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Abstract

The purpose of this project was to perform model-based diagnosis on Li-ion bat-
teries using real-world data and sensor fusion algorithms. The data used in this
project was collected and distributed by NASA and mainly consists of voltage
and current measurements collected on numerous batteries that were repeatedly
charged and discharged from their beginning of life, and until surpassing their
end of life. The health of the batteries was decided by estimating their state of
health through the increase in internal resistance. To validate the results, the
increase in resistance was later compared with the decrease in charge capacity.
Firstly an attempt was made to parameterize equivalent circuit models by fitting
the model parameters to the data with a forgetting-factor recursive least squares
filter, and a batch-wise recursive least squares filter. The forgetting factor recur-
sive least squares filter proved unreliable and unable to consistently be able to
parameterize the models. The batch-wise recursive least squares filter was able
to consistently parameterize the models providing a root mean squared error of
around 0.35V in simulated voltage response tests. In total 20 equivalent circuit
models were parameterized for four batteries. The models were then used in
conjunction with a standard Kalman filter and an unscented Kalman filter to fur-
ther estimate the increase in internal resistance of the batteries throughout their
lifetime. In addition, the state of charge of the batteries was tracked through
Coulomb counting and later attempted to refine via the Kalman filters. The re-
sults were partly successful as both the standard and unscented Kalman filters
were able to track the state of health of the batteries, albeit to a varying degree.
However, the Kalman filters were unable to improve the state of charge estima-
tion, thus highlighting a limitation in their application. While the Kalman fil-
ters showcased limitations in tracking the state of charge, their effectiveness in
tracking the state of health thus proved that model-based approaches and sensor
fusion algorithms can be utilized with both the standard Kalman filter and the
unscented Kalman filter for meaningful health tracking.
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1
Introduction

Lithium-ion (Li-ion) batteries can be found in many technical applications such
as electric vehicles, smartphones, laptops, power tools, etc. As the world rallies
to reduce its ecological footprint, the auto industry has begun a transition from
fossil-fueled vehicles to electric alternatives, driven by both lawmakers and con-
sumer demand. With this transition, the prevalence of Li-ion batteries is poised
for substantial growth and this surge prompts new demands not only to compre-
hend but also to actively manage the ecological footprint of Li-ion batteries. One
such aspect is being able to accurately track the health of a battery. Being able
to better track battery health is important as degradation over time can result in
a shortened life expectancy and potentially hazardous malfunction. Good health
tracking is also vital for battery management systems (BMS) to effectively con-
trol and monitor the state of charge (SOC), thermal management, and charging
management. Gaining insight into aging ultimately serves to cut costs for both
manufacturers and consumers and limit the usage of the earth’s resources.

1.1 Literature study

Li-ion battery health monitoring is an ongoing research field, where researchers
worldwide are working to develop new ways to parameterize models and esti-
mate state functions. For instance, Paris Ali Topan et al. [4] used recursive least
squares to parameterize a model and a Kalman filter (KF) to estimate the SOC
and the state of health (SOH). Datong Liu et al. instead used an unscented parti-
cle filter (UPF) to estimate the SOH. If a model-based approach is used, multiple
ways of estimating the internal parameters of the model have been suggested in
research. Rui Xiong et al. [5] used a particle filter (PF) to estimate the internal
parameters of a Li-ion model and Jonghoon Kim and B. H. Cho [11] used an
extended Kalman filter (EKF) to estimate the parameters. Another approach to
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2 1 Introduction

inner model parameter estimation was suggested by Ryan Ahmed et al. [6] where
the parameters are estimated by using curve-fitting and optimization techniques
to match model output with collected experimental discharge data.

The research field concerning modeling and health tracking of Li-ion batteries
is only a subset of a larger research field concerning Li-ion batteries. For instance,
one related field of study is that of fault isolation [8], which goes further than
tracking the general health status of a battery. Here, one tries to discover the
specific fault modes that give rise to degradation, so that adequate measures can
be taken to restore the battery and/or improve them in the future. As Hu et
al. [8] explain, this is no trivial task. The main data available to work with are
temperature, current, and voltage, which tell little about the internal states of
the battery. Thus there is a need for high fidelity models. Further on, it is a
challenging task to deduce whether a faulty behavior stems from the battery, and
not from the actuators, or the sensors.

Perhaps the closest field, which is highly linked to health tracking, is the de-
velopment of battery management systems. The BMS is the central control unit
managing and monitoring the battery. Since a battery in an electric vehicle con-
sists of numerous smaller batteries, called cells, the BMS must ensure that tem-
perature, voltage range, and current are held within the limits of the individual
cell. Inputs to an effective BMS are common state functions like SOH and SOC

1.2 Purpose and goal

The purpose of this thesis is to study and evaluate methods for tracking the health
of Li-ion batteries. The goal is to compile battery models suggested in research
literature used for modeling and tracking battery degradation. Further on, a suit-
able model candidate will be identified and evaluated with the help of available
experimental data. This will include how easy it is to parameterize the mod-
els with the available data, and how well these can be used in conjunction with
sensor fusion algorithms such as extended Kalman filters (EKF) to keep track of
degradation.

1.3 Problem formulation

The mentioned methods are just a sample of suggested approaches, and there are
many more ways to approach this. What they all have in common is that they
are trying to solve the underlying problem of tracking states that cannot directly
be measured, but which are crucial to track to safely manage battery cells and
extend their lifetime. Thus, it would be interesting to try and implement them,
and later evaluate them in this thesis work. Comparing them in conjunction with
experimental data could serve to investigate whether they are easy to implement,
accurate, and/or computationally reasonable.
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1.4 Research Questions

To relive the thesis work, some pre-made research questions have been prepared.
These questions serve as a discussion point, to tie together the purpose with the
results, and to spark further questions. More questions might arise along this
tenure, and some might be dropped as more insight is gained. The following
research questions are suggested.

1. What are the different types of battery models for diagnosis and how do
they compare in purpose?

2. Are the implementation methods straightforward? If not, what are the rea-
sons for complexity?

3. How do the models differ in terms of complexity and accuracy, and what
are the challenges in model parametrization?

1.5 Method

To conduct this thesis work, suitable methods for both model parameterization
and filtering for SOH estimation will be selected based on the literature study.
The selected methods will then be examined by implementing them using real
voltage and current data. Then a comparative analysis of the methods will be
implemented by comparing the methods against each other, and also testing their
robustness by testing the methods with data from different batteries. Finally, a
discussion of the methods will be held regarding the research questions.





2
Theory

In this chapter, the basic theory and characteristics of Li-ion batteries will be ex-
plained. Li-ion batteries are comprised of many components, and to understand
how they work, some key components need to be understood. The Li-ion bat-
tery has a positive electrode, referred to as a cathode, and a negative electrode,
referred to as an anode. The anode is made out of graphite and can store Li+

ions and electrons in its structure. The cathode can be made out of different
lithium metal oxides, e.g. lithium cobalt oxide (LiCoO2) or lithium manganese
oxide (LiMn2O4), etc. These metal oxides contribute by offering a stable bond to
lithium ions and electrons. Further on, there is an electrolyte between the cath-
ode and anode which serves as a medium through which Li+ ions can pass, while
not allowing electrons to pass through, thus preventing a short circuit between
the electrodes.

During charging an external voltage is applied to the battery causing the an-
ode to become negatively charged. This negative charge forces the Li+ ions to
migrate to the anode due to electrostatic force. As Li+ ions migrate to the anode,
the anode will gain a more positive charge, which in turn attracts electrons to
move through the external circuit from the cathode to the anode. The battery
is considered fully charged when enough Li+ ions and electrons have migrated
to the anode, now intercalated in the graphite. During charging the potential of
the electrodes will change, causing a voltage between the electrodes to build up.
When discharging the battery (i.e. when using the battery) an external circuit
connects the electrodes, going through the load, allowing electrons to migrate to
the more positively charged cathode. The negative charge of the electrons will
then start to attract Li+ ions, causing them to migrate back to the cathode where
a stable bond is offered. When the lithium in the anode starts to get depleted the
battery is considered fully discharged (i.e. empty), and the voltage between the
electrodes will be depleted, albeit not at zero. One set of charging and discharg-
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6 2 Theory

ing is called one battery cycle.

2.1 Li-ion Battery Characteristics

Many different parameters are used to characterize batteries. To understand
the mechanism behind aging, some important characteristics of a Li-ion battery
should be known. One such, is the battery’s power capacitance, which is the
maximum power the battery can deliver at any given moment, typically mea-
sured in watts (W). There is also the charge capacity, commonly only referred to
as capacity, which is the amount of electric charge that can be stored, typically
measured in ampere-hours (Ah). Another important characteristic is the internal
impedance and internal resistance, measured in ohms (Ω). The internal resis-
tance causes the greatest source of losses in Li-ion batteries, by directly opposing
the current a battery produces. As a battery is a chemical storage unit, internal
resistance is an umbrella term representing the cumulative effect of numerous
resistances. These include ionic resistance from the electrolyte, electronic resis-
tance in the electrode materials, and interface resistance between components [1].
Further on, open circuit voltage (OCV) is the voltage between the battery termi-
nals when no current is flowing. The OCV is fundamental as it is included in
many battery models, and is thus needed to estimate the SOH [3].

2.2 Li-ion Battery State Functions

The battery management system in e.g. electric vehicles relies on information
about power and energy levels provided by state functions. These state func-
tions are functions of other underlying parameters, as the name implies. These
underlying parameters are not directly measurable and must be estimated via
measured signals like current, temperature, and voltage [1].

One important state function is the state of charge. The SOC is a relation-
ship between the available charge capacity and the total charge capacity, known
as the nominal charge capacity. The relationship between the available capacity
and the nominal capacity gives us a range of SOC from 1 to 0. Fully charged
corresponds to 1, and fully discharged corresponds to 0. Theoretically, the SOC
can be calculated by just integrating the current and dividing it by the total ca-
pacity. However, this builds up an error over time since you will integrate the
measurement noise from the measured current.

Another important state function is the state of health, which indicates the
current full charge capacity compared to the full charge capacity at the begin-
ning of life (BOL). Estimating the SOH is a challenging task since the underlying
degradation mechanisms are complex. Since the SOH is not a physical parameter,
other relevant parameters need to be monitored, that can be used to represent the
SOH. This could be the internal resistance, the impedance, the number of cycles,
etc [1].
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2.3 Li-ion battery modelling

Modeling plays an important role in health tracking and fault diagnosis of batter-
ies. The models help estimate important health parameters such as state of health
and remaining useful life (RUL). The different methods can either be physics-
based mathematical models or data-driven models. Elmahallawy et al. [3] clas-
sify the models into four different categories. These are: electric-based models,
thermal-based models, coupled thermal-electric models, and data-driven mod-
els. The first three categories are examples of the aforementioned physics-based
mathematical models.

2.3.1 Electric-based models

The electric-based models can either be an equivalent circuit model (ECM) or an
electrochemical model. An ECM is perhaps the most common electrical model
and according to Hu et al. [8] the ECM approach is more commonly used in
diagnostics as opposed to the electrochemical approach, as it is simpler in both
structure and computation. The ECMs try to mimic the input-output character-
istics by using electric circuit elements such as resistors, capacitors, and voltage
sources in an open circuit. An illustration of a Thevenin model (a type of ECM)
is shown in Figure 2.1. The resistor R0 represents the effect stemming from the
internal resistance and the parallel resistor-capacitor represents the battery’s abil-
ity to store and release charge and accounts for the non-linear behavior of the
voltage profile.

−
+

OCV

R0

+ −
VR

i

C1
i2

R1

+ −
V1

i1
+

−

Vt

Figure 2.1: An illustration of a single RC-pair equivalent circuit model,
called a Thevenin model.

.

The electrochemical model is the most accurate way of modeling Li-ion bat-
teries, but also the most complex and computationally heavy. It involves differ-
ential equations that describe the electrochemical reaction within a cell. Due to
the complexity of these models, full-order variants are not suitable for real-time
applications. However, simplified reduced order variants can be used instead [3].
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2.3.2 Thermal-based models

The thermal-based models work by modeling the generation, transfer, and dis-
tribution of heat inside the battery. These models can become very complex, de-
pending on how accurate the models are, but generally, reduced order models are
used in on-board applications [3]. A rather simple thermal model of the battery,
from [9], could be set up as:

Ṫ =
I(OCV − V )

mc
− hA
mc

(T − Tamb), (2.1)

where m is the mass of the battery, c is the specific heat capacity, A is the surface
area, h is the convective heat transfer constant, and Tamb is the ambient tempera-
ture.

2.3.3 Data-driven models

The data-driven models treat the battery as a black box and thus only consider
the relation between input signals (temperature, current, or voltage) and output
signals (SOH, RUL) and try to find statistical correlations. This can be done by
various machine learning algorithms such as state vector machines or artificial
neural networks etc [3]. The data-driven models can also be purely based on sig-
nal processing, where feature extraction och enhancement methods can be used
directly on the output signals to estimate the states of the battery [3].

2.4 State of health estimation

There are two common ways of calculating the SOH of a battery [3]. One way
is by considering the change in charge capacity, where the battery has reached
its end of life when the nominal capacity is 80% of the initial capacity. Another
way to calculate the SOH is by considering the internal resistance of the battery.
Here the internal resistance at the current moment is compared with internal re-
sistance at the BOL. With this approach, the battery has reached its EOL when
the internal resistance has doubled. Elmahallawy et al. [3] defines two main
ways of estimating the SOH; these are by experimental methods and by model-
based methods. The experimental methods involve storing parameter values and
comparing them over time to estimate the SOH. However, these methods cannot
be used in real-time applications and will thus not be considered. Further on,
the model-based methods can be subdivided into adaptive filtering methods and
data-driven methods. The adaptive filtering methods identify important exter-
nal parameters and then use these with sensor fusion algorithms to estimate the
SOH. The data-driven estimations use either data-fitting techniques or machine-
learning algorithms to estimate the SOH with large amounts of collected data.
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2.5 State of charge estimation

The common way to estimate the state of charge is via a method called Coulomb
counting, shown below:

SOC(t) = SOC(t0) +
1

Cnom

t∫
t0

ηi(τ) dτ . (2.2)

This method works by continuously integrating the current as new measurements
become available. Since the current is measured in ampere, which in turn is de-
fined as charge per second, integrating the current thus renders in charge. So if
the initial charge and the nominal capacity of the battery are known, it is the-
oretically possible to keep track of the state of charge in the battery. However,
several flaws can make this method inaccurate. In Equation (2.2) the term η,
which is the efficiency, can be seen included. This is to take into account energy
losses occurring when charging and discharging. Further on, the measured cur-
rent contains noise, which will also be integrated, thus corrupting the results,
and determining the initial SOC can be difficult if the battery is not known to
be either fully charged or fully discharged, and a bad initialization will cause
severe inaccuracies. Another problem lies in determining the nominal capacity,
Cnom, as this parameter will decrease throughout time and use due to degrada-
tion. Generally, Cnom can be determined through a discharge test where a fully
charged battery is fully discharged, so the current passing through can be mea-
sured. Since temperature affects the chemical reactions in the battery, the SOC is
temperature-dependent. Thus coulomb counting is a simplified method of SOC
monitoring but with frequent re-initialization and good knowledge of the other
parameters, the method is often sufficient.

To be able to estimate the SOC with discrete measurements, Equation (2.2)
can be numerically approximated to look like the equation below:

SOC(k + 1) = SOC(k) +
η

3600Cnom

(
i(k + 1) + i(k)

2

)
(t(k + 1) − t(k)) , (2.3)

where k represents a discrete time step, and t(k) is the measured time at step k.
The factor of 3600 is an optional conversion from Ah to As.

2.6 Fault Modes and Mechanisms

When discussing battery health, the expressions BOL, and EOL, are commonly
used. This refers to the general health of the battery when it is newly made
versus when the battery is old and should be replaced. The battery’s real-time
health is often compared with its health at BOL. The current health compared to
the EOL indicates how long the battery will last. In general, the battery will start
to degrade as soon as it is assembled and will continue to degrade whether is in
use or not [1]. Therefore, a battery’s lifetime can be measured in either calendar
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time such as months and years, or in terms of the number of charge/discharge
cycles. Both time measures are essential to keep in mind when working with
batteries.

In the realm of diagnosis two important phrases often reoccur: fault modes
and fault mechanisms. Fault mode refers to the specific way in which a fault
might manifest itself. When working with batteries, two main features can be
observed due to aging, these are capacity and power fade. Both mainly occur
due to the loss of active material and cyclable lithium. In addition, a relatively
higher temperature can be observed in a worn battery due to increased internal
resistance.

When talking about fault mechanisms, one refers to the underlying mecha-
nisms that give rise to faulty behavior. Li-ion batteries deteriorate due to several
reasons, and the cause may be either mechanical or chemical in origin. Mechan-
ical stress can come from vibration or shock from impacts, and they may cause
structural damage to the current collectors situated on the electrodes, or damage
the separator between the cathode and anode, etc [1]. Severe stress may cause a
short circuit or a thermal runaway. A thermal runaway is in many regards the
worst possible outcome, where chemical side reactions and gas buildup cause
a chain reaction, which ultimately can ignite or explode the battery [8]. More
moderate mechanical stress usually takes expression in the form of power and
capacity fade [1]. Chemical fault mechanisms are complex by nature, but in
summary, they are irreversible chemical reactions inside the cell. Some of the
most significant mechanisms are the forming of the solid electrolyte interface
(SEI), lithium plating (LP), and electrolyte decomposition which are chemical re-
actions that occur inside the cell. Electrolyte decomposition is a phenomenon
when active materials in the electrolyte break down due to surrounding factors
such as temperature and voltage [1], leading to reduced battery lifespan. The
SEI is a layer that develops between the electrolyte and the anode when Li-ions
react with the components in the decomposed electrolyte. Although the SEI ties
up part of the Li-ion storage, it is an important safety feature by acting as an
insulator preventing further electrolyte decomposition. Lithium plating is an un-
desirable phenomenon when Li-ions react with the graphite in the anode forming
a layer on the surface of the anode, preventing Li-ions from intercalating in the
graphite. These reactions tie up part of the lithium storage and active material
in the electrolyte, leading to reduced capacity. Several factors contribute to these
mechanisms, such as temperature, current rate, and state of charge [1].



3
ECM Parameterization and SOH

Estimation

In this section the methods used in the project will be described and derived.
All the mentioned methods were implemented in MATLAB R2022b using the
Control System Toolbox [12].

3.1 Dataset overview

As previously mentioned, the data used in this project is publicly available and
provided by the Prognostics Center of Excellence (PCoE) at NASA. Finding good
Li-ion battery data is a challenging task, and the data set provided by NASA is
probably the most extensive provided within the field of Li-ion battery diagnos-
tics. The data was collected over several years, and 36 batteries were continuously
charged and discharged from their BOL and past their EOL. In addition, in be-
tween charge and discharge cycles, impedance measurements were carried out
through electrochemical impedance spectroscopy sweeps from 0.1Hz to 5kHz.
The batteries were commercially available Li-ion 18650-sized rechargeable bat-
teries of an unspecified brand. They had a capacity of 2000mAh, a maximum
voltage of 4.2V, and a cutoff voltage of 2.7V [2]. All batteries were charged
under a constant-current-constant-voltage (CCCV) regimen, starting with a con-
stant current (CC) of 1.5A until the voltage reached 4.2V, and then continuing
in a constant voltage (CV) mode until the charge current dropped to 20mA. The
discharging of the batteries was carried out under different regimens. Some ap-
proaches were to discharge the batteries with a constant current, or a wave cur-
rent, amongst others. This project will focus specifically on batteries #5, #6, #7,
and #18, which were charged under CCCV, and discharged with a 2A constant
current until the voltage reached 2.7V, 2.5V, 2.2V, and 2.5V respectively. Since
the cutoff voltage is 2.7V, the effect on aging caused by overuse can be studied.

11
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Figure 3.1: One charge cycle for
battery #5.
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Figure 3.2: One discharge cycle
for battery #5

In Figures 3.1 and 3.2 one charge and discharge cycle from battery #5 are
shown. Furthermore, by studying the discharge cycles the adverse effects of aging
can be identified. In Figure 3.3 the effects of aging are visible. As the battery
capacity degrades due to loss in the active material, the discharge curve steadily
moves to the left, meaning the battery discharges a bit quicker for each discharge.
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Figure 3.3: The voltage curve for all discharge cycles for battery #5 from
BOL to EOL

Further on, the data contains measurement noise, of which the variance can be
determined when the current and voltage are in their respective constant phases.
In Figure 3.4 the effects of the measurement noise are shown. It can also be noted
that a slight bias happens to be present, as the voltage should be at 4.2V, and the
current at 1.5A. However, it can not be said whether this stems from sensor bias,
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an actuator fault, or even the battery itself.
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Figure 3.4: Constant sections of current and voltage.

3.2 Outlier Rejection

Looking at the raw data, some severe outlier measurements are visible. These
likely do more harm than good in terms of numerical stability. Since they entail
little knowledge about the state of degradation of the battery, it is prompt to have
them removed. In this case, they were replaced by the previous acceptable mea-
surement. This was done automatically through a simple algorithm that looks at
each data point and replaces them if they surpass a certain threshold. The before
and after from the outlier rejection can be seen in Figures 3.5 and 3.6.
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Figure 3.5: The raw current
and voltage data from battery
#5 pieced together with an ar-
tificial time vector representing
the cycle time in calendar time.

Figure 3.6: The processed cur-
rent and voltage data from bat-
tery #5 pieced together with an
artificial time vector represent-
ing the cycle time in calendar
time.

3.3 Batchwise Recursive Least Squares Filter

Generally when an equivalent circuit model is parameterized, the available mea-
surements to use are current, voltage, and temperature. More commonly though,
only current and voltage are used, as including the temperature would require
some kind of coupled thermal-electric model, thus increasing the model com-
plexity. An issue with parameterizing an ECM is knowing the open circuit volt-
age, which is correlated to the SOC. Normally, the SOC will be estimated using
Coulomb counting, and a pre-made look-up table will be used to interpolate a cor-
responding OCV value. However, if the OCV/SOC mapping is unknown, which
is often the case, this approach will not be possible. Thus to resolve the problem
of not knowing the OCV, a different approach is needed. In the paper [14] the
authors present a method that circumvents this issue by instead considering the
difference between consecutive measurements and omitting the OCV altogether.
The assumption made is that with a small enough sampling time, the difference
in OCV between consecutive measurements is negligible. Thus, the ECM param-
eters can be estimated without knowledge of the open circuit voltage, done with
a recursive least squares filter, handling the data in batches.

The entire derivation of the model is lengthy, thus only a short derivation of
the main equations is presented below, but for a full derivation see [14]. To begin,
using Kirchhoff’s voltage law, the Thevenin model can be described according to
the following equation:

Vt(k) = OCV (k) + i(k)R0 + i1(k)R1. (3.1)

This equation can then be propagated one step forward in time:
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Vt(k + 1) = OCV (k + 1) + i(k + 1)R0 + i1(k + 1)R1, (3.2)

and i1(k + 1) can be swapped for a discrete-time approximation according to:

i1(k + 1) = α1i1(k) + (1 − α1)i(k), (3.3)

where

α1 = e
−Ts
R1C1 . (3.4)

By subtracting the voltage equations from each other, assuming the difference
in open circuit voltage equals zero, and then Z-transforming it, eventually with
algebraic manipulation, the equation can be put into matrix form according to:

Vt(k+1)−Vt(k) =
[
Vt(k) − Vt(k − 1) i(k + 1) − i(k) −(i(k) − i(k − 1))

] α1
R0
R̃1

+ ñ(k),

(3.5)
where R̃1 is a compound variable according to:

R̃1 = α1R0 − (1 − α1)R1. (3.6)

The equation above can then be stacked by increasing k, and subsequently, the
batch version can be written in the compact form, as shown below:

Ṽk = Ãk b̂ + ñk , (3.7)

where the index k now represents batch number. The uncertainty ñk has a covari-
ance matrix according to:

Σk =



σ2
n (0) σ2

n (1)
σ2
n (1) σ2

n (0) σ2
n (1)

. . .
. . .

. . .
σ2
n (1) σ2

n (0) σ2
n (1)

σ2
n (1) σ2

n (0)


, (3.8)

where Σk is a square matrix with the same dimension as the size of the batch, and
all unspecified elements are set to zero. The variance and covariance σ2

n (1) and
σ2
n (0) are defined according to:σ2

n (0) = 2(1 + α2
1)σ2

v + 2(R2
0 + R̃2

1)σ2
i ,

σ2
n (1) = −2α1σ

2
v − 2R0R̃1σ

2
i ,

(3.9)

where σ2
i and σ2

v are the variance of the noise for the current and voltage mea-
surements respectively. With all of the above defined, the filter can be initialized
and run according to the recursions in Algorithm (1). The estimates b̂ can then
be converted back to ECM parameters using the following conversion:
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R0 = b̂(2)

R1 = b̂(1)b̂(2)
1−b̂(1)

C1 = Ts
R1ln(b̂(1))

(3.10)

Algorithm 1 Batchwise Recursive Least Squares Algorithm

Initialize with b̂1 =
(
ÃT

1 Ã1

)−1
ÃT

1 Ṽ1 and P1 =
(
ÃT

1 Ã1

)−1

1: Construct the noise covariance matrix Σk using Equation (3.8)
2: Update Error Covariance: P −1

k+1 = P −1
k − Ã

T
k+1Σ

−1
k Ãk+1

3: Update Residual Covariance: Sk+1 = Ãk+1P
−1
k+1Ã

T
k+1 + Σk

4: Update gain: Kk+1 = Pk+1ÃT
k+1S

−1
k+1

5: Update Estimates: b̂k+1 = b̂k + Kk+1(Ṽk+1 − Ãk+1b̂k)

3.4 Forgetting Factor Recursive Least Squares Filter

Another approach to parameterizing an ECM is by using a forgetting factor re-
cursive least squares method. This method is utilized in [7], and it differs from
the BRLS filter in that it does utilize an OCV-SOC mapping. The mapping is
borrowed from [13] and is derived for a Li-ion battery with similar voltage specs.
The mapping can be seen in Figure 3.7. Below, a brief derivation of the method
will follow, but for more detail see the original paper [7]. To begin with, the single
RC-pair ECM in Figure 2.1 is again chosen as a model. The relationship between
the current going through the circuit, and the current going through the RC-pair,
can be described with Kirchhoff’s current law according to:

i(t) = i1(t) + i2(t). (3.11)

Further on, the relationship between the current going through the capacitor and
the voltage over said component is i2(t) = C1V̇1(t). The current going through the
resistor in the RC-pair, can with Ohm’s law be replaced with i1(t) = V1(t)

R1
. With

both of these relationships (3.11) can be rewritten into the following:

V̇1(t) = − V1(t)
R1C1

+
i(t)
C1

. (3.12)

This equation can then be Laplace transformed so that the transfer function,
G(s) : I(s)→ V1(s) can be derived:

V1(s) = I(s)
R1

1 + sR1C1
. (3.13)

Moving on, with Kirchhoff’s voltage law, the relationships between the compo-
nents in the circuit can be described according to:
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Figure 3.7: OCV-SOC curve interpolated from visually interpreted values
provided by CALCE at the University of Maryland [13].

Vt(t) = OCV (t) − i(t)R0 − V1(t). (3.14)

The equation above is then L-transformed, and subsequently V1(s) can be re-
placed with Equation (3.13) to form:

Vt(s) = OCV (s) − I(s)R0 − I(s)
R1

1 + sR1C1
⇔,

Vt(s) − OCV (s) = −I(s)
(
R0 +

R1

1 + sR1C1

)
.︸                  ︷︷                  ︸

H(s):I(s)→Vt(s)−OCV (s)

(3.15)

The equation above can now be Z-transformed using bilinear transformation
where s = 2

Ts
1−z−1

1+z−1 and the transfer function H(s) can be substituted with with

a parameterized transfer function, H1(z) = c2+c3z
−1

1+c1z−1 so that the least squares prob-
lem is solved for c1, c2, and c3. The estimates can then be converted back to ECM
parameters with the following conversion:

R1 = 2(c1c2−c3)
c2

1−1
,

C1 = −T (c1−1)2

4(c1c2−c3) ,

R0 = c3−c2
c1−1 .

(3.16)
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Finally, the expression can be written in matrix form, where k represents a dis-
crete time step:

Vt(k) − OCV (k) =
[
Vt(k − 1) − OCV (k − 1) i(k) i(k − 1)

] c1
c2
c3

 . (3.17)

This can then be written in auto-regressive exogenous (ARX) form:

yk = ϕkθk . (3.18)

To derive the OCV(k) component, in parallel with the filter a Coulomb count
will be performed according to (2.3) and for each new SOC value, an OCV value
will be interpolated from the mapping in Figure 3.7. Finally, the filter can be
initialized and run according to the recursions of Algorithm (2).

Algorithm 2 Forgetting Factor Recursive Least Squares Algorithm

Initialize with θ̂1 =
(
ϕT

1 ϕ1

)−1
ϕT

1 y1 and P1 =
(
ϕT

1 ϕ1

)−1
and 0 < λ < 1

1: Calculate gain: Kk =
Pk−1ϕ

T
k

ϕkPk−1ϕ
T
k +λ

2: Update error covariance matrix: Pk =
Pk−1−Kkϕ

T
k Pk−1

λ
3: Calculate prediction error: ek = yk − ϕk θ̂k−1
4: Update estimate: θ̂k = θ̂k−1 + Kkek

3.5 Kalman Filter

Once an equivalent circuit model has been parameterized, the model can be used
in conjunction with a Kalman filter to try and gain better estimates for the inter-
nal resistance, which could lead to better SOH estimates. The method presented
below was introduced in [4] and attempts to estimate SOC, internal resistance,
and the RC voltage. To derive the model equations, the process begins with deriv-
ing the equation that describes how the voltage across the resistor-capacitor pair
changes over time, given the model parameters and current:

V̇1(t) = − V1(t)
R1C1

+
i(t)
C1

. (3.19)

This equation can now be identified as an ordinary differential equation which
has an analytical solution according to:

V1(t) = e
−(t−t0)
R1C1 V1(t0) +

t∫
t0

e
−(t−τ)
R1C1

1
C1

i(τ) dτ . (3.20)
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The expression can then be further developed by solving the integral while treat-
ing the current as a constant, as it can be regarded as a constant parameter that
changes at different time steps, as opposed to a variable that changes over time:

V1(t) = e
−(t−t0)
R1C1 V1(t0) +

i
C1

 e
−(t−τ)
R1C1

1
R1C1


t

t0

= e
−(t−t0)
R1C1 V1(t0) +

iR1C1

C1

[
e
−(t−t)
R1C1 − e

−(t−t0)
R1C1

]
(3.21)

= e
−(t−t0)
R1C1 V1(t0) + iR1

(
1 − e

−(t−t0)
R1C1

)
.

The last expression can now be treated as a time-discrete equation by substituting
t for k + 1 and t0 for k, whilst treating t − t0 as the sampling time Ts. This gives a
final time-discrete expression for the voltage change:

V1(k + 1) = e
−Ts
R1C1 V1(k) + R1

(
1 − e

−Ts
R1C1

)
I(k). (3.22)

Further on, an expression for the SOC is needed, and here a zero-order hold
(ZOH) version of (2.3) is used:

SOC(k + 1) = SOC(k) +
ηI(k)Ts

3600Cnom
(3.23)

Finally, these equations can be used in conjunction with the ECM voltage rela-
tionship, described in (3.14), to form the model equations in the Kalman filter:

x(k + 1) =


1 0 0 ηTsI(k)

3600 0

0 e
−Ts
R1C1 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 Ccap 0




SOC
V1
R0
1

Cnom
1

SOH

 +


0

R1(1 − e
−Ts
R1C1 )

0
0
0


I(k), (3.24)

y(k) =
[
dOCV
dSOC −1 I(k) 0 0

]

SOC
V1
R0
1

Cnom
1

SOH

 . (3.25)

These can then be written in compact form, now with the time index in subscripts
for easier notation:

xk+1 = Akxk + BkIk + v, (3.26)

yk = Ckxk + e, (3.27)
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where v and e represent the variance of the process and measurement noise mod-
eled as q ∼ N (0, v) and R ∼ N (0, e), the Kalman filter can now be run using
the standard Kalman recursions shown in Algorithm (3), while using measured
voltage as yk . In addition, parallel with the Kalman filter, a numerical Coulomb
counting is performed to update the measurement model matrix Ck . Again, the
pre-made OCV-SOC look-up table available at [13] is used to interpolate OCV val-
ues based on the calculated SOC value, and subsequently, numerical integration
is performed to derive the dOCV

dSOC .

Algorithm 3 Kalman Filter
Initialize with x̂0|0, P0|0, R, q

1: Propagate estimate: x̂k+1|k = Ak x̂k|k + BkIk
2: Update uncertainty: Pk+1|k = AkPk|kA

T
k + qqT

3: Calculate innovation: εk = yk − Ck x̂k+1|k
4: Calculate innovation covariance: Sk = CkPk+1|kC

T
k + Rk

5: Calculate Kalman gain: Kk = Pk+1|kC
T
k (CkPk+1|kC

T
k + Rk)−1

6: Measurement update estimate: x̂k+1|k+1 = x̂k+1|k + Kkεk
7: Measurement update uncertainty: Pk+1|k+1 = Pk+1|k − KkSkK

T
k

3.6 Unscented Kalman Filter

Another Kalman filer technique is the unscented Kalman filter, which is built
to handle nonlinearities better. The filter works differently from the regular
Kalman recursions. Instead of propagating the estimates, it generates several
sigma points based on the probability distribution of the model and instead prop-
agates these sigma points. The measurement update works by estimating the
measurement with the sigma points and then comparing it to the actual measure-
ment. The following method was inspired by. [7]. The unscented Kalman filter
uses slightly different model equations compared to the Kalman filter. The SOH
and Cnom states are dropped and instead, the knowledge is compounded in the
model matrices. The model takes on the following form:

xk+1 =


1 0 0
0 1 0

0 0 e
−Ts
R1C1

 xk +


ηTs

3600Cnom

0

R1(1 − e
−Ts
R1C1 )

 Ik , (3.28)

⇔ xk+1 = Akxk + BkIk , (3.29)

where xk = [SOC, R0, V1]T . And similar to the KF the measurement update is
described according to:

yk =
[
dOCV
dSOC −1 Ik

]
xk , (3.30)

⇔ yk = Ckxk . (3.31)
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To begin, the states that need estimation are modeled as a Gaussian distribution
x ∼ N (µx, P ), where the mean µx in this case is the initial state, and covariance P
the initial uncertainty. Based on P , a singular value decomposition is performed
according to P = UΣU T . Now 2nx + 1 sigma points are created, where nx is
the dimension of the state vector x, so in this case there is a total of seven sigma
points. The sigma points are generated according to:

x
(0)
k|k = µx, (3.32)

x
(±i)
k|k = µx ±

√
nx + λσiui . (3.33)

Where i = 1, ..., nx, and σi is the i:th diagonal element in Σ, and ui is the i:th
column in U . The corresponding weights given to each sigma point are calculated
according to:

ω(0) =
λ

nx + λ
, (3.34)

ω(±i) =
1

2(nx + λ)
. (3.35)

The UKF has three extra tuning parameters, α, β, and κ. The α parameter con-
trols the spread of the sigma points around the mean and is usually set to approx-
imately 0.001 [10]. β is used to compensate for the distribution of the state and is
set to 2 for Gaussian distributions [10]. Lastly, κ is a secondary scaling parameter
used to adjust the mean of the sigma points, which is x(0). However, κ is usually
set to zero [10]. λ is a design parameter defined by the previously explained pa-
rameters as λ = α2(nx + κ) − nx. To perform the time update, the sigma points
are first propagated through the model equation:

x
(±i)
k+1|k = Akx

(±i)
k|k + BkIk . (3.36)

Then the predicted states and predicted covariance matrix are calculated with
the help of the propagated sigma points and the corresponding weights:

x̂k+1|k =
nx∑

i=−nx

ω(i)x
(i)
k+1|k , (3.37)

P xx
k+1|k =

nx∑
i=−nx

ω(i)(x(i)
k+1|k − x̂k+1|k)(x(i)

k+1|k − x̂k+1|k)T + Q, (3.38)

where Q is the process noise. To perform the measurement update, the propa-
gated sigma points are mapped onto the measurement space through the mea-
surement equation:

y
(i)
k+1|k = Ckx

(i)
k+1|k . (3.39)
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Then the distribution of the measurements is modeled as y(i) ∼ N (ŷ, P yy), where
ŷ and P yy are calculated with the help of the weights and the previously calcu-

lated measurements y
(i)
k+1|k :

ŷk+1|k =
nx∑

i=−nx

ω(i)y
(i)
k+1|k , (3.40)

P
yy
k+1|k =

nx∑
i=−nx

ω(i)(y(i)
k+1|k − ŷk+1|k)(y(i)

k+1|k − ŷk+1|k)T

+(1 − α2 + β)(y(0)
k+1|k − ŷk+1|k)(y(0)

k+1|k − ŷk+1|k)T .

(3.41)

Now that the distribution for both the predicted states and the predicted mea-
surements has been determined, a new joint distribution between the states and
the measurement can be modeled as:

Z =
(
xk+1|k
yk+1|k

)
∼ N

(x̂k+1|k
ŷk+1|k

)
,

P xx
k+1|k P

xy
k+1|k

P
yx
k+1|k P

yy
k+1|k

 , (3.42)

where the cross-covariance P
yx
k+1|k = P

xy
k+1|k can be calculated as:

P
xy
k+1|k =

nx∑
i=−nx

(x(i)
k+1|k − x̂k+1|k)(y(i)

k+1|k − ŷk+1|k)T . (3.43)

At last, the Kalman gain can be calculated, and the measurement update finished:

Kk+1 = P
xy
k+1|k(P yy

k+1|k)−1, (3.44)

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − ŷk+1|k), (3.45)

Pk+1|k+1 = P xx
k+1|k+1 − Kk+1P

yy
k+1|kK

T
k+1. (3.46)



4
Results

This section presents the results from the methods previously described. Given
the large amount of data, using all data when parameterizing the ECM or run-
ning a Kalman filters was not feasible. Since there were multiple batteries, and
each battery had been measured for around two months, an intelligent selection
had to be made. The subset of data from each battery used in this project was
consistently chosen in five intervals. Depending on the algorithm and how much
data was needed for the results to converge, the number of cycles per interval
can vary from one or three cycles for the forgetting factor recursive least squares
filter, or as much as 20 cycles for the batch-wise recursive least squares filter. The
intervals were chosen at roughly equal distances in terms of calendar time, as
to be able to capture the degradation over time. The first interval was reason-
ably chosen at the BOL, and the last interval was reasonably chosen at the EOL.
Then the remaining three intervals were chosen in between those. Further on,
since the data collection had taken course over a considerable amount of time,
the measured cycles were not measured consecutively. Sometimes, there were a
few days or even a couple of weeks of idle time between measurements. Because
of this, consideration was taken so that the cycles of each interval were measured
within a short time distance of each other, which was set to a maximum of two
days. This was a precaution as to not attempt to fit parameters to sets of data that
might carry different characteristics, given that batteries undergo aging regard-
less of whether they are in use or not.

To validate the results, voltage response tests were performed on the parame-
terized ECMs. This was done by using the measurement current as input to the
ECM equations then studying the output voltage, and later comparing it to the
actual measured voltage. The standard ECM model equations were used:

V̇1(t) = − V1(t)
R1C1

+
i(t)
C1

, (4.1)

23
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Vt(t) = OCV (t) − Ri i(t) − V1(t). (4.2)

Coulomb counting was performed for every new measured current, and based
on that an OCV value was interpolated. These equations were then discretized
using zero-order hold, and the stepsize was chosen to the average sampling time
from the data that was used during the parameterization of the ECM. Lastly, to
have some way of quantifying the performance of the ECM, aside from visually,
the root mean squared error was calculated from the measured and simulated
voltage:

RMSE =

√√
1
n

n∑
i=1

(V t
i − V̂

t
i )2 (4.3)

where, n is the total number of data points used, V t
i and V̂ t

i are the measured and
simulated voltage respectively. Further on, to validate the estimated SOH, the
estimated internal resistance was transformed into a measure of health according
to the following equation:

SOHR = 1 −
Ri − RBOL

i

RBOL
i

. (4.4)

This was then compared with the capacity measurements provided by NASA,
which in turn were converted to a state of health via the following:

SOHC = 1 − CBOL − Cnom

0.2CBOL
. (4.5)

This, as previously explained, gave the SOH in a range of 1 through 0. However,
since NASA had used the batteries beyond their recommended EOL, to study the
effect of overuse, this health measure thus passed zero and entered a negative
domain.

4.1 BRLS results

The batch-wise RLS converged and consistently provided values in roughly the
same range for multiple batteries. The estimated ECM parameters derived from
all five intervals of battery #5 are shown in Figure 4.1. The rest of the ECM
parameters for battery #6, #7, and #18 are found in the appendix in Figures 7.1,
7.2, and 7.3. The corresponding voltage response test for one set of parameter
values for battery #5 can be seen in Figure 4.2. Similar voltage response tests
for the rest of the batteries are found in the appendix in Figures 7.4, 7.5, and
7.6. Since the capacitance was scaled by the sampling time in the conversion
from estimates to ECM parameters, the value would not converge given that the
sampling time varied. To resolve this, the algorithm used the average sampling
time for each cycle. Each interval consisted of 20 cycles, but it can be noted that
some intervals contained a lot fewer batches. This was due to the uneven size



4.1 BRLS results 25

of the cycles due to the uneven sampling time and the time one cycle took to
measure.
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Figure 4.1: Parameterization results for five intervals from battery #5. Note
that some values are too large to fit in the frame.



26 4 Results

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Step [-]

2.5

3

3.5

4

4.5

5

V
o

lt
a

g
e

 [
V

]

Stepsize: 13.4449 s

RMSE: 0.30814 V

simulated

measured

Battery #52008/4/2

Figure 4.2: Simulated voltage response, compared to observed voltage, using
the ECM parameters from the first interval in Figure 4.1.

4.2 FFRLS results

The forgetting factor recursive least squares filter performed unreliably. Some-
times the filter generated reasonable values that gave a good simulated voltage
response, like in Figure 4.3 and 4.4. The sole anomaly being that the RC compo-
nents turned negative; however, this turned out to be acceptable as the negative
values effectively cancel each other out in the computation of the time constant
for the state space model. However, when parameterizing the ECMs using differ-
ent data intervals from the same battery, the resulting parameter values became
illogical, leading to their inability to accurately replicate the observed voltage
data in the simulation tests.



4.3 Kalman filter results 27

2 3 4 5 6 7 8

0

0.05

0.1
R

0
 [

]

2 3 4 5 6 7 8

-1

0

1

2

R
1
 [

]

2 3 4 5 6 7 8
-200

-100

0

C
1
 [

F
]

2 3 4 5 6 7 8

Time [h]

25

30

35

T
e

m
p

e
ra

tu
re

 [
°C

]

Battery #5 = 1

Figure 4.3: The parameteri-
zation results for battery #5
using the FFRLS. Temperature
is added below the results,
revealing a strong correlation
between sharp temperature
changes and the estimates
jumping.
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4.3 Kalman filter results

The results from one interval for battery #5 are shown in Figure 4.5. In addition
to the estimates, temperature and current were added to the results. It can be
noted that the KF struggled to estimate the SOC correctly, remaining constantly
too low. When running the Kalman filters, it was observed that the estimated
values of internal resistance did not stabilize at consistent levels. Instead, these
values fluctuated over time within each interval, with noticeable periods of con-
vergence. Importantly, these periods of convergence corresponded with instances
when the battery’s temperature stabilized, underscoring a strong correlation be-
tween the internal resistance of the battery and its temperature. There appears an
inversely proportional relationship where a high temperature corresponds with
a low internal resistance. Further on, The nominal capacity Cnom, was initialized
with the capacity value provided by NASA and then kept constant by setting the
corresponding process noise to zero. This approach was considered appropriate,
as within a brief duration of merely three cycles, no significant change in capac-
ity is typically anticipated. Similarly, the SOH was initialized with 1, which was
then immediately corrected in the second iteration based on the nominal capac-
ity. It was also given zero process noise to remain constant. Lastly, the process
noise for the rest of the states was arbitrarily chosen so that a reasonable result
was obtained.
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Figure 4.5: Kalman filter results for three cycles with added data for analy-
sis.

4.4 Unscented Kalman filter results

The unscented Kalman filter, much like the standard Kalman filter struggled
to accurately estimate the SOC. Similarly to the KF, the internal resistance con-
verged when the temperature stabilized toward room temperature. It can also
be noted that the internal resistance estimates decreased to negative values corre-
sponding to high current and temperature.
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Figure 4.6: Unscented Kalman filter results for three cycles with added data
for analysis.

4.5 State of health estimation

For a meaningful assessment of the state of health degradation, a single represen-
tative value of internal resistance was selected from each interval. This value was
chosen at the end of the convergent sequence when the battery’s temperature lies
around room temperature, thus making sure that an assessment was made under
similar circumstances for each interval. So in total, there were five SOH evalua-
tions for each battery. It should be noted that even though some of the internal
resistance estimates were unreasonable, such as having negative values, this did
not hinder an SOH evaluation from taking place. Given the fact that there were
at least some reoccurring stable parts, these were sufficient to study the relative
change over time.

The results from the SOH comparison for battery #5, #6, #7, and #18 are
shown in Figures 4.7, 4.8, 4.9, and 4.10. These include the KF and the UKF, as
well as the results from the batch-wise recursive least squares filter. By looking
at the images it becomes evident that solely relying on the parameterization of
the ECM is insufficient in terms of age determining the batteries. On the other
hand, the Kalman filters performed much better. The regular Kalman filter failed
to capture the SOH for battery #18 but demonstrated a small degree of effective-
ness in tracking the aging process in the other batteries, albeit somewhat volatile.
In contrast, the unscented Kalman filter outperformed the standard Kalman fil-
ter across all batteries, staying relatively close to the true values and being less
volatile.
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resistance compared to SOH
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Figure 4.10: Battery #18 SOH
degradation based on internal
resistance compared to SOH
degradation based on capacity.

In addition to the previously presented results, a second round of SOH com-
parisons was made where the measurement update for both filters was slightly
redefined. Instead of using the measured voltage as a sole measurement, the
difference between the voltage and the last evaluated open circuit voltage was
used as a measurement. Thus redefining the open circuit voltage as OCVk =
OCVk−1 + dOCV

dSOC k−1SOCk . The results from this approach are shown in Figures
4.11, 4.12, 4.13, and 4.14. By looking at the images it is evident that the standard
Kalman filter became significantly improved through this approach, while the
unscented Kalman filter became significantly impaired.
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SOH degradation based on ca-
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Figure 4.14: Battery #18 SOH
degradation based on internal
resistance with alternative mea-
surement update compared to
SOH degradation based on ca-
pacity.

In addition to the SOH plots, the estimated internal resistance values for the
UKF and both versions of the KF are also shown in Figures 4.15, 4.16, 4.17, and
4.18. These values were used for the plots above, and the range of the resistance
can be seen varying slightly between different batteries and algorithms.
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Figure 4.15: Internal resistance
estimates for battery #5.
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Figure 4.16: Internal resistance
estimates for battery #6.
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Figure 4.17: Internal resistance
estimates for battery #7.
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Figure 4.18: Internal resistance
estimates for battery #18.



5
Discussion

Under this section a discussion surrounding the results and the project at large
will be made.

5.1 Limiting factors

There were some obstacles hindering this project. Most notably: there was no
mapping between the state of charge and the open circuit voltage provided. This
was a big flaw given how important the OCV is when working with ECMs. When
using an ECM such as this one, there are three model parameters, as well as cur-
rent, terminal voltage, and open circuit voltage. If the OCV is unknown, then
there is an unknown parameter and the system of equations cannot be solved.
This means that one cannot (typically) effectively parameterize the model, i.e.
determine the model parameters, nor can one simulate the model, which is essen-
tially what is done when operating a Kalman filter. Hence why knowing the OCV
mapping is crucial for a successful project. Additionally, the creation of a custom
OCV mapping was not possible due to the specific discharge method employed
with the batteries, which hindered this possibility. To make this feasible, it would
have been necessary for the batteries to undergo a gradual discharge in incremen-
tal steps. This would allow for the measurement of the Open Circuit Voltage
(OCV) at each stage. Subsequently, a curve could be fitted to these OCV values
in relation to the SOC. This would likely have been the ideal scenario, giving
the project the highest possible accuracy to build further upon, and facilitating
a more precise analysis. However, since neither option was possible, this project
had to circumvent this issue by lending a pre-made OCV mapping provided by
the University of Maryland for a battery with similar characteristics. However,
due to the unspecified manufacturer of the batteries utilized by NASA, there re-
mains an uncertainty regarding the accuracy of the mapping. This is especially
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important given that the OCV characteristics can differ between the same type of
battery manufactured by different companies. This made this a very likely source
of inaccuracy, given how unique an OCV-SOC mapping can be between batteries,
and how important the OCV is when working with an ECM. Another obstacle
to be highlighted, is as previously mentioned, not knowing which company has
manufactured the Li-ion batteries. Understanding this could have potentially un-
locked numerous opportunities. For example, it would have been possible to ac-
cess datasheets detailing critical specifications of the battery. These details might
encompass the previously mentioned OCV-SOC table or a specified range for the
expected internal resistance. Additionally, this information could extend to in-
sights into the battery’s cathode chemical composition, its physical dimensions,
and the thermal characteristics of the battery materials. This would have facili-
tated the possibility of creating a thermal model of the battery, which could have
been used in conjunction with the electrical model. Another thing that would
have made the project more ideal would be if the measurement equipment had
undergone analysis before the experiments began, to determine the characteris-
tics of the measurement noise and the sensor bias. This is typically a good thing
to do, as noise variance is an important piece of information in sensor fusion al-
gorithms. As this information was not included in the data, it fell upon the user
to find constant periods to perform variance measurements. It is however rather
precarious to find constant voltage phases when the battery is in operation since
the voltage responds the current, making it difficult to find truly constant voltage
phases when the battery is in use.

5.2 Parameterization Challenges

Working with ECMs requires the precise determination of model parameters, a
task that often proves to be non-trivial. To begin with, a design choice has to
be made regarding how complex the ECM should be. This choice is a trade-off
between model accuracy and model complexity, as even working with a single
RC-pair ECM necessitates strenuous analytical solutions for it to be parameter-
ized. By looking at Equation (3.15), which was used in the FFRLS algorithm, and
further developing it, this becomes apparent:

Vt(s) − Voc(s) = E(s) = −I(s)
(
R0 + R1 + sR1C1R0

sR1C1 + 1

)
, (5.1)

→ −E
I

=
2
T

1−z−1

1+z−1 R1C1R0 + R1 + R0

2
T

1−z−1

1+z−1 R1C1 + 1
, (5.2)

↔ −E
I

=
(2 − 2z−1)R1C1R0 + T R1 + T R1z

−1 + T R0 + T R0z
−1

(2 − 2z−1)R1C1 + T + T z−1 , (5.3)

↔ −E
I

=
2R1C1R0 + T R1 + T R0 + (T R0 + T R1 − 2R1C1R0)z−1

2R1C1 + T + (T − 2R1C1)z−1 . (5.4)
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This fully developed equation leads to a challenging system of equations that
must be solved to gain the conversion from the estimated parameters back to
ECM parameters: 

1 = 2R1C1 + T ,

c1 = T − 2R1C1,

c2 = 2R1C1R0 + T R1 + T R0,

c3 = T R0 + T R1 − 2R1C1R0.

(5.5)

Successfully solving this system of equations will present a significant challenge
for anyone attempting to implement these types of algorithms independently. If a
double RC ECM is chosen instead, then the challenge rises to new heights, as the
resulting system will contain six equations that must be solved for five parame-
ters. This makes the methods unfeasible and the parameterization likely requires
the assistance of more sophisticated software. This constitutes a drawback of the
method since it is non-straightforward to implement. The challenge is further
heightened when dealing with real data, as opposed to simulated data, which
was the case in this project. The measurement noise was a challenging circum-
stance for the filters; especially for the filters that estimated the states each time
a new data point was made available. This presented them with the dilemma
of whether a change in the measurement data comes from the system or just the
noise, and if the measurement variance is poorly evaluated the estimates can sub-
sequently deteriorate. This was the likely cause of the failure of the FFRLS filter
since it did not consider measurement noise at all. Although it could occasionally
do a superior job of parametrizing a model compared to the BRLS filter, it was
not sufficiently reproducible, making it an unsuitable method for noisy data. On
the other hand, the BRLS filter performed much more reliably; consistently being
able to generate a somewhat good model. The success can be attributed to two fac-
tors: the first is that it took into account the measurement noise and the second
is that it dealt with the data in batches. Dealing with the data in batches comes
with several added benefits, these include increased computational efficiency as
there are fewer evaluations for the same amount of data. More so, because the
evaluations are averaged out over the entire batch of data, this makes the filter
less sensitive to how it has been initialized. For the same reason, it also makes
the filter less sensitive to the effect of the noise, thus providing better and more
reliable estimates. Regarding the limiting factors, the main disadvantage of the
BRLS filter is that it did not use OCV values in the calculations. Although this
was one of the aims of the method, it must still be argued that this would make
the method worse than a corresponding method that does utilize the OCV. But
setting this aside, the main reason why this method probably did not reach its
full potential has to do with the sampling time. The authors of the original pa-
per [14] present the method using data with a sampling time of only 0.1 seconds.
This is a small enough sampling time so that the assumption of the OCV being ne-
glectable between consecutive measurements can be upheld. The data provided
by NASA on the other hand, had a much larger sampling time. The sampling
time was not uniform as it varied slightly throughout a cycle, and it also varied
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significantly between cycles. For example, battery #5 had an average sampling
time of 9.64s for the first cycle, 18.75s for the 51st cycle, and 2.88s for the 63rd cy-
cle. Most notably, the charge cycles generally had a lower sampling time than the
discharge cycles, which is unfortunate since the discharge cycles are the most re-
vealing when it comes to deterioration. The low sampling frequency likely hurt
the estimates as the OCV assumption strayed further from being true. The un-
even sampling time within a cycle also caused inaccuracy, as it necessitated using
the average sampling time. This was necessary for the capacitance to converge as
it was scaled by the sampling time. However, this fact probably caused an error
to a lesser extent than the large sampling time.

5.3 Analyzing the performance of the Kalman filters

The Kalman filters did a good job of comparing the SOH for the batteries over
time, showing some level of success for all batteries. However, being able to
make this comparison demanded some level of ingenuity as it was not obvious at
an instant how it should be made. Adding the temperature and current profiles
to the plots revealed insightful information on the Kalman filter’s behavior. It
showed a strong relationship between the temperature and the SOC and internal
resistance, thus enabling fair comparisons. However, even though the SOH com-
parison was successful, the performance of the individual Kalman filters was, at
best, less than optimal. The SOC estimates were consistently either too high or
too low. However, it should be noted that the comparison made with the SOC de-
rived from Coulomb counting was not perfect. Coulomb counting is an imperfect
and oversimplified method of estimating the SOC, and the true SOC should look
much less idealized and exhibit more signs of temperature dependence. How-
ever, it still serves well as a good guiding principle for having an overall sense of
where the true SOC should lie. The end of the charge and discharge cycles also
served as a correction phase where the SOC was known to be either 0 or 1, thus
preventing a SOC error from accumulating over time.

Regarding the internal resistance estimates, they sank too low when the bat-
tery temperature rose, being close to zero or even negative at times. This could
be due to a too-strong correlation with the current, which is negative when the
internal resistance estimate becomes negative for the UKF. Or, this could simply
be due to inherent limitations on behalf of the filters, or inadequate tuning. How-
ever, there are still unanswered questions about how the correlation between the
resistance and the temperature works, and whether the resistance profile is rea-
sonable. For instance, the peaks in temperature coincide with a large current,
which seems reasonable since the resistance causes energy loss in the form of
temperature. However, it is puzzling why the resistance drops at the same time
as this occurs. One interpretation of this is that a moderately higher tempera-
ture catalyzes chemical reactions in the battery, thus enhancing the mobility of
Li-ions, which causes the resistance to drop. This contradicts the general notion
that higher temperatures increase the resistance of a material. It should be kept in
mind that internal resistance is a sum of multiple resistances, both material and
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chemical; thus, the relationship between current, temperature, and resistance
is complex and interdependent. It should also be highlighted that the specific
values for internal resistance do not necessarily have to represent anything phys-
ically meaningful, and the internal resistance was not meant to be studied on a
minute-to-minute or hourly basis. Instead, the supervision takes place over the
entire battery life cycle, which spans several weeks. In other words, as long as
the ambient factors such as current and temperature are similar, and the change
over time is reasonable then a purposeful evaluation can still be made.

Overall there were several factors inhibiting the performance of the Kalman
filters. Firstly there was the the model error, as shown in the voltage response test
for the ECMs, they were not entirely able to reproduce the voltage profiles. The
Kalman filter relies on the model equations to represent the system it is trying
to estimate, and since the ECM is already a simplified model of a battery, an
inaccurate one is poised to produce more errors for the KF. The ECM parameters
mostly affected the RC-voltage estimates, but since the states were co-estimated
via covariance, every estimate played a role in the totality. Further, the way the
OCV was evaluated in the measurement updates was poorly defined. Instead
of utilizing the derivative of the curve, it would have been best to interpolate a
value for the given SOC estimate. However, this was difficult to achieve given
how unrealistic the SOC estimates were, being negative or even as high as 20.

Another source of error could be the neglected effect of voltage hysteresis.
Voltage hysteresis is a phenomenon where residual chemical reactions within the
cell cause the voltage to behave differently whether the battery is charging or
discharging [1]. This can cause the OCV to be slightly lower when charging com-
pared to discharging for the same level of SOC. It is hard to tell how much of
an impact this may have had, but it should be kept in mind, and in an ideal sce-
nario the hysteresis should be modeled also, or there should be two OCV curves
to extract values from.

Overall, the Kalman filter suffered as a result of the model equations being too
simplistic. The internal resistance had no real model, and the SOC was largely
a coulomb count. Further on, the Kalman filter suffered from a lack of measure-
ments being able to correct the estimates. The sole voltage measurement that
was utilized has only an indirect relationship with the states that were being es-
timated, making the correction more difficult and the performance more reliant
on tuning. One might consider incorporating the SOC, calculated in parallel, as a
form of virtual measurement. This approach could enhance the SOC estimation,
yet it may not be sufficient since it would not introduce entirely new information
to the filter. Instead, it may be regarded as the recycling of information already
employed in the time and measurement update, given that the SOC represents
merely a refined version of the current data. Adopting a more comprehensive
battery model could potentially enhance the performance. Specifically, incorpo-
rating temperature data would introduce entirely new and critical information
about the battery states to the filter. This again underlines the potential of ther-
mal models in the scope of battery modeling given how the most easily available
measurements are current, voltage, and temperature.

One such approach could be to introduce a thermal model. For instance, the
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thermal model described in (2.1) could be utilized. This equation could be added
to the time update while modeling the temperature as an additional state. The
available temperature measurements could then be used in the measurement up-
date to refine the temperature estimate, resulting in the following system of non-
linear equations:

˙̂x =


�̇SOC

˙̂T
˙̂R0
˙̂V 1

 =


�SOC + ηITs

3600Cnom
I(OCV (�SOC)−V )

mc − hA
mc (T̂ − Tamb)

R̂0

V̂1e
−Ts
R1C1 + R1I(1 − e

−Ts
R1C1 )

 + v, (5.6)

y =
[
V
T

]
=

[
OCV (�SOC) − V̂1 − I R̂0

T̂

]
+ e. (5.7)

However, within the framework of this project, such an endeavor would have
been challenging, as it would necessitate knowing the thermal properties and
the weight and surface area of the battery. Out of m, c, A, h, and Tamb, only Tamb
is known. Therefore, the other parameters would need to be determined through
an appropriate method.

Within the context of this project, internal impedance measurements were
also available; however, this may not accurately represent real-world conditions.
However, for the sake of exploration, one could consider using these measure-
ments. By incorporating an extra measurement during the update phase when
available, valuable insights into the internal resistance could be gained. The
Kalman filter might have to be run over a larger set of cycles for this to be mean-
ingful since the impedance measurements only are available in between cycles.
The user would also have to deal with the task of deciding how these measure-
ments can be best utilized as the EIS frequency sweep is carried out with an
alternating current rather than a direct current, so there are multiple complex
values for different frequencies. The results from the first and last impedance
measurements can be seen in Figures 5.1 and 5.2. In the images, it is observable
that the majority cluster is somewhat moved further out on the real axis. How-
ever, when considering impedance as an indicator of health, it is less consistent
compared to capacity, which was the guiding parameter used by NASA. In this
project, they merely served as a sanity check for the range of the internal resis-
tance to lie within, and by comparing these impedance measurements with the
internal resistance estimates in Figures 4.15, 4.16, 4.17, and 4.18 one can see that
the range of the estimates was reasonable.

Lastly, one thing to consider is that the Kalman filters were initialized with
the nominal capacity provided by NASA, and later updated after the discharge
cycles. For the sake of purity, the update of the capacity could have been omitted,
but this would likely have minimal impact, as the update is somewhat redundant,
considering the small changes it brings in such a brief period. In a more realis-
tic scenario, these values would also need to be estimated or derived through
some means. A potentially beneficial approach for this project could have in-
volved integrating the current during discharge and subsequently updating the
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nominal capacity. If the capacity is part of the state vector, like the KF, then
the filter would become asynchronous as the capacity unlike the other states is
only updated at the end of a discharge cycle. If the capacity is instead only in-
cluded in the model matrices, like the UKF, then this operation could be carried
out in parallel with the filter, thus preventing the filter from being asynchronous.
The success of this approach is dependent upon the dataset used. For instance,
it might be effective for datasets where the battery consistently reaches full dis-
charge, as seen with this dataset. However, in scenarios with more complex charg-
ing/discharging patterns, determining the nominal capacity becomes more chal-
lenging due to the variation introduced by partial discharges. This project did
not pursue this approach due to its scope and time constraints.
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Figure 5.1: Battery impedance
at BOL shown in a polar plot
and a scatter plot.
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Figure 5.2: Battery impedance
at EOL shown in a polar plot
and a scatter plot.

Regarding the performance of the KF versus the UKF, the filters both worked
better under different circumstances. Overall they were almost on par with each
other when considering the SOH comparisons. The UKF performed superior in
the original version, while the KF’s performance was better when using the up-
dated measurement equation, providing the overall best performance. The UKF
is praised for its ability to handle non-linearity, something the standard Kalman
filter is not designed for. Thus the reason for the UKF to perform better in the
first attempt could be due to it being suited to handle the nonlinear behavior of
the modeled system. This does not however explain why it failed on the second
attempt, and finding a compelling reason is hard. It could be that it needs better
tuning, or that not enough consideration was taken to how the estimated mea-
surement is derived and not adjusting it too. However, due to the success of the
KF, this was not given much consideration. A small drawback with the UKF is
that they are a bit trickier to set up, and there is more tuning required since the
spread of the sigma points also has to be tuned. In this project, α had to be raised
to 20 for the filter to become numerically stable, which is unusually high.
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5.4 Reflections on Study Aims

To conclude this discussion some direct answers shall be given to the initially
posed research questions. Regarding the first question, there are as previously
mentioned chemical, electrical, thermal, and coupled models of Li-ion batteries.
These aim to create a model with more or less fidelity depending on the use case.

The most complex chemical models are useful for advanced research on bat-
tery development analysis. They can be used to study the diffusion of Li-ions and
to study the evolution of irreversible chemical reactions such as SEI layer forma-
tion, lithium plating, etc. They ultimately serve to gain a deep understanding
of the nature of batteries, and where the computational load is irrelevant. How-
ever, the burdensome partial differential equations make them unsuitable for any
real-time application.

In other scenarios, the computational load and time might be relevant, and
thus the chemical models are redundant. A less accurate but faster model such as
the electric or thermal model thus presents itself as a viable option. For instance
in a work like this, or for a real-time application like a battery management sys-
tem, where there are computational limitations. If the goal is to manage the heat
generation and dissipation of a battery pack, then a thermal model is the most
suitable. If the goal is to study the battery’s behavior under different load condi-
tions, then an electric model is most suitable. Sometimes the goal is to manage
both temperature and state of charge, then the most sensible option is a coupled
electric-thermal model.

Regarding the second question on how straightforward the methods are to
implement, talking about model-based solutions put to use in this project, there
are some things to consider. To begin, the methods cannot be up and running
without some foundation being laid. Certain things like a SOC-OCV mapping
must be available or be made available, and some strategy for how the nominal
capacity should be decided is needed. For thermal models, thermal properties
are also needed. But if a good foundation is made available, then the methods
are rather straightforward to implement. A contradiction could be a complex
ECM, but this can be rounded by using ready-made tools that can parameterize
these.

Regarding the third question, there can be great differences in model com-
plexity and accuracy. Within each model domain, there exists a plethora of al-
ternatives to choose from. For example, ECMs can be made extremely simplistic
by omitting the RC component and only having a resistor or made more sophisti-
cated by adding five RC components and a hysteresis component. It all depends
on how high fidelity is needed, and in this project, a classic Thevenin model was
deemed sufficient based on research. The same goes for thermal and chemical
models, as several model choices can be made. A challenge with parameterizing
a model is, for example, the quality of the data. If the sampling frequency is
too low or if the data is too noisy, the parameterization can become poor. The
complexity can also be an obstacle if tough analytical solutions are needed.

Lastly, one might consider how a model-driven approach compares to a data-
driven approach; for this, several points must be made. To begin with, completely
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circumventing setting up a model can be a great relief as merely creating and
obtaining a functioning model is an intricate art. Elmahallawy et al [3] showed
great results in SOH estimation using a double-layered artificial neural network
by training the algorithm using sequences of voltage and temperature profiles.
This approach should be considered a more direct method of estimating SOH, by
excluding some otherwise redundant work.

Apart from assessing the general health of batteries, an important area of
research in diagnostics is fault isolation, which often involves reasoning deduc-
tively to find which fault mode gives rise to faulty behavior. This goes further
than detecting behavior that deviates from nominal operations. Here, both model-
based and data-driven approaches can be powerful tools, but both have their re-
spective shortcomings. A general problem with data-driven models is that they
require large sets of data to train the algorithms, something that is not always
readily available. This inaccessibility is exacerbated when the algorithms require
training with faulty data, such as when performing fault isolation. With model-
based approaches comes the ability to model individual faults together with other
parameters, as shown by Liu et al in [9], where a thermal and electrical model is
created and several fault modes are modeled. Here the challenge is to have a well
enough parameterized model for the method to work well, something that can
be difficult as shown in this work. Still, model-driven approaches are a powerful
tool in battery diagnostics and will not fall out of fashion since the lack of faulty
data limits the potential of data-driven approaches.
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Conclusions and Future Work

6.1 Conclusion

The objective of this work was to evaluate a model-based approach for the diag-
nostics of lithium-ion batteries. Specifically, it aimed to assess how effectively
a model could be parameterized using real-world data in conjunction with sen-
sor fusion algorithms to estimate battery health. To summarize the results, it was
possible to parameterize the ECMs using recursive least-squares filters, albeit not
perfectly; despite the absence of critical elements, such as an OCV-SOC mapping.
The failure of the FFRLS filter is largely attributed to it not being designed to han-
dle noisy data, which made it an unsuitable method for this work. Conversely, the
BRLS filter’s relative success is attributed to it incorporating noise variance and
mitigating numerical instability by processing the data in batches.

Further on, the Kalman filters struggled to accurately estimate the SOC, al-
though the consequences of this were lesser than expected. At the same time,
the Kalman filters were successfully used to observe the increase in internal resis-
tance throughout the life cycle of the batteries, which could be rendered in SOH
graphs that to varying degrees succeeded in replicating the corresponding ones
provided by NASA. The partial success of the Kalman filter can be attributed to
sufficiently parameterized models and adequate tuning.

The findings of the project reflect both the potential of adaptive filtering as a
tool in model-based diagnostics and the challenges in using these methods with
real data. The choice to use equivalent circuit models was based on their preva-
lence in battery diagnostics, and their relative ability to capture key dynamic be-
havior, despite their simplicity. The use of the least squares filters was motivated
by the desire to study how adaptive filters could be used to parameterize models.
Lastly, the Kalman filters were chosen for their renowned ability to process data
and refine estimates in real time.
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Regarding the restrictive conditions that limited the outcome, much can be
summarized as an accumulation of errors at the sub-steps leading up to the final
results. The lack of a more covering model entailed certain inaccuracies, which
were further exacerbated by the shortcomings of the parameterization. As well
as the simplistic way of evaluating the SOC, and the inept OCV mapping led to
further errors. From a diagnosis perspective, it can be mentioned that there was
a general lack of redundancy, both in terms of hardware and models. Meaning
there were few measurements to reveal the state of the system, and a lack of
simple enough model equations to accurately describe the evolution of the states.
Despite this, the sensor fusion algorithms and ECMs still proved to be powerful
tools being able with adequate supervision to provide worthwhile results.

In conclusion, because Li-ion batteries are chemical storage units, they are
inherently difficult to model as they exhibit nonlinear and dynamic behavior;
the system changes over time, with usage, and as a result of environmental cir-
cumstances, and many important parameters are interdependent and nonmea-
surable. Yet these facts, together with Li-ion batteries’ surge in prominence, are
what makes battery diagnostics and modeling an intriguing field of research, one
that is highly interdisciplinary by nature.

6.2 Future work

As Per future work, it would be interesting put focus on achieving a thermal
model that can be coupled with the already working ECMs. The thermal model
does not need to be complex at the start, as it can be further developed later, and
the same goes for the ECM. This could then be used in an unscented Kalman
filter, or even more interesting in a particle filter that can handle non-linear and
non-Gaussian systems. The UKF can also be further advanced by putting it in a
square root form which could make it more numerically stable. It could also be
possible to model the nominal capacity and add it as a state. It would also be
interesting to create more advanced ECMs with more RC-pairs, or with slightly
different wiring. There are many options to choose from, and one could try and
utilize the curve-fitting toolbox in MATLAB for parameterization. Lastly, the
promising results from handling the data in batches would make it interesting to
try and implement it in a Kalman filter.
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Appendix

7.1 Result from ECM parameterization and validation

Below are some pictures from the parameterization of the ECM with BRLS for bat-
teries #6,#7, and #8, shown in Figures 7.1, 7.2, and 7.3 respectively. In addition,
the corresponding corresponding voltage response tests are shown in Figures 7.4,
7.5, and 7.6.
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Figure 7.1: Parameterization results for five intervals from battery #6. Note
that some values are too large to fit in the frame.
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Figure 7.2: Parameterization results for five intervals from battery #7. Note
that some values are too large to fit in the frame.
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Figure 7.3: Parameterization results for five intervals from battery #18. Note
that some values are too large to fit in the frame.
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Figure 7.4: Simulated voltage response, compared to observed voltage, using
the ECM parameters from the first interval in Figure 7.1.
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Figure 7.5: Simulated voltage response, compared to observed voltage, using
the ECM parameters from the third interval in Figure 7.2.
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Figure 7.6: Simulated voltage response, compared to observed voltage, using
the ECM parameters from the fourth interval in Figure 7.3.
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