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Abstract

Collected data may simultaneously be of low sample size and high dimension.
Such data exhibit some geometric regularities consisting of a single observation
being a rotation on a sphere, and a pair of observations being orthogonal.

This thesis investigates these geometric properties in some detail. Back-
ground is provided and various approaches to the result are discussed. An
approach based on the mean value theorem is eventually chosen, being the only
candidate investigated that gives explicit convergence bounds. The bounds are
tested employing Monte Carlo simulation and found to be adequate.
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Sammanfattning

Data som insamlas kan samtidigt ha en liten stickprovsstorlek men vara högdi-
mensionell. Sådan data uppvisar vissa geometriska mönster som består av att
en enskild observation är en rotation på en sfär, och att ett par av observationer
är rätvinkliga.

Den här uppsatsen undersöker dessa geometriska egenskaper mer detaljerat.
En bakgrund ges och olika typer av angreppssätt diskuteras. Till slut väljs en
metod som baseras på medelvärdessatsen eftersom detta är den enda av de
undersökta metoderna som ger explicita konvergensgränser. Gränserna testas
sedermera med Monte Carlo-simulering och visar sig stämma.
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Chapter 1

Preliminaries

This chapter contains a brief description of the concept of High Dimensional
Low Sample Size Statistics (HDLSS) and its applications. The chapter also
includes the aims and outline of this thesis.

1.1 Introduction

HDLSS is the study of a particular type of data set. These data sets are high
dimensional in the sense that a data point is a vector in Rd, where d is large in
comparison to the sample size n of the data set [6].

Multidimensional data can be represented as matrix [9], where the row
vectors correspond to independent observations and each column vector cor-
responds to a variable,

Xn×d =

x11 . . . x1d

...
. . .

xn1 xnd

 .

Many traditional statistical applications involve a scenario of many mea-
surements of one variable. Many measurements of one variable are known as a
“large sample size”. Often deployed statistical methods involve the asymptotic
behaviour of a statistic as the sample size grows without limit, i.e., is “large”
[3]. An example of statistical analysis utilizing “large” sample sizes is the central
limit theorem, where the asymptotic properties enable statistical inference. For
the matrix X above, this type of application reduce the matrix to a column
vector Xn×1.
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2 Chapter 1. Preliminaries

By contrast, the asymptotic behaviour in HDLSS derives from the number of
variables being large. In the limiting case of one high-dimensional observation,
the matrix reduces to a row vector X1×d. As it happens, these row vectors
display some geometrical regularities.

Roughly speaking, independent d−dimensional normal vectors Zi will be
distributed on a sphere of radius

√
d and the observations will be orthogonal

to each other, i.e., ∥Z1∥ = ∥Z2∥ =
√
d and Z1 ⊥ Z2 for independent high-

dimensional Z1, Z2.
While the HDLSS configuration may appear exotic, they are widely used

in statistics and machine learning. One example is gene expression. So-called
Genome Wide Association Studies may involve measuring tens of thousands of
genes. However, until recently, a problem was that collecting and sequencing
the genome was expensive, thus limiting sample sizes to perhaps a few dozen
people [1].

Another example is medical imaging which involves a large number of mea-
surements. The data gathered is a picture that can be represented as a high
dimensional vector, but the sample size may be limited due to costs. In other
cases, cost is not a limiting factor; rather, what is measured is only available
in a limited quantity. Spectral measurements in chemometrics represent one
such example, where one measurement yields information about many spec-
trum channels [6].

1.2 Aims and outline
This thesis concerns the two geometrical properties of HDLSS data, that for
Z1, Z2 d-dimensional multivariate normal random vectors we have that

i) ∥Z1∥√
d

= 1 in some sense as d −→ ∞,

ii) Z1 and Z2 are asymptotically orthogonal in some sense as d −→ ∞.

The precise statement of claims i) and ii) will be made later, but claim i)
will be of the form

∥Zi∥ =
√
d + “bounded random variation”

and in a similar fashion claim ii) will be of the form

ang(Z1, Z2) =
π

2
+ “bounded random variation”,

where “bounded random variation” will be assigned an exact meaning. This
thesis aims to prove i) and ii). The outline of this thesis is as follows.
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Chapter 2 contains definitions and some fundamental results from analysis
and probability theory. Here, the exact meaning of “some bounded variation”
— commonly referred to as “stochastic boundedness” — will be defined. The
chapter also includes a detailed discussion of the mean value theorem.

Chapter 3 contains a preliminary excursion that consists of a few examples
using some of the tools from Chapter 2 that make i) and ii) plausible. The main
result of this thesis is contained in the latter part, where the claims i) and ii)
are precisely formulated, demonstrated and explicit bounds for the stochastic
boundedness are derived.

Chapter 4 contains some simulations to demonstrate the validity of claims i)
and ii) and also contains simulations to corroborate the explicit bounds derived
in Chapter 3.

Chapter 5 contains a brief discussion regarding the results.





Chapter 2

Theoretical background

This chapter will revise some fundamental definitions and results from analysis
and probability theory, with particular emphasis on a different perspective on
the mean value theorem.

These definitions and results will then be utilized in Chapter 3 to corrob-
orate, precisely formulate, and ultimately demonstrate claims i) and ii) from
Section 1.2.

2.1 Definitions
In this section, some basic notions from vector geometry and probability theory
are defined. First, we define the concept of the transpose matrix, which allows
convenient and compact notation and definition for future operations.

Definition 1 (Transpose). The transpose M′ of a matrix M ∈ Rn×d is defined
as the new matrix

(M′)ij = Mji. (2.1)

With the transpose defined, the Euclidean norm of a vector has a compact
definition.

Definition 2 (Euclidean norm). The Euclidean norm, or Euclidean distance
from the origin, of a column vector v ∈ Rd, is defined as

∥v∥ =
√
v′v. (2.2)

Henceforth all vectors will be understood to be column vectors throughout this
thesis.

Mossberg, 2024. 5



6 Chapter 2. Theoretical background

Another central concept in vector geometry is the dot product.

Definition 3 (Dot product). The dot product of two vectors u, v ∈ Rd is defined
as

u · v = u′v. (2.3)

Remark. Definition 3 is identical to ∥u∥∥v∥ cos θ in the standard basis in Rd,
where θ is the angle between u and v. A consequence of this is that two non-zero
vectors are perpendicular if and only if their dot product is zero [7].

Next, let us recall some basic concepts from probability. A random vari-
able is a real-valued function defined on some sample space Ω.

A continuous random variable has a probability density function. The
probability density function fX of a random variable is the function that satisfies

P(X ∈ A) =

∫
A

fX(x) dx,

where A ⊆ X , and X = Im(X) is the image of X.
Finally, the so-called expectation of a random variable will be central to

our reasoning. The expectation of a random variable X is denoted by E[X] and
for a continuous random variable X is calculated from the relationship

E[X] =

∫
X
xfX(x) dx.

The precise distribution of the HDLSS random variables we will consider, is the
multivariate normal.

Definition 4 (Multivariate normal density). The random vector X = (ξ1, ..., ξd)
′

has a d-dimensional multivariate normal distribution, denoted X ∼ Nd(µ,Σ),
if its density is

fX(x) =
1

(2π)d/2|Σ|1/2
e−

1
2 (x−µ)′Σ−1(x−µ), (2.4)

where | · | denotes the determinant of a matrix and the matrix Σ is defined by

(Σ)i,j = E[ξi − µi][ξj − µj ] = Cov(ξi, ξj).

The matrix Σ has to be positive definite, i.e., the quadratic form x′Σx has
to be positive for any nonzero x ∈ Rd.
Remark. Later we will utilize the standard d-dimensional multivariate normal
density. This is not a restriction, since X ∼ Nd(µ,Σ) can be transformed to
the coordinates

Z = Σ−1/2(X − µ),
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which has the Jacobian determinant |JZ | = |Σ|1/2. It then follows from equation
(2.4) and the transformation theorem that

fZ(z) =
1

(2π)d/2
e−

1
2 z

′z

or equivalently, Z ∼ Nd(0, I), where I is the identity matrix [5].

We will also require a sense of convergence of random variables, while there
are several such notions available, we will use what is called “convergence in
probability”.

Definition 5 (Convergence in probability). A sequence of random variables
{Xn}∞n=1 is said to converge in probability to another random variable X, de-
noted Xn

p−−→ X, if for every δ > 0

lim
n−→∞

P(|Xn −X| > δ) = 0. (2.5)

Critically we will also use the concept of “stochastically bounded”, alterna-
tively called bounded in probability [8].

Definition 6 (Bounded in probability). A sequence of random variables {Xn}∞n=1

is said to bounded in probability, written Xn = Op(an), if for every ε > 0 there
exists Cε and nε such that for every n > nε

P(|Xn/an| > Cε) < ε. (2.6)

Definition 6 would provide the exact meaning of “bounded random variation”
mentioned in Section 1.2, which will be discussed later.

2.2 Some fundamental results
In this section, we revisit some useful results from analysis and probability
theory.

2.2.1 Taylor’s theorem
We first formulate Taylor’s theorem, a result pertaining to the exact relationship
between a function f and its approximation in the standard basis of the space
of polynomials of order r, Pr.

Theorem 1 (Taylor’s theorem). If a function f has derivatives of order r + 1,
then
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f(x)−
r∑

i=0

f (i)(a)(x− a)i

i!
=

∫ x

a

f (r+1)(t)

r!
(x− t)r dt. (2.7)

Proof. The theorem follows from the fundamental theorem of calculus and par-
tial integration. See [3] for details.

2.2.2 Mean value theorem

We next consider the mean value theorem, which can be considered a conse-
quence of Taylor’s theorem but can also be independently formulated.

Theorem 2 (Mean value theorem). If f is continuously differentiable on (a, x)
and continuous on [a, x], then

f ′(c) =
f(x)− f(a)

x− a
, (2.8)

for some c ∈ (a, x).

Proof. One way to prove this is to set r = 0 in equation (2.7) and use the mean
value theorem for integrals. See [4] for other ways to prove this.

2.2.3 A note on the mean value theorem

Theorem 2 states that a differentiable function f on (a, x) and continuous on
[a, x] may be written as

f(x) = f(a) + f ′(c)(x− a), (2.9)

where c ∈ (a, x) if x > a. If instead x < a, equation (2.9) still applies, but
c ∈ (x, a).

In equation (2.9), c is in fact a function of x, emphasizing the composite
nature of this equation and rewriting yields

(f ′ ◦ c) (x) = f(x)− f(a)

x− a
. (2.10)

Thus, the linear coefficient in equation (2.9) can be expressed as a function
of x. The function f ′ ◦ c will play a role in later calculations on norms and
angles, where the first argument of the composition will be the derivative of the
square root and the arccosine, respectively. More specifically, we will utilize the
maximum modulus of the function defined by equation (2.10).
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Obtaining this maximum is straightforward in the case of g(x) =
√
x. Let

x ̸= a and equation (2.10) then yields

max
x≥0

∣∣ (g′ ◦ c) (x)∣∣ = max
x≥0

1

2
√
c(x)

= max
x≥0

√
x−

√
a

x− a

= max
x≥0

√
x−

√
a

(
√
x−

√
a)(

√
x+

√
a)

=
1√
a
.

(2.11)

The calculation is illustrated in Figure 2.1 for a = 1.

0 2 4 6 8 10

0.4

0.6

0.8

1

x

g
′
◦
c(
x
)

√
x−

√
a

x−a

Figure 2.1: Remainder for the mean value theorem square root
function expansion. Note that the maximum modulus is bounded.

We shall also use a similar result for h(x) = arccos(x). In this case, let x ̸= 0,
a = 0 and equation (2.10) yields the maximum modulus

max
x∈[−1,1]

∣∣ (h′ ◦ c) (x)
∣∣ = max

x∈[−1,1]

∣∣∣∣∣ −1√
1− c(x)2

∣∣∣∣∣ = max
x∈[−1,1]

∣∣∣∣∣arccosx− π
2

x

∣∣∣∣∣
=

π

2
.

(2.12)

This can be seen because if x > 0, then h′ ◦ c is decreasing

d

dx

(
arccos(x)− π

2

x

)
=

d

dx

(
−arcsin(x)

x

)
= −

x√
1−x2

− arcsin(x)

x2
< 0,
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where we have used the fact that x = sin(y) and tan(y) > y for y ∈ (0, π
2 ). A

similar argument will show that h′ ◦ c is increasing for x < 0. For x = 0 note
that

lim
x−→0

(
arccos(x)− π

2

x

)
= lim

x−→0

(
−arcsin(x)

x

)
= lim

y−→0

(
− 1

sin(y)
y

)
= −1.

Finally, evaluating h′ ◦ c at the boundary and confirming the claim of its maxi-
mum modulus

arccos(x)− π
2

x

∣∣∣∣∣
x=1

=
arccos(x)− π

2

x

∣∣∣∣∣
x=−1

= −π

2
.

The calculation is illustrated in Figure 2.2.

−1 −0.5 0 0.5 1

−1.5

−1.4

−1.3

−1.2

−1.1

x

h
′
◦
c(
x
)

arccos(x)−π
2

x

Figure 2.2: Remainder for the mean value theorem arccosine
function expansion. Note that the maximum modulus is bounded.

2.2.4 Markov’s inequality
Markov’s inequality relates a non-negative random variable to its expectation.

Theorem 3 (Markov’s inequality). For a > 0 and ξ ≥ 0 the following holds

P(ξ ≥ a) ≤ E[ξ]

a
.
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Proof. See [5] for details.

2.2.5 Law of large numbers
We will heavily utilize Bernoulli’s celebrated theorem, the law of large numbers,
that rigorously establishes the intuitive notion that averaging measurements will
eventually increase precision.

Theorem 4 (Law of large numbers). Let ξ1, ξ2, ..., ξd be i.i.d. random variables
with finite variance, E[ξ] = µ and let

ξ̄d =
1

d

d∑
k=1

ξk,

it then follows that ξ̄d
p−−→ µ as d → ∞.

Proof. To show that ξ̄d
p−−→ µ, it is sufficient according to Definition 5 to demon-

strate that for every δ > 0,

lim
d−→∞

P(|ξ̄d − µ| > δ) = 0.

Let Var(ξ) < ∞ and noting that independence implies zero covariance, then for
every δ > 0,

P
(
|ξ̄d − µ| > δ

)
= P

(∣∣∣∣∣1d
d∑

k=1

ξk − µ

∣∣∣∣∣ > δ

)
= P

∣∣∣∣∣1d
d∑

k=1

(ξk − µ)

∣∣∣∣∣
2

> δ2


≤

E[
∑d

k=1(ξk − µ)]2

n2δ2
=

∑d
k=1 E[ξk − µ]2 +

∑
k ̸=l Cov(ξk, ξl)

n2δ2

=
dVar(ξ) + d(d− 1) · 0

d2δ2
=

Var(ξ)

dδ2
−→ 0, d −→ ∞,

where the inequality follows from an application of Theorem 3. See [2] for more
details.

2.2.6 Continuous mapping theorem
The following result will be used and establishes that the limit of a continuous
mapping is the mapping of the limit.

Theorem 5 (Continuous mapping theorem). Let {Xn}∞n=1, Xi ∈ Rk, be a
sequence of random variables and g : Rk → Rm a continuous function. It then
follows that if Xn

p−−→ X then g(Xn)
p−−→ g(X).

Proof. See [10] for details.
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2.2.7 Slutsky’s theorem
Slutsky’s theorem is central to both probability theory and statistical inference.
We mainly use it as an aid to establish the final result, the delta method.

Theorem 6 (Slutsky’s theorem). Let Xn and Yn be sequences of random vari-
ables. Suppose that

Xn
d−−→ X and Yn

p−−→ a,

where a is a constant. Then

Xn + Yn
d−−→ X + a

Xn − Yn
d−−→ X − a

Xn · Yn
d−−→ X · a

Xn

Yn

d−−→ X

a
, for a ̸= 0.

Proof. The reasoning relies on the distance |Yn−a| being under control. See [5]
for details.

2.2.8 Delta method
The next theorem was the inspiration for the method that we will ultimately
use to establish the geometric claims in detail. An example in Chapter 3 will
illustrate why we will not use the powerful delta method directly.

Theorem 7 (First order delta method). Let Xn be a sequence of random
variables that satisfies

√
n (Xn − θ) −→ N (0, σ2) in distribution. For a given

function g and a specific value of θ, suppose that g′(θ) exists and is not 0. Then

√
n
(
g(Xn)− g(θ)

)
−→ N

(
0,
(
σg′(θ)

)2) in distribution.

Proof. The theorem follows from Taylor’s Theorem 1 and Slutsky’s theorem 6,
see [3].



Chapter 3

Main results

This chapter will utilize the results from Chapter 2 to make credible, precisely
formulate and ultimately demonstrate claims i) and ii) from Section 1.2.

Section 3.1 contains several examples that contain analysis of claims i) and
ii) utilizing the law of large numbers and the delta method from Chapter 2.
While these powerful methods allow for simple derivation of claims i) and ii),
they have drawbacks that are briefly considered.

Section 3.2 and 3.4 contain the precise statement of i) and ii) and a proof
that remedies the mentioned drawbacks illustrated in Section 3.1. The method
employed here yields explicit stochastic bounds. These bounds are corrobo-
rated by simulations in Chapter 4. Finally, Section 3.3 contains a simple yet
interesting consequence of claim i) that is formulated and proved as a corollary.

3.1 Examples
Theorem 4 and Theorem 5 from Chapter 2 can make plausible the claim that
for high d-dimensional multivariate Z it is roughly the case that ∥Z∥ =

√
d.

This is illustrated in Example 1.

Example 1 (Euclidean norm from the law of large numbers). Let Z = (ξ1, ..., ξd)
′

∼ Nd(0, I). Then according to Definition 2

∥Z∥ =
√
Z ′Z =

√√√√ d∑
k=1

ξ2k =
√
d

√
ξ̄2,

where ξ̄2 = 1
d

∑d
k=1 ξ

2
k. From Theorem 4 it now follows that ξ̄2

p−−→ 1 and then

Mossberg, 2024. 13



14 Chapter 3. Main results

it follows from Theorem 5 that
√
ξ̄2

p−−→ 1. Thus the claim that ∥Z∥ ≈
√
d has

been made more plausible.

Theorem 4 and Theorem 5 from Chapter 2 can also make plausible the
claim that for high d-dimensional multivariate Z1, Z2 it is roughly the case that
Z1 ⊥ Z2. This is illustrated in Example 2.

Example 2 (Pairwise orthogonality from the law of large numbers). Let Z1 =

(ξ1, ..., ξd)
′, Z2 = (η1, ..., ηd)

′ iid∼ Nd(0, I). According to the remark subsequent
to Definition 3 the angle between Z1 and Z2 is

ang(Z1, Z2) = arccos

(
Z1 · Z2

∥Z1∥∥Z2∥

)
= arccos

 ∑d
i=1 ξiηi√∑d

i=1 ξ
2
i

√∑d
i=1 η

2
i


= arccos

(
ξ̄η√
ξ̄2
√

η̄2

)
,

and from Theorem 4 and 5 and the independence of ξ and η it follows that

ξ̄η√
ξ̄2
√
η̄2

=
1
d

∑d
i=1 ξiηi√
ξ̄2
√
η̄2

p−−→ E[ξη]√
E[ξ2]

√
E[η2]

=
0 · 0
1 · 1

= 0.

Another application of Theorem 5 yields

ang(Z1, Z2)
p−−→ π

2
,

which is the desired result Z1 ⊥ Z2.

Remark. Example 1 and 2 shows that claims i) and ii) are both closely connected
to the law of large numbers.

Claim i) can also be approached by means of Theorem 7. This is illustrated
in Example 3.

Example 3 (Delta method approach). Let Z = (ξ1, ..., ξd)
′ ∼ Nd(0, I). An

approach to showing that ∥Z∥ ≈
√
d is to choose g(x) =

√
x, Xd = 1

d

∑d
k=1 ξ

2
k ,

θ = E[Xd] = 1 in Theorem 7. Then

∥Z∥ =
√
d+ 21/2

√
d

√
Xd − 1√

2︸ ︷︷ ︸
d−−→N (0,1)

d−→
√
d+ 21/2N (0, 1) =

√
d+Op(1)

according to Theorem 7.
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Let us briefly consider examples 1–3. Example 1 and 2 have made the claims
i) and ii) of the geometric properties of HDLSS data more plausible, however,
no information about the limiting process is acquired. This is partially remedied
by the approach with the delta method in Example 3, where the behavior of the
stochastic boundedness can be deduced as Op(1). Full knowledge of the stochas-
tic boundedness, however, evades the delta method approach. The details of the
stochastic boundedness are lost in the limiting process when Theorem 7 is de-
rived, a consequence of the central limit theorem, and the remainder vanishes
in probability in the proof.

The subsequent sections of this chapter will deal with claims i) and ii) in more
detail, establishing explicit bounds for the asymptotic behavior of the Euclidean
norm and angle in the spirit of Definition 6. The method will essentially be a
“zeroth order” delta method, dealing explicitly with the remainder term.

3.2 Euclidean norm of high dimensional data

Claim i) is the geometric property of HDLSS data, that the data will roughly be
distributed on a sphere with radius

√
d. In the following theorem, this statement

is made precise and proven.

Theorem 8 (Euclidean norm of a HDLSS random variable). Let Z = (ξ1, ..., ξd)
′

∼ Nd(0, I). With the distance defined as in Definition 2 and the stochastically
bounded term defined as in Definition 6 it follows that

∥Z∥ = d1/2 +Op(1). (3.1)

Proof. First note that according to Definition 2 we have

∥Z∥ =
√
Z ′Z =

√√√√ d∑
k=1

ξ2k =

√√√√ d∑
k=1

Yk,

where Yk ∼ χ2(1). Utilizing equation (2.9) and expanding around a = E[Yk] = 1
yields√√√√ d∑

k=1

Yk =
√
d
√

Ȳ =
√
d

(
1 +

1

2
√
c
(Ȳ − 1)

)
=

√
d+

√
d(Ȳ − 1)

2
√
c

, (3.2)

for some c that is a function of Ȳ , and range as discussed in Section 2.2.3. It
remains to be shown that the last term in equation (3.2) is Op(1).
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According to Definition 6 we need to show that for every ε > 0 there exists
Cε such that whenever d > Nε,

P

(∣∣∣∣∣
√
d(Ȳ − 1)

2
√
c

∣∣∣∣∣ > Cε

)
< ε. (3.3)

First note that

P

(∣∣∣∣∣
√
d(Ȳ − 1)

2
√
c

∣∣∣∣∣ > Cε

)
≤ P

(∣∣∣∣∣max
ω∈Ω

(
1

2
√
c ◦ Ȳ (ω)

)
√
d(Ȳ − 1)

∣∣∣∣∣ > Cε

)

= P

(∣∣∣∣√d(Ȳ − 1)

∣∣∣∣ > Cε

)
since{

ω ∈ Ω :

∣∣∣∣
√
d(Ȳ (ω)− 1)

2
√
c

∣∣∣∣ > Cε

}
⊆
{
ω ∈ Ω :

∣∣√d(Ȳ (ω)− 1)
∣∣ > Cε

}
. (3.4)

To see this, let

s ∈
{
ω ∈ Ω :

∣∣∣∣
√
d(Ȳ (ω)− 1)

2
√
c

∣∣∣∣ > Cε

}
.

It then follows that∣∣∣∣∣max
ω∈Ω

( √
d

2
√
c ◦ Ȳ (ω)

)
(Ȳ (s)− 1)

∣∣∣∣∣ ≥
∣∣∣∣
√
d(Ȳ (s)− 1)

2
√
c

∣∣∣∣ > Cε,

hence

s ∈

{
ω ∈ Ω :

∣∣∣∣max
ω∈Ω

(
d

2
√
c ◦ Ȳ (ω)

)
(Ȳ (ω)− 1)

∣∣∣∣ > Cε

}

=

{
ω ∈ Ω :

∣∣√d(Ȳ (ω)− 1)
∣∣ > Cε

}
,

where the equality is a consequence of equation (2.11) and that Im(Ȳ ) = [0,∞).
Now, utilizing Markov’s inequality from Theorem 3 and the fact that Var(Ȳ ) =
2
d it finally follows that

P

(∣∣∣∣∣
√
d(Ȳ − 1)

2
√
c

∣∣∣∣∣ > Cε

)
≤ P

(∣∣∣∣√d(Ȳ − 1)

∣∣∣∣ > Cε

)

= P

(∣∣∣∣√d(Ȳ − 1)

∣∣∣∣2 > C2
ε

)
≤ dE[Ȳ − 1]2

C2
ε

=
2

C2
ε

< ε,
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if we choose Cε >
√

2
ε and this choice will always satisfy equation (3.3).

Remark. In arriving at Cε in Theorem 8, no consideration of the dimension d
was necessary, i.e., for every ε > 0 there exists a Cε such that equation (3.3)
is satisfied for all d ∈ N. Simulations in the next chapter will corroborate this
result.

In addition, with minimal adjustments in the proof an analogous result of
equation (3.1) holds for other Lp norms than p = 2, i.e., under similar assump-
tions on Z, it holds that

∥Z∥p = d1/p +Op(1).

3.3 Pairwise Euclidean distance of high dimen-
sional data

We formulate a related property of HDLSS data, the fact that the pairwise
Euclidean distance is approximately a deterministic number, as a corollary to
Theorem 8.

Corollary 8.1. Let Z1 = (ξ1, ..., ξd)
′, Z2 = (η1, ..., ηd)

′ iid∼ Nd(0, I) and inde-
pendent. Then with the definitions of Theorem 8, it follows that

∥Z1 − Z2∥ = (2d)1/2 +Op(1). (3.5)

Proof. For univariate standard, independent normal distributions ξi and ηi it
holds that ξi − ηi

d
=

√
2ζi where ζi ∼ N (0, 1). Hence,

∥Z1 − Z2∥ =

√√√√ d∑
k=1

(ξk − ηk)2
d
=

√√√√ d∑
k=1

(
√
2ζk)2 =

√
2

√√√√ d∑
k=1

ζ2k

=
√
2
(
d1/2 +Op(1)

)
= (2d)1/2 +Op(1),

where the penultimate equality is an application of Theorem 8 and the ultimate
equality is an immediate property of stochastic boundedness.
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3.4 Pairwise orthogonality of high dimensional
data

Claim ii) is that one of the geometric properties of HDLSS data is that two
observations will be roughly pairwise orthogonal. In the following theorem, this
statement is made precise and proven.

Theorem 9 (Pairwise orthogonality of HDLSS random variables). Let Z1 =

(ξ1, ..., ξd)
′, Z2 = (η1, ..., ηd)

′ iid∼ Nd(0, I) and independent. With the angle
defined according to the remark subsequent to Definition 3 and the stochastically
bounded term defined according to Definition 6, it follows that

ang(Z1, Z2) =
π

2
+Op(d

−1/2). (3.6)

Proof. First note that according to Definition 3 we have

ang(Z1, Z2) = arccos

(
Z1 · Z2

∥Z1∥∥Z2∥

)
,

which is well-defined because of the Cauchy-Schwarz inequality. Utilizing equa-
tion (2.9) and expanding around a = 0 yields

ang(Z1, Z2) = arccos

(
Z1 · Z2

∥Z1∥∥Z2∥

)
=

π

2
+

−1√
1− c2

(
Z1 · Z2

∥Z1∥∥Z2∥

)
(3.7)

=
π

2
+

−1√
1− c2

∑d
i=1 ξiηi√∑d

i=1 ξ
2
i

√∑d
i=1 η

2
i

for some c that is a function of both Z1 and Z2, and range as discussed in Section
2.2.3. It remains to be shown that the last term in equation (3.7) is Op(d

−1/2).
According to Definition 6 we need to show that for every ε > 0 there exists

Cε such that whenever d > Nε

P

∣∣∣∣∣√d
−1√
1− c2

∑d
i=1 ξiηi√∑d

i=1 ξ
2
i

√∑d
i=1 η

2
i

∣∣∣∣∣ > Cε

 < ε. (3.8)

Note that according to Theorem 4 and Theorem 5 it follows that for ζ ∼ N (0, 1)√√√√ 1

n

d∑
i=1

ζ2i
p−−→
√
E[ζ2] = 1.
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This together with Definition 5 implies that for every ε > 0 and every δ > 0
there exists a Nδ,ε such that if d > Nδ,ε then

P

∣∣∣∣∣
√√√√1

d

d∑
i=1

ζ2i − 1

∣∣∣∣∣ > δ

 <
ε

3
. (3.9)

Further note that since ξi and ηj are independent,

E
[
ξ̄η
]2

= E

[
1

d

d∑
i=1

ξiηi

]2
=

1

d2
E

 d∑
i=1

(ξiηi)
2 +

∑
i̸=j

ξiηiξjηj

 =
1

d
.

Using an argument analogous to the one in equation (3.4), the result from
equation (2.12) and

Im(Z) = Im

(
Z1 · Z2

∥Z1∥∥Z1∥

)
= [−1, 1],

where Z is defined as the argument of the arccosine in equation (3.7), it now
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follows that

P

∣∣∣∣∣√d
−1√
1− c2

∑d
k=1 ξkηk√∑d

k=1 ξ
2
k

√∑d
k=1 η

2
k

∣∣∣∣∣ > Cε


≤ P

∣∣∣∣∣√dmax
ω∈Ω

(∣∣∣∣ −1√
1− (c ◦ Z(ω))2

∣∣∣∣
) ∑d

k=1 ξkηk√∑d
k=1 ξ

2
k

√∑d
k=1 η

2
k

∣∣∣∣∣ > Cε


= P

∣∣∣∣∣√d
(π
2

) 1
d

∑d
k=1 ξkηk√

1
d

∑d
k=1 ξ

2
k

√
1
d

∑d
k=1 η

2
k

∣∣∣∣∣ > Cε


= P

∣∣∣∣∣
√
dπ 1

d

∑d
k=1 ξkηk

2
√

1
d

∑d
k=1 ξ

2
k

√
1
d

∑d
k=1 η

2
k

∣∣∣∣∣ > Cε

∣∣∣∣∣|√ 1
d

∑d
k=1 ξ2k − 1| ≤ δ ∩ |

√
1
d

∑d
k=1 η2

k − 1| ≤ δ


× P

(∣∣∣∣√ 1
d

∑d
k=1 ξ

2
k − 1

∣∣∣∣ ≤ δ ∩
∣∣∣∣√ 1

d

∑d
k=1 η

2
k − 1

∣∣∣∣ ≤ δ

)

+ P

∣∣∣∣∣
√
dπ 1

d

∑d
k=1 ξkηk

2
√

1
d

∑d
k=1 ξ

2
k

√
1
d

∑d
k=1 η

2
k

∣∣∣∣∣ > Cε

∣∣∣∣∣|√ 1
d

∑d
k=1 ξ2k − 1| > δ ∪ |

√
1
d

∑d
k=1 η2

k − 1| > δ


× P

(∣∣∣∣√ 1
d

∑d
k=1 ξ

2
k − 1

∣∣∣∣ > δ ∪
∣∣∣∣√ 1

d

∑d
k=1 η

2
k − 1

∣∣∣∣ > δ

)
≤ P

(∣∣∣∣∣
√
dπ 1

d

∑d
k=1 ξkηk

2(1− δ)2

∣∣∣∣∣ > Cε

)(
1− ε

3

)2
+

ε

3
+

ε

3
−
(ε
3

)2
< P

∣∣∣∣∣
√
dπ 1

d

∑d
k=1 ξkηk

2(1− δ)2

∣∣∣∣∣
2

> C2
ε

+
2

3
ε ≤ dπ2E[ξ̄η]2

4(1− δ)4C2
ε

+
2

3
ε =

π2

4(1− δ)4C2
ε

+
2

3
ε < ε

if we choose Cε >
π

2(1−δ)2
√

3
ε and let d > Nδ,ε.

Remark. The integer Nδ,ε may be found as the smallest integer satisfying equa-
tion (3.9) which can alternatively be expressed as

Nδ,ε =

⌈
inf

argmax
d

[ d(1+δ)2∫
d(1−δ)2

1

2d/2Γ(d/2)
sd/2−1e−s/2ds > 1− ε

3

]⌉, (3.10)

where ⌈ • ⌉ is the ceiling function and [ • ] is the Iverson bracket defined by
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[Q] =

{
1, if Q is true;
0 otherwise.





Chapter 4

Simulations

In this chapter, the method and result of simulations will be discussed, with the
primary goal being to corroborate the derived Cε relationship for the two cases
of stochastic boundedness discussed in Section 3.2 and 3.4,

Cε >

√
2

ε
(4.1)

and

Cε >
π

2(1− δ)2

√
3

ε
, (4.2)

respectively.
The immediate question concerning equation (4.1) and 4.2 is if the regions

are correct, i.e., does choosing Cε consistent with the respective regions sat-
isfy equation (3.3) and (3.8) — something simulations can make more credible.
Simulations also indirectly test the reasoning in Section 2.2.3 and equation (3.4).

4.1 Initial simulations

Some initial simulations may be carried out to illustrate the geometric properties
mentioned in Chapter 1.

Make a draw Dd from a d-dimensional multivariate random variable, calcu-
late its Euclidean norm ∥Dd∥ and create the ordered pair (d, ∥Dd∥). Connect
the pairs by a line graph. The result can be inspected in Figure 4.1 and for
reference

√
d is plotted in the same figure.

Mossberg, 2024. 23
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Figure 4.1: Draws of the Euclidean norm of a d-dimensional
random vector with

√
d plotted for reference.

Several observations may be made. First, the simulation is consistent with
equation (3.1), i.e. the deviation from

√
d looks to be bounded. Second, the

absolute difference between
√
d and the draw ∥Dd∥ appears to be fixed, while

the relative difference appears to tend to zero.

Next, we can illustrate the orthogonality property. Make a draw of a pair D′
d

of independent d-dimensional multivariate random variables, calculate the angle
ang(D′

d) between them, and create the ordered pair (d, ang(D′
d)). Connect the

pairs by a line graph. The result can be inspected in Figure 4.2 and for reference
π
2 is plotted in the same figure.
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Figure 4.2: Draws of an angle between two d-dimensional random
vectors with π

2 plotted for reference.

We note that Figure 4.2 is consistent with equation (3.6), and here both the
absolute and relative error appears to tend to zero.

4.2 Simulations testing the bounds for the Eu-
lidean norm

To test the bounds in equation (4.1), we need to verify that if we choose Cε in
a way consistent with this equation, then

P

(∣∣∣∣∣∥Z∥ −
√
d

∣∣∣∣∣ > Cε

)
< ε.

To test this, we will generate N draws from a d-dimensional multivariate normal
distribution. Having acquired a Monte Carlo sample of the distribution, we can
calculate an ordered pair (ε, Cε) from the equality
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P

(∣∣∣∣∣∥Z∥ −
√
d

∣∣∣∣∣ > Cε

)
= ε.

The result can then be inspected visually in the form of a line graph con-
necting the pairs and be compared to the region in the (ε, Cε)-plane prescribed
by equation (4.1). If the bound is successful, the region indicated by equation
(4.1) should be above the line graph.

The result for d = 100 dimensions and N = 100000 draws is illustrated in
Figure 4.3.
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0 0.2 0.4 0.6 0.8 1

C
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)

ε

Computed region

Monte carlo

Figure 4.3: Plot of the region specified by equation (4.1) and the
(ε, Cε) pairs acquired from a Monte Carlo simulation connected by
a line graph.
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4.3 Simulations testing the bounds for pairwise
orthogonality

In a similar fashion to Section 4.2, to test the bounds given by equation (4.2)
we need to verify that if we choose Cε in a way consistent with this equation,
then

P

(
√
d

∣∣∣∣∣ arccos
(

Z1 · Z2

∥Z1∥∥Z2∥

)
− π

2

∣∣∣∣∣ > Cε

)
< ε.

To test this, we will generate N independent pairs from a d-dimensional mul-
tivariate normal distribution. Having acquired a Monte Carlo sample of the
distribution, we can calculate an ordered pair (ε, Cε) from the equality

P

(
√
d

∣∣∣∣∣ arccos
(

Z1 · Z2

∥Z1∥∥Z2∥

)
− π

2

∣∣∣∣∣ > Cε

)
= ε.

The result can then be inspected visually in the form of a line graph con-
necting the pairs and be compared to the region in the (ε, Cε)-plane prescribed
by equation (4.2). If the bound is successful, the region indicated by equation
(4.2) should be above the line graph.

The result for d = 100 dimensions and N = 100000 draws is illustrated in
Figure 4.4.
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Figure 4.4: Plot of the region specified by equation (4.2) and the
(ε, Cε) pairs acquired from a Monte Carlo simulation connected by
a line graph.



Chapter 5

Discussion

This thesis aimed to formulate and prove in a precise manner the key geometric
properties of HDLSS random variables, the fact that they are pairwise orthog-
onal and distributed on a sphere. This has been accomplished.

The method employed, utilizing the mean value theorem, allowed for testable
stochastic bounds Cϵ. The Cϵ bounds were tested and found successful in Chap-
ter 4. One observation that can be made from Chapter 4 is that the bounds
are generous. One possible reason for the large gap is the utilization of the
mean value theorem in the way employed. Another possible reason is the use of
Markov’s inequality, which is a coarse inequality. It would therefore be interest-
ing to explore alternatives to the use of the mean value theorem and Markov’s in-
equality. One replacement for Markov’s inequality could be the Chernoff bound

P (X ≥ a) ≤ inf
t≥0

(
MX(t)e−ta

)
,

where MX(t) is the generating function for X. The Chernoff bound is less
coarse so it is possible that the bounds would be less generous. The use of the
mean value theorem could be replaced by conditioning and larger utilization of
convergence in probability.

Another interesting aspect to explore further would be to attempt a gen-
eralization of the result. As noted in Section 3.2 the result generalizes to the
p-norm. Inspired by the p-norm result, one could for example explore what con-
ditions on the norm are necessary to have an analogous result for the spherical
distribution or what the necessary conditions on the inner product are to have
an analogous result for the orthogonality property.

Mossberg, 2024. 29
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Appendix A

Simulation code

This appendix contains the code used to create the graphs in chapter 4.

A.1 Initial simulations code

%The draw of the angle of a single pair
%of d-dimensional random vectors
%d dimensions
d=10000;
for i=1:d

r = randn(i,1);
X(i) = sqrt((r.’)*r);

end

x = linspace(0,d,d);
z = sqrt(x);
plot(x,X, ’color’, ’b’)
hold on
plot(x,z, ’color’, ’r’, ’LineWidth’,1.5)
xlabel(’d’)
ylabel(’Radius’)
ylim([0 1.3*sqrt(d)])
legend(’Simulated draws’,’\surdd’)
legend(’Location’,’eastoutside’)
legend boxoff
set(gca,’box’,’off’)
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%The draw of the angle of a single pair
%of d-dimensional random vectors
%d dimensions
d=10000;
for i=1:d

r = randn(i,1);
s = randn(i,1);
X(i) = acos((r’*s)/((sqrt(s.’*s))*(sqrt(r.’*r))));

end

x = linspace(0,d,d);
plot(x,X, ’color’, ’b’)
z = ((pi/2)*ones(1, d));
hold on
plot(x,z, ’color’, ’r’, ’LineWidth’,1.5)
xlabel(’d’)
ylabel(’Angle’)
ylim([0 3])
legend(’Simulated draws’,’\pi/2’)
legend(’Location’,’eastoutside’)
legend boxoff
set(gca,’box’,’off’)

A.2 Euclidean norm code

%Computed and simulated quantiles for the Euclidean norm
%d dimensions
%N simulations
d = 100;
N = 100000;
X = zeros(1,N);

for i=1:N
r = randn(d,1);
X(i) = sqrt((r.’)*r) - sqrt(d);

end

C = 120;
[counts,centers] = hist(X, (2*C));
P = counts/N;
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%m is the vector of quantiles,
%p the vector of corresponding probabilities.
m = zeros(1,C);
p = zeros(1,C);

for k=1:C
PE = 0;
for i=1:(2*C)

if abs(centers(i)) > (k/50)
PE = PE + P(i);

end
end
m(k) = k/50;
p(k) = PE;

end

figure
x = linspace(0.055,1,100);
z = sqrt(x);
y = sqrt(2)./z;
ylim([0 6])
patch([x fliplr(x)], [y max(ylim)*ones(size(y))], ’b’,’FaceAlpha’,.3)
xlabel(’\epsilon’)
ylabel(’C(\epsilon)’)
hold on
plot(p,m, ’color’, ’r’)
legend(’Computed region’,’Monte carlo’)
legend(’Location’,’eastoutside’)
legend boxoff

A.3 Pairwise orthogonality code

%Computed and simulated quantiles for orthogonality property
%d dimensions
%N simulations
d = 100;
N = 100000;
X = zeros(1,N);
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for i=1:N

%r = randn(d,1);
a = randn(d,1);
b = randn(d,1);
%l = sqrt((r.’)*r);
%rv = l - sqrt(d);
X(i) = sqrt(d)*(acos((a’*b)/(sqrt(a’*a)*sqrt(b’*b)))-pi/2);

end

C = 200;
[counts,centers] = hist(X, (2*C));
P = counts/N;
p = zeros(1,C);
m = zeros(1,C);
PE = 0;

for k=1:C
PE = 0;
for i=1:(2*C)

if abs(centers(i)) > (k/50)
PE = PE + P(i);

end
end
m(k) = k/50;
p(k) = PE;

end

figure
x = linspace(0.077,1,100);
delta = 0.01;
z = ((1-delta)^2)*sqrt(x);
y = pi*sqrt(3/4)./z;
ylim([0 10])
patch([x fliplr(x)], [y max(ylim)*ones(size(y))], ’b’,’FaceAlpha’,.3)
xlabel(’\epsilon’)
ylabel(’C(\epsilon)’)
hold on
plot(p,m, ’color’, ’r’)
legend(’Computed region’,’Monte carlo’)
legend(’Location’,’eastoutside’)
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legend boxoff
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