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Abstract

To catch up with the growing trend of parallelism, this thesis work focuses on the adap-
tion of embedded real-time systems to a multicore platform. We use the embedded system
of Xilinx ZCU-102, a multicore board, as an example of an embedded system without get-
ting deep into its architecture. First, we deal with the tasks required to be able to make
an embedded system operational and discuss why they are different from those for nor-
mal computer systems. The processes it takes to make a custom operating system for the
given Xilinx embedded system are examined and patching the custom operating system
along with customizing it is studied. We then take a look at related work in the field of
benchmarking real-time systems and embedded systems and with a good understanding
of related work propose a design similar to the related work for benchmarking embedded
systems. The benchmarks we use run on multiple cores and aim at challenging the Xil-
inx board’s capabilities of running real-time tasks when the other cores on the board are
occupied with performing independent tasks. We test the designed benchmarks on differ-
ent conditions under two different operating systems of RT-Linux and Embedded Linux to
study the differences between them. We then note how the RT-Linux would be a real up-
grade for real-time systems if multicore operations are considered. The final result we have
obtained is that core idling might decrease the performance of real-time tasks and RT-Linux
might experience more interrupts but it is also better at recovering from interrupts.
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1 Introduction

1.1 Motivation

In the modern day, embedded systems are being used very commonly and their number is
increasing rapidly. There is a wide variety of usage for embedded systems in automotive,
avionics, robotics, factory production, and medical centers. This diversity of usage has led to
some embedded systems performing crucial real-time tasks. The real-time tasks are expected
to have predictable and precise execution timing; therefore, the embedded system executing
the real-time tasks should have a valid guarantee that its performance meets the criteria of
predictability and preciseness that are required. While that factor is of consideration, the
architecture of embedded systems and their designs are very complex while purposed to take
up a small space. The mentioned scenario results in the embedded system cutting off corners
in implementing hardware. The characteristics of sophisticated design while also having a
limited amount of hardware compared to other computer systems have made benchmarking
and measuring the performance of embedded systems very challenging.

The hardware of embedded systems is usually designed for a specific purpose using
various architectures and patterns and these designs are not close to the patterns that we
are commonly used to in the textbooks. This diversity has led to embedded systems having
different characteristics in performance compared to others. Further on, many operating
systems are developed for embedded systems such as VxWorks[14], Linux, RT-Linux[8],
Xenomai[15], and LITMUS[11]. These operating systems are further tuned for the hardware
definition that they operate on. In this thesis work, we will address the difficulties that it
takes to install and operate the operating systems of Linux and RT-Linux on the embedded
system of AMD Xilinx ZCU-102[2]. Further on, we will benchmark the board running the
same benchmark application that is designed on the two different operating systems.

1.2 Aim

As explained in the previous section the embedded systems are diversely designed. They
are often complicated and the operating systems running on them twist program execution
patterns on the systems even further. In this thesis work, we take the embedded system
of ZCU-102 as an example and treat it as a black-box embedded system without taking its
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1.3. Research questions

architecture and design into consideration. We aim to take a glance over the procedure of
how difficult it is to install an operating system and how different operating systems are
installed. We address how operating systems are booted on the embedded system and how
programs are executed on it. We then aim at the concern over why there are few benchmarks
for embedded systems and why the benchmarks are very diverse and not unified. Finally,
we focus on the fact that the system has the capability of running multiple programs, we will
aim to see how the system would perform in the scenario of having multiple cores operate at
the same time. In that manner, we will introduce our custom benchmark which is a variation
of the Taclebench benchmark[7] aimed to execute on a basis that other programs operate in
parallel with it to test all cores.

1.3 Research questions

During the time of this work, we encountered many obstacles and challenges. The challenges
encountered are mainly related to the three questions listed below.

1. The embedded systems have specific functionality and are usually designed for spe-
cific purposes. What are the challenges to make an embedded system operational for
performing real-time applications?

2. What could be a good measure to benchmark the real-time performance of an embed-
ded system while it has multiple applications running on different cores?

3. The RT-Preempt Linux patch aims to enhance the real-time capability of the Linux op-
erating system. How good is the performance of RT-Preempt Linux compared to Em-
bedded Linux in the criteria of running multicore programs?

1.4 Delimitations

The time that it took to figure out how to make the embedded system operational, and install
a custom operating system on it was way greater than expected. Unfortunately, it resulted in
the benchmarking phase not having enough quality as we desired. The benchmarking could
be done more extensively and thoroughly, to be more precise, extract more information, and
trade the process of running the program better. Nevertheless, with the perspective we had
by taking the system as a black box and not delving deep, good results were obtained.
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2 Background and Related Work

2.1 Background

Real-time applications are the applications that are time crucial and require to be executed on
exact criteria of timing and deadlines. They usually are sequential applications doing volatile
tasks that operate on the highest priority in the system. In many scenarios, embedded sys-
tems have to guarantee acceptable execution of real-time applications such as medical appli-
cations and avionics. The mentioned acceptable execution can be presented by metrics such
as the number of deadlines missed, timing jitter, throughput, and analysis of response time.
In this master thesis work, we focus on measuring the change in execution time and analyz-
ing it while the system performs real-time tasks and the stress on the system is increased. The
benchmarks implemented are designed to put the application in the worst possible execution
pattern to provide a guarantee over the worst possible scenario.

Embedded systems encompass a wide array of devices, each tailored to unique functions
and operating under specific hardware constraints. Due to speciality in use and diversity
in hardware specifications, the embedded systems hardware architecture does not follow a
standard pattern. Accordingly, these devices often have custom operating systems tailored
for their specific architecture and needs. In this thesis work, we will focus on the embedded
system of Xilinx ZCU-102 and aim to measure its multicore capabilities in running real-time
sequential applications. Many custom operating systems can be used for this board such as
RT-Linux[8], VxWorks[14], LITMUS[11] and Xenomai[15]. Due to a lack of time, RT-Linux
and Xenomai were focused on.

The Embedded System Under Test

Unfortunately, there is a wide array of embedded systems each with its capabilities and speci-
fications. The embedded systems often have their own custom operating systems as well. For
this master thesis work, we consider the embedded system of the Xlinix ZCU-102 board de-
veloped by AMD company [2]. The board has the capability of running its operating system
from an SD card, which is the capability we will use. It also has the capability of download-
ing the operating system from a server using TFTP boot. The system has a quad-core ARM
Cortex-A53 processor. Other versions of the board also offer AMD Ryzen CPU and they have
the capability of running with GPU as well but our board operates solely on the Arm CPU.
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2.2. Related Work

The board offers scaling of the CPU clock but during the thesis work, we kept the board clock
fixed without scaling. The board has two levels of cache. The memory in use by the system
is PS 4GB DDR4 64-bit SODIMM with two layers of cache.

In this thesis work the details of the board were not important to us as the board was
treated as a black-box. The reason behind that is that there are so many embedded systems
with different hardware specifications yet we wanted to guarantee that this research is done
in general and is not fine-tuned for any type of hardware. The most important factor for us
was that the system had four cores of CPU that could be utilized and we focused on making
sure that during our tests all the CPU cores would be put to test.

2.2 Related Work

Although the area of benchmarking embedded systems and especially real-time benchmark-
ing of embedded systems seems to be very diverse, this work has been heavily inspired by
similar work that has been done in the past. This section will mention some of the work that
has inspired this work ordered by their priority.

A Comparison of Scheduling Latency in Linux, PREEMPT RT, and LITMUS[6]

This paper does a very similar job by comparing scheduling latency of two similar Linux
patches of RTPreempt Linux and LITMUS Linux. The testing is done by porting Cyclictest[10]
to LITMUS[11] and also measuring scheduling overhead of scheduling using feather trace.
The normal cyclic test could not be used on LITMUS so they ported cyclic test to LITMUS.
They measured worst case execution time and response time. They designed a master man-
ager program with the highest priority which then made a thread for every single core and
pinned to it. Then after the execution they do a measurement phase which then they would
gather the data. The reason why they did that porting of cyclic test but keeping the skeleton
is that LITMUS has its own API but follows the same pattern and procedure as Embedded
Linux. In the end, latencies of normal Linux, RTlinux and LITMUS were compared. The
experiments were done on same hardware with 16 cores.They disabled frequency scaling,
interrupts, deep sleep and optimization. The goal was to measure scheduling policy. The
measuring were done in three phases, system with no background tasks and no workload,
cpu bound stress and third being io bound stress. Result was that even in idle, LITMUS in-
creases latency in average. The CPU bound tasks or stress were focused on putting cache
pressure same as the work on this thesis work. The focus was mainly on L2 shared caches.
The result was that under stress RTLinux could perform way better than Linux and LITMUS
gave overhead which was suspected due to scheduling policy or lack of optimization. Then
they do interrupt based testing. They also saw no improvement of speed up or scheduling
optimization when they disabled interrupts compared to when there were interrupts. But
they used interrupt benchmarks to put stress and they saw all latencies increase and RT pre-
empt was actually suffering more than normal Linux. In the end, paper also said that we can
see there are overheads but we cannot classify what type of overhead it is. So it’s better to
just take it as that there is a preemption or overhead and not to get too deep in it.

RT-Bench: an Extensible Benchmark Framework for the Analysis and
Management of Real-Time Applications[13]

This research has done a similar work by adding capabilities of realtime benchmarking to
an existing benchmark. They focused on periodic execution, memory tracing and making the
benchmark portable. They then used Isolbench and SD-VBS benchmark to test their tuning of
benchmark toward real-time capabilities. Their goal was to adapt already made benchmark
to properties of real-time systems. The benchmark that is developed has a management pro-
gram that controls the workload, scheduling, periodicity and priority of the benchmark. This
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2.2. Related Work

also allows a unified performance reporting and monitoring. The benchmark measures re-
sponse time of tasks and measures if they have met the deadline and also utilizes performance
counters that are distributed in running tasks to monitor the distribution of resources such
as cpu utilization and memory access. They make the ordinary one shot benchmarks into
periodic benchmarks that are suited for realtime applications which also factor out the over-
head of initialization and tear-down. The benchmarks are also pinned to specific cores, with
specific priorities. the memory allocation is also independent. the RT-bench has three spe-
cific components, the benchmark generator, utils, measuring tools. They ported benchmarks
which then will be using same interface and using same memory, only generated using a
generator. The benchmark also has a measurement segment. in this segment they did the
cpu pinning, data management and cleaning along with analysis gathering using high level
code of python and bash. After the measurement is done, they would plot the results using
plotting tools. We did not go for such approach since we wanted our code to be compatible
with bare metal. The final result was that the ARM platform would perform more predictably
under stress.

On Performance of Kernel Based and Embedded Real-Time Operating System:
Benchmarking and Analysis[12]

This paper focused on benchmarking Xenomai real-time patch of Linux, RTPreempt patch of
Linux and eCos real-time operating system. It did a fascinating job of benchmarking in four
metrics of latency, task switching, preemption time and deadlock break time. The results
were that for network processing the kernel based real-time operating system (xenomai and
RTPreempt) could perform better and it is also better for multi tasking. In comparison, the
dedicated real-time operating system (eCos) was better in processing dedicated applications
that need less context switching. The benchmark testbed of the system was custom made in
C. This capability allowed the writer to test many metrics.

This is a good news for the reason that the ABB realtime systems focus on network in
communication and do packet processing. The expectation of custom benchmark can focus
on the field of packet trade and see where it can reach the optimality in how much packet
transmittion is needed to become better operating system compared to a dedicated OS like
VxWorks[14]. Using test beds that are already proven in literature is believed to give more
value to the research, unfortunately, makes the work way harder and the metrics that could
be obtained more limited.

Performance Comparison of VxWorks, Linux, RTAI, and Xenomai in a Hard
Real-Time Application[3]

This paper did a similar job to us by comparing operating systems of normal linux, RTAI ver-
sion of Linux, XENOMAI Linux, and VxWorks on a Motorola MVME5500. Their tests were
focused around measuring interrupt latency, inter-process communication and rescheduling
of real-time tasks. The paper indicated that in order to make operating systems of Xeno-
mai and RTAI work on their system they had to change the operating systems and port the
operating systems to their system. The tests ran on the system were designed to give the
hardware 64 signal inputs and read the latency of a single output signal with oscilloscope.
The timing measurements of the oscilloscope were then used to designate interrupt latency
and rescheduling time. The second stage of the tests was focused on network transmission of
tasks while the tasks ran on different operating systems. The board was connected to a sec-
ondary computer and outputs were changed from output signal to IP packets to be transmit-
ted on the network. The results were that operating systems operated closely with Vxworks
performing the fastest and Xenomai performing the slowest for the reason that interrupts
of Xenomai are ported to the nanokernel developed for Xenomai. While running the tests, it
was observed that Xenomai scheduling over-head was greater than RTAI and standard Linux
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which was due to layered design of Xenomai Linux. The network transmission latency of
VxWorks was greater than Xenomai and RTAI which would indicate that in scenarios where
network transmission is of importance; it is better to use Linux-based real-time systems.

The mentioned work gave us a very good inspiration for how to compare the performance
of operating systems. The work did a very good job by measuring the performance of their
unit under test using external hardware such as an oscilloscope and another computer. Such
an approach can be used to further enhance the work that is represented in this paper and
expand the accuracy of the work of this paper further.

TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time
Research[7]

The TacleBench benchmark suit is a gathering of benchmarks for embedded systems aimed
to put the embedded system on a condition that execution of benchmark takes worst-case
of execution in order to measure worst case execution time for the CPU. The TacleBench is
implemented in C language and it does not use any other libraries to operate. It consists of
many benchmarks in different criteria such as parallel, kernel, sequential, test and simulation
application. We focused on the kernel set of the benchmarks for the reason that it had enough
test scenarios and it covered all programming patterns. The kernel benchmark then later got
adapted to parallel scenarios in order to see how the system reacts if one of the cores would
run the kernel benchmark while other cores were busy with their own independent tasks.

The parallel benchmark suit was not chosen for the reason that we found it to be to small
and not useful to benchmark how decision making is made when cores are stressed. Unfor-
tunately, we found no interest in the parallel benchmark set. It would not be wise to stress
the cores independently when the cores are already idle with their own parallel tasks.

Analysis and Benchmarking Performance of RealTime Patch Linux and Xenomai
in Serving a Real-Time Application[4]

The work focused on comparing the performance of RT-Linux and Xenomai real-time oper-
ating system which is an operating system based on Linux. The focus of the paper was to
compare the scheduling policies of the mentioned operating systems on a network-based ba-
sis. For that purpose, they implemented a real-time application using network and another
computer to monitor and measure the performance of the system under test. The metrics
that were aimed for comparison were process time, jitter, and throughput. They observed
that Xenomai performs better when throughput is low and accuracy is of more importance
and if multi-tasking is of importance RT-Linux is a better option.

This work made a good comparison of operating systems in network-based scenarios
where interrupts would be more common. The final results obtained by the researchers were
very close to what we obtained and the design of their benchmark was similar to ours.

How fast is fast enough? Choosing between Xenomai and Linux for real-time
applications[5]

This paper compares Linux, RT-Prempt Linux and Xenomai Linux. The research was done for
the reason that installing Xenomai takes a lot of effort and the researcher aims to designate
if the effort justifies itself. The tests were done by using two hardware the main hardware
ran the tests and another hardware gave the inputs then monitored the outputs of the under
test hardware and timed it. The tests conducted both periodic and spontaneous tasks and
the measurements and were designed to measure the response time of hardware under test
while running the three mentioned different operating systems. The result of the research
was that in all scenarios the RT preempt patch was performing better than standard Linux
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in scheduling latency reduction. The research also adds that the overhead of response time
added task timings by Xenomai was less than RT-Preempt.

The researchers of this work did a fantastic job and gave a very good direction to our
work. The inspiration of having a hardware monitor and time another hardware has inspired
our design to have a thread that manages and times another thread that is under test which
will be thoroughly discussed in the methodology chapter. The test results and criteria of
measurements were centered around response time and scheduling policy of the operating
systems which we believe provides a piece of good information to anyone who is interested
in the field as we believe it would be a good compliment to our research work.
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3 Method

3.1 Preparing the Operating system of the boards.

The process started by installing Linux on the hardware. We used a variation of Yocto [9]
called PetaLinux[1]. PetaLinux is developed by AMD company to build custom versions
of Linux purposed for the hardware of AMD. The advantage of using PetaLinux was that
the hardware configuration of the system is pre-implemented by the AMD company which
made learning how to make custom operating systems for the boards easier. The embedded
systems do not have a unified structure in hardware design and usually follow a customized
pattern; this characteristic has led to the board having no bios or means to identify how to
boot the operating system; instead, this process is created by the person creating the operating
system. The custom Linux that was created for the board also came with instructions for the
board on how to boot the operating system. The instructions for the board that would lead
to the identification of the hardware and setting up the memory are the instruction set that
are built by using PetaLinux is called the first-stage boot loader that acts as a hardware map.
The first stage boot loader then starts the second stage boot loader which is similar to the bios
of a normal motherboard. The second stage boot loader picks up the kernel of the operating
system and all the root files that are required and starts the booting process of the system.
The Linux we installed was the version 5.15 of the Embedded Linux and we used the most
minimalistic Linux possible by disabling all side applications to guarantee no interference at
a later stage of running the benchmarks and applications. The compiled components were
mounted on an SD card and put on the board where the board would read them in read-only
mode. After that, we patched the 5.15 Linux with the same RT preempt patch that was most
recent designed for that specific version. We then made sure that clock scaling was disabled,
and the clock was adjusted to only 1kHZ on both operating systems. The result of this process
was that an identical Linux was made with the same root file system and kernel but now the
scheduler of the kernel is patched by the decision-making protocols of RT-Preempt Linux.
For ease of access, we proceeded by installing the C++ library on the root file system of both
versions of Embedded Linux and RT Linux and provided identical first-stage boot loader and
second-stage boot loader to boot up the different operating systems to guarantee all stages
are the same except for the operating system kernels themselves.

There was also an attempt to install VxWorks, however, it was not successful. VxWorks
can also be installed on the board by transitioning the handle from the second-stage boot
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3.2. Running TacleBench on The System

loader designed by PetaLinux to the second-stage boot loader designed by VxWorks and then
booting the operating system with the same pattern. After the process, we noticed a strange
pattern of booting up that resulted in the system crashing after boot so we abandoned it.

3.2 Running TacleBench on The System

We used cross-compiling using the compiler provided by ARM. The idea of cross-compile
was that it would be independent of the operating system and tailored by the machine lan-
guage and architecture without interference from the embedded system itself. By doing that
we could take factors of compiler optimization for the operating system out of the way. The
TacleBench consists of many categories of benchmarks all purposed around calculating run-
time. We chose the single kernel benchmark as we felt that it contained all the patterns that
a program might need such as array traversal, function calling, matrix multiplication, and
complex arithmetic. We put the board on the test and measured the runtime of the kernel
benchmarks by timing only the execution time of benchmarks and not considering the time
it takes for memory allocation.

3.3 Implementation of Custom Benchmark

Our aim by using the embedded system is to utilize all the capabilities the system has to offer,
and measure if using all of them can align with our requirement of running real-time systems.
The factor we focused on was that the system has four cores that it operates on and it is better
to design a multicore benchmark for the board that puts all the cores to the test. With that
in mind, we had two scenarios we could design our benchmark around; a scenario would
be that it would run tasks in parallel. The other would be that we would divide a task into
parallel subtasks and run them on each core; The first option would be a better option since
most real-time operations are sequential and dividing them would not be beneficial to us. On
the other hand, the parallel benchmark suit of TacleBench did not pick the interest that was
in our goal. Instead, the kernel benchmark of TacleBench was chosen that would engulf all
criteria and patterns that any software program would have.

The custom benchmark designed for the board was heavily inspired by Cyclic Test[6] and
RT-Bench[13]. The design of the benchmark is implemented in the way that it would contain
a manager thread that would monitor and create the sub-threads of the benchmark, a bench-
mark thread, and two stress threads. The focus of the benchmark was to utilize all cores and
the management thread guarantees that. Compared to the original benchmark, we adapted
some needed changes in initialization or running in order to tune the benchmarks for running
them multiple times and make sure all the memory accesses and allocations are independent.
The process of benchmarking starts by pinning the management thread on a core and run-
ning it with topmost priority. The management then gives the choice to the user to run any of
the TacleBench kernel benchmarks that are implemented. The benchmarks of table bench are
pinned to another core where they would run deterministically and sequentially while the
management would monitor memory association, initialization, and memory deletion after
the stress process ends. After the control is given to the benchmarking thread to run on a core,
it would be pinned to that specific core with topmost priority, and the start of its execution
time will be timestamped. When the execution is over, the end of execution would be times-
tamped by the benchmark thread then the results and memory allocation would be handed
back over to the management thread to record the final results and execution time along with
deallocation of memory. The other segment that is managed by the management thread is the
stress thread segment which consists of two threads. The user can choose between having no
stress which would run normal TacleBench or running one or two stress threads in parallel.
One stress is pinned to one core or two stresses each pinned to a core. The purpose of stress
is to put stress onto the cache, memory transfer bus, and memory of the system. The stresses
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3.4. Overall Theory and Guarantee

Figure 3.1: An Example of Benchmark Thread

are programmed in a way that it constantly accesses a wide local array that is bigger than the
cache line which would cause cache misses which would congest shared cache and memory
bus with cache misses. It would then force memory to retrieve new information hence the
whole memory unit would be under constant stress. Every thread whether being a bench-
mark thread, manager, or stress thread has its own memory allocation, therefore we could
guarantee that there would never be any racing condition. Note that the memory that is used
by the stresses is local memory to every thread allocated in the heap so we could guarantee
no deadlock or race condition.

3.4 Overall Theory and Guarantee

So far we have focused on porting TacleBench to a scenario that runs sequentially as before
but now other programs (which here are taken by the extreme condition and represented by
the stress) are present on the other cores. Both operating systems run on the same hardware
and no configuration of hardware is changed. The operating systems themselves have the
same clocks, the same root file system, and no side applications. The clock scaling of the
operating systems is disabled and they are both made the same way. The benchmark imple-
mented for the test has been constructed by using cross-platform and using compiler of ARM
to guarantee there would be no optimization purposed for the operating system and all fields
are equal.
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4 Results

4.1 Running the Benchmark on RT-Preempt

After designing the benchmark, implementing it then compiling it for the system without
considering the operating system. We proceeded to carefully prepare an equal condition for
the system to measure the performance of RT-Linux and Embedded Linux on the ZCU-102
board. We first prepared the system for running the benchmark and checked the status of the
system. The system was connected to a computer using the USART gate which we used to
boot the system and communicate with it. The operating systems and the benchmark were
on an SD card used by the system to boot and read the benchmark. After the system was
operational we checked the Linux version for each set of benchmarks. The already running
processes on every thread were monitored and we saw minimal applications running. We
used the TOP command to monitor running processes and we saw that zero percent of our
desired cores were being used. The only task allocation of our targeted core was cycling be-
tween the communication application that we used for mentoring the program with our main
computer and the root system command. The applications that were already running were
suspected to be the main applications of the system so they were not touched. After monitor-
ing the state of the application, the custom benchmark was then loaded up and the priority
of it was changed to maximum priority. We paused the custom benchmark and used the "ps"
command to track the ID of our custom benchmark changed its priority to maximum priority
then resumed the benchmark. Unfortunately due to having only one interface of monitoring
and communication with the system, we could not constantly monitor the state of allocated
CPU cores as the benchmark was running for reason that the communication interface was
being occupied by the benchmark and the only option to check the CPU allocation would
have been achievable by pausing the benchmark.

Each benchmark was run one thousand times and experiments were done repeatedly.
Since the adaption of Tacle-bench and the benchmark itself were both deterministic bench-
marks, running them repeatedly would not result in different sets of results. While running
the processes on conditions of having no stress, one stress pinned to a core and finally having
two stress pinned to each core. We saw that the run time of the benchmark was the same and
on some occasions, a spike in the runtime would be sighted.

The execution run time analysis of the benchmark on normal conditions without any
stress is as below. All the recordings are in milliseconds.

11



4.2. Run Time Analysis of the Benchmark While Having One Stress on Read While
Operating on RT-Preempt

Run Time Analysis of the Benchmark While Having No Stress
Benchmark Name Average Median Variance Maximum Category

bubble sort 304.223 302.0 19.336 314 2
binary search 4.599 5 0.6983 15 1
bitonic search 23.903 24.0 2.8204 37 1

complex 6.554 6.0 1.0581 18 1
count negative 38.296 38.0 4.4127 51 1

crc 10.057 10.0 4.1278 64 1
factorial 3.444 3.0 0.6735 15 1

filter bank 13098.85 13098.0 13.995 13124 3
fir2dim 11.277 11.0 1.4176 24 1

irr 4.516 4.0 0.5803 15 1
insert sort 4.696 5.0 0.8664 17 1

jfdctinit 10.324 10.0 1.1681 23 1
ims 392.509 389.0 22.418 402 2

ludcmp 12.457 12.0 1.7378 24 1
matrix 34.457 34.0 3.6157 47 1
minver 8.747 9.0 0.6996 20 1
prime 3.712 4.0 0.6677 16 1

recursion 6.41 6.0 0.8927 19 1
st 293.797 291.0 20.500 305 2

We ran each benchmark one thousand times and during that time we saw run time to be
nearly consistent without any fluctuations, we could observe that the variance of run times in
all benchmark cases are very low for all the benchmarks. The benchmarks could be classified
into three categories relatively to their runtime. The first category is the benchmark cases of
having a low run time that is less than 30 milliseconds, run time of around 300 milliseconds,
and a runtime of above one thousand milliseconds. Category two consists of benchmarks
that heavily depend on memory and category three is unique to a string filtering and parsing
application known as filterbank that heavily depends on memory. It makes sense for the
reason that we expect memory retrieval to be the most time-consuming process here. Other
applications of category one also use memory but the memory access is so bounded that all
memory can be cached or memory accessing is optimized like quick sort algorithm and insert
sort.

4.2 Run Time Analysis of the Benchmark While Having One Stress on
Read While Operating on RT-Preempt

We then proceeded by putting one stress on another core that was reading from a memory
array having a size bigger than a cache line but with no race condition or memory interference
with the benchmark or management threads. The timing analysis results are as below.
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4.3. Run Time Analysis of the Benchmark While Having Two Stress on Read While
Operating on RT-Preempt

Run Time Analysis of the Benchmark While Having One Stress on Read
Benchmark Name Average Median Variance Maximum Category

bubble sort 633.991 302.0 227818.797 1330 2
binary search 10.599 4.0 6181.41961 1024 1
bitonic search 47.084 24.0 23276.4253 1050 1

complex 15.625 6.0 9218.27464 1027 1
count negative 80.609 38.0 41663.4836 1062 1

crc 20.113 10.0 10198.1383 1033 1
factorial 5.514 3.0 2061.17898 1019 1

filter bank 26240.608 26144.0 786277.752 27946 3
fir2dim 26.453 11.0 15328.5543 1036 1

irr 7.583 4.0 3094.48960 1026 1
insert sort 9.765 5.0 5148.78255 1028 1

jfdctinit 18.469 10.0 8193.51655 1028 1
ims 774.495 389.0 243286.742 1416 2

ludcmp 24.735 12.0 12285.3941 1033 1
matrix 60.711 34.0 26138.4098 1052 1
minver 12.808 9.0 4111.91505 1028 1
prime 5.898 4.0 2065.70930 1021 1

recursion 9.522 6.0 3096.54005 1030 1
st 575.618 291.0 208577.759 1321 2

Overall the pattern of execution time did not change much. Normally the run time was
the same, however, on some occasions, there were sudden jumps in execution time where the
execution time would increase to be more than triple the execution time of the unstressed sce-
nario and sometimes greater. We saw that there were few cases of high execution time on the
benchmarks of category one which had low run time. The benchmarks of category two had
spikes around every three runs and the benchmarks of category three changed execution time
drastically while also experiencing spikes. As can be seen in the table, the median remained
the same for all benchmarks except for the "filter bank" benchmark, the average increased
slightly which indicates that only a few cases were changed but the variance changed dras-
tically which indicated that the impacts of spikes were drastic which indeed they were. Our
guess was that due to heavy stress on the board, if the board was running to meet expected
deadlines, only one core being stressed would be enough to make sure some occasions the
application that would expectedly run normally would surely miss the deadlines.

4.3 Run Time Analysis of the Benchmark While Having Two Stress on
Read While Operating on RT-Preempt

After finishing the benchmarking of system by having three cores occupied with a manage-
ment thread, a benchmark thread and a stress thread each on different core, we proceeded
to add another stress thread on the fourth core to have all cores occupied. Both stresses had
their own independent memory which were bigger than cache line accessing them constantly
to put stress on memory transfer unit of the system. The results of the experiments are given
as follows.
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4.4. Run Time Analysis of the Benchmark While Having One Stress on Write While
Operating on RT-Preempt

Run Time Analysis of the Benchmark While Having Two Stress on Read
Benchmark Name Average Median Variance Maximum Category

bubble sort 920.355 302.0 867607.6266 2341 2
binary search 17.941 5.0 25404.07959 2033 1
bitonic search 82.506 24.0 115114.3022 2057 1

complex 16.811 7.0 20396.47575 2040 1
count negative 114.867 38.0 149313.5008 2069 1

crc 26.427 10.0 32381.83850 2039 1
factorial 9.645 4.0 12125.64461 2021 1

filter bank 39541.709 39209.0 3042647.167 42244 3
fir2dim 35.641 11.0 48350.78089 2036 1

irr 14.805 5.0 20335.82279 2040 1
insert sort 8.921 5.0 8069.738497 2017 1

jfdctinit 28.652 10.0 36417.99889 2036 1
ims 1146.781 391.0 957574.2913 2427 2

ludcmp 26.756 12.0 28452.50296 2039 1
matrix 89.074 34.0 107393.7462 2069 1
minver 27.222 9.0 36437.99270 2039 1
prime 16.143 4.0 24279.60415 2029 1

recursion 14.69 7.0 16143.23113 2029 1
st 872.688 292.0 838161.7103 2351 2

After adding the second stress on read, we saw that the impact of the spikes doubled and
we could see the records of maximum increasing in double their value, the number of spikes
were not follow a particular pattern but overall their number either remained the same or
increased by only a few amount. The impact of stress on the categories of the benchmark was
exactly the same as the time when there was only one stress on the benchmark and overall if
the spikes were excluded from the runtimes, the other behaviors were identical.

4.4 Run Time Analysis of the Benchmark While Having One Stress on
Write While Operating on RT-Preempt

We then converted the process of stress threads to writing on a random access array instead
of reading from it. The same as before, we set one thread for stressing one core which was
for writing a random access array, one thread for running the benchmark, and one thread
for managing the benchmark thread and the stress thread. Each thread was pinned to a core
resulting in three cores being occupied. The results of the experiments are given as follows.
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4.5. Run Time Analysis of the Benchmark While Having Two Stress on Write While
Operating on RT-Preempt

Run Time Analysis of the Benchmark While Having One Stress on Write
Benchmark Name Average Median Variance Maximum Category

bubble sort 609.835 302.0 216925.9477 1498 2
binary search 4.57 4.0 1.294394394 16 1
bitonic search 49.1 24.0 25067.94194 1052 1

complex 10.633 6.0 4053.928239 1017 1
count negative 74.527 38.0 35708.93820 1068 1

crc 18.1 10.0 8203.163163 1039 1
factorial 7.573 3.0 4116.589260 1024 1

filter bank 26179.763 26114.0 725491.1800 28131 3
fir2dim 25.523 11.0 14191.46693 1033 1

irr 7.652 4.0 3060.913809 1018 1
insert sort 9.843 5.0 5145.285636 1025 1

jfdctinit 24.652 10.0 14218.53142 1034 1
ims 777.249 389.0 241689.9889 1423 2

ludcmp 21.665 12.0 9193.115890 1032 1
matrix 66.772 34.0 31888.16017 1061 1
minver 19.98 9.0 11145.38498 1025 1
prime 10.886 4.0 7120.787791 1024 1

recursion 8.461 6.0 2056.472951 1023 1
st 577.573 291.0 207678.7514 1333 2

We saw that the results were exactly identical to the results of benchmarking when the
stress was on reading from the array. We believe this similarity was expected due to the
reason that memory accessing of cache and memory bus is not secluded to writing or reading.

4.5 Run Time Analysis of the Benchmark While Having Two Stress on
Write While Operating on RT-Preempt

In the next step, we added another stress on the fourth core which was on writing the mem-
ory, and we saw that the results were identical as if the stresses were on reading from memory.
The results of the experiments are given as follows.
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4.6. Run Time Analysis of the Benchmark While Having No Stress on Embedded Linux

Run Time Analysis of the Benchmark While Having Two Stress on Write
Benchmark Name Average Median Variance Maximum Category

bubble sort 895.218 302.0 847908.0605 2427 2
binary search 10.932 5.0 12260.61198 2032 1
bitonic search 76.606 24.0 103769.1879 2065 1

complex 12.942 7.0 12241.85048 2042 1
count negative 111.207 38.0 142299.8580 2075 1

crc 22.568 10.0 24448.80418 2039 1
factorial 11.857 4.0 16339.34789 2036 1

filter bank 39557.545 39240.0 3032434.394 41729 3
fir2dim 35.855 11.0 48768.22219 2052 1

irr 12.888 5.0 16193.26672 2029 1
insert sort 7.011 5.0 4143.490369 2040 1

jfdctinit 28.999 10.0 36623.34033 2059 1
ims 1192.304 390.0 979007.9114 2433 2

ludcmp 33.232 13.0 40707.53571 2052 1
matrix 96.369 34.0 120258.161 2075 1
minver 25.257 9.0 32554.24119 2043 1
prime 4.116 4.0 2.703247247 18 1

recursion 16.839 6.0 20308.54762 2031 1
st 867.372 292.0 833386.6702 2336 2

The results we observed were identical to the time the stress was on reading from memory.
The spikes doubled on impact and delays were doubled, the number of spikes either the same
or increased in numbers.

4.6 Run Time Analysis of the Benchmark While Having No Stress on
Embedded Linux

After running all the benchmarks on the RT-Linux, we changed the operating system to Em-
bedded Linux and repeated the process again. We followed the same procedure as before
making sure that both benchmarks were in identical condition. After that, we ran the same
benchmark code again. Due to the program being cross-compiled for the machine architec-
ture we could guarantee that the same application was running for both operating systems.
The runtime analysis of the benchmark, while there is no stress on the core, is as below.
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4.7. Run Time Analysis of the Benchmark While Having One Stress on Read While
Operating on Embedded Linux

Embedded Linux Run Time Analysis of the Benchmark While Having No Stress
Benchmark Name Average Median Variance Maximum Category

bubble sort 300.76 300.0 3.63603603 310 2
binary search 3.388 3.0 0.31376976 12 1
bitonic search 22.672 23.0 0.68109709 35 1

complex 5.342 5.0 0.30333933 14 1
count negative 36.855 37.0 0.76674174 47 1

crc 8.901 9.0 3.41060960 63 1
factorial 2.455 2.0 0.25022522 4 1

filter bank 13010.42 13009.0 6.62822822 13026 3
fir2dim 10.144 10.0 0.58584984 24 1

irr 3.45 3.0 0.30380380 10 1
insert sort 3.56 4.0 0.41081081 14 1

jfdctinit 9.13 9.0 0.26336336 18 1
ims 388.242 388.0 4.89232832 399 2

ludcmp 11.292 11.0 0.58331931 21 1
matrix 33.122 33.0 0.94406006 43 1
minver 7.792 8.0 0.37511111 17 1
prime 2.741 3.0 0.20612512 6 1

recursion 5.327 5.0 0.47454554 15 1
st 290.441 290.0 4.34286186 303 2

We saw that the runtime pattern follows a consistent pattern with no fluctuations or
spikes, the same as when the benchmark was running on RT-Preempt without any interrup-
tions. The only difference when compared to RT-Preempt was that overall the runtime was
faster, which we believe must be due to scheduling policy differences between RT-Preempt
Linux and Embedded Linux.

4.7 Run Time Analysis of the Benchmark While Having One Stress on
Read While Operating on Embedded Linux

We then proceeded by putting one stress on a core and then running the benchmark again.
The stress would read from an array having a size bigger than a cache line to put stress on
the memory unit. The timing analysis results are as below.
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4.8. Run Time Analysis of the Benchmark While Having Two Stress on Read While
Operating on Embedded Linux

Embedded Linux Run Time Analysis of the Benchmark While Having One Stress On Read
Benchmark Name Average Median Variance Maximum Category

bubble sort 589.834 300.0 1080869.96240 4343 2
binary search 3.399 3.0 0.50630530530 9 1
bitonic search 42.69 23.0 80463.5494494 4047 1

complex 9.523 5.0 16181.3267977 4028 1
count negative 73.153 37.0 144410.682273 4070 1

crc 21.072 9.0 48395.8166326 4038 1
factorial 2.587 3.0 0.63106206206 8 1

filter bank 26048.226 25051.0 3711691.38230 29966 3
fir2dim 18.351 10.0 32292.2120110 4032 1

irr 7.596 4.0 16148.3511351 4022 1
insert sort 7.702 4.0 16155.6748708 4023 1
jfdctinit 13.262 9.0 16135.0744304 4026 1

ims 785.818 388.0 1443066.48135 4425 2
ludcmp 11.422 11.0 1.13505105105 20 1
matrix 66.277 33.0 129347.774045 4070 1
minver 16.032 8.0 32241.5064824 4026 1
prime 6.913 3.0 16177.9914224 4025 1

recursion 17.546 5.0 48461.5914754 4030 1
st 579.711 290.0 1081312.67215 4328 2

We saw that spikes were once again present though their number was almost the same as
when the benchmark was operating with stress in RT-Linux. It could be observed that cat-
egory one had only a few spikes in a thousand iterations and in some cases, none; category
two was more impacted by spikes that could not be ignored category three changed run-
time entirely; these were the same events as we encountered previously while running the
benchmark on RT-operating system. The median for the benchmarks remained the same
which indicated that the majority of the benchmarks were running the same. The maximum
indicates the impact of the spikes which were four times more impactful than spikes of RT-
Preempt. Compared to RT-Preempt, the frequency of the spikes was less as well. Another
event we noticed was that in some cases benchmark spikes could not be seen. These were the
benchmarks for which their runtime was very low. However, this event happened randomly
and when we restarted the benchmark on different times, they might experience a spike and
some other benchmarks might not.

4.8 Run Time Analysis of the Benchmark While Having Two Stress on
Read While Operating on Embedded Linux

We then proceeded by adding another stress on the system resulting in all the cores being
occupied. The first core was having management pinned to it with top priority, the second
core had the benchmark thread pinned to it and the third and fourth cores had stress threads
pinned to them which constantly read from their independent memory without race condi-
tion. The timing analysis of benchmarking while having two stress is as below.
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4.9. Run Time Analysis of the Benchmark While Having One Stress on Write While
Operating on Embedded Linux

Embedded Linux Run Time Analysis of the Benchmark While Having Two Stress on read
Benchmark Name Average Median Variance Maximum Category

bubble sort 880.085 301.0 4304072.232007 8337 2
binary search 35.653 4.0 256553.2198108 8032 1
bitonic search 54.822 23.0 256767.2856016 8053 1

complex 13.598 5.0 64553.14754354 8040 1
count negative 117.29 37.0 637877.8997997 8077 1

crc 33.14 9.0 192542.8452452 8030 1
factorial 2.611 3.0 0.696375375375 8 1

filter bank 39049.461 37050.0 14842069.99847 46857 3
fir2dim 26.474 10.0 128804.3416656 8047 1

irr 7.673 4.0 16075.49356456 4013 1
insert sort 11.86 4.0 64259.68608608 8020 1

jfdctinit 41.473 9.0 256485.0102812 8033 1
ims 1134.827 389.0 5432806.619690 8444 2

ludcmp 19.525 11.0 64393.82319819 8036 1
matrix 105.493 33.0 574267.8457967 8061 1
minver 32.243 8.0 192374.7947457 8027 1
prime 2.955 3.0 1.286261261261 27 1

recursion 21.637 5.0 128638.1834144 8031 1
st 870.285 291.0 4306696.085860 8339 2

After running the test we could observe the same pattern as having two stress on the core
while operating on the RT-Linux. The spikes became more frequent and their impact doubled
as well. compared to RT-Linux, the number of spikes was less but the impact was more
significant.

4.9 Run Time Analysis of the Benchmark While Having One Stress on
Write While Operating on Embedded Linux

We then repeated the process by converting the stress threads pinned to cores to writing on a
memory array instead of writing. The timing analysis results are as below.
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4.10. Run Time Analysis of the Benchmark While Having Two Stress on Write While
Operating on Embedded Linux

Embedded Linux Run Time Analysis of the Benchmark While Having One Stress on Write
Benchmark Name Average Median Variance Maximum Category

bubble sort 602.645 300.0 1127028.0690440 4362 2
binary search 3.568 3.0 1.1285045045045 16 1
bitonic search 46.977 23.0 97074.142613613 4057 1

complex 17.75 5.0 48563.643143143 4036 1
count negative 69.329 37.0 128958.77153053 4073 1

crc 9.224 9.0 7.0468708708708 66 1
factorial 2.679 2.0 2.0900490490490 13 1

filter bank 26120.504 25084.0 3891807.0590430 29414 3
fir2dim 10.405 10.0 3.3423173173173 33 1

irr 11.651 3.0 32321.060259259 4034 1
insert sort 7.845 4.0 16220.753728728 4031 1
jfdctinit 17.455 9.0 32446.426401401 4041 1

ims 734.853 388.0 1278727.2386296 4477 2
ludcmp 19.637 11.0 32686.876107107 4067 1
matrix 61.539 33.0 113173.86634534 4078 1
minver 16.306 8.0 32484.114478478 4046 1
prime 3.029 3.0 3.5477067067067 41 1

recursion 17.769 5.0 48620.273912912 4040 1
st 584.702 290.0 1101718.1653613 4357 2

We observed the same as operating on RT-Preempt Linux, the Embedded Linux also per-
formed identically, hence the result of having stress on write was treated the same as being
on read. The final results were identical to the test of having one stress on read as if we just
ran another instance of tests on the board.

4.10 Run Time Analysis of the Benchmark While Having Two Stress on
Write While Operating on Embedded Linux

After occupying three cores out of four cores that the system offers us, we proceeded with
the final stage of the testing by occupying all four cores with one manager thread pinned to
the first core, one benchmark thread, and two stress cores writing on an array each pinned to
a core. The timing analysis results are as below.
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4.11. Illustrations Based on The Analyzed Data

Embedded Linux Run Time Analysis of the Benchmark While Having Two Stress on Write
Benchmark Name Average Median Variance Maximum Category

bubble sort 863.284 301.0 4207162.8201641 8377 2
binary search 11.791 4.0 64550.882201201 8038 1
bitonic search 79.315 23.0 449820.34211711 8067 1

complex 5.84 6.0 3.8082082082082 21 1
count negative 101.629 37.0 514135.49285185 8122 1

crc 57.643 9.0 385829.64719819 8062 1
factorial 2.928 3.0 2.8957117117117 16 1

filter bank 39140.824 37091.0 15332098.803827 48654 3
fir2dim 34.838 10.0 194263.56732332 8082 1

irr 3.903 4.0 2.9905815815815 19 1
insert sort 12.155 4.0 64740.541516516 8050 1
jfdctinit 25.814 9.0 129796.95235635 8094 1

ims 1143.833 388.0 5504597.0902012 8468 2
ludcmp 35.947 11.0 194309.41961061 8089 1
matrix 65.79 33.0 257833.73763763 8075 1
minver 32.617 8.0 193504.29460560 8052 1
prime 11.173 3.0 64496.938009009 8034 1

recursion 13.849 6.0 64695.509708708 8049 1
st 853.784 291.0 4213284.9102542 8379 2

We saw that results were once again were identical to having four cores occupied but
the stress threads being on memory read. Out of completion and making sure no stone is
unturned we have done the writing benchmarks to complete as well. Nevertheless, it seems
that the system always has the same behavior whether stress on memory is on writing or
reading from memory.

4.11 Illustrations Based on The Analyzed Data

After analyzing the data, for better understanding, we have used line graphs to illustrate the
different sections of experiments that have similarities to have a better understanding of the
system when conditions are similar.

System under no stress

A graph presentation of the system under no stress is as below. The system performs very
consistently, with very low to no fluctuation and variance, as shown in the tables before. The
red line presents the "complex" arithmetic benchmark which is a representative example of
the category one benchmark, the green line presents "bubble sort" which is a representative
example of category two and the blue line is the "filter bank" benchmark which represents
category three. The graph’s horizontal axis shows the system’s behavior in different iterations
and the vertical axis presents milliseconds required to finish the execution time. The behavior
of the system under no stress is shown in Figure 4.1.

Behavior of system under one stress

The spikes introduced to the system are shown in Figure 4.2. The benchmarks of category one
shown by the red line graph experienced the least amount of spikes and in the majority of
iterations, their behavior remained the same. The benchmarks of category two experienced
spikes around once every three iterations and the benchmarks of category three experienced
an increase in runtime along with spikes. For ease of visibility, the iterations presented are
200 iterations instead of a total of 1,000 iterations.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.1: Execution time of the benchmarks under no stress while operating on RT-Linux.

Figure 4.2: Execution time of the three categories under one stress of read while operating on
RT-Linux.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.3: Execution time of the three categories under two stress of read while operating on
RT-Linux.

Behavior of system under two stress

Figure 4.3 presents the behavior of the system while two cores are under stress. The number
of spikes for benchmarks of categories one and three have remained the same while the num-
ber of stress for benchmarks of category three has increased drastically. For all benchmarks,
the impact of stress has doubled as well.

Comparison of category one under various stress conditions

The category one benchmarks are the benchmarks with a low run time that usually do not
need much memory accessing or all memory that needs to be accessed is cached. In Figure
4.4, we see the impact of spikes on the system when it is under stress in the one thousand
iterations of benchmarking. The green line presents the behavior of the benchmark under
normal conditions which is a consistent line. The red line graph shows the behavior of the
benchmark with one stress. As it can be seen, the system has few spikes and besides that,
the behavior of the system is identical to the condition that it did not have stress. The blue
line shows the behavior of the benchmark when two cores are stressed, as it can be seen the
impact of spikes has doubled. There is no prediction over the number of spikes and when
they happen so we do not have an explanation for why the pattern of spikes or their number
is shown as presented in the figure.

Comparison of category two under various stress conditions

In Figure 4.5 we see the comparison of category two under various stress conditions. For ease
of visualisation, the impact is presented in the number of only fifty iterations. We see that the
impact of the spikes is doubled when the stress is doubled, the normal run time without
stress is the same and the number of spikes is the same as well with some timing change that
happens randomly. We do not have any explanation for why the timing change is presented
or why it happens.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.4: Execution time comparison of category one while operating on RT-Linux.

Figure 4.5: Execution time comparison of category two while operating on RT-Linux.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.6: Execution time comparison of category three while operating on RT-Linux.

Comparison of category three under various stress conditions

In Figure 4.6 we see the comparison of category three under various stress conditions. the vi-
sualization is made under fifty iterations so that spikes are visible. We see that execution time
changes drastically when stress is introduced and some spikes happen which also increase
in number when stress is increased. We do not know when the spikes happen yet we know
they are present.

Graphs of system under writing stress

As we discussed earlier, the system behaved exactly similarly when stress was on writing
on memory instead of reading for memory. Nevertheless, it’s better to present figures of our
discovery. Figures 4.7 and 4.8 sequentially demonstrate the behavior of the system under one
stress thread and two stress threads. As we can see the figures are very similar to Figures 4.1
and 4.2.

Graphs of the system while operating on Embedded Linux

Figure 4.9 shows the performance of the system while there is no stress on the system. As
it can be seen the system does not have any fluctuations or spikes. Figure 4.10 shows the
performance of the system while one stress thread is active, the spikes compared to Figure
4.3 are less frequent but more impactful. Figure 4.11 shows the performance of the system
while having two stress threads running on two different cores, we see that the behavior of
the system is similar to Figure 4.4 with the difference that now impacts the spikes but their
frequency is less which is the same behavior pointed out frequently on this master thesis re-
port. Figure 4.12 shows the performance of Category One while Embedded Linux is running
Figure 4.13 is Category Two along with figure 4.14 is of Category Three. For the reason that
the same explanation is valid for the graphs as we discussed before, we do not explain the
same encounters as we explained for the previous figure. Figure 4.15 and Figure 4.16 show-
case the performance of the system when stress threads are written on memory array instead
of reading from it.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.7: Execution time of the three categories under one stress of write while operating
on RT-Linux.

Figure 4.8: Execution time of the three categories under two stress of write while operating
on RT-Linux.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.9: Execution time of the benchmarks under no stress while operating on Embedded
Linux.

Figure 4.10: Execution time of the three categories under one stress of read while operating
on Embedded Linux.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.11: Execution time of the three categories under two stress of read while operating
on Embedded Linux.

Figure 4.12: Execution time comparison of category one while operating on Embedded Linux.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.13: Execution time comparison of category two while operating on Embedded Linux.

Figure 4.14: Execution time comparison of category three while operating on Embedded
Linux.
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4.11. Illustrations Based on The Analyzed Data

Figure 4.15: Execution time of the three categories under one stress of write while operating
on Embedded Linux.

Figure 4.16: Execution time of the three categories under two stress of write while operating
on Embedded Linux.
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5 Discussion

5.1 Results

After running the benchmarks and analyzing the execution time of different stresses, we saw
that while there was no stress running on the board the performance of the system was very
stable with very small to no variance. All the threads were running on maximum priority
with no interruption and that could be reflected on the smooth run time. The performance
of the system while running the two different operating systems of Linux and RT-Linux were
nearly identical while Linux was a bit faster in all scenarios, but this speedup was near to
not being noticeable. When a stress was in effect on the side cores of the system while we
could guarantee that there was no race condition or interference on data access, it could be
observed that normal execution time was still the same but on some occasions, there were
spikes that introduced a great deal of delay in the execution time on a few iterations. It
should be emphasized that the threads that were running on the system were the same and
no side threads or any means to interrupt were added to the system.

The spikes were more common on the benchmarks that were more memory dependent
such as bubble sort or the benchmark to calculate standard deviation; we categorized these
benchmarks in category two. The benchmarks that were not memory-dependent were also
experiencing very few spikes which was uncommon. This meant that even if a program is
not memory dependent and is coded efficiently, it might experience runtime delay due to
inefficiency or stress on memory. It was observed that if the benchmark is heavily dependent
on memory accessing different memory locations and the memory gets used frequently, the
stress on the memory would hinder the performance of the benchmark drastically rather than
only a few iterations experiencing spikes, which is pointed out by our observations from cat-
egory three. When the system undergone more stress, the number of spikes in most occasions
remained the same, some increased, and only a few decreased. The pattern of spikes and how
often they would happen was not consistent or predictable. What was constant was that the
impact of doubling the stress resulted in impact of spikes being higher to being nearly double
as well.

In the next step, we compared the performance of RT-Linux and Embedded Linux, it could
be seen that the number of spikes of Embedded Linux was less than RT-Linux but the impact
of the spikes was more on the execution time. Since the system was in exact same scenario
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5.2. Method

and only the operating systems were different we could say that this change of pattern was
due to a change of decision-making in scheduling that is implemented in RT-Linux.

It should be pointed out that we also compared the performance of the system while
changing the stress from reading to writing and we saw that there was no change to the
behavior of the system when the stress type changed.

5.2 Method

The purpose of the experiments done in this master thesis work was to see how normal pro-
gramming patterns would perform in a scenario where multiple independent programs run
on a multicore embedded system. Unfortunately, we could not find a relation between Linux
priorities and the priority of Pthreads of C. Even though the highest priority was given to
both the benchmark application and threads of the benchmark, we could not guarantee that
the threads could win the competition of obtaining priority compared to other system threads
of Linux when they operate on a different priority basis. We could guarantee that there were
no side applications, and no other application was running other than our benchmark appli-
cation. Yet the operating system itself also competes with applications to obtain CPU cores to
run.

Due to lack of time, a few of the benchmarks of the Taclebench had to be skipped on for
the reason that porting them would take too much time, however, since we could observe
that most of the benchmarks follow the same pattern, we could deduce that porting more
benchmark would not result in different conclusions.

Compared to the related work done in the field, we saw that it was very hard to make
the system operational and install programs on it. This made us unable to use benchmarks
like Cyclictest and RT-Bench on the board. Nevertheless, the related work gave direction to
the implementation of our benchmarks. The related work did a better job of delving deep
into the architecture of the embedded system while we took the system as a black box and
focused more on running the benchmark applications.

5.3 The work in a Wider Context

Testing the benchmarks on VxWorks was in our plan, it would be very good to test it on other
operating systems. The rest of the Taclebench could be imported though we doubt anything
new would be obtained. More benchmarks could be done by running the benchmarks on
other cores instead of stress running on them. Monitoring measures could also be imple-
mented to understand the behavior of hardware while the benchmark is running; this would
allow a more in-depth insight into why the spikes would happen while the benchmark is
running.

Furthermore, we suspect that the issue sighted in the research here could also be seen in
normal computers even though to a lesser extent.
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6 Conclusion and Future Work

6.1 Conclusion

This thesis work was purposed to see how embedded systems perform real-time tasks on
a multicore platform while the execution is multi-threaded and the tasks operating on the
multiple cores are independent. We did not want to make the tests complicated and took the
approach of making sure that all the threads were independent of one another. The results
that we obtained were very fascinating. Having the advantage of running parallel programs
or using multiple cores of the embedded system comes at a risk as well. The risk that we
discovered was that even running tasks on multiple cores might hinder the performance of
our crucial tasks even if the tasks are independent. We expect that this observation happened
due to the sophisticated architecture of embedded systems.

Having the opportunity to run multiple tasks is a great advantage, yet we observed that
the best way to utilize the advantage is to program applications that are designed to run in
parallel or be very mindful of the multicore architecture of the system. The reason is that
idle cores or cores that are not utilized properly might hinder the performance even if not
intended to be running other tasks due to the scheduler of the operating system aiming to
maximize throughput.

While doing the work, we observed that installing operating systems and making embed-
ded systems functional due to their less common use compared to standard computers and
customized hardware is way harder than normal. That also made our capability in bench-
marking very limited.

We also took the opportunity to compare Real-Time Linux and standard Linux. We could
observe that Real-Time Linux is more adapted to parallelism and interruption between the
tasks can be recovered more smoothly. However, for the same reason, interruptions might
happen more often than standard Embedded Linux, and the RT patch of Linux might not
be a good solution for vital real-time applications if the multicore nature of the embedded
system gets ignored.
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6.2. Recall of the Research Questions

6.2 Recall of the Research Questions

After analyzing the results and experiments and taking notes on the tasks completed bench-
marking the embedded system under test, it is good to go back to the research questions we
asked at the start of the thesis work and answer them.

1. The embedded systems have specific functionality and are usually designed for spe-
cific purposes. What are the challenges to make an embedded system operational for
performing real-time applications?

Embedded systems usually have their own specific architecture and making them op-
erate requires a custom operating system that is built for the architecture and hardware
of the system, this makes every embedded system unique, and treating them is not as
standardized as commonly used computers. Furthermore, making an embedded sys-
tem capable of running various applications, especially real-time applications requires
the installation of additional libraries and software which would make operating on
them more challenging. In our case, making a custom version of Linux operating for
our embedded system was very hard and we tried to install a Python interpreter envi-
ronment and VxWorks operating system on the board. Unfortunately, due to the com-
plexity, we could not achieve our goal of installing Python on our operating system or
a custom VxWorks for the board.

2. What could be a good measure to benchmark the real-time performance of an embed-
ded system while it has multiple applications running on different cores?

While there are many metrics to measure the real-time performance of a system, in the
criteria of multicore operation we saw that measuring the execution time of running
the real-time task while the system is not running processes on multiple cores and in
another scenario utilizing all cores would be a good measurement and comparison ref-
erence. Our goal was to discover how the behavior of the system would change if the
same system would transit from running on a single core to multicore without having
any conflicts or race conditions. Other metrics such as jitter calculation and response
time analysis can also be used which relative works have touched upon them.

3. The RT-Preempt Linux patch aims to enhance the real-time capability of the Linux op-
erating system. How good is the performance of RT-Preempt Linux compared to Em-
bedded Linux in the criteria of running multicore programs?

According to our analysis, we observed that in the criteria of one core running real-time
task and other cores being occupied with their own independent tasks the RT-Preempt
Linux might experience more spikes due to congestion of memory unit yet it can also
recover from them more easily. On the other hand, the Embedded Linux would run
more smoothly with less possibility of spikes. However if the spikes would happen the
Embedded Linux would have a harder time recovering from them.

6.3 Future Work

In this thesis work, we discovered the change of behavior of an embedded system when
the system operates on multiple cores instead of a single core. We saw how congestion of
memory would affect the execution time of a real-time application even though it is not get-
ting interrupted. However, we could not get deep into what exactly would happen on the
memory side and what would cause such hindrance. Further on, if the discovered problem
belongs to the operating system and decision making of the operating system or the problem
is more fundamental and it’s due to the architecture. It was originally planned to test the cus-
tom benchmark implemented on the VxWorks operating system as well to see if the VxWorks
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6.3. Future Work

operating system would perform with the same behavior as the two operating systems that
we tested.
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