
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2023

Real-Time Certified MPC
for a Nano Quadcopter

Arvid Linder

Master of Science Thesis in Electrical Engineering

Real-Time Certified MPC for a Nano Quadcopter

Arvid Linder

LiTH-ISY-EX--23/5627--SE

Supervisor: Daniel Arnström
isy, Linköping University

Examiner: Daniel Axehill
isy, Linköping University

Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2023 Arvid Linder

Sammanfattning

Det finns en ständig efterfrågan för mer avancerade metoder för reglering. Mo-
dellprediktiv reglering (MPC) är en sådan avancerad metod som kräver att ett
optimeringsproblem löses varje gång en ny styrsignal ska beräknas. Att lösa op-
timeringsproblem kan vara en komplicerad uppgift, och det är svårt att på för-
hand veta hur lång beräkningstid som krävs. För att MPC ska kunna användas i
tillämpningar i hög hastighet och med begränsad beräkningskraft är det nödvän-
digt att ha en effektiv lösningsalgoritm, och även en korrekt uppskattning av den
längsta lösningstiden som behövs.

Aktuell forskning har gett metoder både för att effektivt lösa kvadratiska op-
timeringsproblem, samt för att kunna hitta en övre gräns på beräkningstiden. I
den här rapporten appliceras dessa metoder på ett styrsystem baserat på MPC
i en Crazyflie 2.0, vilket är en nanodrönare. Styrsystemet är implementerat helt
och hållet på drönarens processor, med den begränsade datorkraft som det inne-
bär. Ett problem med en storlek på 36 optimeringsvariabler och 60 bivillkor löses
med en frekvens på 100 Hz.

Förutom att implementera MPC har även en metod för att bestämma en övre
gräns på beräkningstiden testats. Det ger en möjlighet att certifiera styrstytemet
för att garanterat kunna beräkna en ny styrsignal inom den övre tiden, vilket i sin
tur innebär att styrsytemet kan certificeras för realtidsanvändning i långsammare
frekvenser än den övre gränsen. I rapporten visas en certifierad implementation,
och data från flygning med en certifierad regulator finns med i resultatet.

iii

Abstract

There is a constant demand to use more advanced control methods in a wider
field of applications. Model Predictive Control (MPC) is one such control method,
based on recurrently solving an optimization problem for determining the opti-
mal control signal. To solve an optimization problem can be a complex task, and
it is difficult to determine beforehand how long time it will take. For a high-speed
application with limited computational power, it is necessary to have an efficient
algorithm to solve the optimization problem, and an accurate estimation of the
longest solution time.

Recent research has given methods both to solve quadratic programs efficiently
and to find an upper limit on the solution times. These methods are in this the-
sis applied to a control system based on linear MPC for the Crazyflie 2.0 nano
quadcopter. The implementation is made completely online on the processor of
the quadcopter, with limited computational power. A problem with the size of
36 optimization variables and 60 constraints is solved at a frequency of 100 Hz
on the quadcopter.

Apart from implementing MPC, a framework for computing an upper limit
to the solution time has been tested. This gives a possibility to certify the formu-
lation for real-time applications up to a well-defined maximum frequency. An
implementation is shown where the framework has been used in practice to con-
trol a quadcopter flying with a real-time certified implementation of MPC.

v

Acknowledgments

I would like to thank my supervisor Daniel Arnström for his constant support
during the work with this thesis. This work would not have been possible without
all your aid with both programming and thesis writing. I would also like to thank
my examiner Daniel Axehill for taking a huge interest in my work and acting
as a second supervisor as well as examiner. Finally, I would like to thank Ola
Johansson for all your help with the positioning system in Visionen.

Linköping, December 2023
Arvid Linder

vii

Contents

Notation xi

1 Introduction 1
1.1 Background and motivation . 2
1.2 Problem formulation . 2

1.2.1 Research questions . 3
1.3 Limitations . 3
1.4 Outline of the thesis . 3

2 The Crazyflie Nano Quadcopter 5
2.1 System overview . 6

2.1.1 Sensor measurements . 8
2.2 Model of the Crazyflie . 9

2.2.1 Reference frames . 9
2.2.2 Rotation . 10
2.2.3 Translational states . 10
2.2.4 Moments . 11
2.2.5 Quaternions . 12
2.2.6 Discretization . 13
2.2.7 Physical parameters . 13

3 Model Predictive Control 15
3.1 MPC formulation . 15

3.1.1 Tuning . 16
3.2 Parametric quadratic program formulation of an MPC problem . . 17
3.3 Algorithm for quadratic programming 19

4 Implementation 21
4.1 Dynamic model . 21
4.2 Constraints . 23
4.3 Choice of parameters . 25
4.4 World frame to quad frame . 25
4.5 Inner-loop control . 26

ix

x Contents

4.6 Weight matrices . 27
4.7 Practical issues . 28

5 Real-Time Certification 31
5.1 Certification process . 31
5.2 Limits in the MPC formulation . 32

6 Results 35
6.1 MPC . 35

6.1.1 Hover . 37
6.1.2 Reference tracking . 37
6.1.3 Solution times . 42

6.2 Real-time certification . 43

7 Discussion and Conclusions 45
7.1 Implementation of MPC . 45
7.2 Certification . 46
7.3 Wider perspective . 47
7.4 Future work . 47
7.5 Conclusions . 48

7.5.1 Answers to research questions 48

Bibliography 51

Notation

Constants

Notation Meaning

m Mass of the Crazyflie quadcopter
d Distance from the center of mass to the center of a ro-

tor on the Crazyflie quadcopter
g Gravitational acceleration

Vectors

Notation Meaning

P Position (m)
V Velocity (m/s)
a Acceleration (m/s2)
θ Angular rotation (rad)
ω Angular velocity (rad/s)
α Angular acceleration (rad/s2)

Subscripts

Notation Meaning

w World frame
q Quad frame
x Component in the x-axis, or around the x-axis for rota-

tions
y Component in the y-axis, or around the y-axis for rota-

tions
z Component in the z-axis, or around the z-axis for rota-

tions

xi

xii Notation

Abbreviations

Abbreviation Meaning

MPC Model Predictive Control
mpQP Multi-parametric Quadratic Program

PID Proportional, Integral, Differential (Controller)
PWM Pulse Width Modulation

1
Introduction

The purpose of this thesis is to investigate the use of model predictive control
(MPC) in a high-speed application, using an embedded processor. This is tested
by implementing an MPC algorithm on a Crazyflie, which is a nano quadcopter.
A quadcopter needs constant compensation to keep stable in flight, making it a
good choice for visualizing and evaluating the performance of the control algo-
rithm.

A good model for the system is needed to be able to use MPC. This thesis
includes a derivation of a state space model for the dynamical behaviour of a
quadcopter in general, with specific numerical values for the Crazyflie 2.0. The
model is intended to both give the premises for the MPC formulation and to give
the reader an understanding of the physical properties of a quadcopter.

The control problem is handled by cascading MPC with a PID controller. The
idea is to be able to handle disturbances and model errors in an effective way. It
also gives a method to remove some nonlinearities from the MPC formulation by
handling the fastest rotational dynamics with the PID controller. To emphasize
the usage of a cascaded controller, the MPC formulation is sometimes referred to
as Outer MPC.

As an extension to the control problem, one further goal is to investigate the
possibility of determining a maximum solution time for the optimization prob-
lem involved in the MPC algorithm. With a known maximum solution time, the
MPC formulation is guaranteed to always give a new control signal within this
time. Consequently, it is possible to certify the formulation for real-time usage
at frequencies lower than the maximum solution time. A method for performing
the real-time certification for a linear MPC is described and tested practically on
the MPC in the Crazyflie. A result with a flying real-time certified quadcopter is
presented.

1

2 1 Introduction

1.1 Background and motivation

Model predictive control (MPC) was first developed for the petrochemical pro-
cess industry in the 1970s when computers became strong enough to numerically
solve the involved optimization problems [19]. Back then it took a long time to
solve each optimization problem, so the applications were slow processes with
sample times of hours. Since then computers have become faster, and new algo-
rithms and methods have been developed, leading to an ever-increasing field of
applications for MPC.

A recent area where MPC is now an option for control is for fast real-time
applications on embedded systems [22]. In MPC, an optimization problem is
recurrently solved at each time step. The problem can be of different time com-
plexity depending on the current state of the system, and it is difficult to say
beforehand how much time will be required to compute the next control signal.
This uncertainty in time usage is of concern for real-time applications, especially
for fast, time-critical systems. If the optimization problem is not solved within
the given time the system can become unstable. Stability problems can in turn
give rise to physical damage and safety risks. It is thus important to be sure the
MPC will give an updated control signal in time, no matter the current state of
the system.

An embedded computer also has limited computational power, imposing the
need for an efficient algorithm for solving the optimization problems.

There are alternative methods proposed to remove the need to solve the op-
timization problems online, for example explicit MPC [18], or the use of neural
networks to approximate the controller [21], but many problems are too com-
plicated for these alternatives. When other methods fail, the solution is still to
deploy the MPC directly and recurrently solve the optimization problems on the
hardware in the control system. To be able to widen the field of applications
for MPC, there is clearly a need for efficient methods to solve the optimization
problems in MPC online with limited computer power.

The problem with the time uncertainty remains even with a more efficient
solver, why some method to formally prove an upper worst case solution time is
needed to be able to use MPC for time-critical applications. Research towards a
fast and real-time certified MPC solver has been conducted in [6], which presents
a solver implemented in C-code and a framework for computing a hard upper
limit on the solution time offline. The aim of this project is to practically test the
results from the mentioned dissertation.

1.2 Problem formulation

As has been described, two problems with MPC are the computational complex-
ity and the uncertainty in time usage. The goal of this thesis is to investigate
these two problems by a practical implementation. The first problem with the
computational complexity is addressed by deploying the solver presented in [8]
to investigate how well it works on the processor in a Crazyflie quadcopter.

1.3 Limitations 3

The problem with time uncertainty is addressed by combining the mentioned
solver with the certification framework adapted to it in [7]. If the first step is
successful and it seems possible to use MPC in the Crazyflie firmware, the next
aim is to investigate the possibility of certifying the controller.

1.2.1 Research questions

The specific questions to be investigated in this thesis are:

1. Is it practically feasible to use model predictive control for the control of a
Crazyflie quadcopter?

2. How complicated problems can be solved with the limited resources on the
embedded computer on the Crazyflie quadcopter?

3. Is it practically feasible to real-time certify the maximum solution time for
an applied MPC formulation?

1.3 Limitations

In this thesis, it will only be analyzed if it is practically possible to use the results
from [6] in the application of a nano quadcopter. There will be no comparison
to other types of processors, or any analysis on what type of processor should be
used for this type of problem. The implementation will also only be done using
the solver in [8]. There are other solvers, both using the same method and using
other alternative methods for solving the same kind of problems. To compare
with them is however beyond the scope of this thesis.

The implementation of the MPC is limited to only concern a simple standard
MPC formulation. One could think of different ways to tweak the controller in
order to fit the actual problem better, but in this case, the aim is to analyze the
optimization part of an online MPC.

No analysis of robustness for the given algorithm will be conducted, other
than the practical test flights. Consequently, no formal proof of stability will be
given. The reason is to be able to fully focus on the research questions.

1.4 Outline of the thesis

The thesis is split into several distinguished but related parts. First, in Chapter 2,
the Crazyflie 2.0 is presented. The included firmware is described, along with
a description of the available sensors and the external positioning system used.
In the same chapter is also a model derived for the dynamical behaviour of a
quadcopter in general, with parameter values specific for the Crazyflie.

The next part is to introduce some theory behind model predictive control.
This is presented in Chapter 3, along with an introduction to the algorithm used
for solving the involved optimization problems.

4 1 Introduction

With a background to both the Crazyflie and MPC, the next step is to intro-
duce the practical implementation of MPC on the Crazyflie. The process is de-
scribed in Chapter 4.

After the description of the MPC formulation, the real-time certification frame-
work is described in Chapter 5. The chapter consists of a brief background fol-
lowed by the actual process to certify the outer MPC formulation.

At the end there is a chapter dedicated to the results, and finally a chapter
with a discussion and conclusions.

2
The Crazyflie Nano Quadcopter

An understanding of the actual system is crucial for being able to implement
MPC, and to be able to perform analyses on the system. This chapter is therefore
dedicated to describing the Crazyflie quadcopter and its dynamics. An overview
of the Crazyflie quadcopter is given in Section 2.1. It includes some specifications
for the firmware and all the available sensors. Afterwards, a dynamic model for
a general quadcopter is derived in Section 2.2. In the end, some parameter values
for the specific Crazyflie quadcopter are also given.

5

6 2 The Crazyflie Nano Quadcopter

Figure 2.1: The Crazyflie 2.0 nano quadcopter used in the project.

2.1 System overview

The Crazyflie is a quadcopter with a weight of 27 grams. It consists of a main
processing area in the middle and four motors with propellers placed evenly at
a distance of 4 cm from the center of mass. The Crazyflie 2.0 can be seen in
Figure 2.1.

The main processing area consists of two connected microcontroller units.
One of them is an nRF51822 unit, which is responsible for the radio commu-
nication, among a few other things. The other microcontroller is an STM32F405
unit, which is responsible for most of the tasks on the quadcopter. More impor-
tantly, it is where all extra user code will be run. The STM32F405 has a 168MHz
Cortex-M4 processor with 196kB of RAM.

The handling of the different tasks is performed by the operating system
FreeRTOS [20]. It is an operating system specially designed for microcontrollers.
FreeRTOS works by starting up all necessary tasks, and then in turn giving them
processor time. To prioritize between the tasks, FreeRTOS provides the possibil-
ity to configure a number of prioritization levels. The Crazyflie has been config-
ured with six prioritization levels, giving the possibility to make sure the most
time-critical processes are always given processor time.

2.1 System overview 7

Kalman Filter
IMU

measurements

3-axis Accelerometer
3-axis Gyro

3-axis magnetometer
Pressure

Qualisys

3-axis Position
Rotation Quaternion

Estimated position
Estimated Velocity

Estimated Rotation

Controller
External
reference

Position reference
or

velocity reference
or

rotation reference

PWM
signals for

each motor

Motor control

Figure 2.2: Overview of the flow from measurements and references to the
actual motor control signals.

8 2 The Crazyflie Nano Quadcopter

2.1.1 Sensor measurements

The Crazyflie has a 10 Degrees of Freedom Internal Measurements Unit (10DOF
IMU). It provides all available sensor measurements from the quadcopter itself
and consists of:

• A 3-axis accelerometer.

• A 3-axis gyro.

• A 3-axis magnetometer.

• A pressure sensor.

Apart from the internal measurements the system is also equipped with an
external motion capture positioning system. This consists of passive markers on
the Crazyflie and a setup where the external system broadcasts the current mea-
surements of position and rotation to the Crazyflie. The motion capture system
is provided by Qualisys [5].

The firmware on the Crazyflie features a Kalman filter for fusing the measure-
ments from both the IMU and the external measurements. The measurements
then result in a state estimation which can be read by the controller. The com-
plete flow from the measurements to the motor control can be seen in Figure 2.2.

2.2 Model of the Crazyflie 9

x

y
z

M1

M3 M2

M4

Figure 2.3: Description of the coordinate system of the quad as seen from
above. Also depicted are the names of the motors according to the Crazyflie
convention.

2.2 Model of the Crazyflie

As a first step towards implementing a control system, a model for the Crazyflie
is needed. The model derived in this section is mainly based on the related works
[16] and [11]. Both sources use the laws of motion to derive the dynamics of the
quad, but they handle the problem of having a rotating frame of reference in two
different ways.

2.2.1 Reference frames

Two reference frames are needed to completely describe the behaviour of the
quad. One frame is the (approximated as) inertial world frame (denoted by sub-
script w) and the other one is the reference frame defined to rotate with the quad
(denoted by subscript q) [16]. To be consistent with the standard reference frame
in the Crazyflie firmware it was defined with the x-axis pointing forward, the
y-axis pointing to the left and the z-axis pointing upwards in the quad’s perspec-
tive [4]. See Figure 2.3 for a graphical description. The origin of the quad frame
was defined as being in the center of mass of the quad. At startup, both reference
frames were defined to coincide.

The two reference frames are connected by a rotation. The rotation angle can
be described either by Euler angles or by a rotation quaternion [10]. Euler angles
are easier to conceptually understand, but they suffer from a necessity to use the
tangent function, which is undefined at certain angles. Quaternions do not have
this problem, but they are not as intuitive to work with. In this chapter, Euler
angles are used to derive a conceptually comprehensible model, but at the end

10 2 The Crazyflie Nano Quadcopter

there is a section describing how to rewrite the model using quaternions.

2.2.2 Rotation

The relationship between the quad frame and the world frame is described by a
rotation. One way to describe this rotation is to use Euler angles [10]. They define
three rotations about different angles to be performed one after the other. There
are several different ways the rotations can be performed, so one type needs to be
chosen. One common convention, also used in [16], is to perform first a rotation
an angle θz around the z-axis, followed by a rotation an angle θy around the new
rotated y-axis of the quad, and finally a rotation an angle θx around the twice
rotated x-axis of the quad [10]. This gives the rotation matrix

R =

cos θy cos θz cos θy sin θz − sin θy

sin θx sin θy cos θz − cos θx sin θz sin θx sin θy sin θz + cos θx cos θz sin θx cos θy

cos θx sin θy cos θz + sin θx sin θz cos θx sin θy sin θz − sin θx cos θz cos θx cos θy

for a rotation from the world frame to the quad frame. To perform the opposite
rotation R needs to be inverted, but since it is a rotation matrix the relation R−1 =
RT holds.

The Euler angles need to be related to the angular velocity of the quad ωq,
since this is what is measurable from the IMU, and also what is controllable from
the momentum equations (as will be seen later in this chapter). The relation
requires some computation, performed in [10], and the result is

ωq =

1 0 sin θy

0 cos θx − sin θx cos θy

0 sin θx cos θx cos θy

 θ̇ (2.1)

or inverted as

θ̇ =

1 sin θx tan θy cos θx tan θy

0 cos θx − sin θx

0 sin θx
cos θy

cos θx
cos θy

ωq. (2.2)

2.2.3 Translational states

The movements of the quad in space are governed by the forces generated by
the motors and by gravity. In the world frame, the relevant states are position
(Pw) and velocity (Vw). These states describe the position and velocity of the
center of mass of the quad with respect to the inertial frame. Their relationship
is described by Newton’s law of motion asṖw = Vw

V̇w =
∑

Fw
m

(2.3)

where
∑

Fw is the sum of all forces acting on the quad with respect to the world
frame and m is the mass of the quadcopter [16]. The forces on the quad are the

2.2 Model of the Crazyflie 11

thrust from the motors in the z-axis in the quad frame and gravity in the negative
z-axis in the world frame. To express all forces in the world frame the rotation
matrix in (2.2.2) is needed. Then the equation for the sum of forces is

∑
Fw = RT

 0
0

F1 + F2 + F3 + F4

 −
00
g

 . (2.4)

2.2.4 Moments

The motors of the quadcopter are placed at a distance d from the center of gravity,
and they produce a thrust in the z-direction of the quad. This gives each motor
a torque about the xy-axes of the quad. They also rotate, which gives rise to a
torque around the z-axis of the quad. In an inertial frame, the sum of the torques
equals the change of angular momentum, but a rotating frame of reference also
induces the fictitious Coriolis force [16]. The relation between the total torque
τ and the change in angular velocity can be found using the Euler-Newton equa-
tions as expressed in [11] as

τq = Jqω̇q + ωq × Jqωq (2.5)

with

Jq =

Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 (2.6)

being the inertia matrix of the quadcopter. ω̇q can be extracted as

ω̇q = J−1
q (τq − ωq × Jqωq). (2.7)

The torque from the thrusts Fi,q can in the quad frame be expressed as

4∑
i=1

ri,q × Fi,q =

d√
2
− d√

2
0

 ×
 0

0
F1

 +

− d√

2
− d√

2
0

 ×
 0

0
F2

 +

− d√

2
d√
2

0

 ×
 0

0
F3

 +

d√
2
d√
2

0

 ×
 0

0
F4

 =

d√
2

(−F1 − F2 + F3 + F4)
d√
2

(−F1 + F2 + F3 − F4)

0

 (2.8)

with ri,q as the position vector from the center of mass of the quad to the center
of motor i, in the quad frame.

As for the rotation of the motors they give rise to a torque τz,q around the
z-axis opposite to the rotation of the corresponding motor. This means a motor

12 2 The Crazyflie Nano Quadcopter

running clockwise will give rise to a positive torque and vice versa. The torque
is proportional to the force generated by the motor. According to the numbering
convention for the motors (see Figure 2.3 for reference), motors 1 and 3 rotate
anticlockwise, while motors 2 and 4 rotate clockwise. This gives the equation for
the torque in the z-axis as

4∑
i=1

τzi,q =

 0
0

−τz1,q + τz2,q − τz3,q + τz4,q

 . (2.9)

By combining (2.8) and (2.9) the total torque acting on the quad can be expressed
as

τq =

d√
2

(−F1 − F2 + F3 + F4)
d√
2

(−F1 + F2 + F3 − F4)

−τz1,q + τz2,q − τz3,q + τz4,q

 . (2.10)

2.2.5 Quaternions

Another alternative for representing rotations is quaternions. A quaternion is

defined as a 4-dimensional vector q =
[
q0 q1 q2 q3

]T
where in this case[

q1 q2 q3

]T
represents a vector and q0 represents cos θ/2 for a rotation the

angle θ around the vector
[
q1 q2 q3

]T
[17]. Because the quaternions are used

for rotation we only handle unit quaternions, meaning q2
0 + q2

1 + q2
2 + q2

3 = 1.
The quaternion is seen as a rotation from the world frame to the body frame

of the quad, and it must be related to the angular velocity. The relation is given
by

q̇ =
1
2

[
0
ω

]
⊗ q (2.11)

where ⊗ is the Kronecker product [11].
The unit quaternions are also used to rotate the force vectors from the quad-

copter rotors to the world frame. To apply the formula for rotating a vector f in
the world frame by a quaternion it is necessary to first transform it into a four-

dimensional vector by adding a zero, giving the quaternion fQ =
[
0 f

]T
[11].

The rotation is then given by

f ′Q = q ⊗ fQ ⊗ q−1 (2.12)

to get f ′Q as fQ expressed in the quad frame. The vector is given by the three last
entries in the quaternion f ′Q, denoted f ′ = W (f ′Q).

To rotate a vector from the quad frame to the world frame, the inverse of the
quaternion has to be applied, giving

fQ = q−1 ⊗ f ′Q ⊗ q. (2.13)

2.2 Model of the Crazyflie 13

In summary, the complete dynamics of the quadcopter using quaternions can
be described by

Ṗw = Vw

V̇w = W (q−1 ⊗
 0
Fq/m

 ⊗ q) −

0
0
g

q̇ = 1

2

 0
ωq

 ⊗ q

ω̇q = J−1
q (Mq − ωq × Jqωq).

(2.14)

2.2.6 Discretization

The complete model in (2.14) describes the movements of the quadcopter in con-
tinuous time. The control system operates instead in discrete time steps, why
some discretization of the dynamics is needed. The idea with a discretization
is to approximate the continuous state dynamics with function from a discrete
time-step to the next. The transformation involves an integration of the state
equations, which is not always possible to perform exactly.

A common assumption for the discretization of a model with a signal input
is to use zero order hold, meaning the signal is assumed constant between the
updates [15]. For a linear state space model in the form

ẋ(t) = Ax(t) + Bu(t) (2.15)

the discretization can be performed exactly for a sample time T to give the model

x(t + T) = eAT x(t) +

T∫
0

eAτdτBu(t). (2.16)

For a nonlinear model, a common method is to first linearize the model, and then
apply the result above.

2.2.7 Physical parameters

Some parameters for the Crazyflie are given in the manual, these are listed in
Table 2.1. As for the other parameters there have been experiments done to find
them in different ways, and here the results from two such projects are presented.
The only actual input signal possible in the physical drone is the PWM signal to
the motors, why the forces and torques from the motors are related to the PWM.

Parameter choice one The following values come from a report making a sim-
ilar model of a Crazyflie [16]. The author has however used the unit revolutions
per minute for the rotor speed, but to be consistent in using SI units the parame-
ters have been scaled accordingly to fit the unit radians per second instead.

14 2 The Crazyflie Nano Quadcopter

Parameter Value Description
m 0.027 [kg] Mass of the quadcopter
d 40 × 10−3 [m] Length from center of mass to center of rotor

Table 2.1: Given values for the Crazyflie 2.0

Firstly the relation between PWM input and speed of the rotors has been given
as an approximated linear relationship following

vi = 0.02812 × PWM + 426.24 [rad/s]. (2.17)

The thrust from the propellers is described as

Fi = CT v
2
i (2.18)

for a constant CT with the value

CT = 3.4634 × 10−8 [N/(rad/s)2].

The same method is used for the torque from the motors giving

τi = CDv
2
i (2.19)

but with
CD = 8.7049 × 10−10 [Nm/(rad/s)2].

For the moments of inertia, the author has made the assumption about a sym-
metrical quadcopter and thus assumed a diagonal matrix, with the values

J = 10−5

1.395 0 0
0 1.436 0
0 0 2.1730

 [kgm2] (2.20)

Parameter choice two The following values come from a project in experimen-
tally identifying the physical parameters of the Crazyflie 2.0 [12]. The model is
slightly more complicated than the previous model, which could either mean a
better simulation or unnecessary complexity.

The thrust was found to follow the relationship

Fi = 2.130 · 10−11 · PWM2 + 1.0326 · 10−6 · PWM + 5.485 · 10−4 [N] (2.21)

with PWM being the input signal to the motor as a 16-bit number.
In the report, the torque was related to the thrust, following the relationship

τi = 0.005965Fi + 1.5634 · 10−5 [Nm]. (2.22)

The moment of inertia was experimentally found to be

J = 10−6

 16.57 0.8308 0.7183
0.8308 16.66 1.800
0.7183 1.800 29.26

 [kgm2]. (2.23)

3
Model Predictive Control

This chapter gives a mathematical background to model predictive control. The
formulation is first given in the most comprehensive way, as a sum of optimiza-
tion variables, in Section 3.1. Then in Section 3.2 a derivation is performed to
rewrite the sum as a quadratic program, for which it is easier to find a method to
solve the optimization numerically.

3.1 MPC formulation

MPC, short for Model Predictive Control, is a method for optimal control [18]. As
the name suggests it uses a model of the system to predict future states. The
main idea is to compute a discrete input signal u[k] for N steps into the future,
from the current state x[0] of the system to be controlled. The control signal
is computed by solving an optimization problem over all input signals and the
states they lead to. When the optimal control sequence is computed, only the
first step is applied the the system. Then in the next time step, the optimization
problem is solved again for the new state to obtain a new control signal. This way
of recurrently solving the problem allows for the possibility of including new
measurements and adapting to noise.

There is no principal restriction on the model for MPC, but the optimization
problem can be difficult, or impossible to solve. One way to solve this problem
is to enforce a linear model, called Linear MPC. Hereafter all theory and usage of
MPC will refer to the linear case.

A dynamic model for how the system evolves is needed to define an MPC
formulation. It is necessary to know how the states affect each other, and how the
control signals affect the states. A discrete linear state space model is described
by

x[k + 1] = Ax[k] + Bu[k] (3.1)

15

16 3 Model Predictive Control

for the evolution of a state x from the time k to k + 1 [6]. A and B are matrices
describing the dynamics of the system and u is the input control signal.

To complete the control problem formulation the optimization formula is also
needed. A common cost function in linear MPC is a quadratic function penaliz-
ing the state deviation and the control magnitude [18]. This part can be expressed
as

min
u

x[N]TQf x[N] +
N−1∑
k=0

x[k]TQx[k] + u[k]TRu[k] (3.2)

where Q and Qf are semi-positive definite matrices and R is a positive definite
matrix. They all need to be tuned depending on the desired response from the
control algorithm.

So far the problem can be solved explicitly with N = ∞ to obtain a linear
feedback solution [13]. However, in many real applications there are constraints
on the state and the control signal, and in these cases the analytical solution is no
longer applicable.

To incorporate linear inequality constraints in the MPC formulation the con-
straints can be written as Gx ≤ g,

Hu ≤ h
(3.3)

where G and H are matrices and g and h are vectors. The complete problem
formulation from an initial state x[0] = x0 can now be written as

min
u

x[N]TQf x[N] +
N−1∑
k=0

x[k]TQx[k] + u[k]TRu[k]

subj.to. x[k + 1] = Ax[k] + Bu[k], ∀k
Hx[k] ≤ h, ∀k
Gu[k] ≤ g, ∀k
x[0] = x0.

(3.4)

3.1.1 Tuning

The main tuning method in MPC is to adjust the weight matrices, Q, R and Qf .
It is not always clear exactly how a specific tuning will alter the system response,
but there are some general guidelines. Often it is enough to consider diagonal
matrices for the tuning, and with only strictly positive weights. A higher weight
on a state or input means the algorithm will punish a deviation from the reference
in that state or input more. In general this leads to for example a lower speed if
the weight on the speed is set to a higher value, but depending on the dynamics
and horizon it can also lead to a higher speed for a shorter period of time if it
means the speed can be lower later.

3.2 Parametric quadratic program formulation of an MPC problem 17

3.2 Parametric quadratic program formulation of an
MPC problem

The MPC formulation in (3.4) is written in a readable and comprehensive way,
but it is not obvious how it should be implemented practically. It is however
possible to rewrite the formulation as an equivalent multi-parametric quadratic
program (mpQP) [6]. A quadratic program with linear inequality constraints and
dependence on a parameter Φ can be written as

min
z

1
2
zTHz + (f + fΦΦ)T z

subj. to. F z ≤ b + WΦ.
(3.5)

There are several methods to solve quadratic programs, why it is desirable to
reformulate the MPC formulation as one. The parameter dependence is needed
to be able to run the optimization from different states x0.

The first step to reformulate (3.4) into an mpQP is to group the states and
input signals into one vector each, giving

x =

x[1]
x[2]
...

x[N]

 , u =

u[0]
u[1]
...

u[N − 1]

 .
With all states and control signals collected the optimization sum can be rewrit-
ten as

min
u

xT

Q 0 ... 0 0
0 Q ... 0 0
0 0 ... Q 0
0 0 ... 0 Qf

 x + uT

R 0 ... 0 0
0 R ... 0 0
0 0 ... R 0
0 0 ... 0 R

 u. (3.6)

A new notation is added to shorten (3.6), giving

min
u

xTQaugx + uTRaugu. (3.7)

One notable difference between (3.4) and (3.6) is the removal of the term x[0]TQx[0]
in the later formulation, but since this term is completely determined by the ini-
tial state it will not effect the optimal value.

Further, the future states only depend on the first state and the control se-
quence, why it is possible to remove the need of optimizing over the state vari-
ables [6]. A state at time k + n can be described using

x[k + n] = Anx[k] +
n∑
i=1

Ai−1Bu[k + n − i] (3.8)

which with k = 0 gives a way of expressing any time step from only the initial
state and the control inputs up to the considered time. This means x is completely

18 3 Model Predictive Control

described by x0 and u by the linear equation

x =

A
A2

...
AN

 x0 +

B 0 ... 0
AB B ... 0
A2B AB ...
...

AN−1B AN−2B ... B

 u,
or with new notation to simplify the expression

x = Aaugx0 + Baugu. (3.9)

Now the optimization criterion in (3.7) can be rewritten using (3.9) as

min
u

(Aaugx0 + Baugu)TQaug (Aaugx0 + Baugu) + uTRaugu

=

min
u

xT0 A
T
augQaugAaugx0 + xT0 A

T
augQaugBaugu+

+ uT BT
augQaugAaugx0 + uT BT

augQaugBaugu + uTRaugu

=

min
u

uT (BT
augQaugBaug + Raug)u + 2xT0 A

T
augQaugBaugu

(3.10)

where in the last step the constant parts have been removed. The equality con-
straint from (3.4) has been incorporated in the optimization formula in (3.10),
and is thus no longer needed. The inequality constraints are still in place and can
be written as

H 0 ... 0
0 H ... 0
...

0 0 H

 x ≤

h

h

...

h

G 0 ... 0
0 G ... 0
...

0 0 G

 u ≤

g

g

...

g

(3.11)

which with a change of notation can be written asHaugx ≤ haug
Gaugu ≤ gaug .

(3.12)

Now (3.9) can be used to remove the dependence on x from (3.12), givingHaug (Aaugx0 + Baugu) ≤ haug
Gaugx ≤ gaug

⇐⇒[
HaugBaug

Gaug

]
u ≤

[
haug − HaugAaugx0

gaug

]
.

(3.13)

3.3 Algorithm for quadratic programming 19

Finally (3.4) can be equivalently written using (3.10) and (3.12) as

min
u

uT (BT
augQaugBaug + Raug)u + 2xT0 A

T
augQaugBaugu

subj.to.
[
HaugBaug

Gaug

]
u ≤

[
haug − HaugAaugx0

gaug

] (3.14)

which is a parametric quadratic program with only inequality constraints, in the
same form as (3.5).

3.3 Algorithm for quadratic programming

As mentioned earlier, the reason for changing the MPC formulation in (3.4) to the
mpQP formulation in (3.14) is because there are several methods for solving QP:s
in an effective way. Specifically one algorithm for solving quadratic programs is
described in [8] along with a C implementation of the algorithm. The profound
mathematical background for the algorithm is beyond the scope of this thesis,
but it is worth to give some overview in order to understand the usage of the
algorithm in later chapters. It is shown that the solution to (3.5) can be found by
iteratively solving a set of linear equations, where in each iteration one constraint
is added or removed. The current set of constraints in each iteration is called the
active set, and consequently the type of algorithm is called an active-set method.
The complexity to solve the optimization problem for a specific parameter (state)
can be expressed in how many iterations is required, in combination with how
large the current active set is at each iteration.

To shorten computation time a method called warm start can be used in the
solver [6]. It uses the idea that the solution to two following problems often are
quite close to each other when solving problems for state evolution in a physical
system. This also means the active constraints will often be similar between two
consecutive time steps. To warm start the solver is then to start the solver with
the active set from the last solution. The implementation of the algorithm in [8]
provides this functionality.

4
Implementation

From the state space model in (2.14) one can note how the parts connected to
rotation are rather complicated and nonlinear. On top of this nonlinearity, there
are a lot of disturbances and uncertainties on exactly how the forces of the rotors
are related to the PWM signals. On the other hand, the states connected to the
world frame are almost linear, the only problem being the rotation of the forces
in the quad frame to the world frame.

With the thoughts above as motivation, the considered idea in this chapter
is to cascade an MPC formulation with a PID controller, to give a system as vi-
sualized in Figure 4.1. The MPC receives a position reference and transforms it
into an acceleration reference, all in the world frame. This process runs at 100Hz.
Then the acceleration is transformed to a desired attitude angle and thrust and is
given as a reference to the PID controller running at 500Hz.

4.1 Dynamic model

By analyzing only the position and velocity in the inertial frame, and using the
acceleration in the world frame as the input signal the state space model is

Ẋ
Ẏ
Ẋ
v̇X
v̇Y
v̇Z

=

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

X
Y
X
vX
vY
vZ

+

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

aXaY
aZ

 . (4.1)

21

22 4 Implementation

MPC

PID

Motors

Reference

Transform
world to quadKalman filter

Sensor
data

Position
measurements, Gyro,

Accelerometer

Estimated position,
velocity (world frame)

Estimated rotation,
angular velocity

Estimated rotation,
angular velocity

Desired position
(world frame)

Desired acceleration
(world frame)

Desired rotation

PWM commands

Figure 4.1: A conceptual diagram over the different parts involved in refer-
ence tracking and stabilizing for the quad.

4.2 Constraints 23

The continuous model can be discretized using zero-order hold to

x[t + T] =

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

x[t] +

T 2/2 0 0
0 T 2/2 0
0 0 T 2/2
T 0 0
0 T 0
0 0 T

aXaY
aZ

 (4.2)

with the state compactly written as x[t] and T as the time-step for the discretiza-
tion [15]. This model is linear and very simple to handle, but there is a necessity
to include constraints on the input to ensure feasible reference values for the in-
ner control loop.

4.2 Constraints

To keep the acceleration vector within feasible values for the quad to handle, it
is linearized around the stationary point when the quad is stationary in the air.
This is the most common position for stabilizing the quad, and it is necessary to
have a good model around this point to be able to keep it stable and stationary.

Because of the way the QP-solver is implemented, it is desirable to use double-
sided inequalities, and if possible to make use of simple constraints (constraints
with only one variable) [7]. This way also keeps the matrices as compact as possi-
ble, thus saving memory.

The stationary point is when ax = 0, ay = 0, az = 0. To achieve this the attitude

angle must be zero and the thrust vector must be F =
[
0 0 g/m

]T
.

The goal with the constraints is to enforce the thrust to be within a certain
angle ∆ from the z-axis and to limit the maximum thrust to feasible values. This
volume is represented by a round cone with a rounded top and is not linear. In
the z-axis, the cone can be approximated by Fzmin ≤ Fz ≤ Fzmax. In the xy-plane,
the cone can be approximated as having vertical walls in the region where Fz is
feasible. This means F2

x + F2
y ≤ F2

xymax which must be linearized to a number of
planes. Here it was chosen to perform a linearization at every 45 degrees, giving

−Fxymax ≤ Fx ≤ Fxymax

−Fxymax ≤ 1√
2
Fx + 1√

2
Fy ≤ Fxymax

−Fxymax ≤ Fy ≤ Fxymax

−Fxymax ≤ 1√
2
Fx − 1√

2
Fy ≤ Fxymax

. (4.3)

A conceptual view of how the approximated space looks in relation to the nonlin-
ear cone can be seen in Figure 4.2.

The next question is how to choose the maximum thrust in each direction. The
largest angle is when Fz is as small as possible and when the angle between Fx
and Fy is as far away as possible from a linearization point. Because of symmetry,

24 4 Implementation

Figure 4.2: A view of how the constraints look in 3-dimensional acceleration
space in the form of a prism. Also depicted is the nonlinear cone that would
be the exact desired constraints.

4.3 Choice of parameters 25

it is enough to study one of these points, for example, θ = π
8 . There the first two

planes in (4.3) intersect, giving
Fxmax = Fxymax

Fymax =
Fxymax− 1√

2
Fxmax

1√
2

= (
√

2 − 1)Fxymax

and by trigonometry

tan∆ =

√
F2
xymax + ((

√
2 − 1)Fxymax)2

Fzmin
= 2

√
1 − 1
√

2

Fxymax

Fzmin
. (4.4)

By setting ∆ and Fzmin as tuning variables, Fxymax can be determined.

4.3 Choice of parameters

The choice of ∆, Fzmin and Fzmax is a mix between robustness around the lineariza-
tion, agility and physical constraints. Firstly, Fzmin and Fzmax must be within the
physical limits of what the quad can produce. From Section 2.2.7 a maximum
total thrust of about 0.6 N can be derived, giving a physical upper limit to Fzmax.
However, the stabilization needs some room as well, why it was chosen to use
Fzmax = 0.5 N. For Fzmin the physical limit is 0 N, but once again this leaves
no room for compensation and errors, and it makes (4.4) undefined. It is also
desirable to have the limit relatively close to the linearization point at Fz = mg.
The value was chosen to give a maximum downward acceleration of 3 m/s2, and
consequently Fzmin = m(g−3) = 0.21 N. The maximum tilt angle was tested exper-
imentally, and it showed a limit in the stability of the inner loop PID controller.
At angles above tan∆ = 0.6 the quad had problems with stability when the outer
loop gave too aggressive control signals. Thus the value was set to tan∆ = 0.6.
This gave a maximum side force of Fxymax = 0.11 N, or a maximum acceleration
of 3.78 m/s2.

4.4 World frame to quad frame

The resulting control law from the MPC solution is an acceleration vector aw de-
fined in the world frame. It must however be transformed to a desired attitude
angle for the quad, and further to an attitude angle error for the inner loop con-
trol to handle. This transformation is performed by first expressing the desired
acceleration vector in the quad frame coordinates. Gravity is added in the world
frame, since it is simply an extra constant acceleration in the negative z-axis in
the world frame. The MPC formulation neglects gravity in the computed acceler-
ation, but the given thrust must compensate for it.

A knowledge of the current rotation of the quad is needed to transform the
coordinates from the world frame to the quad frame. To keep track of rotation,

26 4 Implementation

the Kalman filter already implemented in the quad is used [2]. For this project,
it was enough to read the current rotation quaternion from the Kalman filter for
the transformations. The transformation can be expressed as

ax,q
ay,q
az,q

 = W (q ⊗

0

ax,w
ay,w

az,w − g

 ⊗ q−1) (4.5)

with q as the rotation of the quad represented as a unit quaternion.
Since all thrust in the quad frame must be in its positive z-direction, the xy-

components of the desired thrust vector in the quad frame represent the attitude
error. The attitude errors epitch and eroll can be computed asepitch = arctan

ax,q
az,q

eroll = arctan
ay,q
az,q

.
(4.6)

These attitude angle errors fit exactly what the PID controller is tuned to mini-
mize.

The desired thrust was simply taken to be

Ftot = maz,q, (4.7)

that is the component of the desired thrust in the current z-direction of the quad.

4.5 Inner-loop control

The default controller in the Crazyflie when flying manually is a cascaded PID
controller [3]. The purpose of this controller is to track and keep the desired
angle set by the outer loop control (or the hand controller in manual flight mode).

The general equation for a PID controller with the reference r(t) and the ac-
tual measured state y(t), and consequently the error e(t) = r(t) − y(t), can be
written

u(t) = Kpe(t) + Ki

t∫
0

e(τ)dτ + Kd
d
dt

e(t) (4.8)

with tuning variables Kp, Ki , and Kd [14]. There are some extra features imple-
mented in the PID controller in the Crazyflie firmware, but the principle is as in
(4.8). With a cascaded PID controller the control signal from the first is given as
a reference to the second algorithm, and the control signal from the second PID
controller is the actual control signal.

In the Crazyflie, the first reference is the desired attitude angle, and the ref-
erence to the second controller is the desired angular velocity, computed via the

4.6 Weight matrices 27

first PID controller. The control signal to the motors is the output from the sec-
ond PID controller, giving the control system

θe(t) = θdes(t) − θact(t)

ωdes(t) = Kp1θe(t) + Ki1
∫ t

0 θe(τ)dτ + Kd1
d
dtθe(t)

ωe(t) = ωdes(t) − ωact(t)

u(t) = Kp2ωe(t) + Ki2
∫ t

0 ωe(τ)dτ + Kd2
d
dtωe(t)

(4.9)

with u(t) as the actual command to the motor control. Since the implemented
controller turned out to be quite well functioning it was decided to use it for the
inner loop control. The parameters were tuned by default in the firmware, and
the tuning was mostly satisfactory. One change was made, and it was to remove
the integral part of the outer control, that is, Ki1 = 0.

4.6 Weight matrices

The considered dynamics in the model are symmetrical and decoupled in the
three dimensions. Consequently, it was enough to consider diagonal matrices,
and it could also be assumed the weights would be the same in all directions,
for position and velocity respectively. Further, the weight matrix for the control
inputs R was fixed to

R =

5 0 0
0 5 0
0 0 5

 .
These simplifications left only five tuning variables, with a clear physical interpre-
tation: The punishment on deviation from position, the punishment on velocity,
the punishment on final deviation from position, the punishment on final veloc-
ity, and the punishment on acceleration. The last one is the fraction Q/R while
the four first are the actual values in the weight matrices Q and Qf . Tuning was
performed manually to find values where the quad would be stationary at the
reference, and also moving fast to a new reference without overshoot.

The matrices for N = 6 were tuned to

Q =

20000 0 0 0 0 0
0 20000 0 0 0 0
0 0 20000 0 0 0
0 0 0 50 0 0
0 0 0 0 50 0
0 0 0 0 0 50

,

QF =

10000 0 0 0 0 0
0 10000 0 0 0 0
0 0 10000 0 0 0
0 0 0 1500 0 0
0 0 0 0 1500 0
0 0 0 0 0 1500

28 4 Implementation

and the matrices for N = 12 were tuned to

Q =

6000 0 0 0 0 0
0 6000 0 0 0 0
0 0 6000 0 0 0
0 0 0 200 0 0
0 0 0 0 200 0
0 0 0 0 0 200

,

QF =

10000 0 0 0 0 0
0 10000 0 0 0 0
0 0 10000 0 0 0
0 0 0 1500 0 0
0 0 0 0 1500 0
0 0 0 0 0 1500

.

4.7 Practical issues

The Crazyflie firmware features the functionality to add what is called an app
to the firmware, and then the operating system will start a task for the app in
question [1]. It also features the possibility to implement a custom controller in
the app. These features simplified the implementation since it was not needed to
understand the entire code structure.

Some practical aspects concerning the processor needed to be accounted for
when implementing the controller. They were mainly prioritization and memory
allocation.

Prioritations The Crazyflie firmware utilizes six different prioritization levels
to rank the tasks depending on how time-critical they are. A task with higher
priority can interrupt a task with a lower priority, but not vice versa. For ex-
ample, the controller task is considered highly time-critical and has the highest
priority. When implementing a task that is both time critical (as it is a part of the
controller) and takes a lot of CPU time this prioritization is a problem. It is also
a problem to lower the prioritization for the controller since the inner PID con-
troller runs on the same process and is even more time-sensitive than the MPC
solver.

It was quickly realised the MPC is too time-consuming to run on the highest
priority, why the inner and outer loops were separated into different tasks. This
was implemented by outsourcing the solver to the app layer, and setting a vari-
able every time it was time to solve a new MPC problem. This way the inner loop
PID controller can interrupt the MPC solver when needed.

When testing it was discovered that the second highest priority was working
as long as the solver finished in time. To use such a high priority means however
that the MPC can drain almost all other processes in the quad.

4.7 Practical issues 29

Memory allocation An unforeseen problem was the limitation of RAM in the
Crazyflie processor. The hypothesis beforehand was that the time complexity
would be the limiting factor. With a longer horizon, the size of the problem is
growing quadratic so it soon became a problem to store all necessary matrices.
To reduce memory usage all matrices for the problem were computed in advance.
This removed the need to keep intermediate results when combining and multi-
plying matrices. The QP solver also has a functionality to store only the bounds
for constraints involving only one variable, why the constraints were constructed
to make use of this. For memory usage, it meant a smaller Gaug had to be stored.

5
Real-Time Certification

One of the goals of this thesis is to test the real-time certification framework pro-
vided in [7]. As described in Section 3.3 the active-set algorithm used in this
project works by adding or removing constraints iteratively until the optimal
feasible solution is found. The function of the certification framework is to be-
forehand compute a function of how many iterations are required depending on
the current state. This function is given as several different regions, where within
the same region it is shown to take a specific amount of iterations to find the
optimum. More importantly, the framework can provide the regions as one state
within each region. Since it is shown to be the same complexity within the same
region, it is enough to run one test within each region to find the maximum com-
plexity [9]. By storing one state within each region and then running all of them
on the Crazyflie, and time the execution time, the maximum solution time can be
found.

Naturally, the framework can not certify the entire parameter space, which
would be infinite. It is necessary to specify limits for the states to be certified.
Another limit is for the use of warm-start. As was described, it utilizes the last
active set to compute similar states faster, but this removes the possibility of
predicting the number of iterations for a specific state.

5.1 Certification process

In theory, the certification process seems quite simple to perform, given the algo-
rithm for it. It is however a demanding program for a computer to run. Due to a
limitation in time and computer resources, the certification was limited. The cer-
tification was only performed for a small part of the parameter space, only for the
cold start version, and only for the shorter horizon N = 6. The limitations were
needed to have a reasonable computation time for the certification framework.

31

32 5 Real-Time Certification

Before any certification process could start, a setup with stabilizing weight
matrices was found. Then the parameter limits were determined for the certifica-
tion. Ideally one would want a rather large space since the quad can move quite
fast and can have reference points several meters away. It was however quickly
discovered to be far too many regions to test when the parameter space was larger
than ±1 in any dimension.

The certification code provided by [7] was run for the resulting matrices in the
parametric quadratic program for N = 6 and the bounds on all parameters set to
±1. A problem arose concerning the amount of RAM to store all regions, why the
total space was split up into several smaller. For each smaller space, all regions
were computed and stored in a file. The final result was a set of files, each with
a number of regions characterized by six parameters. All the aforementioned
sets of parameters were run and timed on the hardware of the quad in order to
determine the worst-case execution time. The parameters were sent one set at a
time to the quad, and then the result was received when the quad had finished the
execution. With the extra overhead in sending parameters over radio, it was not
possible to run more than about 30 regions per second, making the certification
task quite time-consuming.

In the original paper [9], the worst-case time was determined by running only
the optimization and making sure the processor was in the same state from the
start. While this method gives a more exact theoretical result, it was considered
a too idealized case for the practical implementation. To give a result more in
line with reality the optimization solver was run on the second highest prioritiza-
tion level, meaning the code could be interrupted by for example the inner loop
control or the sensor measurements. It was also run in parallel with all other pro-
cesses on the quad, in order to give an environment as similar as possible to a real
flight. The drawback of this method is that the resulting worst-case time depends
on the other processes on the quad (mainly the processes with higher prioritiza-
tion) and can thus not be given as a strict upper limit. However, one could argue
that in a real application, this is the more relevant type of limit, since the other
processes will still be needed for a functioning system.

5.2 Limits in the MPC formulation

The limitation to ±1 in the parameter space means it must always be checked
that the online MPC solver receives a state within the certified space, otherwise
no maximum execution time is guaranteed. This imposes a couple of problems:
How to make sure the quad stays within the certified space? and if the actual
state is outside the certified space, how should it be handled? The parameters
in the MPC are position (three dimensions) and velocity (three dimensions) and
because of the physical interpretation of these parameters the limitations were
handled a bit differently.

Position limitations The limitation in position is between the current position
and the reference position. By simply limiting this error in the MPC input to the

5.2 Limits in the MPC formulation 33

maximum certified value it is guaranteed to never end up outside the certified
position space. The implication for the physical system is that the quad will take
a reference far away step by step, always aiming to be stationary at a point closer
than the actual point.

Velocity limitations The limitation in velocity is not as easy to limit as the posi-
tion. If it is done similarly, the MPC will believe the quad is moving slower than
it actually does, consequently increasing the velocity even more and possibly ren-
dering the system unstable.

The proper way to cope with this limitation is to enforce it as a constraint in
the MPC. By doing so, the MPC would never try to give an acceleration to end up
outside the allowed velocities. In this case, it was not done due to lack of time.
A new constraint means a whole new problem to certify, and there was simply
not enough time to go through the process once more. Instead, a more naive
approach was chosen. The knowledge about the physical nature of the velocity
parameters makes it possible to motivate a simple limitation. If the velocity is out-
side the limits, the desired acceleration from the MPC is discarded and replaced
by a desired acceleration in the opposite direction from the current velocity. With
for example the positive case, with a velocity v exceeding vlim the error can be
described as

ve = v − vlim.

The acceleration from the MPC is discarded if ve ≥ 0, and replaced by

a = −Kve.

for a positive constant K , tuned to give a smooth response. The constant was
chosen to be K = 10 after some tests with the quad.

An upper limit for |a| was also set, to the same value as the maximum limit in
the MPC. The override for the desired acceleration was implemented in all three
axes independently, and for both positive and negative limits.

6
Results

The method for cascading MPC with a PID controller described in the previous
chapters was implemented on the physical Crazyflie. The Crazyflie was then
tested by giving different coordinates as references and both performance and
solve-times were recorded. The results in this chapter are from the actual test
flights.

6.1 MPC

The controller was tested for several different horizons to determine the maxi-
mum horizon practically feasible to solve. The largest horizon was found to be
N = 12. For longer horizons, the quad often rebooted due to overfull buffers in
processes having to wait too long for the MPC process. When an appropriate hori-
zon was found the weight matrices were tuned to give a reasonably fast response
but without overshoot. The tuning was performed manually by testing different
values in the weight matrices until the results were satisfactory.

The largest practically feasible horizon turned out to be far too complex to
certify without having access to a lot of computer power and time, why a shorter
horizon was chosen as well to compare the results. This horizon length was cho-
sen as N = 6 because it was possible to do some certification on this horizon, but
it was also possible to achieve good stability when flying.

The two horizons were compared in both reference tracking and time taken to
solve the QP:s. For the shorter horizon, it was possible to run without the warm-
start option, while for the longer horizon this was not possible due to too long
solution times. Therefore the solution times are only compared between warm
start and cold start for the shorter horizon. For horizon N = 6 a version was also
implemented to always give the MPC parameters within the certified parameter
space, called the certified version. This version was run without the warm start

35

36 6 Results

0 10 20 30 40 50 60
Time (s)

-2

0

2

P
os

iti
on

 (
m

)

X-axis

0 10 20 30 40 50 60
Time (s)

-2

0

2

P
os

iti
on

 (
m

)

Y-axis

0 10 20 30 40 50 60
Time (s)

0

1

2

3

P
os

iti
on

 (
m

)

Z-axis

Reference points to track

Figure 6.1: The reference points sent to the quad to test its response for the
different MPC versions.

Setup RMSE x-axis (m) RMSE y-axis (m)
N = 12 0.0225 0.0220

N = 6, warm start 0.0279 0.0387
N = 6, cold start 0.0262 0.0330
N = 6, certified 0.0363 0.0406

Table 6.1: Root Mean Squared Errors in xy-directions for the different MPC
setups. Computed from the last 10 seconds of a reference to hover 30 sec-
onds at 1 meter height.

option, to fully use the same setup as was certified.

A few different test references were used to test the performance in different
conditions. Firstly the stabilization was tested by a hovering test at one meter
above the ground for 30 seconds. The RMSE (Root Mean Square Error) was com-
puted in the xy-directions and compared between the different versions. The er-
ror was only computed for the last 10 seconds to be sure the quad was completely
stationary.

The second reference was a series of coordinates to test the response time to
go to a point and then be stationary. The actual sequence of coordinates can be
seen in Figure 6.1. Finally, the controller was tested on a tilted elliptical path,
given by a sequence of points sent to the quad at a predefined interval to force it
to keep a specific speed. The elliptical path was tested at the speeds 1 and 2 m/s.

6.1 MPC 37

6.1.1 Hover

The hovering was performed by giving the reference point [0, 0, 1] for 30 seconds,
and measuring the last 10 seconds. As can be seen in Table 6.1 the results from
the hovering test show an RMSE below 5 cm for all setups. On such a small
scale it is difficult to draw any clear conclusions on the comparison between the
different results, since there is some uncertainty in the measurements as well.
The results show that all different tuning and setups manage to keep the quad
stationary, suggesting a proper tuning for the stabilization.

6.1.2 Reference tracking

The results show reference tracking for three different setups: First with horizon
N = 12, warm start, and no other limitations, then with horizon N = 6, warm
start and no other limitations and lastly for horizon N = 6, cold start and limited
to the certified parameter space.

The tracking of the first set of reference points is seen in Figure 6.2 for horizon
N = 12, in Figure 6.3 for horizon N = 6 and in Figure 6.4 for horizon N = 6
and input limited to the certified parameter space, respectively. As is seen, all
versions manage to track all the desired points. With horizon N = 12 there was
no clear overshoot or failure anywhere. Still it was also rather quick to go to
reference points far away. Especially the final test when going from -3 to 2 in
the x-direction, from -2 to 1 in the y-direction and from 1 to 3 in the z-direction
simultaneously. This sequence was performed from stationary to stationary at
the new reference in less than 5 seconds, despite a new reference point over 6
meters away from the previous one. Also for horizon N = 6 the reference tracking
worked without problems. It was even a bit faster, but in general with a bit more
overshoot. This is probably a consequence of the different tuning of the matrices,
and it seems the horizon N = 6 is sufficient to control the quad in a stable way.
For the certified version, the response was naturally a bit slower, since it was
limited in speed. It did however manage to track the reference quite well anyway.
Compared to the non-limited N = 6 version it had a slightly less overshoot at 20
seconds. The overshoot happens when the reference is far away so the quadcopter
gains much speed on the way, but the certified version is limited in speed, so it
makes sense it will handle these situations better than an unlimited version.

The tracking of the elliptical reference at 1 m/s is seen in Figure 6.5 for hori-
zon N = 12, in Figure 6.6 for horizon N = 6 and in Figure 6.7 for horizon N = 6
and input limited to the certified parameter space, respectively. All versions did
a good job tracking the elliptical path at 1 m/s. Naturally, the quad ended up a
bit after the reference since the reference always is the next point ahead, but the
quad was always close behind the reference and did not show any stabilization
problems.

As a comparison, the tracking of the elliptical reference at 2 m/s is shown in
Figure 6.8 for horizon N = 12, in Figure 6.9 for horizon N = 6, and in Figure 6.10
for horizon N = 6 with input limited to the certified parameter space. For the
elliptical path at 2 m/s, the quad showed more problems following the reference.
For N = 12 it was lacking behind a bit more, and not really going all the way

38 6 Results

0 10 20 30 40 50 60
Time (s)

-2

0

2
P

os
iti

on
 (

m
)

X-axis

0 10 20 30 40 50 60
Time (s)

-2

0

2

P
os

iti
on

 (
m

)

Y-axis

0 10 20 30 40 50 60
Time (s)

0

1

2

3

P
os

iti
on

 (
m

)

Z-axis

Reference points N = 12

Figure 6.2: Resulting point tracking for warm start with horizon N = 12.
- = reference, - = actual value.

0 10 20 30 40 50 60
Time (s)

-2

0

2

P
os

iti
on

 (
m

)

X-axis

0 10 20 30 40 50 60
Time (s)

-2

0

2

P
os

iti
on

 (
m

)

Y-axis

0 10 20 30 40 50 60
Time (s)

0

2

P
os

iti
on

 (
m

)

Z-axis

Reference points for N = 6

Figure 6.3: Resulting point tracking for warm start with horizon N = 6 and
no limitations on the input to the MPC. - = reference, - = actual value.

6.1 MPC 39

0 10 20 30 40 50 60
Time (s)

-2

0

2

P
os

iti
on

 (
m

)

X-axis

0 10 20 30 40 50 60
Time (s)

-2

0

2

P
os

iti
on

 (
m

)

Y-axis

0 10 20 30 40 50 60
Time (s)

0

1

2

3

P
os

iti
on

 (
m

)

Z-axis

Reference points certified N = 6

Figure 6.4: Resulting point tracking for the certified version with N = 6.
- = reference, - = actual value.

0 5 10 15 20 25 30 35 40 45

Time (s)

-1

0

1

P
o
s
it
io

n
 (

m
)

X-axis

0 5 10 15 20 25 30 35 40 45

Time (s)

-2

0

2

P
o
s
it
io

n
 (

m
)

Y-axis

0 5 10 15 20 25 30 35 40 45

Time (s)

0

2

4

P
o
s
it
io

n
 (

m
)

Z-axis

Ellipse at 1 m/s for N = 12

Figure 6.5: Resulting elliptical path tracking for warm start with horizon
N = 12. - = reference, - = actual value.

40 6 Results

0 5 10 15 20 25 30 35 40 45

Time (s)

-1

0

1
P

o
s
it
io

n
 (

m
)

X-axis

0 5 10 15 20 25 30 35 40 45

Time (s)

-2

0

2

P
o
s
it
io

n
 (

m
)

Y-axis

0 5 10 15 20 25 30 35 40 45

Time (s)

0

2

4

P
o
s
it
io

n
 (

m
)

Z-axis

Ellipsoid at 1 m/s for N = 6Ellipse at 1 m/s for N = 6

Figure 6.6: Resulting elliptical path tracking for warm start with horizon
N = 6. - = reference, - = actual value.

0 5 10 15 20 25 30 35 40 45

Time (s)

-1

0

1

P
o
s
it
io

n
 (

m
)

X-axis

0 5 10 15 20 25 30 35 40 45

Time (s)

-2

0

2

P
o
s
it
io

n
 (

m
)

Y-axis

0 5 10 15 20 25 30 35 40 45

Time (s)

0

2

4

P
o
s
it
io

n
 (

m
)

Z-axis

Ellipse at 1 m/s for certified N = 6

Figure 6.7: Resulting elliptical path tracking for the certified version with
horizon N = 6. - = reference, - = actual value.

6.1 MPC 41

0 5 10 15 20 25 30

Time (s)

-1

0

1

P
o
s
it
io

n
 (

m
)

X-axis

0 5 10 15 20 25 30

Time (s)

-2

0

2

P
o
s
it
io

n
 (

m
)

Y-axis

0 5 10 15 20 25 30

Time (s)

0

2

4

P
o
s
it
io

n
 (

m
)

Z-axis

Ellipse at 2 m/s for N = 12

Figure 6.8: Resulting elliptical path tracking for warm start with horizon
N = 12. - = reference, - = actual value.

0 5 10 15 20 25 30

Time (s)

-1

0

1

P
o
s
it
io

n
 (

m
)

X-axis

0 5 10 15 20 25 30

Time (s)

-2

0

2

P
o
s
it
io

n
 (

m
)

Y-axis

0 5 10 15 20 25 30

Time (s)

0

2

4

P
o
s
it
io

n
 (

m
)

Z-axis

Ellipse at 2 m/s for N = 6

Figure 6.9: Resulting elliptical path tracking for warm start with horizon
N = 6. - = reference, - = actual value.

42 6 Results

0 5 10 15 20 25 30

Time (s)

-1

0

1

P
o
s
it
io

n
 (

m
)

X-axis

0 5 10 15 20 25 30

Time (s)

-2

0

2

P
o
s
it
io

n
 (

m
)

Y-axis

0 5 10 15 20 25 30

Time (s)

0

2

4

P
o
s
it
io

n
 (

m
)

Z-axis

Ellipse at 2 m/s for certified N = 6

Figure 6.10: Resulting elliptical path tracking for the certified version with
horizon N = 6. - = reference, - = actual value.

to the limits. For N = 6 it was tracking a bit better. This difference is probably
also connected to the different tuning, N = 6 showed to be a bit more aggressive
in keeping the reference, while N = 12 had more weight on keeping low speed.
The setup with more problems was the certified one, with a speed limit of 1 m/s
in each direction it was not really feasible to track the reference. It still showed
stable behaviour, even if the reference was not really followed.

In general, the quad was able to use the outer MPC to get references and to
follow them with the aid of the stabilizing PID. There does also not seem to be
any clear visible difference between the two horizons, suggesting even an MPC
with a short horizon can be a good controller.

6.1.3 Solution times

Solution times for all tested MPC versions are shown in Table 6.2, for the different
references tested. Looking at the mean solution times, one can note that they are
similar between the different references, but there is a huge difference between
warm and cold start. One can also note how the mean scales almost quadratically
with a longer horizon.

The mean time for solving a problem without warm start for N = 6 was higher
than the mean time for solving N = 12 with warm start, despite the second being
a much more complicated problem. This shows the strength of the warm start
option, it can reuse the previous solution and thus be more effective for similar
problems. The drawback is visible in the maximum solution times. Without
warm start, the maximum solution time was not much higher than the mean
time, but with warm start the maximum solution time could be almost ten times

6.2 Real-time certification 43

Reference Setup
Mean solution

time (µs)
Max solution

time (µs)

Points

N = 12, warm start 866 7488
N = 6, warm start 224 1144
N = 6, cold start 1447 2368
N = 6, Certified 1370 1712

elliptical path at 1 m/s

N = 12, warm start 835 1792
N = 6, warm start 219 328
N = 6, cold start 1357 1472
N = 6, certified 1356 1456

elliptical path at 2 m/s

N = 12, warm start 853 1792
N = 6, warm start 223 400
N = 6, cold start 1430 1744
N = 6, certified 1358 1520

Table 6.2: Solution times for all different references and MPC versions.

as high as the mean solution time. This is especially visible for the first reference
tracking, where the new reference could be far away and consequently changing
the parameters a lot in one iteration. For the elliptical path references, where
the new reference point was always rather close, and the velocity was more or
less constant between the problems, the new reference was always close in the
parameter space. This is reflected in the warm start solution times, where for
the elliptical path the difference between the mean and maximum solution times
was much smaller than for the reference tracking. For the cold start setups, the
solution times were similar no matter the reference.

The knowledge about how warm start affects the solution times can be useful
for implementing and tweaking a more complicated MPC. As can be seen, even
for N = 12 most solution times are below 1ms, but some are much higher. With
some more analysis of when the largest solution times occur and a solution for
handling them, it should be possible to solve an even more complicated problem
without time being an issue.

6.2 Real-time certification

The real-time certification was performed on the model with N = 6, and the
weight matrices are given in Section 4.6. It was limited to the parameter space
where

−1
−1
−1
−1
−1
−1

≤ x0 ≤

1
1
1
1
1
1

.

44 6 Results

−1 1
−1

1

X-Position

X
-V

el
oc

ity

1 2 3 4 5

of iterations

−1 1
−1

1

X-Position

Y
-V

el
oc

ity

1 2 3 4

of iterations

−1 1
−1

1

X-Position

Z-
Ve

lo
ci

ty

1 2 3 4

of iterations

Figure 6.11: Slices for the number of iterations when the y-position and
z-position are zero and the x-position is compared to velocity in the x-
direction, y-direction and z-direction in order from left to right.

The final result from the certification was a maximum solution time of 2560µs.
Compared to the frequency for the outer MPC of 100Hz this is about 25% of the
allowed time. The number of regions to investigate offline was 1085144.

A slice of the parameter space with the number of iterations required can be
seen in Figure 6.11. It gives only an example of the complexity, since both y-
and z-positions are set to zero, and the x-position is only compared to velocity
in one dimension at a time. What can be read from the figure is a conceptual
understanding of how the problem gets more complex when the state is further
from the origin.

The worst-case solution time of 2560µs means the MPC will clearly always
give a new control signal in time, even with a slight uncertainty in the other
processes running simultaneously. The conclusion is that it is possible to certify
an MPC for the specific task of controlling a quadcopter.

Important to remember is that there are also a lot of other processes that need
to be shown to be stable and not crashing the firmware. For example, processes
interrupting the MPC solver must be shown to always be fast enough, and the PID
controller must be shown to be stable in order to have a complete certification
for the entire system. The aim of this thesis was however only to investigate
the possibility of certifying the MPC formulation, which has been shown to be
possible.

7
Discussion and Conclusions

In this final chapter is given an analysis of the work of the author. The discus-
sion is focused on the implementation of the cascaded MPC and the usage of the
real-time framework. At the end there is also a more general view on the usage
of real-time certified MPC, and finally some conclusions to answer the research
questions.

7.1 Implementation of MPC

The implementation of MPC was the major contribution in this project, with a
functional method to use MPC on the Crazyflie along with results showing the
performance. The approach for the outer MPC formulation was to handle non-
linearities, model uncertainty and disturbances by using a PID controller for the
faster dynamics, and the MPC for the slower dynamics. This method proved to
work well in practice. The MPC formulation was greatly simplified by removing
the need for handling the rotation and attitude angles directly, and computing
them from the MPC solution made it possible to have nonlinear transformations
together with the linear MPC. One drawback was the need to have another con-
troller in the control loop. The MPC performance depended on the performance
of the inner PID, and the MPC was only applicable together with an external
positioning system.

The connection from the MPC formulation to the nonlinear dynamics was in
the constraints. They were constructed to ensure a feasible task for the PID con-
troller, but the constraints were conservative. The reason was to limit the amount
of constraints as much as possible. Afterwards, since it showed to work well with
the shorter horizon N = 6 and the solution time was way below the maximum
allowed time, it would have been possible to implement a more complex set of
constraints. This would have given a better approximation of the maximum al-

45

46 7 Discussion and Conclusions

lowed attitude angle. Actually, the dynamics in the method hold no matter the
rotation of the quad, why it should be possible to use the outer MPC formulation
for more aggressive manoeuvres, but this would require a more complicated set
of constraints, and maybe a more advanced inner controller.

The extra constraints in the certified setup were constructed in a straightfor-
ward and naive way. It turned out to work, but the quad became quite wobbly
when it was at the speed limit. A better option would perhaps have been to set
the new acceleration to a quadratic function from the speed limit. A quadratic
function has a zero derivative at zero, possibly resulting in a more smooth limit.

There were some features not implemented but thought about. One was to
predict the position and velocity one step ahead and send it to the MPC. Then
the delay in solving the problem could have been eliminated. No visible problem
with the delay in the solution time was however seen, why this feature never
was implemented and tested. With a more complicated problem and a longer
solution time, it is possible this would have been important. Another problem
was the uncertainty in the mass of the quad. The mass was given for the quad,
but to use the motion capture system a plate was needed on the quad, increasing
the weight with a few grams. In the implementation, the weight was manually
set and tuned to give a small offset in the z-axis. A more advanced way would
have been to incorporate it in the MPC, or to continuously estimate the weight
with a filter.

7.2 Certification

The certification process was quite tedious, even for the relatively small area cer-
tified. With the overhead time of sending new parameters and receiving the re-
sults, it was only possible to run about 30 regions per second on the quad. With
a total of over 1 million regions to certify, this meant a necessity to run the code
towards the quad for about 10 hours. The code for finding all regions was also
rather time-consuming and required a lot of memory for covering a large area.
This time and computational complexity of the certification was a clear problem
in this project, but with more time, and an analysis of how complex the system
should be, a rather complicated problem could be certified.

The process in itself was not especially complicated, so there should not be
any theoretical problems in certifying a larger area. It will however require some
thought on how to make the process more effective. The finding of regions can
be run on a more powerful computer. For the certification towards the microcon-
troller, it would speed up the process a lot to have faster communication. It could
also be an idea to simulate the processor on a faster computer, being able to run
the certification faster but still give the appropriate results. The computation can
also be split between several copies of the hardware.

In theory, all regions must be tested to determine the maximum solution time.
In practice, one could make use of the knowledge of the problem to simplify the
certification. Since the problem in this case was symmetrical in the xy-directions,
it should be possible to limit the certification to for example positive position pa-

7.3 Wider perspective 47

rameters and still have a valid limit for the negative values as well. This approach
would require a little bit more motivation to perform, but will probably be a way
to shorten the certification for certain types of problems.

7.3 Wider perspective

The specific application with a control system for a Crazyflie is perhaps mainly
of academic interest, but the more general result of deploying an MPC solver
on a microcontroller has many practical applications. As was described in the
introduction, MPC has helped improve control in a lot of fields when the com-
puters became powerful enough and the methods effective enough to handle the
involved optimization problems. The contribution of this thesis is to show that
embedded microcontrollers are now capable of handling an MPC solver. Use
cases are fast processes controlled by embedded systems, where today the con-
troller is not optimal.

An optimal control system can for example be used to minimize fuel consump-
tion in an engine, thus reducing the climate impact from the engine. It can also be
used for energy optimization in power electronics, both for balancing the power
grid to be able to use more renewable energy, and directly in "smart houses". In
this thesis, MPC has also been shown to work for aerial applications. There are
systems in both autonomous aerial vehicles, as well as in manned aircrafts where
MPC would be attractive, but where the stability requirements have so far been
hard to meet without any formal proof of a worst-case solution time.

7.4 Future work

In this thesis has been presented an application for a fast real-time framework for
embedded systems. As with all research, a lot of problems and new ideas arise
during the process, and the time during the project is never enough to go through
with them all. Some continuations the author would have found interesting are:
To further test the limits of the certification framework, to improve the model for
the inner MPC, and to develop the outer MPC formulation.

Larger parameter space certification In this thesis was shown an approach to
implement and certify high-speed real-time MPC for a practical application. Due
to lack of time and resources, it was not possible to go all the way and actually
certify the entire interesting space, but the theoretical possibility is shown. The
natural next step would be to actually perform the entire certification for a sim-
ilar system. This could consist of a project more focused on the maximum com-
plexity practically feasible to certify, given a specific amount of computer power
and time.

Inner MPC One failed aim of this project was to develop and implement MPC
for the inner stabilizing loop of a quadcopter. The physical model includes states

48 7 Discussion and Conclusions

for the inner stabilization loop, but tests performed showed some errors in how
the PWM is translated to thrust and torque. The optimization algorithm was how-
ever successfully run at 500 Hz for the presented inner-loop model, suggesting
the possibility of implementing MPC for the inner-loop control. A continuation
to this project would be to examine the inner loop in more detail, and from the
resulting model implement MPC for the stabilization. This continuation would
if successful give a more complete control system based on MPC.

More advanced outer MPC The working outer MPC in this project could be
developed even more to have a better, more agile controller. One part to look at is
the constraints. With less conservative boundaries the constraints would be more
complex, but the controller might also work better. For example, by doing a more
accurate approximation of the cone constraint in acceleration space the controller
can set a higher attitude angle even when accelerating upwards. It would also be
interesting to investigate the use of several linearized models around different
points to gain an even more agile controller. Then it would perhaps be necessary
to also investigate and optimize the inner PID controller for the references from
the MPC.

7.5 Conclusions

The aim of this thesis was to investigate the use of model predictive control on a
Crazyflie 2.0 and to further investigate the possibility of certifying an MPC for-
mulation for a real-time application. An MPC formulation has been implemented
in the firmware of a Crazyflie 2.0, and it has been shown to work satisfactorily.
Different complexities have been tested, with a maximum complexity of 36 opti-
mization variables and 60 double-sided constraints.

A framework for finding the maximum solution time has been used to certify
an MPC formulation with 18 optimization variables and 30 double-sided con-
straints. It was shown to work in principle, but the certified parameter space was
limited due to lack of time. A way to ensure that the parameter input to the MPC
formulation is within the desired boundaries has been given. Finally, a real-time
certified MPC formulation has been implemented and tested in real flight on the
Crazyflie 2.0.

7.5.1 Answers to research questions

1. Is it practically feasible to use model predictive control for the control of a
Crazyflie quadcopter?

• Yes, the Crazyflie has been equipped with model predictive control,
with an online solver. There is clearly enough computer power on the
microcontroller to handle the problems involved in MPC.

2. How complicated problems can be solved with the limited resources on the
embedded computer on the Crazyflie quadcopter?

7.5 Conclusions 49

• A controller based on MPC with 36 optimization variables and 60
double-sided inequality constraints has been shown to run at 100Hz
on the Crazyflie, in flight. At that point, there was some margin in the
RAM, but not much. For this complexity, the time usage was rather
high for some specific states, but in general, there was a lot of margin
in processing time. The highest noted solution time in the test scenar-
ios was also quite close to the limit of the maximum accepted time.

3. Is it practically feasible to real-time certify the maximum solution time for
an applied MPC formulation?

• A method for certifying a stable, flying MPC for the Crazyflie has been
presented. It is however very limited compared to what has been prac-
tically shown to work, but not possible to certify due to limitations in
time and computer power. The method seems feasible, but computa-
tionally demanding.

Bibliography

[1] Bitcraze AB. App layer, 2023. URL https://www.bitcraze.io/
documentation/repository/crazyflie-firmware/master/
userguides/app_layer/.

[2] Bitcraze AB. State estimation, 2023. URL https://www.bitcraze.
io/documentation/repository/crazyflie-firmware/master/
functional-areas/sensor-to-control/state_estimators/.

[3] Bitcraze AB. Controllers in the crazyflie, 2023. URL
https://www.bitcraze.io/documentation/repository/
crazyflie-firmware/master/functional-areas/
sensor-to-control/controllers/.

[4] Bitcraze AB. The coordinate system of the crazyflie 2.x, 2023. URL
https://www.bitcraze.io/documentation/system/platform/
cf2-coordinate-system/.

[5] Qualisys AB. Qualisys, 2023. URL https://www.qualisys.com/.

[6] Daniel Arnström. Real-Time Certified MPC. PhD thesis, Linköping Univer-
sity, 2023.

[7] Daniel Arnström and Daniel Axehill. A unifying complexity certification
framework for active-set methods for convex quadratic programming. IEEE
Trans. Autom. Control, 67(6):2758–2770, 2022.

[8] Daniel Arnström, Alberto Bemporad, and Daniel Axehill. A dual active-set
solver for embedded quadratic programming using recursive LDLT updates.
IEEE Trans. Autom. Control, 67(8):4362–4369, 2022. doi: 10.1109/TAC.
2022.3176430.

[9] Daniel Arnström, David Broman, and Daniel Axehill. Exact worst-case
execution-time analysis for implicit model predictive control, 2023.

[10] Wayne Durham. Aircraft flight dynamics and control. Chichester, West
Sussex : John Wiley and Sons, Incorporated, 2:10 edition, 2013.

51

https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/userguides/app_layer/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/userguides/app_layer/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/userguides/app_layer/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/state_estimators/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/state_estimators/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/state_estimators/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/
https://www.bitcraze.io/documentation/system/platform/cf2-coordinate-system/
https://www.bitcraze.io/documentation/system/platform/cf2-coordinate-system/
https://www.qualisys.com/

52 Bibliography

[11] Emil Fresk and George Nikolakopoulos. Full quaternion based attitude con-
trol for a quadrotor. 2013.

[12] Julian Förster. System identification of the crazyflie 2.0 nano quadrocopter.
2015.

[13] Torkel Glad and Lennart Ljung. Reglerteori, Flervariabla och olinjära
metoder. Studentlitteratur, 2:10 edition, 2003.

[14] Torkel Glad and Lennart Ljung. Reglerteknik, Grundläggande teori. Stu-
dentlitteratur, fourth edition, 2006.

[15] Fredrik Gustafsson. Statistical Sensor Fusion. Studentlitteratur, 3:2 edition,
2018.

[16] Carlos Luis. Design of a trajectory tracking controller for a nanoquadcopter.
2016. URL arXiv:1608.05786v1.

[17] Rick Parent. Computer Animation. Elsevier Inc., third edition, 2012.

[18] James B. Rawlings, David Q. Mayne, and Moritz M. Diehl. Model predictive
control : theory, computation, and design. Madison : Nob Hill Publishing,
2017, second edition, 2017.

[19] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. Review on
model predictive control: an engineering perspective. The International
Journal of Advanced Manufacturing Technology, 117:1327–1349, 2021.

[20] Amazon Web Services. Freertos, 2023. URL https://www.freertos.
org/index.html.

[21] Rebecka Winqvist, Arun Venkitaraman, and Bo Wahlberg. On training and
evaluation of neural network approaches for model predictive control, 2020.

[22] Pablo Zometa, Markus Kögel, Timm Faulwasser, and Rolf Findeisen. Imple-
mentation aspects of model predictive control for embedded systems. pages
1205–1210, 06 2012. doi: 10.1109/ACC.2012.6315076.

arXiv:1608.05786v1
https://www.freertos.org/index.html
https://www.freertos.org/index.html

	Sammanfattning
	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Background and motivation
	1.2 Problem formulation
	1.2.1 Research questions

	1.3 Limitations
	1.4 Outline of the thesis

	2 The Crazyflie Nano Quadcopter
	2.1 System overview
	2.1.1 Sensor measurements

	2.2 Model of the Crazyflie
	2.2.1 Reference frames
	2.2.2 Rotation
	2.2.3 Translational states
	2.2.4 Moments
	2.2.5 Quaternions
	2.2.6 Discretization
	2.2.7 Physical parameters

	3 Model Predictive Control
	3.1 MPC formulation
	3.1.1 Tuning

	3.2 Parametric quadratic program formulation of an MPC problem
	3.3 Algorithm for quadratic programming

	4 Implementation
	4.1 Dynamic model
	4.2 Constraints
	4.3 Choice of parameters
	4.4 World frame to quad frame
	4.5 Inner-loop control
	4.6 Weight matrices
	4.7 Practical issues

	5 Real-Time Certification
	5.1 Certification process
	5.2 Limits in the MPC formulation

	6 Results
	6.1 MPC
	6.1.1 Hover
	6.1.2 Reference tracking
	6.1.3 Solution times

	6.2 Real-time certification

	7 Discussion and Conclusions
	7.1 Implementation of MPC
	7.2 Certification
	7.3 Wider perspective
	7.4 Future work
	7.5 Conclusions
	7.5.1 Answers to research questions

	Bibliography

