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Abstract

In this thesis, we study Cauchy problems for the elliptic and degenerate elliptic
equations. These problems are ill-posed. We split the boundary of the domain into
two parts. On one of them, say Γ0, we have available Cauchy data and on remain-
ing part Γ1 we introduce unknown Robin data. To construct the operator equation
which replaces our Cauchy problem we use two boundary value problems (BVP).
The first one is the mixed BVP with Robin condition on Γ1 and with Dirichlet
condition on Γ0 and the second BVP with Dirichlet Data on Γ1 and with Robin
data on Γ0. The well–posedness of these problems is achieved by an appropri-
ate choice of parameters in Robin boundary conditions. The first Dirichlet–Robin
BVP is used to construct the operator equation replacing the Cauchy problem and
the second Robin–Dirichlet problem for adjoint operator. Using these problems we
can apply various regularization methods for stable reconstruction of the solution.
In Paper I, the Cauchy problem for the elliptic equation with variable coefficients,
which includes Helmholtz type equations, is analyzed. A proof showing that the
Dirichlet–Robin alternating algorithm is convergent is given, provided that the
parameters in the Robin conditions are chosen appropriately. Numerical experi-
ments that shows the behaviour of the algorithm are given. In particular, we show
how the speed of convergence depends on the choice of Robin parameters.
In Paper II, the Cauchy problem for the Helmholtz equation, for moderate wave
numbers k2, is considered. The Cauchy problem is reformulated as an operator
equation and iterative method based on Krylov subspaces are implemented. The
aim is to achieve faster convergence in comparison to the Alternating algorithm
from the previous paper. Methods such as the Landweber iteration, the Conjugate
gradient method and the generalized minimal residual method are considered. We
also discuss how the algorithms can be adapted to also cover the case of non–
symmetric differential operators.
In Paper III, we look at a steady state heat conduction problem in a thin plate.
The plate connects two cylindrical containers and fix their relative positions. A two
dimensional mathematical model of heat conduction in the plate is derived. Since
the plate has sharp edges on the sides we obtained a degenerate elliptic equation.
We seek to find the temperature on the interior cylinder by using data on the
exterior cylinder. We reformulate the Cauchy problem as an operator equation,
with a compact operator. The operator equation is solved using the Landweber
method and the convergence is investigated.
In Paper IV, the Cauchy problem for a more general degenerate elliptic equation
is considered. We stabilize the computations using Tikhonov regularization. The
normal equation, in the Tikhonov algorithm, is solved using the Conjugate gradient
method. The regularization parameter is picked using either the L–curve or the
Discrepancy principle.
In all papers, numerical examples are given where we solve the various bound-
ary value problems using a finite difference scheme. The results show that the
suggested methods work quite well.
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Sammanfattning

I denna avhandling studerar vi Cauchy-problem för elliptiska och degenererade
elliptiska ekvationer. Dessa problem är illa ställda. Vi delar upp randen till
omr̊adet i tv̊a delar. P̊a en av dem, säg Γ0, har vi Cauchy–data tillgängligt, och
p̊a den återst̊aende delen, Γ1 introducerar vi okända Robin-villkor.
För att konstruera operatorekvationen som ersätter v̊art Cauchy-problem använder
vi tv̊a randvärdesproblem (BVP). Det första problemet är ett BVP med Robin–
villkor p̊a Γ1 och Dirichlet–villkor p̊a Γ0. Det andra problemet är ett BVP med
Dirichlet–data p̊a Γ1 och med Robin–data p̊a Γ0. Dessa problem är välställda
om parametrar i Robinvillkoren väljs lämpligt. Det första Dirichlet–Robin prob-
lemet används för att konstruera operatorekvationen som ersätter Cauchy prob-
lemet, och det andra Robin–Dirichlet-problemet används för att definiera den ad-
jungerande operatorn. Vi kan sedan tillämpa olika regulariseringsmetoder och
återskapa lösningen till problemet p̊a ett stabilt sätt.
I Artikel I analyseras Cauchy-problemet för den elliptiska ekvationen med vari-
abla koefficienter, vilket inkluderar ekvationer av Helmholtz-typ. Ett bevis som
visar att den Dirichlet–Robin alternerande algoritmen är konvergent ges, förutsatt
att parametrarna i Robin–villkoren väljs p̊a lämpligt sätt. Numeriska experiment
som illustrerar algoritmens beteende ges. I synnerhet visar vi hur konvergen-
shastigheten beror p̊a valet av Robin-parametrar.
I Artikel II behandlas Cauchy–problemet för Helmholtz ekvation, för medelstora
v̊agtal k2. Cauchy–problemet omformuleras som en operatorekvation och iterativa
metoder, baserade p̊a Krylov rum, implementeras. Syftet är att uppn̊a snabbare
konvergens jämfört med den ursprungliga alternerande algoritmen som studerades
i den föreg̊aende artikeln. Vi diskuterar ocks̊a hur algoritmerna kan anpassas till
fallet med icke-symmetriska differentialoperatorer.
I Artikel III tittar vi p̊a ett stationärt värmeledningsproblem i en tunn platta.
Plattan sammanbinder tv̊a cylindriska beh̊allare och fixerar deras relativa posi-
tion. En tv̊adimensionell matematisk modell av värmeledning i plattan härleds.
Eftersom plattan har vassa kanter p̊a sidorna f̊ar vi en degenererad elliptisk ekva-
tion. Vi försöker hitta temperaturen p̊a den inre cylindern genom att använda data
p̊a den yttre cylindern. Vi omformulerar Cauchy–problemet som en operatorekva-
tion, med en kompakt operator. Operatorekvationen löses med Landwebers metod
och konvergensen undersöks.
I Artikel IV behandlas Cauchy problemet för en mer allmän degenererad elliptisk
ekvation. Vi stabiliserar beräkningarna med hjälp av Tikhonov–regularisering, där
normal ekvationen löses med Konjugerade gradientmetoden. Reguleringsparame-
tern väljs med antingen L–kurva eller Diskrepansprincipen.
I alla artiklar ges numeriska exempel där vi löser de olika randvärdesproblemen
med hjälp av finita differenser. Resultaten visar att de föreslagna metoderna
fungerar ganska bra.
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1 – Introduction

Mathematical models of various physical problems and data plays a very sig-
nificant role in modern science, engineering and technology. In this work we are
interested in mathematical models that are formulated in terms of Cauchy prob-
lems for partial differential equations. Some of the examples include: corrosion
detection [10], image reconstruction [11], gravimetry problems [20, 21], cracks
detection [27], medical imaging [30], and parameter identification problems [31],
among many others. These problems are ill-posed.

In order to introduce ill–posed problems we first give the definition of a well-
posed problem, see Hadamard [17]:

Definition 1.0.1. A problem is well–posed if the following three properties are
satisfied:

1. There exists a solution of the problem (Existence).

2. There is atmost one solution of the problem (Uniqueness).

3. The solution depends continuously on the data (Stability).

In a situation where one or more of the above mentioned properties are not
fulfilled then a problem is ill-posed [13].

Let us now give an examples of an ill-posed problem.

Example 1.0.2. Consider the Cauchy problem for the Laplace equation in the
rectangular domain Ω = (0, π)× (0, π) as follows





∆u(x, y) = 0, 0 < x < π, 0 < y < π,

u(x, 0) = f(x), 0 ≤ x ≤ π,

uy(x, 0) = h(x), 0 ≤ x ≤ π,

u(0, y) = u(π, y) = 0, 0 ≤ y ≤ π.

(1.1)

Here, f, h are the Cauchy data given. Using the method of separation of variables,
a general solution of problem (1.1) is

u(x, y) =

∞∑

n=1

sin(nx)

(
An cosh(ny) +

1

n
Bn sinh(ny)

)
, (1.2)

where An and Bn are Fourier sine coefficients of the Cauchy data f and h re-
spectively. If we consider the case when f(x) = 0 and h(x) = e−

√
n sin(nx), for a

certain n, we obtain the following solution

u(x, y) =
1

n
e−

√
n sin(nx) sinh(ny). (1.3)

1



2 1.1 Regularization

One can see that maxx∈[0,π] |h(x)| → 0 as n → ∞, but maxx∈[0,π] |u(x, y)| → ∞,
for any fixed y > 0. Note that property 3 in Definition 1.0.1 is not satisfied. That
is, the solution does not depend continuously on the data given. For this reason
the problem is ill-posed.

To restore the stability of such a problem, regularization methods need to be
applied. Various regularization methods have been developed such as the Conju-
gate gradient method [4, 12], the Fourier regularization method [14], the Tikhonov
regularization [6, 15], the Truncation method [24, 34], and the Boundary element
method [25].

1.1 Regularization

Let T : X → Y be a bounded linear operator mapping the Hilbert spaces X onto
Y . Consider the linear operator equation

Tx = y. (1.4)

Our goal is to determine x ∈ X when the right-hand side y ∈ Y is given. We
assume that the kernel and co-kernel of the operator T are zero.

Let us illustrate the properties 1–3 stated in Definition 1.0.1 for the well-
posedness of problem (1.4). The first property is satisfied if y belongs to the
range R(T ). The second property holds if the kernel N (T ) is trivial. The third
property is satisfied if R(T ) = Y and N (T ) = {0}, so that T−1 exists, and T−1 is
continuous.

For quite a number of mathematical problems Properties 1–2 can be restored.
However, Property 3 (stability of solution) is the main reason for ill–posedness
because it often reflects a fundamental property of the underlaying problem we are
modeling. Regularization theory, see [13], refers to methods for restoring stability
to the problem by various techniques. Typically this can be seen as approximating
T−1 by a family of continuous operators.

This leads to the following definition of the a regularization strategy, see [22]:

Definition 1.1.1. Let Rm : Y → X, m = 1, 2, . . . , be a family of linear and
bounded operators mapping the Hilbert spaces Y onto X. The family {Rm}∞m=1 is
called the regularization strategy if

lim
m→∞

Rm(Tx) = x, ∀ x ∈ X, (1.5)

where m is the regularization parameter.

From Definition 1.1.1 we can see that regularized solution Rmy converges to
the exact solution x, when y ∈ R(T ).

1.1.1 Error estimates

In many applications, the exact data y ∈ Y , in (1.4), might not be known exactly.
Instead we have approximate data yδ ∈ Y , which satisfies

∥yδ − y∥ ≤ δ, (1.6)
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where δ > 0 is the noise level. Thus we have a perturbed equation

Txδ = yδ. (1.7)

Since we cannot make the assumption that the data yδ belongs to the range of T
(R(T )) in general the problem (1.7) doesn’t have a solution. Instead, if {Rm} is a
regularization strategy then an approximate solution xδm ∈ X, of the true solution
x ∈ X, is given by

xδm = Rmy
δ. (1.8)

Since the operators Rm are bounded, the regularized solution xδm depend contin-
uously on the noisy data yδ ∈ Y . If the parameter m = m(δ, yδ) is chosen in an
appropriate way then the regularized solution xδm → x when δ → 0, see [13].

By applying the triangle inequality, the total error is

∥xδm − x∥ ≤ ∥Rmy
δ −Rmy∥+ ∥Rmy − x∥ ≤ ∥Rm∥∥yδ − y∥+ ∥Rm(Tx)− x∥,

which simplifies to

∥xδm − x∥ ≤ δ∥Rm∥+ ∥(Rm − T−1)y∥. (1.9)

The first term corresponds to the magnification of the noise and the second term
is the approximation error. Since the problem is ill–posed the regularization op-
erators Rm are not uniformly bounded, i.e. ∥Rm∥ → ∞ as m → ∞. Also,
from the definition of the regularization strategy we see that the second term
∥Rm(Tx)−x∥ → 0 as m→ ∞. Therefore, one has to choose an appropriate value
for m = m(δ, yδ) which depend on both the noise level δ and the approximation
yδ ∈ Y , so that total error is kept small, see [22]. Thus the regularization pa-
rameter m represents a compromise between the magnification of noise and the
approximation error.

From the above discussion we now give a precise definition of a regularization
method, which can be found in [13]:

Definition 1.1.2. Let Rm be a regularization strategy as defined previously. The
family {Rm} is called a regularization for T−1, if, for all y ∈ D(T−1), yδ ∈ Y ,
∥yδ − y∥ ≤ δ, there exists a parameter choice rule m = m(δ, yδ) such that

lim sup
δ→0

∥Rm(δ,yδ)y
δ − T−1y∥ = 0. (1.10)

The rule m = m(δ, yδ) must satisfy

lim sup
δ→0

m(δ, yδ) → ∞. (1.11)

For a specific y ∈ D(T−1), the pair (Rm,m(δ, yδ)) is called a regularization method
for solving Tx = y.

From Definition 1.1.2, we observe that a regularization method consists of a
family of bounded operators {Rm} and a parameter choice rule m(δ, yδ). If the



4 1.1 Regularization

regularization parameter m is chosen appropriately, the regularized solution xδm
in (1.8) converges to the true solution x = T−1y as δ → 0.

In practice there are two well known types of parameter choice rules. The first
type is if m depends on the noise level δ only, i.e. m = m(δ). In this case we call
m an a-priori parameter choice rule. The second type of the rule is if m depends
on both the noise level δ and the noisy data yδ, i.e. m = m(δ, yδ). In this case we
refer to m as an a-posteriori parameter choice rule.

In this thesis, we are dealing with mathematical models of physical problems
with the presence of noise, of the certain level δ. In this work we refer yδ ∈
Y as the perturbed data. Therefore, it is advantageous for us to study an a-
posteriori parameter choice rule, which depends on the results from the numerical
computations. We will study Tikhonov regularization method and the Landweber
iteration method extensively based on this parameter choice rule.

Before we discuss the above mentioned methods let us introduce the well known
concept of singular value expansion for the compact operator T .

1.1.2 Analysis of compact operators

In many applications, the operator T is compact.
Let T be a compact operator and let σn, n = 1, 2, . . . , be its singular values,

which are non–negative and tends to zero when n→ ∞. Then T can be represented
as

Tx =

∞∑

n=1

σn⟨x , vn ⟩un =

∞∑

n=1

⟨y , un ⟩un, (1.12)

where {vn} are the bi–orthogonal normalized systems of eigenfunctions of T ∗T
corresponding to the eigenvalues {σ2

n} and {un} are the bi–orthogonal normalized
systems of eigenfunctions of TT ∗ corresponding to the eigenvalues {σ2

n}. We de-
note ⟨· , · ⟩ the inner product in the spaces X and Y . We use the same notation
for the inner products in X and Y and hope that it doesn’t cause any difficulties.
We also denote by T ∗ the adjoint operator of T .

The eigenfuctions above are connected by the relations:

Tvn = σnun, T ∗un = σnvn. (1.13)

Using these relations we can write the solution x ∈ X of (1.4) as

x =

∞∑

n=1

⟨y , un ⟩
σn

vn. (1.14)

If y ∈ D(T−1) the series converges in the Hilbert space norm of X and we obtain

||x||2 =

∞∑

n=1

|⟨y , un ⟩|2
σ2
n

<∞. (1.15)

This is called Picard’s criterion for the existences of an exact solution x ∈ X. The
criterion does not hold for y /∈ R(T ). The problem is ill-posed since σn → 0 as
n→ ∞.
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Note that the Picard’s criterion (1.15) is satisfied if the Fourier coefficients
⟨y , un ⟩ decay more rapidly than the singular values σn as n → ∞. However,
instability of the solution in (1.15) is realized if the singular values {σn} decay
faster than the Fourier coefficients ⟨y , un ⟩. Thus, one can get different degree of
ill-posedness of Tx = y, i.e. the problem (1.4) is referred to as mild ill-posed if
{σn} = O(n−β), for some β > 0. Otherwise it is referred to as severely ill–posed if
σn decay exponentially, i.e. {σn} = O(e−βn), for more details one can see [3, 19].

1.1.3 Landweber iterative method with a stopping rule

The Landweber iteration is one of the iterative methods for solving (1.4). It was
first investigated by Landweber [23] in 1951. The iterations is as follows: choose
an initial guess x0 ∈ X and compute the iterates

xm+1 = xm + τT ∗(y − Txm) = (I − τT ∗T )xm + τT ∗y, m = 0, 1, 2, . . ., (1.16)

for some τ > 0.
By multiplying (1.16) by {vn} and using (1.13), we get

⟨xm+1 , vn⟩ = (1− τσ2
n)⟨xm , vn⟩+ τσn⟨y , un⟩. (1.17)

Pick a starting guess x0 = 0 and compute the first few iterations, to obtain

⟨xm+1 , vn⟩ = τσn⟨y , un⟩
m∑

i=0

(1− τσ2
n)

i. (1.18)

Applying geometric sum formula on the right-hand side sum, we have

⟨xm+1 , vn⟩ = (1− (1− τσ2
n)

m+1)
1

σn
⟨y , un⟩. (1.19)

From (1.14) we see that ⟨x , vn⟩ = 1
σn

⟨y , un⟩. Thus, we obtain

⟨xm+1 , vn⟩ = (1− (1− τσ2
n)

m+1)⟨x , vn⟩.

Then
⟨xm+1 , vn⟩ → ⟨x , vn⟩, m→ ∞,

if τ satisfies
| (1− τσ2

n) |< 1, (1.20)

i.e. 0 < τσ2
n < 2 or 0 < τ < 2

σ2
n
for all n. Recall that σ1 = ∥T∥ ≥ σn for all n,

where σ1 is the largest eigenvalue of T ∗T . Therefore, the Landweber iterations
(1.16) converges if τ ∈ (0, 2

σ2
1
). Usually one assume that the following inequality

is satisfied, see [13],

0 < τ <
1

∥T∥2 . (1.21)

We will also assume that this inequality is satisfied. If we insert the approximate
data yδ ∈ Y in (1.16) we obtain

xδm+1 = (I − τT ∗T )xδm + τT ∗yδ, m = 0, 1, 2, . . .. (1.22)
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Using (1.18) for any fixed m, the regularized solution in (1.8) can be written as

⟨xδm+1 , vn⟩ = τσn

m∑

i=0

(1− τσ2
n)

i⟨yδ , un⟩. (1.23)

We now can compute the total error in the Landweber iteration. We use the
following triangle inequality

∥xδm+1 − x∥ ≤ ∥xδm+1 − xm+1∥+ ∥xm+1 − x∥. (1.24)

Using (1.19), we obtain

⟨xδm+1 − xm+1 , vn⟩ =
1

σn

(
1− (1− τσ2

n)
m+1

)
⟨yδ − y , un⟩. (1.25)

Similarly, using (1.19) and the fact that ⟨x , vn⟩ = 1
σn

⟨y , un⟩, we get

⟨xm+1 − x , vn⟩ = −(1− τσ2
n)

m+1 1

σn
⟨y , un⟩

= −(1− τσ2
n)

m+1⟨x , vn⟩.
(1.26)

Using

1

σn
(1− (1− τσ2

n)
m+1) = τσn

m∑

i=0

(1− τσ2
n)

i,

we compute the first term on the right hand–side of (1.24) as follows

∥xδm+1 − xm+1∥2 =

∞∑

n=1

( 1

σn
(1− (1− τσ2

n)
m+1)

)2
|⟨yδ − y , un⟩|2

=

∞∑

n=1

(
τσn

m∑

i=0

(1− τσ2
n)

i
)( 1

σn
(1− (1− τσ2

n)
m+1)

)
|⟨yδ − y , un⟩|2

≤
∞∑

n=1

τ

m∑

i=0

(1− τσ2
n)

i|⟨yδ − y , un⟩|2.

(1.27)

Note that the estimate (1.21) is important here. Also, the second sum on the
right–hand side is bounded by m+ 1. Thus, we get

∥xδm+1 − xm+1∥2 ≤ τ(m+ 1)

∞∑

n=1

|⟨yδ − y , un⟩|2

≤ τ(m+ 1)∥yδ − y∥2 = τ(m+ 1)δ2.

(1.28)

Similarly, the second term in (1.24) is evaluated as follows:

∥xm+1 − x∥2 =

∞∑

n=1

|(1− τσ2
n)

m+1|2|⟨x , vn⟩|2 =
∑

σn≤ϵ

(1− τσ2
n)

2(m+1)|⟨x , vn⟩|2

+
∑

σn>ϵ

(1− τσ2
n)

2(m+1)∥x∥2 ≤
∑

σn≤ϵ

|⟨x , vn⟩|2 + (1− τϵ2)2(m+1)∥x∥2.

(1.29)



Introduction 7

To estimate the second term on the right–hand side, we use the inequality

(1− t)N ≤ e−N(t+ 1
2 t

2), for 0 ≤ t < 1,

to obtain

∥xm+1 − x∥ ≤
( ∑

σn≤ϵ

|⟨x , vn⟩|2 + e−2(m+1)(τϵ2+ 1
2 τ

2ϵ4)∥x∥2
)1/2

. (1.30)

Combining the above formula and (1.28), we obtain the total error

∥xδm+1 − x∥ ≤ √
τ
√
(m+ 1)δ +

( ∑

σn≤ϵ

|⟨x , vn⟩|2 + e−2(m+1)(τϵ2+ 1
2 τ

2ϵ4)∥x∥2
)1/2

.

(1.31)
There are two terms in the total error. The first one corresponds to the data error
and is small when (

√
τ
√
(m+ 1)δ) ≪ 1. The second term is the approximation

error and it is small when 1
m ≪ ϵ≪ 1. Thus, one need a certain rule to choose m

so that the total error is small when δ is small. This type of rule is refer to as a
parameter choice rule.

There are several stopping rules, we will use here the Discrepancy principle. It
is define as follows:

Definition 1.1.3. Let β > 1. The iterates (1.22) are terminated when

∥yδ − Txδm∥ ≤ βδ. (1.32)

We denote
m = m(δ, yδ),

as the stopping index, i.e. the smallest m that satisfies (1.32).

From Definition 1.1.3 we can see that regularization parameter m is chosen by
making a comparison between the residual norm and the given assumed bound δ
for the noise level.

The following theorems [22, Theorem 2.15 and Theorem 2.19] guarantee con-
vergence of the Landweber iterations.

Theorem 1.1.4. Let y ∈ Y , yδ ∈ Y be the exact and approximate data on the
right-hand side of (1.4) satisfying ∥yδ − y∥ ≤ δ. Then the Landweber iterations
(1.22), together with the discrepancy principle gives the regularization strategy and
therefore, satisfies

xδm(δ,yδ) → x as δ → 0.

Note that in the Landweber iterative method the number of iterations obtained
acts as the regularization parameter.

The downside for the Landweber iteration is a slow rate of convergence, see
[8, 26]. Thus, apart from Landweber iteration, other accelerating algorithms can be
used to solve the ill-posed problem (1.4), such as the Conjugate gradient method,
see [2, 4] .



8 1.1 Regularization

1.1.4 Tikhonov regularization with a parameter choice
rule

In this section we present Tikhonov regularization method. Phillips and Tikhonov
were the first people to introduce this method as a technique for solving some
integral equations of the first kind and finding optimal solutions for ill–posed
problems, see [28, 32, 33], and see also [6, 13, 16].

Definition 1.1.5. Let yδ ∈ Y . The Tikhonov solution xδα ∈ X is the unique
minimizer of the Tikhonov functional

Ψα(x) := ∥Tx− yδ∥2Y + α2∥x∥2X , x ∈ X. (1.33)

From the definition, a clear role of the regularization parameter α can be seen.
That is, it controls the trade–off between minimization of the regularization term
∥x∥X and minimization of the residual norm ∥Tx− yδ∥Y .

Remark 1.1.6. Previously the regularization parameter was the number of it-
erations m, see Definition 1.1.2. Here the parameter α is a small real number.
Thus, the previous definition has to change and 1/α has the same role as m did
previously.

The normal equation corresponding to the Tikhonov functional (1.33) is

T ∗Txδα + α2xδα = T ∗yδ. (1.34)

Since the operator T is compact it has a singular system (σn;un, vn) which can be
used to derive the formula

xδα =

∞∑

n=1

σn
σ2
n + α2

⟨yδ , un ⟩vn. (1.35)

We see that we have stability, with respect to the noise in yδ, because the errors
in ⟨yδ , un ⟩ are multiplied by the factors σn(σ

2
n + α2)−1, which are bounded as

n→ ∞. In fact, we can introduce an operator Rα, mapping yδ to xδα, whose norm
is bounded by

max
n≥1

{
σn

σ2
n + α2

}
≤ 1

2α
. (1.36)

We can now calculate the total error for Tikhonov regularization:

∥xδα − x∥ ≤ ∥xδα − xα∥+ ∥xα − x∥. (1.37)

Using (1.35) and applying (1.36), we evaluate the first–term on the right-hand
side, and we get

∥xδα − xα∥ = ∥Rαy
δ −Rαy∥ ≤ δ

2α
. (1.38)
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Similarly, using also (1.35) and (1.14), we compute the second term on the right–
hand side of (1.37), to obtain

xα − x =

∞∑

n=1

(
σn

σ2
n + α2

)
⟨y , un ⟩vn −

∞∑

n=1

1

σn
⟨y , un ⟩vn

=

∞∑

n=1

( −α2

σ2
n + α2

)
⟨x , vn ⟩vn, (1.39)

and the corresponding norm is

∥xα − x∥2 =

∞∑

n=1

(
α2

σ2
n + α2

)2

|⟨x , vn ⟩|2 =
∑

σn≤ϵ

(
α2

σ2
n + α2

)2

|⟨x , vn ⟩|2

+
∑

σn>ϵ

(
α2

σ2
n + α2

)2

|⟨x , vn ⟩|2 ≤
∑

σn≤ϵ

|⟨x , vn ⟩|2 +
(

α2

ϵ2 + α2

)2

∥x∥2.
(1.40)

The interesting case is ϵ≫ α since the second term has to be small. By combining
the formulas, we obtain the total error

∥xδα − x∥ ≤ δ

2α
+

( ∑

σn≤ϵ

|⟨x , vn ⟩|2 +
(

α2

ϵ2 + α2

)2

∥x∥2
)1/2

. (1.41)

The first term is small when α ≫ δ. The second term is small when α ≪ ϵ ≪ 1.
Picking the appropriate α requires a formal parameter choice rule. One such rule
is the Discrepancy principle, see [13] and also see [9], which can be proven to give
a convergent regularization scheme, i.e. ∥xδα(δ) − x∥ → 0 as δ → 0.

1.2 Reformulation of a Cauchy problem as an op-

erator equation

Here we describe the basic ideas of the thesis which includes rewriting the Cauchy
problem as an operator equation in spaces H−1/2 on the boundary, construction
of the inner products, and also construction of the adjoint operator. This helps to
apply various iterative regularization methods with fast convergence.

Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ that is divided
into two disjoint parts Γ0 and Γ1 which has a common Lipschitz boundary on Γ.
Consider the following Cauchy problem for a general elliptic equation





Lu = Dja
ji(x)Diu+ a(x)u = 0 in Ω,

u = f on Γ0,

Nu = g on Γ0,

(1.42)

where the Cauchy data f and g are specified on Γ0, and N is the conormal deriva-
tive. The solution u belongs to H1(Ω).
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We assume that∫

Ω

(ajiDiuDju− au2) dx > 0, for all u ∈ H1(Ω,Γ)\
{
0
}
, (1.43)

where H1(Ω,Γ) consists of functions from H1(Ω) vanishing on Γ. This implies
that there exist two real valued measurable bounded functions µ0 and µ1 such
that ∫

Ω

(ajiDiuDju− au2) dx+

∫

Γ0

µ0u
2 dS +

∫

Γ1

µ1u
2 dS > 0, (1.44)

for all u ∈ H1(Ω)\
{
0
}
.

Next we introduce the following two well-posed boundary value problems




Lu = 0 in Ω,

u = f0 on Γ0,

Nu+ µ1u = η on Γ1,

(1.45)

and 



Lu = 0 in Ω,

Nu+ µ0u = g0 on Γ0,

u = ψ on Γ1,

(1.46)

where f0 = f and g0 = g + µ0f . The well-posedness of these problems follows
from the inequality (1.44). The first problem is used to introduce an operator

T : H−1/2(Γ1) → H−1/2(Γ0),

defined by
Tη = (Nu+ µ0u)|Γ0

, (1.47)

where u solves problem (1.45) with f0 = 0 and η ∈ H−1/2(Γ1).
Solving the Cauchy problem (1.42) is equivalent to solving the following oper-

ator equation
Tη = ξ, (1.48)

where ξ = g+µ0f − (Nw+µ0w)|Γ0 and w solves a problem similar to (1.45) with
η = 0 and f ∈ H1/2(Γ0).

We use the quadratic form (1.44) to define the inner products on the spaces
H−1/2(Γ1) and H

−1/2(Γ0). Using these inner products we can obtain the adjoint
operator T ∗ of the operator T as follows

T ∗ξ = (Nu+ µ1u)|Γ1
(1.49)

where u solves problem (1.46) with ψ = 0 and ξ ∈ H−1/2(Γ0).
Most modern methods for solving linear operator equations, e.g. the Conjugate

gradient method [29, 13, 18], requires suitable inner products and an efficient way
to evaluate the adjoint operator. All this computations can be performed by
solving the two auxiliary problems above. Compared to the previous work in
[1, 5] with the alternating iterative method this approach can give much faster
convergence. We can also apply different regularization methods to the operator
equation.



2 – Summary of papers

We now present a summary of papers included in this thesis.

2.1 Paper I: Analysis of Dirichlet-Robin iterations

for solving the Cauchy problem for Elliptic

equations.

In this paper we study the following Cauchy problem for general elliptic equations
of second order





Lu = Dja
ji(x)Diu+ a(x)u = 0 in Ω,

u = f on Γ0,

Nu = g on Γ0,

(2.1)

where Dj = ∂/∂xj
, aji and a are measurable real valued functions such that

a is bounded, aij = aji and satisfy the ellipticity conditions λ|ξ|2 ≤ aijξiξj ≤
λ−1|ξ|2, ξ ∈ Rd, λ = const > 0 and also N is the conormal operator defined as
Nu = νja

jiDiu. Here ν = (ν1, . . . , νd) is the outward unit normal to the boundary
Γ.

The domain Ω ⊂ Rd is bounded and its boundary Γ is Lipschitz and is divided
into two disjoint parts Γ0 and Γ1 with a common Lipschitz boundary in Γ. The
Cauchy data f and g are specified on Γ0. We aim to reconstruct the solution on
the other part of the boundary Γ1 and in the domain Ω.

We assume that the relation (1.43), and consequently (1.44), holds. We prove
well–posedness of the two auxiliary problems (1.45) and (1.46). In the work we
give a Dirichlet–Robin alternating algorithm as follows:

(1) The first approximation u0 is obtained by solving (1.45) where η is an arbi-
trary initial guess for the Robin condition on Γ1.

(2) Having constructed u2n, we find u2n+1 by solving (1.46) with ϕ = u2n on
Γ1.

(3) We then obtain u2n+2 by solving (1.45) with η = Nu2n+1 + µ1u2n+1 on Γ1.

We prove the convergence of the Dirichlet–Robin alternating algorithm based on
the above assumptions. Earlier on, in [7], it was noted that the Dirichlet–Robin
algorithm for solving the Cauchy problem for Helmholtz equation is convergent,
even for large wave numbers.

In the numerical computations, the precise behaviour of the Dirichlet–Robin
algorithm for different values of the wave number, in the Helmholtz equation, is

11
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2.2 Paper II: Accelerated Dirichlet-Robin alternating algorithms for solving the Cauchy

problem for the Helmholtz equation.

investigated. More specifically, we analyze how the speed of convergence depends
on the different choices of the Robin parameters.

2.2 Paper II: Accelerated Dirichlet-Robin alter-

nating algorithms for solving the Cauchy prob-

lem for the Helmholtz equation.

In this paper we consider the following Cauchy problem for the Helmholtz equation:




∆u+ k2u = 0 in Ω,

u = f0 on Γ0,

∂νu = g0 on Γ0.

(2.2)

The domain Ω ⊂ Rd is bounded with a Lipschitz boundary Γ divided into two
disjoint parts Γ0 and Γ1 with a common Lipschitz boundary. The Cauchy data f0
and g0 are specified on Γ0. We aim at finding the solution on the other part of
the boundary Γ1 and inside the domain Ω.

We make an assumption that
∫

Ω

(|∇u|2 − k2u2) dx > 0, (2.3)

for all non-zero u ∈ H1(Ω,Γ) vanishing on the boundary Γ. This implies the
existences of two positive constant µ0 and µ1 such that

∫

Ω

(|∇u|2 − k2u2) dx+ µ0

∫

Γ0

u2 dS + µ1

∫

Γ1

u2 dS > 0, (2.4)

for all u ∈ H1(Ω)\
{
0
}
. Given these two positive constants µ0 and µ1, we introduce

the following two boundary value problems




∆u+ k2u = 0 in Ω,

u = f on Γ0,

∂νu+ µ1u = η on Γ1,

(2.5)

and 



∆u+ k2u = 0 in Ω,

∂νu+ µ0u = g on Γ0,

u = ϕ on Γ1.

(2.6)

Due to assumption (2.4) we show that the above problems are well–posed.
Next we replace the Cauchy problem by the operator equation

Nη = g0 + µ0f0 − (∂ν + µ0)u0(f0, 0)|Γ0
. (2.7)

where u0(f, η) solves problem (2.5), see [2]. Note that we use the symbol N for
the operator in this paper instead of T , see Section 1.1.
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We define the inner products on the boundary spacesH−1/2(Γ0) andH
−1/2(Γ1)

in terms of the solutions of the two problems (2.5) and (2.6). This allows us to
evaluate the adjoint operator N∗ of the operator N using problem (2.6). With the
inner products, the operator N and the adjoint operator N∗, we implement itera-
tive methods based on Krylov subspaces. These methods include: the Conjugate
gradient method (CG) and the generalized minimal residual method (GMRES).

In the numerical experiments, a comparison of these methods, is presented.
We note that the Dirichlet–Robin alternating algorithm is equivalent to classical
Landweber iteration. The results also show that both CG and GMRES work quite
well and few iterations are needed to achieve convergence. An extension to the
case of non–symmetric differential equation is also discussed.

2.3 Paper III: Solving stationary inverse heat con-

duction in a thin plate.

In this paper we study a steady state heat conduction problem in a thin plate in
a three dimensional domain A. The domain A is given by

A = {x, y, z : (x, y) ∈ Ω, and − c(x) ≤ z ≤ c(x)},

where Ω = [0, b]× [0, a]. The function c(x) is continuously differentiable, positive
on (0, b), c(0) = c(b) = 0, and with non–zero derivatives at the end points. The
plate connects two cylindrical containers. Its main purpose is to ensure that their
relative positions is fixed.

We derive a two dimensional mathematical model including the equation

LT = − ∂

∂x

(
c(x)

∂T

∂x

)
− ∂

∂y

(
c(x)

∂T

∂y

)
+

2h

k

√
1 + (c′(x))2T = 0, (2.8)

and the boundary conditions

lim
x→0,b

c(x)
∂T

∂x
= 0. (2.9)

Here k is the thermal conductivity [W/m ·◦ C], h is the convection heat transfer
coefficient [W/m2 ·◦ C], c(x) is the thickness of the plate. The plate has sharp
edges, since c(0) = c(b) = 0, and we don’t have the ellipticity condition. Thus, we
obtained a degenerate elliptic equation.

To determine the temperature on the interior cylinder from exterior measure-
ments, we consider the following Cauchy problem for the stationary heat equation:





LT = 0 in Ω,

T = f on Γ0,
∂T
∂y = g on Γ0,

limx→0,b c(x)
∂T
∂x = 0 on Γ2,3,

(2.10)
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where f and g are specified temperature and heat flux given at Γ0 = {(x, 0) : 0 <
x < b}, Γ2,3 = {(s, y) : s = 0 or b, 0 < y < a}. We aim to compute both the
temperature ζ and heat flux η on Γ1 = {(x, a) : 0 < x < b}.

We introduce the quadratic form that correspond to the equation,

γ(T, T ) =

∫

Ω

(
c(x)

(
∂T

∂x

)2

+ c(x)

(
∂T

∂y

)2

+
2h

k

√
1 + (c′(x))2T 2

)
dx. (2.11)

We again start from two auxiliary boundary value problems:





LT = 0 in Ω,

T = f on Γ0,
∂T
∂y = η on Γ1,

limx→0,b c(x)
∂T
∂x = 0 on Γ2,3,

(2.12)

and 



LT = 0 in Ω,
∂T
∂y = g on Γ0,

T = ζ on Γ1.

limx→0,b c(x)
∂T
∂x = 0 on Γ2,3.

(2.13)

The two problems are degenerate. Using the method of separation of variables, we
prove that they are well-posed in the space Ĥ1(Ω) with the norm γ(T, T )1/2. Let

H1/2(Γi), i = 0, 1, be the trace space for the space Ĥ1(Ω) and let H−1/2(Γi) be
the dual space to H1/2(Γi). The normal derivative of the function T is well defined

on the space V (Ω) consisting of functions in Ĥ1(Ω) satisfying the homogeneous

equation in the weak sense, i.e. V (Ω) = {T ∈ Ĥ1(Ω) : LT = 0}. Moreover, this
normal derivative belongs to the space H−1/2(Γi).

We can introduce the operator

K : H−1/2(Γ1) → H−1/2(Γ0),

defined by
Kη = ∂yT (x, 0), (2.14)

where T solves (2.12) with f = 0. Then solving the Cauchy problem is equivalent
to solving the operator equation

Kη = g − ∂yT̃ (x, 0), (2.15)

where T̃ solves problem (2.12) with η = 0.
Since the corresponding quadratic form is positive we use it to define the inner

product on the boundary spaces H−1/2(Γ0) and H−1/2(Γ1). Let us define the
inner products on the space H−1/2(Γ1). Let η1, η2 ∈ H−1/2(Γ1) and let Tj be
solution of problem (2.12) with f = 0 and η = ηj , j = 1, 2. The inner product on
the space H−1/2(Γ1) is defined by

⟨η1, η2⟩1 = γ(T1, T2).
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With the inner products in place, we evaluate the adjoint operator K∗. Namely,

K∗g = −∂yT (x, a),

where T solves problem (2.13) with ζ = 0. We also prove that the operator K is
compact and also compute it’s norm.

In the numerical experiments, we analyse the convergence of the Landweber
iteration method, with noisy Cauchy data.

2.4 Paper IV: The Cauchy problem for a degen-

erate elliptic equation using Tikhonov regu-

larization.

In this paper we extend our study of the previous paper [8] to a more general
degenerate elliptic equation. We consider the following Cauchy problem:





Lu = − ∂
∂x

(
c(x)∂u∂x

)
− ∂

∂y

(
c(x)∂u∂y

)
+ β

√
1 + (c′(x))2u = 0 in Ω,

u = f0 on Γ0,

−∂u
∂y = g0 on Γ0,

limx→0,b c(x)
∂u
∂x = 0 on Γ2,3,

(2.16)
where β is a constant which can either be positive or negative and c(x) is con-
tinuously differentiable, positive on (0, b), c(0) = c(b) = 0, and with non–zero
derivatives at the end points. Here, the domain Ω = [0, b]× [0, a] and the bound-
ary Γ, which is divided into four parts Γ0, Γ1, Γ2 and Γ3, are the same as in the
paper III, see Section 2.3. The Cauchy data f0 and g0 are specified on Γ0. We
aim to determine the solution on the other part of the boundary Γ1 and inside the
domain Ω.

In this paper, we assume that

γµ(u, u) = γ(u, u)

+µ0

∫ b

0

u(x, 0)2c(x) dx+ µ1

∫ b

0

u(x, a)2c(x) dx > 0, (2.17)

for all u ∈ Ĥ1(Ω)\
{
0
}
, where

γ(u, u) =

∫

Ω

c(x)

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)
dx dy + β

∫

Ω

√
1 + (c′(x))2u2 dx dy,

and Ĥ1(Ω) is the same as in the previous Section 2.3.

With the two positive constant µ1 and µ0, we introduce two boundary value
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problems 



Lu = 0 in Ω,

u = f on Γ0,
∂u
∂y + µ1u = η on Γ1,

limx→0,b c(x)
∂u
∂x = 0 on Γ2,3,

(2.18)

and 



Lu = 0 in Ω,

−∂u
∂y + µ0u = g on Γ0,

u = ϕ on Γ1,

limx→0,b c(x)
∂u
∂x = 0 on Γ2,3.

(2.19)

We define the weak formulation of the two problems and show that they are well–
posed. We use the quadratic form above to define the inner products on the
boundary spaces H−1/2(Γ1) and H−1/2(Γ0) in terms of the solution of the two
problems.

We reformulate the Cauchy problem (2.16) as an operator equation

Tη = ξ, (2.20)

where ξ = g0+µ0f0−(−∂yũ(x, 0)+µ0ũ(x, 0))), see [9]. We also evaluate the adjoint
operator T ∗ of the operator T with respect to the inner products in H−1/2(Γ0)
and H−1/2(Γ1). This is done similar to that in the previous Section 2.3.

In this paper, we use the Tikhonov regularization method to solve the operator
equation. Our focus is to find an η ∈ H−1/2(Γ1) that minimizes the Tikhonov
functional:

Ψα(η) = ∥Tη − ξ∥2H−1/2(Γ0)
+ α2∥η∥2H−1/2(Γ1)

, (2.21)

where α > 0 is the regularization parameter. The corresponding normal equation
is defined by

T ∗Tη + α2η = T ∗ξ. (2.22)

We use the Conjugate gradient method to solve the above normal equation for
faster convergence.

In the numerical experiments, we implement a finite difference scheme for solv-
ing the degenerate elliptic equation. Also, we implement an approriate approxima-
tion of the degenerate boundary conditions. We select the regularization parameter
α using either the Discrepancy principle or the L–curve. The results obtained are
of good quality and both choices of the regularization parameter work quite well.
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