could affect the results of the study.

Due to the GPT models of OpenAI being trained on an immense amount of data param-
eters, GPT-3.5 being trained on 175 billion parameters [24], and GPT-4 presumably being
trained on even more parameters due to its increased performance [31, 30, 26, 27]. Open
source datasets and most likely various methods of text mining such as web-scraping5 have
been used to collect the large amount of data. These biases, inherent in the training data, can
influence the model’s outputs. For example, if there is more internet data on sports, particu-
larly football, compared to finance, the LLM might perform better in responding to queries
about football data and databases than those related to finance.

Additionally, there’s a possibility that some datasets and databases included in BIRD-
Bench might have been part of the training data for GPT models, while others were not. This
disparity could significantly impact the models’ text-to-SQL generation capabilities across
different domains. During experimental observations, it was discovered that the GPT-4
model, accessed through the ChatGPT interface, possessed knowledge about the BERKA
dataset without any input from researchers. This knowledge encompassed the dataset’s ori-
gin, background, and database structure. The BERKA dataset, as mentioned in Section 3.2.1
The Financial Domain in BIRD-Bench , is the foundation upon which the financial domain on
the BIRD-Bench dataset has been built. Consequently, it appears that the LLM displays a bias
towards the financial domain of BIRD-Bench, likely resulting in more accurate text-to-SQL
conversions in this area, especially compared to domains lacking information on the BERKA
dataset.

5.3.3 Implications of OpenAI’s Shift from Open Source to Closed Source

Open AI was initially founded as a non-profit organization with an open-source ethos, aim-
ing to make AI widely accessible to the public, as highlighted in their initial blog post [78].
This approach was instrumental in accelerating advancements in various AI fields. However,
with substantial investments from entities like Microsoft and a focus shift towards propri-
etary technologies, OpenAI has become more selective and controlled in its research output

5A technique used to extract large amounts of data from websites automatically.
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[79]. Critical information, especially concerning the architectures of GPT-3 and GPT-4, has
been closely guarded. This shift raises substantial concerns about the transparency of these
influential AI models.

The lack of detailed disclosure about these models by OpenAI creates significant barri-
ers to the AI research community. Open-source models are central in enabling collaborative
progress, allowing for diverse innovation and independent verification of technologies. In
contrast, the closed-source approach hinders the broader AI community’s ability to under-
stand, critique, and build upon these developments. Moreover, OpenAI’s pivot highlights a
critical tension in the technology sector: the conflict between communal knowledge advance-
ment and the protection of intellectual property for commercial gain. While the pursuit of
profit can drive rapid development and deployment, it may also restrict the collective growth
of knowledge. This limitation is not just a matter of academic interest; it has practical impli-
cations for the development of AI technologies that are accessible and beneficial to a broader
audience.

The consequences of this change extend beyond immediate research concerns. OpenAI’s
move towards a proprietary stance could set a precedent in the AI field, influencing the poli-
cies of other organizations regarding knowledge sharing and transparency. This potential
trend towards a more closed and less collaborative AI research landscape could slow the
pace of innovation and ethical considerations in AI development, affecting fields reliant on
advancements in LLMs, like text-to-SQL conversion.

In sum, OpenAI’s move towards reduced algorithmic transparency marks a significant
turn in the AI development landscape. It highlights the ongoing struggle between open-
source ideals and proprietary business models. This development necessitates a reexamina-
tion of how AI research and development are conducted, shared, and used, highlighting the
need for a balanced approach that nurtures innovation while encouraging collaboration and
ethical practices.

5.3.4 Data Privacy for Closed Source LLMs

The use of closed-source LLMs like those developed by OpenAI brings to attention critical
data privacy concerns. Given the restricted nature of these models, there’s a significant lack
of transparency in how data inputted into them is handled and used.

When sensitive or confidential data is input into these models, there is a loss of control
over its subsequent use. This presents a risk, as the companies that own and develop these
LLMs may gain access to and control over this confidential information. Ethically, it becomes
essential for researchers and developers to ensure the privacy of data subjects, especially in
cases lacking explicit consent.

Legally, navigating regulations such as the GDPR is challenging with closed-source LLMs,
demanding caution to avoid violations. Public trust is also impacted by how data is managed;
mishandling can lead to a loss of confidence in AI technologies.

For academia, these privacy issues challenge the integrity of research, necessitating the
responsible handling of data used in these models.

In conclusion, the capabilities of closed-source LLMs must be balanced with stringent data
privacy considerations. Users need to be vigilant, ensuring ethical and legal compliance, and
maintain transparency with data subjects. This balance is essential for the responsible use
and advancement of AI technologies.

5.3.5 Costs

In discussing the broader context of our work with LLMs, it’s crucial to consider the economic
implications, particularly the costs associated with accessing LLMs through APIs. This aspect
plays a significant role in determining the suitability and scalability of using such models in
various settings, from academic research to industrial applications.
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LLM APIs, such as those provided by OpenAI, typically operate on a pay-per-use model.
This pricing structure means that the cost is directly proportional to the usage, calculated
based on factors like the number of tokens processed, the complexity of requests, and the
computing resources consumed. For large-scale research projects or commercial applications
that require extensive data processing, these costs can accumulate quickly, potentially pos-
ing financial challenges, especially for smaller organizations or academic institutions with
limited budgets.

The cost factor not only influences the accessibility of these technologies but also has
broader implications for innovation and research diversity. High API costs may limit the
ability of smaller teams or researchers from less well off institutions to engage in cutting-
edge AI research. This could lead to a concentration of AI advancements in well-funded
organizations, potentially narrowing the diversity of research perspectives and applications
explored.

Moreover, the reliance on external APIs for accessing LLMs introduces another layer of
dependency. Researchers and developers are subject to the terms and conditions set by the
API providers, including pricing, data privacy policies, and usage limitations. This depen-
dency can impact long-term research planning and operational stability, as changes in API
terms or pricing can significantly affect ongoing projects.

In the context of our research, the cost implications of using LLM APIs were a critical con-
sideration. While the models used in this research offer unparalleled capabilities in handling
text-to-SQL tasks, the financial aspect required careful budgeting and resource allocation. It
also necessitated a strategic approach to API usage, optimizing our queries to balance cost
and performance.

Looking ahead, as LLMs continue to evolve and become more integral to various do-
mains, the AI community must explore sustainable economic models. This could include
the development of more cost-effective API structures, alternative funding mechanisms for
research, or even open-source initiatives that provide more accessible alternatives to pro-
prietary models. Such developments would not only alleviate the financial burden on re-
searchers and developers but also democratize access to advanced AI technologies, encour-
aging a more inclusive and diverse landscape for AI innovation.
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6 Conclusion

6.1 Research Questions

RQ1: What is the comparative performance, in terms of accuracy, between
a baseline text-to-SQL model and the DIN-SQL model when applied to
financial data in the BIRD-Bench benchmark?

The empirical results indicate a marginal performance difference between models, with
the DIN-SQL model slightly outperforming the baseline zero-shot model with 40.57% over
36.19% accuracy. These results, coupled with the minor improvement observed in transition-
ing from GPT-3.5 to GPT-4, suggests overall limitations of models within this specific domain.
Moreover, the general effectiveness of these models seem to be irrespective of domain-specific
complexities such as question difficulty or the size of the database. This implies the need of
further research on other aspects such as database structure, data quality of questions and
SQL-queries within the dataset and other reasons as to why models are failing.

RQ2: How does the overall quality of data influence the performance of
text-to-SQL models when applied to financial data in the BIRD-Bench
benchmark?

The empirical findings from our experiments provide a clear indication of the profound im-
pact that data quality has on the performance of text-to-SQL models. Initially, the DIN-SQL
model demonstrated a performance edge over the zero-shot baseline by approximately 5-6%
on the original dataset. However, this performance gap narrowed to about 0.5% after cor-
recting errors in the dataset, thereby illustrating the significant influence of data quality on
model performance.

In our nuanced analysis, we also observed an unexpected reversal in model performance
rankings when using a dataset comprising original questions paired with corrected SQL
queries. The zero-shot model outperformed the DIN-SQL model, achieving a 42% accuracy
rate compared to 41% by DIN-SQL. This outcome is particularly telling, suggesting that the
DIN-SQL model might be overfitting to noise in the data.

These experiments underscore the critical role of data quality in the functionality of text-
to-SQL models. The presence of noise—be it ambiguities, inaccuracies, or complexities in the
natural language questions, or errors in the SQL queries—significantly impacts the accuracy
and reliability of these models. Correcting such noise not only enhances overall performance
but also reveals potential issues of overfitting in more sophisticated models like DIN-SQL.
This study reveals that without precise and well-annotated datasets, assessing the true accu-
racy of text-to-SQL models becomes challenging. New datasets are needed for a clear and
reliable assessment of both the accuracy in SQL query generation and the robustness against
noise within these models.
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6.1. Research Questions

RQ3: How do different types of noise and data quality issues impact the
performance of text-to-SQL models?

In addressing how different types of noise and data quality issues impact the performance
of text-to-SQL models, our investigation has revealed several key findings. The performance
of text-to-SQL models is significantly influenced by various types of noise and data quality
issues, which we have categorized and examined in detail.

Firstly, string capitalization issues pose a notable challenge. As observed in the BIRD-
Bench dataset, inconsistencies in capitalization between the query and database can lead
to erroneous or failed SQL queries. This sensitivity to string capitalization highlights the
need for text-to-SQL models to incorporate mechanisms that align with the case sensitivity of
databases, potentially through fuzzy string matching or standardization techniques.

Grammatical errors and poor language quality also detrimentally affect the model’s per-
formance. While humans can often interpret poorly structured or grammatically incorrect
queries, text-to-SQL models struggle with such inputs. This discrepancy underscores the
importance of refining these models to better handle linguistic variations while also empha-
sizing the need for clear and well-structured input queries.

Language ambiguities present another significant challenge. Ambiguous queries, such as
those lacking clarity on the specific data to be retrieved, can lead to incorrect SQL conver-
sions. Addressing this issue calls for sophisticated mechanisms within text-to-SQL models to
resolve or seek clarification on ambiguous inputs.

Furthermore, our analysis revealed additional noise types, such as semantic errors, vague
or ambiguous questions, incorrect SQL queries, divergences between questions and their
corresponding SQL queries, and synonym confusion. Each type of noise presents unique
challenges in accurately translating natural language queries into SQL, thus impacting the
model’s effectiveness.

Our study’s findings suggest that the presence of noise and data quality issues in the
dataset can severely hinder the performance of text-to-SQL models. In the case of the
BIRD-Bench dataset, these challenges were prevalent across various domains, indicating a
widespread issue. To address these, we propose the development of more robust models
capable of handling such complexities and the enhancement of datasets to better reflect the
nuances of real-world queries.

In conclusion, the impact of different types of noise and data quality issues on text-to-
SQL models is profound, necessitating focused efforts in model development and dataset
enhancement. As we move towards more sophisticated and practical applications of text-
to-SQL technologies, addressing these challenges will be crucial in ensuring their accuracy,
efficiency, and applicability in diverse domains.

RQ4: To what extent are large language models capable of accurately
identifying and categorizing data quality issues within a text-to-SQL
benchmark?

The findings, which emphasize the substantial impact of data noise on results, highlight the
importance of precise classifiers in identifying these problematic data points to enhance the
performance of text-to-SQL models. When examined, the experiments have shown that the
performance of classifiers improves when categorizing into two categories rather than four.
In two-category classification, the GPT-3.5 model, trained with examples of correct data (class
0), excelled in recall, indicating its effectiveness when provided with one-sided examples.
Conversely, the GPT-4 model, trained with a balanced set of examples from both classes (0
and 1), achieved the highest accuracy, precision, and F1-score. This suggests that GPT-4 per-
forms optimally with balanced inputs, while GPT-3.5 is more attuned to specific, singular-
patterned training. For this project’s purpose, which is to fully leverage the capabilities of
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6.2. Future Work

text-to-SQL models, classifiers that are both strict and sensitive are favored. Consequently,
the GPT-3.5 model, trained exclusively with class 0 examples and achieving a recall perfor-
mance of 81%, emerged as the most effective model among those tested in the experiments.

RQ5: To what extent can large language models accurately correct data
quality issues within a text-to-SQL benchmark?

Our study showed a 100% success rate in correcting ten different faulty SQL queries, pro-
viding encouraging evidence that LLMs could be used to enhance the quality of text-to-SQL
datasets. However, more research is needed before LLMs can be applied practically for the
task. Key in investigating is the LLM’s response to already correct SQL queries, where there
is a risk of over-correction, possibly leading to further data quality issues.

Additionally, the study’s limited scope, focusing on a specific set of errors and queries,
necessitates broader research. Future work should examine LLMs’ performance across vari-
ous databases, complex query structures, and a wider range of errors, to assess their practical
applicability in diverse real-world scenarios.

In summary, while LLMs show promise in improving text-to-SQL data quality, a deeper
understanding of their capabilities and limitations in more complex settings is essential for
their practical application.

6.2 Future Work

This thesis has provided significant insights into the performance and limitations of text-to-
SQL models. While progress have been made in understanding their capabilities, several
areas require further research to enhance their accuracy and applicability. The future work
stemming from this study can be broadly categorized into the following areas:

Development of Noise-Specific Benchmarks

One of the most critical findings of this research is the substantial impact of noise on model
performance. Current datasets do not adequately measure a model’s robustness against var-
ious noise types or benchmark solutions designed to enhance this robustness. There is an ur-
gent need to develop new datasets specifically tailored to evaluate model performance across
different noise types. Such datasets would not only help in benchmarking existing models
but also aid in developing new models that are inherently more robust to noise.

Enhanced Annotation in BIRD-Bench

The BIRD-Bench benchmark has proven invaluable in assessing text-to-SQL models. How-
ever, there is a clear need for further annotation within this dataset. Specific annotations for
different types of noise, SQL difficulties, and potential pitfalls would significantly benefit fu-
ture research. These enhanced annotations can provide deeper insights into the challenges
faced by text-to-SQL models and guide the development of more sophisticated solutions.

Targeted Research on Noise Types and Subproblems

Our study identified various types of noise and subproblems that affect the performance of
text-to-SQL models. Once the datasets reflecting these noise types are created, future work
should focus on developing solutions to these specific challenges. This could involve design-
ing algorithms that are more resilient to certain noise types or developing preprocessing tools
that can mitigate the impact of these noises before they affect the model’s performance.
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Guardrails for Model Inputs

Another promising avenue for future research is the development of guardrails for model
inputs. By classifying and identifying noisy questions, it might be possible to prompt users
to refine their queries. This approach could not only improve the quality of inputs fed into
text-to-SQL models but also help in educating users about the best practices for framing their
queries, thereby enhancing the overall system’s efficiency.

The Need for External Knowledge

This thesis highlights the role of external knowledge in enhancing text-to-SQL conversion,
particularly evident by the design of the BIRD-Bench dataset. The dataset’s inclusion of
hints, offering essential context for ambiguous elements, significantly improves model accu-
racy. For instance, understanding specific column meanings in the financial domain is crucial
for formulating correct SQL queries. However, this reliance on external information poses
challenges in real-world applications, where such hints may not be readily available. Future
work should investigate methods for LLMs to autonomously acquire or infer this necessary
external knowledge, overcoming limitations in current models and documentation. This ex-
ploration is essential for advancing the practical application of text-to-SQL technologies in
complex and dynamic real world environments.

Advancement in Text-to-SQL Model Development

Lastly, there is a continuous need for the development of better text-to-SQL models. This
includes models that are not only more accurate but also more versatile in handling various
types of queries and robust against different forms of noise. The insights gained from this
research can guide the development of next-generation text-to-SQL models that are tailored
for specific domains like finance, healthcare, or e-commerce.

In conclusion, the path forward involves a multifaceted approach encompassing the cre-
ation of specialized datasets, enhanced annotations, focused problem-solving on identified
noise types, development of user-input guardrails, and the continuous evolution of text-
to-SQL models. As we advance in these areas, we anticipate significant improvements in
the functionality and applicability of text-to-SQL technologies, paving the way for their
widespread adoption in various industries.
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