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Abstract

The field of 2D materials is a relatively young and rapidly growing area
within materials science, which is concerned with atomically thin states
of matter. Because of their intrinsic 2D morphology, 2D materials have
exceptionally high surface to weight or surface to volume ratio. This renders
them excellent candidates for surface-sensitive applications such as catalysis
and energy storage, which can aid us in the transition to a more sustainable
society. 2D materials are also interesting because they show properties
intrinsically different from those of their 3D counterparts, expanding the
attainable property space within materials science. A 2D material can be
synthesised by either a bottom-up or top-down approach. The focus here
is on the latter, where the 2D material is derived by either mechanical
exfoliation or selective etching of a 3D nanolaminated parent phase.

A 3D laminate can typically be assigned to one of two types, depending
on the type of interlayer bonding: van der Waals (vdW) or chemical bond-
ing. In a vdW bonded phase, the constituent layers are kept together into
their 3D form by rather weak vdW forces, while in the latter type, the layers
are bound more strongly by chemical interactions (i.e., covalent, ionic and
metallic bonds). The first 2D materials were derived from vdW-phases,
which can be exfoliated by mechanical methods. In a chemically bound
laminated phase, the inter layer bonding is stronger, and more complex
methods are required for exfoliation of these phases into 2D. This thesis
concerns the computational study and development of novel 2D materials
through exploration of 3D nanolaminated structures, assessment of their
phase stability, and potential for conversion into 2D. The 2D derivatives
are in turn studied through prediction of dynamical stability, termination
configuration, and evaluation of electronic properties.

Paper III and IV each addresses a family of van der Waals structures.
The family of 3D materials studied in Paper III was chosen because it was
recently demonstrated as possible to use for derivation of so called 2D MX-
enes, while the 2D form of NbOCl2, from the family studied in Paper IV,
has been shown to exhibit exciting optical properties. Both projects fo-
cus on identification of parent 3D materials, their exfoliation from 3D to
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2D, and the electronic properties of the studied phases. In each project, a
range of different chemical compositions is considered, chosen based on the
experimentally known members of the respective families. A 3D structural
ground state is predicted for each composition and prototype, and the dy-
namical stability with respect to lattice vibrations is established for each
identified structure. To assure the experimental relevance of each consid-
ered 3D phase, the thermodynamical stability of each structure is assessed
via the formation enthalpy with respect to competing phases, identifying
seven stable structures in Paper III, and 17 in Paper IV, all of which are also
found dynamically stable. Evaluation of the exfoliation energy for all these
phases indicates that 3D to 2D conversion is possible. The electronic band
structure and density of states were evaluated both for the 2D materials –
being the primary focus in both projects – and their 3D parent phases. Al-
though the bandgap for semiconducting phases is generally increased upon
exfoliation, the electronic properties are mostly retained when exfoliating
the vdW phases studied in this thesis.

Paper I, II and V address chemically bonded 3D phases and their 2D
derivatives. In these 3D phases, auxiliary atoms are interleaved between the
2D units, which needs to be selectively etched to form the corresponding 2D
material. Additionally, new terminating species – so called terminations –
may attach to the surfaces of the 2D units exposed during etching. Paper I
presents an analysis of bonding characteristics in a group of nanolaminated
3D chemically bonded borides: Mo2SiB2, Ti4MoSiB2, and Ti5SiB2, out of
which only the two former are observed experimentally. We identify a peak
of antibonding states at the Fermi level for Ti5SiB2 as a reason why full
elemental substitution of Mo is not achieved experimentally. Papers II and
V instead focus on 2D materials derived from chemical 3D parent phases.
They go beyond the 2D transition metal carbides and nitrides (MXenes),
which until recently were the only 2D materials synthesised through selec-
tive etching. Paper II is a study of possible termination configurations on
the first 2D boride Mo4/3B2−xTz – boridene – which is identified as being a
conductor or small bandgap semiconductor, depending on the terminating
species and specific configuration.

In Paper V, a computational methodology for simulation of the selective
etching process is employed to predict the possibility of etching Y from
YM2X2, where the transition metal M and metalloid or nonmetal X are
chosen to cover a large compositional space. This results in the prediction
of 15 stable 2D structures, out of which nine are not previously investigated.
All 2D structures are found to be either metallic or semimetallic.

In this thesis, several different computational tools are used to predict
and study laminated 3D phases and their corresponding 2D derivatives,
assessing their properties considering both purely hypothetical and experi-
mentally realised structures. Experimental relevance is central to all calcu-
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lations, either by complementing already established experimental results,
or by rigorous assessment of thermodynamical and dynamical stability to
estimate the potential for experimental synthesis. The thesis expands our
knowledge of 3D laminated phases and their 2D derivatives, and identifies
several new phases which are likely possible to synthesise.
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Populärvetenskaplig
Sammanfattning

Det moderna samhället står idag inför en oerhörd utmaning, där den ökande
globala genomsnittstemperaturen – ett resultat av vår omfattande förbrän-
ning av fossila bränslen – orsakar svåröverskådliga och långtgående all-
varliga konsekvenser i stora delar av världen. Samtidigt ökar efterfrågan på
billig energi allt eftersom vi blir fler människor på jorden, och varje individ
kräver allt mer resurser för att möta allt högre förväntningar på levnads-
standard. Det är kort och gott inte en enkel ekvation att lösa. Denna
avhandling relaterar specifikt, om än indirekt, till hur energi kan utvinnas
och lagras mer effektivt än idag, vilket är en oerhört viktig pusselbit för ett
mer hållbart framtida samhälle.

Det finns många olika sätt att lagra energi, till exempel mekanisk,
kemisk och elektrokemisk lagring. Olika bränslen, inklusive fossila bränslen,
är exempel på kemisk energilagring. Kemisk energi utvinns ur bränslet
genom att bränslemolekylerna deltar i en kemisk process, där skapandet
av nya kemiska bindningar frigör energi. I de flesta fall är koldioxid en
av slutprodukterna vid utvinning av kemisk energi, även när det kommer
till förnyelsebara bränslen som etanol och förnyelsebar metangas. Därför är
utvinning av kemisk energi sällan problemfri även om den inte sker ur fossila
bränslen. Ett sätt att lagra kemisk energi utan dessa problem är att lagra
den i form av vätgas, som vid förbränning har vatten som slutprodukt. Att
framställa vätgas är dock energikrävande och effektiva katalysatorer behövs
för att det ska kunna konkurrera med andra bränslen. Den mest effektiva
katalysatorn vi har idag är platina – en ädelmetall som är dyrare än guld.

Batterier används för elektrokemisk energilagring, genom att lagra ladd-
ning i form av joner som kan utvinnas som elektrisk energi. Det finns flera
olika sätt att konstruera den kemiska sammansättningen för ett batteri,
som alla har sina för- och nackdelar. Ett klassiskt bilbatteri har till ex-
empel en helt annan kemi och andra egenskaper än ett uppladdningsbart
batteri för en elcykel. Inom kommersiell batteritillverkning förekommer
dock bara ett fåtal kemier som är tillräckligt säkra och kostnadseffektiva,
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och den drastiskt ökande efterfrågan på batterier gör att det därför blir
hög konkurrens om råvaror. Det finns således ett stort behov både av att
utveckla nya kemier för batterier, och av att utveckla effektivare sätt att
utnyttja råvarorna vi redan använder.

Tvådimensionella (2D) material är en relativt ung gren inom material-
forskningsområdet, med en närmst oändlig uppsjö av potentiella tillämp-
ningsområden. Ett 2D-material är bara ett till några få atomlager tjockt,
och är således så tunt ett material över huvud taget kan bli. Detta medför
att 2D-material har en väldigt stor yta i förhållande till volym och antal
atomer, vilket gör dem till utmärkta kandidater för diverse tillämpningar
där ett materials yta är dess viktigaste egenskap. Bland annat är de poten-
tiella kandidater både som katalysatorer för flera olika reaktioner, och för
jonlagring i batterier.

Denna avhandling är fokuserad på utveckling av nya 2D-material samt
karakterisering av dessa utifrån olika aspekter. Det finns olika metoder för
att framställa 2D-material, men de flesta har gemensamt att de utgår från
ett 3D-material där atomerna redan ligger i ordnade lager och sedan på olika
sätt separerar dessa lager från varandra för att framställa motsvarande 2D-
material. Den forskning som presenteras i denna avhandling är därför inte
begränsad till bara 2D-material, utan studerar även lagrade 3D-material
som skulle kunna användas för framställning av nya 2D-material. I artikel
I studeras därför en grupp lagrade 3D-material, med målet att förstå varför
vissa av dem går att framställa experimentellt medan andra inte gör det. De
övriga artiklarna undersöker i första hand 2D-material. I artikel II studeras
de så kallade termineringarna – enskilda atomer eller väldigt små grupper
av atomer som fäster på ytan av vissa typer av 2D-material och påverkar
deras egenskaper – och hur dessa påverkar de elektroniska egenskaperna hos
materialet. I artikel III, IV och V utgår respektive studie från en lagrad
3D-struktur där atomerna byts ut mot olika kemiska sammansättningar.
3D-material som är intressanta som utgångsmaterial för framställning av
nya 2D-material identifieras genom olika typer av stabilitetsanalys, och
de motsvarande 2D-materialen studeras i detalj, specifikt ur perspektivet
av elektronegenskaper. Vi förutspår flera nya både 3D- och 2D-material,
varav vissa är ledande, andra är halvledande, och några har mer exotiska
egenskaper någonstans mittemellan.

Som tidigare nämnt så är resultatet av den forskning som ingår i denna
avhandling främst relevant för att lösa klimatkrisen ur ett indirekt perspek-
tiv; vi undersöker inte hur materialen presterar för batteriapplikationer, och
endast ett material studeras för katalys. Dock måste varje meningsfull upp-
täckt börja någonstans, och detta kräver en gedigen och systematisk grund-
forskning, eftersom vi inte vill förlita oss på att slumpen låter oss hitta
nästa banbrytande material. Denna avhandling är en del av just denna
grundforskning, där nya, oupptäckta material förutspås och grundläggande

vi



egenskaper för nyupptäckta material undersöks. Andra forskare, fram-
förallt inom experimentella områden, har sedan möjlighet att bygga vidare
på de resultat som presenteras här, och kanske leder våra upptäckter så
småningom till att nya material med verkligt användbara egenskaper re-
aliseras.
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Chapter 1

Introduction to 2D
materials

The search for, utilisation, and manipulation of materials is a central human
activity, to the point where the periods of early human history are named
by the characteristic material of that time. The utilisation of different
materials to enhance our own capabilities is something that distinguishes
us from other species, and it has let us become experts at performing a
great variety of tasks without having to wait for evolution to equip us
appropriately.

Different ways have over time been discovered to improve and tailor
material properties to better suit our needs and desires. Alloying, for in-
stance, was used during the bronze age to improve the properties of copper,
by alloying with predominately tin or zinc to form bronze. This improves
the hardness compared to pure copper and renders bronze a more useful
material for making sharp or durable items. Yet other ways of manipu-
lating a material is by heating, for instance the burning of clay to make
ceramics, or by mixing chemicals to synthesise new materials, such as gun-
powder. Indeed, considerable human activity throughout the history has
evolved around understanding how to manipulate materials, although for
a long time the development of new materials was slow and progress was
made primarily by trial and error.

At the start of the 20th century this started to change drastically, with
the formulation of the atom as we understand it today and the development
of quantum mechanics. Material properties are largely dictated by the
interplay of electrons with each other and with atomic nuclei, and hence
they need a quantum mechanical description in order to be well understood.
In the last century the manipulation of materials reached a milestone with
the development of computers, which gives us the possibility to not only
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CHAPTER 1. INTRODUCTION TO 2D MATERIALS

expand our physical capabilities, but our mental capabilities as well. One
may even refer to the current age as the age of silicon1, which is the key
material in a typical computer chip.

The rise of the computer has opened up a great number of possibilities,
and it has greatly aided us in understanding the behaviour and proper-
ties of different materials, and also in the development of new ones. As
computational power has gotten cheaper and more available, simulation of
materials has become a more and more important tool in the search for new
materials, which in turn may be used for the development of improved tools
for a variety of applications. This is how we approach the actual topic of
this thesis, which is an agglomeration of computational studies regarding a
number of different materials. In common for these studies is that they are
all concerned with two-dimensional (2D) materials, in one way or another.

A 2D material is a truly atomically thin material, consisting of one to
a few layers of atoms2,3. The 2D morphology is intriguing from primarily
two aspects: firstly, the intrinsic 2D morphology leads to novel physics and
lends a 2D material properties typically different from that of the three-
dimensional (3D) counterpart, and secondly, the surface area is extremely
large relative to the mass or volume of the material. For the purpose of this
thesis, the latter aspect is of most interest. The very high relative surface
of 2D materials renders them intrinsically interesting for all applications
involving surface interactions, such as catalysis, sensing, and energy storage.

In particular, different kinds of efficient energy storage is the key ar-
gument for the work presented here, be it through storage in batteries,
supercapacitors, or through chemical processes (via catalysis). The human
population is rising globally, as are the living standards, which indicates in-
creased energy consumption. In order to transition away from fossil fuels,
we need to harvest energy from renewable sources, such as solar, wind and
water power. These energy sources all have in common that they are less
flexible than fossil fuels, either by being less portable or less controllable,
and thus we need powerful, efficient and sustainable means to store energy
from these sources. This is our motivation for studying 2D materials.

1.1 Nanolaminated materials
Common for all 2D materials studied in this thesis is that they are synthe-
sised, or predicted to be synthesised, by a so called top-down approach from
a nanolaminated parent material. Thus, this is where the discussion will
start. Nanolaminated 3D materials are characterised by exhibiting a clearly
layered structure. They can be characterised by the bonding between these
layers, which is either of van der Waals (vdW) or chemical bonding type.

Figures 1.1.1 and 1.1.2 show a number of nanolaminated structures from
different structural families. Figure 1.1.1a)-c) shows graphite, a transition
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1.1. NANOLAMINATED MATERIALS

Figure 1.1.1: Examples of different nanolaminated structures with van
der Waals bonding. a) shows the carbon allotrope graphite, b) shows a
transition metal oxyhalide MOX2, and c) shows multilayer MXene.

metal oxyhalide (MOX2), and multilayered MXene, respectively. The 2D
morphology of these structures is evident, with 2D layers well separated by
seemingly empty space along the vertical direction. These are all example of
vdW type structures, in which the constituent 2D units are bound together
by relatively weak interlayer vdW interactions. Figure 1.1.2a)-c) instead
show nanolaminated structures characterised by chemical bonding. The
layered nature of these phases is still evident, but the 2D units are not as
clearly separated from one another, and it is not even necessarily obvious by
simple visual inspection what are the constituent units in these materials.

All structures shown in Figure 1.1.1 and 1.1.2, with the exception of
graphite in Figure 1.1.1a), are examples of structures studied in this thesis.
The family of materials of the prototype shown in Figure 1.1.1b), referred
to as the MOX2 structures where M is a transition metal and X is a halide,
is studied in Paper IV, where ten experimentally reported and eight hy-
pothetical members of this family are considered. The first experimentally
reported member was discovered in the 1960s4. Depending on the spe-
cific M-species, the structure shown in Figure 1.1.1b) is subject to different
distortions, which leads to very different properties between the different
members of the MOX2 family. Although an old family of phases, not much
attention has been paid to these structures until the last five years or so,
when the 2D community started studying them5–8. A number of intriguing
optical and electronic properties have since been found in the 2D versions
of these phases7,9,10, although studies have primarily been limited to com-
putational perspectives.

Paper III primarily concerns different compositions on the vdW proto-
type structure shown in Figure 1.1.1c), but to a lesser extent also on the so
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CHAPTER 1. INTRODUCTION TO 2D MATERIALS

Figure 1.1.2: Examples of different nanolaminated structures with chem-
ical interlayer bonding. a) shows a MAX phase, b) a type of MAB phase
called T2 phase, and c) a ThCr2Si2 prototype phase.

called MAX structure shown in Figure 1.1.2a). The MAX structures, where
M represents a transition metal, A an “A-element” (commonly a metalloid)
and X is carbon, nitrogen, or in a few cases boron or phosphor, are a large
group of structures which consists of Mn+1Xn slabs (n being an integer)
interleaved with single atom layers of A-elements11. For the MAX proto-
type in Figure 1.1.2a), n = 2. The structures in Figure 1.1.1c) and 1.1.2a)
were both first reported in the middle of the last century12,13, just like
the MOX2 structures. The family of MAX phases was enthusiastically ex-
panded during the 1960, and then very little happened until 199611, when
the MAX phases were “rediscovered”, and shown to exhibit a set of interest-
ing material properties, being both thermally and electrically conducting
like a metal, but also relatively stiff and easily machinable like graphite
and corrosion resistant like a ceramic14. The family of MAX phases is to
this day a very active research area, partially because of their potential as
parent structures for the synthesis of 2D materials, which will be addressed
further in the next section.

Figure 1.1.2b) and c) show yet two additional chemically bound nanolam-
inated structures. In b) is a so called MAB phase, named thus in homage
to the MAX phases. The B in MAB stands for boron, which is a common
element for all MAB phases. In contrast to the MAX phases, the structure
of a MAB phase is not well defined, but they consist of a number of dif-
ferent structural families15. The MAB phases are particularly intriguing
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1.2. REMOVING A DIMENSION

because of the inclusion of boron, which is a very diverse element. Boron
has five different pure elemental phases, and binary transition metal borides
are known to exhibit high hardness, having applications as hard coatings
within tool manufacturing. The specific structure in Figure 1.1.2b) is a so
called T2 phase16,17, which are studied in paper I. The last structure in
Figure 1.1.2c) is of the ThCr2Si2 prototype18, which is considered in Paper
V for 300 different hypothetical and reported chemical compositions. This
prototype is experimentally reported in ∼ 700 different compositions, and
display a rich palette of physical properties with, e.g., superconductivity,
heavy fermions, and structural phase transitions19.

Thus, we conclude this section noting that nanolaminated structures
constitute a diverse group of materials, with attractive and interesting prop-
erties in and by themselves. However, for the purpose of this thesis, we are
primarily interested in them from the perspective of synthesising 2D mate-
rials, which is the next topic of this introduction.

1.2 Removing a dimension
The field of 2D materials took flight with the realisation of graphene in 2004
– a 2D carbon allotrope of only a single atom’s thickness with intriguing
electronic properties2. Graphene was soon followed by other 2D materials,
e.g. 2D transition metal dichalcogenides (TMDs) which consist of a transi-
tion metal layer decorated with chalcogens (S, Se or Te)20, and hexagonal
boron nitride (h-BN)21.

At the start of this century, 2D materials were conceptually intriguing
to the research community partially because of their absence in freestand-
ing form. At this time, 0D and 1D quasi structures in the form of cage
molecules (i.e. fullerenes for carbon) and nano tubes were realised, in ad-
dition to traditional 3D bulk structures22. However, no freestanding 2D
phases were known of, and they were even speculated to be universally un-
stable21,23, until graphene was realised by mechanical exfoliation of single
or few atomic layers from 3D bulk graphite2. Novoselov et al. gives in ref.
22 a brief discussion on why graphene was not discovered earlier, despite
the simplicity of their exfoliation method and several earlier reports on thin
flakes of graphite:

1. Although the exfoliation method did consistently yield monolayer
flakes, thicker flakes were in great majority.

2. 2D crystals are harder to detect in transmission electron microscopy
(TEM) than, e.g., nanotubes.

3. Monolayer graphene is optically transparent, and thus hard to detect
in an optical microscope.

5
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Figure 1.2.1: Schematic illustration of the etching of a M3AX2 phase into
M3X2 MXene in HF acid. Reprinted from ref. 24 with permission from the
authors.

4. Atomic force microscopy (AFM) which, at least at the time, was the
only method for definitive detection of monolayer crystals has too low
throughput to scan at random.

5. 2D materials were suspected to not even exist.

The key that let Novoselov et al. discover monolayer graphene despite these
obstacles was that the flakes are indeed optically detectable when placed
on an oxidised Si wafer22.

Just as graphene is exfoliated from bulk graphite by mechanical means,
so are many other 2D materials, e.g. h-BN, 2D TMDs, and 2D MOX2 stud-
ied in Paper IV, exfoliated mechanically from their respective vdW bonded
3D parent phases9,25. However, to achieve successful results with mechan-
ical exfoliation, the interlayer bonding of the 3D bulk structure needs to
be sufficiently weak, rendering this exfoliation method inefficient for lami-
nated materials with interlayer bonding of chemical type. I.e., neither of the
structures in Figure 1.1.2a)-c) can be exfoliated mechanically26,27. Fortu-
nately, another technique was discovered with the realisation of the first 2D
MXene. In 2011 Naguib et al.3 managed to exfoliate a MAX phase, namely
Ti3AlC2, schematically represented by the structure in Figure 1.1.2a), into
a 2D material by a completely new exfoliation method. In this method,
referred to as chemical exfoliation or selective etching, the A-layers of the
parent MAX phase are selectively etched away, by chemically breaking the
M-A bonds which are relatively weak compared to the M-X bonds28. De-
pending on which MAX phase is used as parent phase, a successful etching
process results in a 2D material of structure Mn+1Xn, i.e. n+ 1 transition
metal layers interleaved with n layers of X-element (C or N), where n is
the same as in the parent MAX phase. The very first such material was
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1.2. REMOVING A DIMENSION

Ti3C2, and it was coined “MXene”, with “MX” referring to the derivation
from the MAX parent phase, and the ending “-ene” in analogy to graphene.
The etching process of a M3AX2 phase is illustrated in Figure 1.2.1, where
the MAX phase is still intact in the leftmost part of the Figure, while
completely etched into M3X2 at the rightmost part of the Figure.

Synthesising MXene by selective etching was originally performed at
room temperature with the help of hydroflouric (HF) acid, followed by son-
ication for further separation of the 2D sheets from one another, and finally
intercalation of various ions in between the sheets to achieve complete de-
lamination into single layer MXene. Without intercalation, hydrogen and
van der Waals bonds between the MXene sheets keep them together to
form multilayer MXene29. In 2014 Ghidiu et al. realised the exfoliation of
Ti3AlC2

30, the same MAX phase from which Naguib et al. fabricated the
very first MXene, in a mixture of LiF and HCl instead of HF acid. Not
only is this procedure less hazardous by avoiding the handling of concen-
trated HF acid, but the process also fully delaminates the 2D flakes in one
step, since the Li+ ions are intercalated directly during etching. Since then
a number of different etching chemistries have been developed, including
etching in NH4HF2

31, molten salts and water free etching in polar organic
solvents32.

Upon etching of the A-element, different atoms and functional groups
will attach to the exposed surfaces of the M-layers. These are referred to
as surface terminations or terminating species, and for MXene etched in F-
containing aqueous solutions they consist of F, O and OH-groups, coming
primarily from the F– and H2O environment. This is illustrated in Figure
1.2.1 by green (F), red (O) and small white (H) atoms covering the exposed
MXene surfaces. When other chemicals are used for the etching, other
terminations, such as Cl and Br, have been realised33,34. The terminations
are very important because they considerably affect the properties of the
MXene27,35.

Besides property tailoring via choice of terminating species34, structural
and compositional design of the 2D MXene via the parent MAX phase can
also be used to manipulate the properties of the resulting MXene. In ad-
dition to Mn+1AXn structures being realised with different n leading to
MXene with different numbers of M- and X-layers, mixing of different ele-
ments within the MAX parent phase, primarily on the M-site, has lead to
the realisation of MXene with in- and out-of-plane ordered atomic configu-
rations within the M-layers, disordered mixing of M-site elements, in-plane
ordered and disordered M-vacancies and high entropy MXenes. A neat
schematic summary of the different design possibilities for MAX and MX-
ene can be found in the recent review of ref. 24. This tremendous number
of design choices possible for MXenes lends them properties suitable for a
large number of different applications, and it is thus not hard to understand
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the high interest shown for this material family.
The vast majority of 2D materials synthesised via selective etching are

MXenes exfoliated from a MAX phase or, in a few cases, from other MAX-
like structures24. Nevertheless, the set of different types of 2D materials
synthesised via this method is subject to active expansion. In 2021, the
first free standing 2D boride – boridene – was reported by selective etching
of the parent MAB structure (Mo2/3(Sc/Y)1/3)2AlB2

36, and even more re-
cently, Ru2SixOy was reported by etching of YRu2Si2. These two examples
constitute inspiration to the work presented in Papers II and V of this the-
sis. In particular, YRu2Si2 belongs to a family of 3D structures with over
700 members19, alluding to a likely expansion of the single 2D Ru2SixOy

into a new family of chemically exfoliated 2D materials.
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Chapter 2

Density functional theory

An immensely useful formulation of quantum mechanics
This chapter presents the theoretical ground on which the simulations in
this thesis rest. Although all properties of a quantum system are in prin-
ciple attainable by solving the Schrödinger equation (or in a relativistic
setting the Dirac equation) and finding the wavefunction, the procedure
is highly demanding and the computations quickly become too expensive
to be feasible on modern hardware, or even doable. We can by straight
forward solution of the Shrödinger equation only describe systems with a
handful of particles, while in material science we are typically interested in
systems comprised of several moles of atoms, each atom contributing with
a nucleus and a number of electrons.

Just to give some perspective, say we want to investigate a piece of dia-
mond, a cube of side 100 nm. The lattice parameter of diamond is ∼ 3.6 Å,
i.e. the 100 nm diamond cube fits approximately 2 ·107 diamond unit cells,
each containing eight carbon atoms, each atom in turn consisting of one
nucleus and six electrons. The number of particles in our not particularly
large diamond cube is thus on the order of 109 particles, which is 8 orders
of magnitudes more than modern computers can do in a straight forward
approach of solving the Schrödinger equation.

So what do we do? Fortunately, several approximations, reformulations
and simplifications have been developed, which reduce the task to a point
where we can actually perform adequately accurate simulations of reason-
ably complex and extended systems within more or less acceptable compu-
tation time. This chapter presents the most fundamental and essential of
those methods that have been used throughout this thesis.

In 1926, the Schrödinger equation was introduced,37 describing the wave
properties observed in massive particles. Two years later came its relativis-
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CHAPTER 2. DENSITY FUNCTIONAL THEORY

tic counterpart, the Dirac equation. For most applications it is enough
to consider the non-relativistic Schrödinger equation, which for a single
particle reads:

ih̄
∂

∂t
ψ(r, t) = Ĥ(t)ψ(r, t). (2.1)

The Hamiltonian Ĥ fully determines the system, which in turn is described
by the wavefunction ψ. Often we are primarily interested in a system
at equilibrium, in which case the time dependence of the wavefunction is
trivial, and the one particle Shrödinger equation reduces to:

Ĥψ(r) = Eψ(r), (2.2)

where E is the energy of the eigenstate ψ. Equation 2.2 is referred to as
the time independent Shrödinger equation, and this is the version that will
be considered in the following.

The most general Hamiltonian of a regular matter system including elec-
trons and nuclei describes the full picture of multiple interacting particles.
It is written in atomic units (a.u.) as:

Ĥ = −1

2

N∑

i

∇2
ri −

M∑

J

1

2MJ
∇2

RJ

+
∑

i<j

1

|ri − rj |
+
∑

I<J

ZIZJ

|RI −RJ |
−
∑

i,J

ZJ

|ri −RJ |
. (2.3)

The first term gives the kinetic energy of the N electrons in the described
system, with ∇2

ri denoting the second order derivative with respect to the
electronic coordinate ri. The second term describes the kinetic energy for
the M nuclei, each with mass MJ . On the second line are the electrostatic
contributions: the first of these terms describe the electron-electron inter-
action, the second the interaction of nuclei with charge ZI and ZJ , and the
last term is the electron-nucleus interaction.

Equation (2.2) with the Hamiltonian from (2.3) is a complicated equa-
tion, where the number of variables quickly increases with the number of
particles, and the full wavefunction solving equation (2.2) depends on the
position of every particle in the system. This Schrödinger equation is in
general too complicated to solve even numerically with the aid of comput-
ers, simply because of the tremendous amount of memory required. For a
system of non-interacting particles, on the other hand, only the two first
terms in the Hamiltonian (2.3) remain, and each particle is simply described
by a single particle Shrödinger equation, where each single particle solu-
tion has only three parameters ri = (xi, yi, zi). Thus, it is clear that the
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interactions are posing the biggest challenge in a many-body system, and
that this is where the efforts should be invested in finding approximations
to the many-body problem.

A commonly employed approximation is the Born-Oppenheimer (BO)
approximation38, also called the adiabatic approximation. In the BO ap-
proximation the nuclei are assumed infinitely heavy compared to the elec-
trons, and the wavefunction can then be written as two separate parts,
describing the electrons and nuclei, respectively. The electrons still feel the
nuclei, but only as a stationary external potential Vext({r}; {R}) which de-
pends parametrically on the positions {R} of the nuclei. The Hamiltonian
for the electrons can then be written as:

Ĥe = −1

2

N∑

i

∇2
ri +

∑

i<j

1

|ri − rj |
− Vext({r}; {R}) (2.4)

Although useful, and widely used, the BO approximation is nowhere
close to removing the challenges of solving a many-body interacting system,
and further simplifications are needed. One attempt was made, also during
the development of the quantum mechanical theory in the 1920s, indepen-
dently by Thomas and Fermi39–41. Instead of solving the Schrödinger equa-
tion to get the many particle wavefunction, they proposed to approximate
the energy of the electrons by a functional of the particle density. A func-
tional f [g(x)] depends on g(x) at all values of x, e.g. f [g(x)] =

∫
g(x)dx.

They formulated this method based on the homogeneous electron gas, which
proved a simplification too crude to give very useful results. However, in
1964 the concept of formulating quantum mechanics in terms of the particle
density got an important addition, when Hohenberg and Kohn wrote their
paper on the inhomogeneous electron gas42. In this essential paper they
present the two Hohenberg-Kohn theorems, proven in section 2.1, which
are two of the three corner stones in the extremely successful theory for
studying quantum systems called density functional theory (DFT):

• Theorem I: For any system consisting of N interacting particles in
an external potential Vext(r), the potential Vext(r) is uniquely deter-
mined by the ground state particle density n0(r). Since this means
the Hamiltonian is determined by n0(r), all properties of the system
are in principle determined by n0(r).

• Theorem II: A universal functional F [n(r)] for the energy of the
system can be defined, such that F [n(r)] is valid for any external
potential Vext(r), and F [n(r)] has its global minimum at the ground
state density n0(r).

11



CHAPTER 2. DENSITY FUNCTIONAL THEORY

These two theorems are indeed intriguing, but by themselves not of
much use. However, together with the third corner stone of DFT, the Kohn-
Sham (KS) ansatz43, they have provided an immensely powerful theory.
The KS ansatz was proposed in 1965 by Walter Kohn and Lu Jeu Sham,
and it argues that if the ground state particle density n0(r) is what we
need to characterise a system, then we can reconstruct the density n0(r)
in a non-interacting system to model the corresponding interacting one.
According to the HK theorems, a system is fully determined by its ground
state density n0(r), thus as long as n0(r) is the same for any two systems,
they should behave the same way. This is exactly what DFT aims to utilise,
by modelling the interacting system as a non-interacting one, subjected to
an effective potential. Such a non-interacting system is called a Kohn-Sham
(KS) system, and is described by the Hamiltonian ĤKS :

ĤKS = −
∑

i

h̄

2m
∇2

ri + Veff [n0], (2.5)

where the effective potential Veff [n0] is by definition such that the KS sys-
tem exactly mimics the ground state density n0 of the corresponding in-
teracting system. We have here and in the following dropped the explicit
r-dependence of the particle density n, to increase readability.

Although the many-body problem is conceptually greatly reduced by
avoiding interactions through the KS ansatz, it is not solved since we don’t
yet know the form of the energy functional F [n], nor do we know that
there exists an effective potential Veff [n0] that lets us use the KS ansatz in
practise. Thus, some of the multiple approaches to handle these problems
will be discussed in the following, along with a more detailed presentation
of the basic theory of DFT.

2.1 Basic theory of DFT

The HK theorems
Following reference 44 we will argue for the Hohenberg-Kohn theorems in
a rather elegant manner: Assume we have a Hamiltonian of the form:

Ĥ = Ĥ0 +

∫
Vext(r)N̂(r)d3r, (2.6)

where Vext(r) is an arbitrary external potential and N̂(r) is the particle
charge density operator. The expectation value of N̂(r) for a normalised
state ϕ is ⟨ϕ| N̂(r) |ϕ⟩ = n, which is the charge density.

We then identify the set of states, {|ϕa⟩} which gives a certain density
na. The expectation value of Ĥ0 is in general not the same for the different
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states |ϕa⟩, and we denote the smallest value by

F [na] = min({⟨ϕa| Ĥ0 |ϕa⟩}) = ⟨ϕmin
a | Ĥ0 |ϕmin

a ⟩ , (2.7)

where the state |ϕmin
a ⟩ (or set of states {|ϕmin

a ⟩}) is defined as the state (or
states) that minimises the expectation value of Ĥ0, i.e. that gives F [na].
The quantity F [na] is a functional of the density na, indicated by the square
brackets, which means that F depends on na(r) at all points in space. In
the discrete case, i.e. if the density is only considered at a discrete number
of p points in space, F instead reduces to a function of p variables.

Further, we define the functional E as:

E[na] = F [na] +

∫
Vext(r)n(r)d3r, (2.8)

which gives the total energy for the state |ϕmin
a ⟩, i.e. E[na] = ⟨ϕmin

a | Ĥ |ϕmin
a ⟩.

With E0 denoting the ground state energy, it is easily realised that

E[na] ≥ E0, (2.9)

since the ground state energy is per definition the lowest energy of a system.
Remember that na is an arbitrary particle density, which in general does
not coincide with the ground state particle density. Since the difference
between F [na] and E[na] only involves the particle density na, which is the
same for all states in the set {|ϕa⟩}, the state |ϕmin

a ⟩ minimising ⟨Ĥ0⟩ will
also minimise the total energy ⟨Ĥ⟩ = E[na] for the particular density na.

Then, we denote (one of) the ground state(s) of Ĥ by |ψ0⟩, and the
density this gives rise to by n0. We can thus write the ground state energy
as

E0 = ⟨ψ0| Ĥ |ψ0⟩ = ⟨ψ0| Ĥ0 |ψ0⟩ +

∫
Vext(r)n0(r)dr

≥ F [n0] +

∫
Vext(r)n0(r)dr = E[n0], (2.10)

where the inequality indicates that we don’t know that |ψ0⟩ yields F [n0].
However, the only way for equation (2.9) and (2.10) to not be contradictory
is if

E[na] ≥ E0 = E[n0]. (2.11)

By equation (2.11) we have shown the second HK theorem: that the density
that minimises the functional F [n], and thus the total energy E[n], is indeed
the ground state density n0.

The proof for the first HK theorem proceeds by reductio ad absurdum:
Assume we have two different external potentials V1(r) and V2(r), which
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CHAPTER 2. DENSITY FUNCTIONAL THEORY

both give rise to the same ground state density n0(r). Since V1(r) and V2(r)
are different, the Hamiltonians Ĥ1 = Ĥ0 + V1(r) and Ĥ2 = Ĥ0 + V2(r) will
also be different, and their corresponding ground states described by two
different wavefunctions, |ψ1⟩ and |ψ2⟩. We can then write:

E1 = ⟨ψ1|Ĥ1 |ψ1⟩ < ⟨ψ2| Ĥ1 |ψ2⟩ = ⟨ψ2| Ĥ2 − Ĥ2 + Ĥ1 |ψ2⟩
= ⟨ψ2| Ĥ2 |ψ2⟩ + ⟨ψ2| Ĥ1 − Ĥ2 |ψ2⟩

= E2 + ⟨ψ2| Ĥ0 − Ĥ0 |ψ2⟩ +

∫
[V1(r) − V2(r)]n0(r)d3r

= E2 +

∫
[V1(r) − V2(r)]n0(r)d3r

⇒ E1 < E2 +

∫
[V1(r) − V2(r)]n0(r)d3r. (2.12)

In a similar manner, we can get the inequality

E2 < E1 +

∫
[V2(r) − V1(r)]n0(r)d3r,

which put together with equation (2.12) results in the inequality:

E1 + E2 < E2 + E1, (2.13)

which indeed seems a bit absurd. By this contradiction, we have shown
also the second HK theorem, that the external potential Vext(r) is uniquely
determined by the ground state density n0, and vice versa. The elegant
thing about these proofs is that they are in no way restrictive to the particle
density being the key quantity, but N̂ can in principle be any operator that
can be included in the Hamiltonian on the form given in equation (2.6).

The KS ansatz
We now move on to the KS ansatz, in which the interacting system is
remodelled into an auxiliary, non-interacting system subjected to an effec-
tive potential such that the ground state density n0 is the same as in the
fully interacting system. To find the effective potential, commonly called
the Kohn-Sham potential (KS potential) vKS , the total energy of the fully
interacting system is segmented into a number of different contributions.
First, we separate the kinetic energy T [n0] into the part coming from a
non-interacting system of density n0, and the remainder which comes from
the interactions: T [n0] = T0[n0] + Txc[n0]. The rest of the energy is sep-
arated into the external energy Eext[n0], coming from the interactions of
the particles with an external potential (the nuclei), the Hartree energy
EH [n0], and the remainder, ϵxc[n0]. The Hartree energy is the electrostatic
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energy obtained from a classical treatment of the particle charge density,
without considering quantum effects such as the antisymmetry of the wave
function. We can then write the total energy as:

E0[n0] = T0[n0] + Eext[n0] + EH [n0] + Exc[n0], (2.14)

where Exc = Txc + ϵxc. The last term, Exc[n0] is what accounts for all
intricate exchange and correlation effects coming from interactions between
the particles besides the Hartree part, and it is referred to as the exchange-
correlation energy (xc-energy). The exchange is specifically the part coming
from the antisymmetry of the wavefunction.

Since the total ground state energy E0 is a minima of the energy land-
scape, the variational principle asserts that any variation of E[n] with re-
spect to the density n at n = n0 will be zero. Formally this reads:

δE = 0 =

∫
dn

(
δT0[n]

δn
+
δEext[n]

δn
+
δEH [n]

δn
+
δExc[n]

δn

) ∣∣∣∣
n=n0

=

∫
dn

(
δT0[n]

δn
+ vext[n] + vH [n] + vxc[n]

) ∣∣∣∣
n=n0

. (2.15)

Now, doing the same thing for a non-interacting system in an effective
KS potential vKS [n], the corresponding equation would look like

δE =

∫
dn

(
δT0[n]

δn
+ vKS [n]

) ∣∣∣∣
n=n0

, (2.16)

and the KS potential can by comparison of equations (2.15) and (2.16) be
identified as

vKS [n] = vext[n] + vH [n] + vxc[n]. (2.17)

Thus the interacting system described by the Hamiltonian in equation (2.4)
can equally well be modelled by the non-interacting system described by the
Hamiltonian ĤKS = T̂0[n] + vKS [n], which is numerically a much simpler
task. However, instead of finding the many particle wavefunction, we now
need to find the xc-potential vxc[n], which is unfortunately a formidable
task in itself.

Thus, we have proven the two HK theorems and argued for the KS
ansatz, which are the fundamental parts of DFT. The theory so far is void
of any approximations besides the BO-approximation, and is in principle
exact for the ground state. It is however only valid for ground state systems.
The next step is to formulate the KS Hamiltonian and find the ground
state density, but to do so we need the xc-potential vxc[n], and for this
approximations are in general needed.
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Guess initial ns = n0 Evaluate vKS [n
s]

Diagonalise HKS and
find new ground state

Evaluate new
density ns+1

Are ns+1 and ns

within set tolerance?
yes

self-consistent ground
state is found,

exit loop.
no

Estimate new density
through mixing of

ns and ns+1.

Figure 2.1.1: Schematic of the Kohn-Sham self-consistency loop using
the density as convergence criteria. In practise other criteria may be used,
such as convergence of energy.

2.1.1 The KS self-consistency loop

Once we have an expression for vxc[n], the full effective potential vKS [n]
of the auxiliary system can be constructed and the KS equations solved.
However, vKS [n] is a functional of the density n (or at least a function of n),
but to get n we need to solve the KS equations, for which we need vKS [n].
The KS equations thus need to be solved in a self-consistent manner, where
vKS [n] is updated based on the density in each step, and vice versa.

To solve the KS equations, we start by making some initial guess for the
density, n0 where the 0 indicates the 0th iteration of the self-consistency
loop. The code that has been used for all calculations in this thesis, vasp,
uses the atomic particle densities as n0. From n0 an initial vKS [n0] is eval-
uated, and the KS Hamiltonian is constructed. Diagonalising the Hamilto-
nian and finding the eigenvectors gives us the KS orbitals ϕ0i (r) for iteration
0, from which the density is obtained as:

n1(r) =
∑

occ

|ϕ0i (r)|2 (2.18)

where the sum runs over all occupied states. Thus we have a new density
n1 from which the vKS [n1] for the next step can be constructed, etc. The
new density ns+1 is in practise not used straight off, but rather a mix of the
old and new densities are used to construct the next iteration of vKS , since
this leads to faster convergence. The KS self-consistency loop is shown
schematically in Figure 2.1.1.
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2.2 The exchange correlation potential

In the KS scheme the complexity and complications of finding the ground
state wavefunction is moved to finding the correct vKS , which is com-
monly divided into the different contributions given in equation (2.17). The
Hartree contribution vH is the contribution from a classical coulomb inter-
action between the particles, and includes self interaction. The vext is the
external potential, i.e. the nuclei as mentioned previously. The tricky part
is the reminder, the exchange-correlation (xc) part vxc. This part does, as
the name implies, account for the exchange and correlation effects of the
interactions, and it can in general not be found exactly even numerically,
but must be approximated.

For the KS scheme to be useful, a good approximation for the xc-
potential is required. Fortunately, the contribution from the xc-potential
is in general quite small, which makes the problem somewhat easier. Ex-
change comes, as mentioned, from the requirement that the electronic wave-
function must be antisymmetric, and exchange can be treated exactly. How-
ever, the exchange and correlation contributions have been found to often
cancel each other out, so that the total xc-potential is smaller than the
exchange and correlation parts separately, and more accurate results are in
general achieved when they are considered together45,46.

2.2.1 Local and semilocal density approximations

The most straight forward, and still surprisingly useful, approximation is
the local density approximation (LDA). In the LDA, instead of considering
the xc-potential as a functional of n, it is simply treated as a function of
n: vxc[n] → vxc(n). Formally, this should be a valid approximation in the
limit of slowly varying densities. The actual function vxc(n) is derived from
the homogeneous electron gas, for which the exact form of the exchange is
analytically known. Different approaches has been used to approximate the
correlation, which is trickier, and an accurate numerical solution was only
developed in 1980 by Ceperly and Alder47. Modern implementations of
the LDA approximation uses a parametrisation of the Ceperly and Alder
correlation.

The LDA works surprisingly well for solids, even though particle densi-
ties are sometimes far from slowly varying. But of course LDA also has its
shortcomings, for instance the LDA tends to overestimate chemical bond-
ing (predicts too short bond lengths), underestimates bandgaps, and some-
times fails to resolve them all together. For chemistry purposes, where
higher accuracy is needed to capture certain qualitative behaviours, LDA
is in general not considered sufficient.

The most straight forward approach for trying to improve from the
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LDA is to, in addition to the local density n, also consider the local density
gradient ∇n. The most intuitive way to include a dependency on ∇n is to
construct a systematic expansion, analogous to a Taylor series. These types
of approximations for the vxc are called gradient expansion approximations
(GEA). Unfortunately, they do not in general improve upon the LDA, but
quite often even worsens results. Instead of trying to construct an expan-
sion based on mathematical arguments as in GEA, the expansion can be
designed so that certain known properties and limiting behaviours of the
exact vxc are fulfilled. These approximations are called generalised gradient
approximations (GGA). There are several different GGA parametrisations
of the vxc, and they often improve upon the LDA results. In particular
they tend to soften bonding and thus compensate (though sometimes over-
compensate) the overestimate of chemical bonding in LDA, and GGAs also
often improve upon calculated energies48.

One of the most well established and wide spread xc-potentials is the
GGA formulated in 1996 by Perdew, Burke and Ernzerhof: the PBE func-
tional.48 This functional is designed to fulfil a number of known properties
and limiting behaviours of the exact vxc that are identified as energetically
significant. It is a follow up work from earlier GGAs, and is still in wide
use today, in particular within computational solid state physics. Although
useful, the PBE functional still exhibits several shortcomings, e.g. it does
not include van der Waals interactions, and the problem of accurately pre-
dicting material bandgaps, which is discussed further in section 2.4, largely
still remains. To overcome the shortcomings of GGAs, multiple other types
of approximations for vxc have also been developed.

2.2.2 A van der Waals density functional

At the end of the previous century, concerns started to be raised about the
inability of local and semilocal functionals – such as the popular LDA and
GGA functionals – to accurately describe the long-range interactions com-
monly known as van der Waals (vdW) interactions, after Johannes Diderik
van der Waal who first described their effects in 187349,50. Claims had been
presented that vdW interactions were described by some semilocal func-
tionals, but it was later shown that the seemingly promising descriptions of
certain dimers were merely coincidence. The agreement with experiments
in these reports stemmed not from an accurate description of vdW inter-
actions but was a consequence of a non-physical artefact in the exchange
part of the xc-energy46,51,52.

Van der Waals forces are due to correlation effects caused by quantum
fluctuations of particle polarisations between nearby particles. Technically,
these are called London dispersion forces, while vdW forces refer to several
different types of electrostatic interactions. However, we choose to call them
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vdW forces to be consistent with the conventions of the field. The nonlocal
character of these correlation effects renders them intrinsically impossible
to describe by a local or semilocal xc-functional, since they by design do
not contain any nonlocal information. Thus, a density functional (DF)
including vdW forces must go beyond local or semilocal approximations.
There are several different approaches to how these nonlocal correlation
effects may be included46,50, out of which one of the most popular is the
approach vdW-DFs and derivatives thereof, originally developed in a series
of papers51–54.

The first vdW-DF described vdW interactions between parallel sheets
without atomic structure53. This core concept was successively developed
further, first to include atomic structure by Rydberg et al.51,54, and later to
account for arbitrary geometries52. In the vdW-DF scheme, the correlation
part of the xc-energy is divided into a local and a nonlocal part:

Exc[n] = Ex[n] + E0
c [n] + Enl

c [n], (2.19)

where Exc[n] is the full xc-energy functional, Ex[n] is the exchange, E0
c [n]

is the local or semilocal part of the correlation energy Ec[n], and Enl
c [n]

is the reminder which includes all nonlocal correlation effects. Thus, all
vdW interactions are included in the Enl

c [n]-part, and disregarding this
part of Exc[n] should per definition give a result void of vdW characteristic
features.

In a vdW-DF the local correlation E0
c [n] is approximated with LDA

correlation ELDA
c [n]. Enl

c [n], which should approach zero in the limit of a
slowly varying density n, is given by the expression

Enl
c [n] =

∫ ∞

0

dr

∫ ∞

0

dr′n(r)ϕ(r, r′)n(r′), (2.20)

where n(r) is the density at point r, and ϕ(r, r′) is the so called vdW
kernel. This kernel, and thus the nonlocal correlation functional Enl

c [n], is
the same across many different vdW-DFs, although other kernels have also
been proposed55. The original kernel is derived by assuming a dielectric
response function for the vdW interactions, which is the kernel used in the
vdW-DF used within this thesis. The double integral in equation (2.20)
can be solved efficiently by fast Fourier transforms using the algorithm
developed by Román-Pérez and Soler56. Indeed, a calculation using a vdW-
DF functional is only marginally more expensive than one using a standard
GGA functional.

With the above approximations for the correlation part of the xc-energy,
the only part left to vary is the exchange, Ex[n]. There exists a considerable
number of different vdW-DF flavors based on different choice of exchange
functional, the development of which was a main focus within DFT research
during the early 21st century. Within the work of this thesis, we have used
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the vdW functional optB86b-vdW-DF to model the weakly bound layered
phases studied in paper III and IV. The optB86b-vdW-DF functional was
developed by Klimeš et al. in 201157, and uses the exchange from the
B86b xc-functional58 but with parameters reoptimised to adhere to a few
constraining limits. These limits are chosen so that optB86b-vdW-DF gives
good predictions for a set of benchmark systems, including both weakly
bound gas dimers and ionic and covalent solids, and the optB86b-vdW-DF
functional has been shown to give lattice parameters, bulk moduli, and
atomisation energies similar or better that those of PBE for solid state
systems in all ranges of bonding57.

2.2.3 Hybrid functionals

As already mentioned and discussed further in section 2.4, standard DFT
suffers from the so called bandgap problem59, referring to the rather consis-
tent underestimation of bandgaps in semiconductors and insulators. This
is of course a serious problem for an electronic structure theory, and con-
siderable efforts have been put into understanding and amending it, which
is one of the motivations to the development of the so called hybrid xc-
functionals. An additional and perhaps even stronger motivation than the
bandgap problem came from the community of computational chemistry,
where both LDA and GGAs struggle to accurately describe bond ener-
gies46,60.

An approximation scheme for solving the Schrödinger equation that ex-
isted before DFT is the Hartree-Fock (HF) method. In the HF method,
the solution to the Schrödinger equation is approximated by a Slater deter-
minant, identified by the variational principle. By doing so, the exchange
is treated exactly in HF theory, while correlation effects are completely ne-
glected. While DFT with the LDA and GGA approximations took over
as the method of choice within computational physics, corrections to the
HF method remained the most reliable methods for computational chem-
istry46, but come at a considerably higher computational cost than either
HF or DFT60.

As opposed to in DFT, bandgaps tend to get overestimated in HF the-
ory, and thus an idea may occur: Why not create some kind of hybrid
between DFT and HF to get the best out of two worlds? This highly
intuitive and ad hoc argument is actually not vastly different from one pre-
sented in the original work introducing the concept of hybrid functionals60,
although more rigorous arguments are also presented, based on the so called
adiabatic connection formula46,60,61.

In designing a hybrid functional, the exchange part of the xc-potential
is adjusted by replacing a portion of the standard DFT exchange (i.e. from
LDA or some GGA flavour) with exact exchange calculated from the Kohn-
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Sham orbitals45. One might go all the way and completely replace the DFT
exchange with exact exchange. However, as already mentioned, the errors
in the exchange and correlation parts of the xc-potential tends to cancel
each other, and completely replacing the DFT-exchange therefore typically
undermines this convenient effect45,60. Instead, the amount of exchange
that is replaced is either optimised by fitting a mixing parameter to some
benchmark data, or by ab initio derivation via the adiabatic connection
and perturbation theory. Regardless of method, the mixing parameter is
typically found to switch out 20-25% of the LDA or GGA exchange for
exact exchange61,62.

Perhaps the most popular hybrid functional in the field of materials
science is HSE06, first proposed by Heyd, Scuseria and Ernzerhof at the
beginning of the 21st century63–66. It is commonly used in materials science
specifically for the purpose of estimating bandgaps. The functional HSE06
employs a scheme for screening the long range Coulomb potential 1/r by
dividing it into a short range (SR) and long range(LR) part according to:

1

r
=

1 − erg(ωr)

r︸ ︷︷ ︸
SR

+
erg(ωr)

r︸ ︷︷ ︸
LR

, (2.21)

where erg(z) is the error function (i.e. the integral of a Gaussian from
0 to z), and ω is the screening cutoff parameter, optimised to give small
errors for a number of different properties – e.g. bandgaps – for a set of
benchmark systems63,64,66.

The HSE06 exchange correlations energy, EHSE06
xc is based on the PBE

approximation, and is defined as:

EHSE06
xc =aEHF,SR

x (ω) + (1 − a)EPBE,SR
x (ω) (2.22)

+ EPBE,LR
x (ω) + EPBE

c ,

with EHF,SR
x (ω) being the short ranged (SR) HF exchange, EPBE,SR

x (ω) and
EPBE,LR

x (ω) the short and long ranged (LR) PBE exchange respectively,
and EPBE

c the correlation energy as taken from PBE. The parameter a =
1/4, which is derived from perturbation theory62, thus specifies the portion
of the PBE exchange which is replaced with the HF counterpart at short
range. At long range, only the PBE exchange contributes. The division
into the short and long range parts effectively introduces a screening to the
HF-exchange, defining HSE06 as a screened hybrid functional.

What is considered short and long range is determined by the parameter
ω, and the derivations of the three different terms EHF,SR

x (ω), EPBE,SR
x (ω)

and EPBE,LR
x (ω) can be found in the original publication63. In the limiting

case ω → ∞ (only long range contribution) , EHSE06
xc reduces to the usual
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PBE approximation, while for ω = 0 (only short range contribution), it
reduces to another hybrid called hPBE or PBE048,62,67,68. PBE0 does not
include a cutoff criteria for the HF part of the exchange, but applies it
everywhere.

The reason for the introduction of the cutoff parameter ω in HSE06, and
the successive success of this functional as a go-to hybrid functional for cal-
culating bandgaps within materials science, is because of computational fea-
sibility. Evaluation of the HF exchange energy includes a computationally
expensive integral, which generally limits the applicability of hybrid func-
tionals to extended systems. In particular for metallic and small bandgap
systems the convergence of hybrid functionals is typically very slow63,69.
By dividing the Coulomb interaction into a short and long range part and
only including the faster decaying short ranged part into the hybrid func-
tional construction, HSE06 can be used for all kinds of electronic systems
with reasonable computations times. Still, it should be noted that the com-
putation time required to perform a bandstructure calculation with HSE06
is several orders of magnitudes larger than for PBE.

2.2.4 The modified Becke-Johnson functional

Yet another functional has been used for computing bandstructures within
this thesis, namely the modified Becke-Johnsson functional (mBJ)70,71.
This is a so called meta-GGA, which are a class of functionals that in ad-
dition to parameterising the xc-functional with respect to the local density
and density gradient, also consider the kinetic energy density τ :

τ =
1

2

N∑

i=1

|∆ϕi|2,

where i enumerates the orbitals.
The original BJ potential is a theory for exchange only, which has been

designed to mimic the behaviour of the so called Optimised Effective Po-
tential (OEP)72,73, but at a much lower computational cost70. The mBJ
functional introduces a scaling factor to each of the two terms in the original
BJ potential71. These scaling factors are both based on the parameter

c = α+ β

(
1

Vcell

∫

cell

|∇n(r)|
n(r)

d3r

)1/2

,

where the parameters α = −0.012 and β = 1.023 bohr 1/2 are fitted to the
bandgaps of a set of benchmark systems71. The mBJ functional is thus
fitted individually to each system via the parameter c.

The mBJ functional is considerably cheaper computationally than any
hybrid functional, screened or not. At the same time, it is claimed to
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Figure 2.2.1: Comparison of bandgaps calculated with mBJ71 and
HSE63,66 to experimentally measured bandgaps. Data is adapted from ref.
71.

give comparable accuracy for bandgap estimations. Figure 2.2.1 shows the
bandgap as predicted with mBJ exchange (and LDA correlation) compared
to the experimentally measured gap, for the set of benchmark systems
used to fit α and β in the original work. The performance of the mBJ
functional is clearly competitive with HSE, and even outperforms HSE in
the large bandgap limit. Although, since this test specifically considers the
set of structures to which mBJ was fit, one may object that this is not
a fair test, but that the mBJ functional is given an artificial advantage.
Nonetheless, later reports have also identified mBJ as competitive with
HSE on more diverse and unbiased data sets74. This together with the
superior computational efficiency of mBJ indeed speaks strongly in favour
of the mBJ functional for calculation of bandgaps.

2.3 DFT in practise for periodic solids

When using DFT in practise there are a few things regarding the imple-
mentation one needs to pay attention to. Since the topic of this thesis
is not DFT theory, but materials modelling, no attempt will be made to
delve into the details of DFT implementation. However, any DFT software
is strongly characterised by a few implementation choices, and thus a brief
idea will be given of the background and motivation for the implementation
choices characteristic of the code Vienna Ab initio Simulation Package –
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vasp – which is the code used for the calculations in this thesis.
Firstly, one needs to choose the basis for representation of the KS sys-

tem. In principle, any complete set of functions can be used to describe
any system, but in practice a complete set can not actually be realised, but
it needs to be truncated at some point. With this in mind, each basis set
has different advantages and disadvantages and are thus used for different
situations. For applications within chemistry it is common to use localised
functions, such as atomic orbitals or Gaussian functions, since the systems
are typically localised and limited in size. In solid state physics one typi-
cally works with periodic systems for which Bloch’s theorem applies, stating
that the electronic wave functions must also be periodic, and thus a plane
wave (PW) basis set is arguably suitable for solid state systems. A PW
basis set also makes it easy to work in Fourier space, which is quite natural
when dealing with periodic solids, and facilitates certain calculations.

For solids periodic in less than three dimensions, such as the 2D phases
studied in paper II, it is less obvious what basis set to choose. Since a
PW basis set implies the use of periodic boundary conditions, an artificial
periodicity will be introduced for any system not periodic in all three direc-
tions, which is a potential problem not only for a low-dimensional system
but also for a system including disorder of any kind. However, by mod-
elling the non-periodicity on a large enough computational unit cell, the
effects of the artificial periodicity can be made small enough to be negligi-
ble. For 2D structures in particular, this typically means a vacuum spacing
is introduced to the unit cell to separate the 2D sheets.

The PAW method
Although the PW basis set seems like the obvious choice for a periodic
material, particularly if it is periodic in all three directions, it still comes
with some complications. The core states which are tightly bound oscillate
rapidly close to the core, in particular those of high angular momentum. To
represent such rapidly oscillating states with plane waves, a large number
of waves is needed in the basis set, making the basis inefficient for practical
purposes. This is where another key piece of theory is needed: the projected
augmented wave (PAW) method.75

The key idea of the PAW method is to replace the all electron (AE)
wavefunctions ψ by the pseudised wavefunctions ψ̃, which are designed to
coincide with ψ outside a core region where the electrons can be treated
as nearly free, while inside the core region they oscillates less rapidly and
are smoother than the AE wavefunctions. This division into core and in-
terstitial regions is called a muffin tin (MT) partitioning and is commonly
employed within solid state theory. The MT partitioning is schematically
depicted in Figure 2.3.1. Since the pseudised wavefunctions ψ̃ and the AE
wavefunctions ψ are the same in the interstitial region, ψ̃ will have the cor-
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interstitial region

core
region

rc

Figure 2.3.1: The muffin tin (MT) partitioning of a lattice. The core
regions, where the electrons are tightly bound to the nuclei and participate
minimally in binding, are separated from the valence or interstitial region,
where the electrons are nearly free.

rect behaviour in this region. The core region is just replaced by AE core
region wavefunctions of a reference system. It should be noted that “all
electron” in in this context refers to the exact Kohn-Sham single particle
wavefunctions, not to the many-body wavefunction.

For a more formal description, an AE wavefunction is expanded as a
sum of partial waves centred at the cores:

|ψ⟩ =
∑

i

ci |ϕi⟩ .

Similarly a pseudo wavefunction can be expanded in pseudo partial waves
inside the core region:

|ψ̃⟩ =
∑

i

c̃i |ϕ̃i⟩ .

The subscript i denotes the spatial position R, angular momentum quan-
tum numbers l and ml as well as a principal quantum number n. The
pseudised and AE partial waves ϕi and ϕ̃i are identical outside the core
region, as are the wavefunctions ψ and ψ̃. The pseudised and all elec-
tron Hilbert spaces are related to each other thorough a linear transform:
|ψ⟩ = T |ψ̃⟩, and |ϕi⟩ = T |ϕ̃i⟩. Hence the expansion coefficients ci and c̃i
are identical, and are written

ci = ⟨p̃i|ψ̃⟩ ,

where p̃i are called projector functions. They have the property ⟨p̃i|ϕ̃j⟩ =
δij . Hence, the complete transform of an AE wavefunction is written as:
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|ψ⟩ |ψ̃⟩ ∑
i ci |ϕ̃i⟩

∑
i ci |ϕi⟩

= − +

Figure 2.3.2: Schematic illustration of the PAW method: the AE wave-
function |ψ⟩ is constructed from the pseudo wavefunction |ψ̃⟩ by subtracting
the partial wave expansion of |ψ̃⟩, ∑i ci |ϕ̃i⟩, inside the core region and re-
placing it by the partial wave expansion of the AE wavefunction,

∑
i ci |ϕi⟩.

The latter is determined from a reference system, e.g. free atoms.

|ψ⟩ = T |ψ̃⟩ =
∑

i

ciT |ϕ̃i⟩ =
∑

i

ci |ϕi⟩ + |ψ̃⟩ − |ψ̃⟩

= |ψ̃⟩ +
∑

i

ci |ϕi⟩ −
∑

i

ci |ϕ̃i⟩

= |ψ̃⟩ +
∑

i

(
|ϕi⟩ − |ϕ̃i⟩

)
⟨p̃i|ψ̃⟩ . (2.23)

Equation (2.23) describes how an AE wavefunction ψ is constructed
from the corresponding pseudo wavefunction ψ̃, by cutting away the core
region where ψ and ψ̃ are different and replacing it with the AE solution.
Most commonly, though not necessarily, this is done within the frozen core
approximation, meaning the core states are assumed stationary and un-
affected by the valence electrons. A graphical interpretation of equation
(2.23) is shown in Figure 2.3.2.

2.4 The bandgap problem of DFT

One of the most well known shortcomings of DFT is the so called bandgap
problem, which refers to the failure of DFT in predicting accurate electronic
bandgaps. The fundamental bandgap ∆ is defined as the difference in the
ionisation energy I and electron affinity A, where N is the total number of
electrons in the system:

∆ = I −A = (E[N − 1] − E[N ]) − (E[N ] − E[N + 1]) . (2.24)
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E = 0

Valence band

Conduction band

I A

∆ = I −A

Figure 2.4.1: Schematic illustration of the fundamental bandgap in an
insulating or semiconducting material.

The bandgap ∆ is a function(al) of ground state properties, since all
energies in equation (2.24) are ground state energies. Thus the bandgap
is in principle a ground state property and should be attainable from KS
theory. However, the bandgap ∆ as given in equation (2.24) is a bit tricky
to evaluate computationally in extended systems, i.e. in systems exhibit-
ing band structure. These systems are in practise treated using periodic
boundary conditions, and in such a description it is impossible to add or
remove a single electron, which is required to evaluate I and A as given in
equation (2.24).

The bandgap can also be defined as the difference between the highest
occupied energy level, ϵHO and the lowest unoccupied level, ϵLU . For the
KS system the bandgap could then be given by:

∆KS = ϵLU − ϵHO , (2.25)

where the energies ϵ are the KS single particle eigenvalues. However,
through this formulation the bandgap is an excited state property, and
since and there is no reason to believe the KS eigenvalues correlate with
the real eigenvalues, excited state properties are not guaranteed to be cor-
rectly given by KS theory even for the exact vKS . The only KS eigenvalue
which has been found to have a physical meaning in itself is that of the high-
est occupied orbital, which is the negative ionisation energy: ϵHO = −I.
Hence the bandgap ∆KS can only be used to approximate ∆ if ∆KS = ∆
for exact KS theory. However, it can be shown that this is not the case,
since the exact xc-energy may exhibit non-smooth behaviour at integer par-
ticle densities. More specifically, with ω → 0 being an infinitesimally small
number, N the total number of particles and other quantities specified by
equation (2.14), it is possible to write:59
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I −A =
δE

δn(r)

∣∣∣∣
N+ω

− δE

δn(r)

∣∣∣∣
N−ω

=

(
δT0
δn(r)

∣∣∣∣
N+ω

− δT0
δn(r)

∣∣∣∣
N−ω

)
+

(
δExc

δn(r)

∣∣∣∣
N+ω

− δExc

δn(r)

∣∣∣∣
N−ω

)

= ∆KS + ∆xc = ∆. (2.26)

Hence, the KS bandgap ∆KS inherently lacks the part of the fundamental
bandgap ∆ coming from the discontinuity in the exchange correlation en-
ergy, ∆xc, so that even in exact KS theory, the xc-discontinuity ∆xc would
need to be added to ∆KS to get ∆.

The LDA and most GGA approximations do not display this discon-
tinuity at integer particle densities, and it is thus intrinsically impossible
to attain a good approximation for the fundamental bandgap from these
approximations, but the best we can achieve is a good estimate of ∆KS .
As discussed in chapter 2.2, there are xc-potentials designed to mitigate
the bandgap problems of DFT by different approaches. For example meta-
GGAs (which consider the KS kinetic energy as a fitting parameter in
addition to the density and density gradient) and hybrids (which substi-
tutes part of the KS exchange with exact exchange). However, because
these alternative functionals experience other shortcomings, e.g., increased
computation time, GGAs are still widely employed.
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Chapter 3

Stability analysis

Having solved the KS equations, the electronic structure is known for the
specific external potential vext, i.e., the specific arrangement of nuclei con-
sidered. However, the solution says nothing about whether the specific vext
considered actually corresponds to an arrangement of nuclei which can be
realised experimentally, outside of the computer. Ultimately, we are not
interested in fictitious materials that we can only study in the computer,
because ultimately we are aiming at understanding and manipulating the
real world around us. Although fictitious toy systems may be very instruc-
tive on our way to connect theory with reality, we typically need to consider
real systems within the field of material science. Hence, we need to know
whether the systems we simulate can actually be expected to be possible
to synthesise in the real world, or whether they are unlikely to be found
outside of the computer.

The only way to truly establish the existence of a system, or a material,
is of course to realise it experimentally. However, there are theoretical tools
that can be used to predict the stability of a material, and thus imply the
sensibility, or futility, in trying to synthesise the simulated system. This
chapter will address some of these tools.

3.1 Lattice dynamics in the harmonic approx-
imation

At any temperature above absolute zero, i.e., any temperature of any in-
terest for actual applications or even just synthesis, the atomic nuclei in
any compound are not static, but vibrating. Hence it is important that the
nuclei are all in a potential minimum of their surroundings, or the vibra-
tions would cause the structure to quickly fall apart. The most common,
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and most simple, way to model the lattice potential is by considering each
lattice site as being trapped in a generalised harmonic potential. For most
structures this approximation is enough to evaluate the dynamical stabil-
ity, i.e. stability with respect to lattice vibrations. There are structures for
which the harmonic approach is not enough, but for the purpose of this the-
sis we have kept within the harmonic approximation for lattice vibrations,
which will be described in this section.

3.1.1 The harmonic approximation

The lattice potential Φ({u}) can be expanded as a Taylor series, where uniα
is the displacement of the ith atom in the nth unitcell in the direction α
(α = x, y, z):

Φ({u}) = Φ0 +
∑

niα

∂Φ({u})

∂uniα︸ ︷︷ ︸
Φniα

uniα

+
1

2

∑

ni,mj

∑

α,β

∂2Φ({u})

∂uniα∂umjβ︸ ︷︷ ︸
Φmjβ

niα

uniαumjβ + . . . (3.1)

The 0th order term in equation (3.1), Φ0, is simply a constant and is of
no physical interest to the present discussion. The first order term Φniα is
the force exerted on the lattice site indexed by (ni) upon an infinitesimal
displacement in the direction α. Since the expansion is around a stationary
point, this force is simply zero. The second order terms are the first impor-
tant terms in this expansion, and are referred to as the “force constants”
or “coupling constants”. They are the analogue of the spring constant of a
1D harmonic oscillator, and serve to generalise the concept of the harmonic
potential to a system with multiple degrees of freedom. Consideration of
up to second order while neglecting higher order terms is thus referred to
as the harmonic approximation for lattice dynamics. Using the analogue of
a 1D harmonic potential, the quantity −Φmjβ

niα umjβ is the force exerted on
the nucleus indexed by (ni) in the direction α upon a displacement umjβ

of the nucleus indexed by (mj) in the direction β.76

3.1.2 Dynamical stability

The total lattice potential, Φ({u}) in equation (3.1), must be in a local
minimum for a structure to be stable. Hence, we can deduce the stability
of a structure with respect to displacements of lattice sites by studying the
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total energy. This is done through the evaluation and study of the phonon
spectra, the concept of which is outlined in the following.

First, we start by rewriting equation (3.1) in a more convenient matrix
form, omitting the 0th and first order terms:

Φ({u}) =
1

2

∑

ni,mj

uniΦ
mj
ni umj , (3.2)

where now uni are three dimensional vectors, and Φmj
ni are the 3 by 3 force

constant matrices which are elements of the Hessian matrix of the total
lattice potential Φ({u}). If Φ({u}) is to have a minimum at {u} = 0, the
eigenvalues of the Hessian matrix must be positive definite, in analogy with
the so called “second derivative test” in 1D calculus.

The equation of motion can now be written down for each atom i with
mass Mi as:

Miüni = −
∑

mj

Φmj
ni umj . (3.3)

As usual, since we are working with a periodic system, the plane wave
ansatz for the solution to uni is used to simplify the equations:

uni =
1√
Mi

ui(q)ei(q·rn−ωt), (3.4)

where rn is the position vector of the unit cell n, ω is the angular frequency
and q is the wave vector. Inserting equation (3.4) into (3.3) yields:

− ω2
√
Miui(q)ei(q·rn−ωt) = −

∑

mj

Φmj
ni

uj(q)√
Mj

ei(q·rm−ωt) ⇐⇒

ω2ui(q) =
∑

j

∑

m

Φmj
ni√

MiMj

eiq(rm−rn)

︸ ︷︷ ︸
Dj

i (q)

uj(q). (3.5)

The matrices Dj
i (q) are elements of what is known as the dynamical matrix.

From symmetry considerations, the dynamical matrix can be shown to be
Hermitian. This is easily realised by studying the elements Dj

i (q): For
the second order derivatives we have that Φmj

ni = Φni
mj , since the potential

energy Φ({u}) is a smooth function of all variables uni. Then we have:

Dj
i (q) =

∑

m

Φmj
ni√

MiMj

eiq(rm−rn) =
∑

n

Φni
mj√

MjMi

e−iq(rn−rm) = Di
j(q),

(3.6)
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where x denotes the complex conjugate of x. That the dynamical matrix
is Hermitian means the eigenvalues ω2 must be positive. Thus ω must be
real, which can be used to check the dynamical stability of a structure. By
finding the square root of the eigenvalues

√
ω2 = ω(q) to the dynamical

matrix, which are also the frequencies of the vibrational normal modes of
the system, it can be determined whether the total crystal potential Φ({0})
is at a minimum with respect to displacements u. If all frequencies are real,
we are indeed at a minimum, while if there are any imaginary frequencies
this indicates a saddle point of some kind.

3.1.3 Force constants sum rules

Some properties of the crystal potential, and thereby the expansion co-
efficients – i.e., the force constants – can be derived by considering the
symmetries of a crystal. In particular, the crystal potential must be in-
variant under any translational, rotational or mirror transformation. In
addition, some force constants must be identical from consideration of lat-
tice symmetries, and any permutation of the indices must also leave them
unchanged, since

∂2f(x, y)

∂x∂y
=
∂2f(x, y)

∂y∂x
(3.7)

for a smooth, well-behaved function.
Invariance with respect to translational transformations, meaning the

crystal is unaffected by any uniform displacement of all its constituent
atoms, leads to the conclusion that for each set of cartesian coordinates α,
β we have the translational sum rule:

∑

mj

Φmjβ
niα = 0. (3.8)

The crystal is also invariant with respect to rotational transformations of
the whole crystal, which gives other, slightly more complicated sum rules.
A discussion of these can be found e.g. in ref. 77 or 78, and will not
be repeated here for lack of an intuitive interpretation of the equations.
It is also known that an unstrained 2D structure of one or a few layer’s
thickness will have a quadratic phonon branch at long wavelengths (i.e. at
the Γ-point),79 unlike the linear behaviour observed in the 1D linear chain
and different 3D phases.

The sum rules are often not fulfilled by raw force constants data as ob-
tained from ab initio calculations, leading to nonphysical behaviour of the
long wavelength modes79. Hence, careful post-processing of the force con-
stants might be necessary in order to attain a proper physical behaviour,
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Figure 3.2.1: Schematic illustration of the difference between the a) inter-
nal energy EZ , b) formation energy ∆Ef

Z and c) formation enthalpy with
respect to competing phases Hcp

Z , for different phases denoted by Z in a
fictitious binary system of species A and B. The phases considered as com-
peting phases when evaluating Hcp

Z are indicated in blue.

which has been taken into consideration when evaluating the phonon spec-
tra presented in the supporting material of paper II.

3.2 Thermodynamical phase stability

Even if a particular structure – or phase – Z, is dynamically stable, there
may be other phases or combinations of phases with the same stoichiometry,
i.e. the same elemental ratios, which are thermodynamically preferred.
This would leave the particular phase Z energetically unfavourable and
thus unlikely to form. Hence, when theoretically evaluating the possibility
for a phase to form experimentally, its thermodynamical stability must be
considered by comparison with other phases or combinations or phases with
the same total stoichiometry.

For the purpose of evaluating thermodynamical stability, the Gibb’s free
energy of the phase is considered:

G = E − TS + pV = H − TS, (3.9)

where T is temperature, S in entropy, p is pressure, V is volume and H =
E+ pV is the enthalpy. E is the total internal energy, as attained from the
DFT calculation. Since DFT calculations are performed at zero pressure,
the pV -term is simply disregarded. Considering atmospheric pressure, 101.3
kPa, in the appropriate units we find that:

101.3 kPa = 101.3 · 103 J/m3 ≤ 10−6 eV/Å3
. (3.10)
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This is a small number, and its impact on the Gibb’s free energy G is neg-
ligible. However, when considering a phase at very high external pressure,
the pV -term does matter and needs to be considered. Since the DFT cal-
culations are also performed at zero temperature, and hence TS = 0, the
ground state Gibb’s free energy G attained from the calculation equals the
enthalpy H, which is just the internal energy E since we are disregard-
ing the pressure term. The energy E, taken from the DFT calculation, is
in general considered per unit cell, formula unit or atom. Thus any other
terms are scaled to the same units as E. For the reminder of this discussion,
energies will be assumed to be per atom.

The thermodynamical stability of a phase Z is evaluated through the
formation enthalpy with respect to competing phases, ∆Hcp

Z . However,
to facilitate the discussion, we will start by introducing another concept,
namely the formation Gibb’s free energy ∆Gf

Z . Because of the arguments
given above, this is reduced to the formation energy ∆Ef

Z , which we will
consider for the rest of this discussion. The energy for a number of phases
AxBy in a fictitious binary system of elemental species A and B is shown in
Figure 3.2.1a). The formation energy ∆Ef

AxBy
of the phase AxBy (x+y = 1)

is defined by:

∆Ef
AxBy

= EAxBy − xEA − yEB, (3.11)

where EA and EB are the energies per atom of the pure elements A and B,
respectively, in their most stable elemental forms. ∆Ef

Z is shown for the
fictitious binary A-B system in Figure 3.2.1b). Comparison with Figure
3.2.1a) shows that ∆Ef

Z is shifted relative to EZ by the line connecting
the points corresponding to EA and EB. The formation energy ∆Ef

Z has
been, and still is sometimes, used as an argument for the thermodynamical
stability of a phase Z. However, all it actually describes is whether the
formation of a compound Z = AxBy is preferred over formation of the
elemental phases A and B.

Rather than only considering pure elemental phases, it is more appro-
priate to compare the formation of a compound to all other phases in the
appropriate compositional space80. Thus we define the formation enthalpy
with respect to competing phases, ∆Hcp, which for the fictitious phase
AxBy is defined as:

∆Hcp
AxBy

= EAxBy
− min

(∑

Y

xY EY

)
, (3.12)

where xY is the fraction of phase Y = AiBj , chosen so that the sum in the
last term is minimised given the stoichiometry of AxBy. ∆Hcp

AxBy
is shown

for two hypothetical phases of the A-B system, A5B and AB, in Figure
3.2.1c). The four phases indicated by blue markers have been considered
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as competing phases. AB is found to have ∆Hcp
AB > 0, which indicates

thermodynamical instability, since a lower total energy is attained from
decomposing AB into A2B and AB2. For the hypothetical phase A5B,
on the other hand, ∆Hcp

A5B < 0, which indicates thermodynamical stabil-
ity, since decomposition into other phases does not lower the total energy.
However, Figure 3.2.1b) shows that both AB and A5B has the same for-
mation energy. It has been shown multiple times that stability predictions
using ∆Hcp

Z has a strikingly better correlation with experimentally realised
phases than predictions using ∆Ef

Z
80,81.

Equation (3.12) can be visually interpreted as the shifting of energies in
Figure 3.2.1a) so that the grey dashed lines coincide with zero, as in Figure
3.2.1c). However, for illustration purposes it is more common to visualise
∆Ef

Z , shown in Figure 3.2.1b), than EZ , since a large energy difference
between the A and B elements would make a) hard to read. Considering
∆Ef

Z rather than EZ , equation (3.12) would read:

∆Hcp
AxBy

= ∆Ef
AxBy

− min

(∑

Y

xY ∆Ef
Y

)
, (3.13)

which is equivalent to the formulation in equation (3.12).
Although only discussed here for binary systems, and most easily vi-

sualised for those, the thermodynamical stability arguments presented are
applicable to systems of arbitrary number of elemental species. The visu-
alisation of larger systems does, however, get challenging quickly.

3.2.1 Stability at finite temperatures
At finite temperature, the entropy term −TS is no longer automatically
zero, and there are other contributions to the Gibb’s free energy than just
the internal energy.

The energy E and entropy S can be divided into electronic, vibrational,
configurational and magnetic contributions. Magnetism is not a central
aspect of this thesis, and effects from magnetic entropy has not been con-
sidered. The electronic and vibrational contributions has also been disre-
garded; by assuming them to be similar between different phases, they can
be argued not relevant for stability analysis since we are only interested
in differences between energies. Then the zero temperature formation en-
thalpy with respect to competing phases, ∆Hcp, will be characteristic for
the system also at finite temperature, i.e. at synthesis conditions. That
the electronic and vibrational temperature effects cancel between phases is
not something that is guaranteed, but has been shown to be the case for a
typical set of MAX phases,82,83 and has provided accurate predictions for
several other systems.80,84 Hence the following discussion will only consider
the configurational aspects of finite temperature.
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For a perfectly ordered solid, there is only a single way to arrange the
atoms, and thus the number of possible microstates for the N atoms in the
solid is g(N) = 1 and the entropy

S = kB ln g(N) (3.14)

is zero. Assuming all temperature effects besides entropy are disregarded,
GZ of a perfectly ordered phase is thus not affected by temperature.

For a disordered solid, with elements A and B mixed at concentrations
x and (1 − x) respectively, the number of possible microstates for the N
atoms is instead g(N) = N !/(n!(N − n)!) where n = Nx. This is readily
extended to alloying of more than two elements, and gives in the mean field
approximation, together with Sterling’s approximation, the expression for
the configurational entropy as:

S = −kB
∑

i

xi lnxi (3.15)

per atom. In a phase where only some sites are considered for alloying, e.g.
a MAX phase with alloying on the M site, S is per alloying site. Since S is
positive (xi < 1), the configurational entropy term −TS will decrease GZ

as temperature increases, thus favouring structures with disorder.

3.3 Modelling disordered structures

One of the challenges in solid state simulations is to account for structural
disorder. The DFT formulation used throughout this thesis is based on the
periodicity of crystalline solids, for which Bloch’s theorem is valid and the
system is conveniently described using a plane wave basis set and periodic
boundary conditions. However, there are many materials which are not
perfectly crystalline solids, and thus special care needs to be taken when
dealing with those.

Disorder in this thesis is not a very central point, but it is considered
in some aspects and hence this section will give a brief introduction on the
method that has been used. Disorder in materials modelling refers in gen-
eral to structures which exhibit a basic crystalline structure with some level
of disorder incorporated on certain or all sites. Strictly within the scope of
this thesis, disorder has been considered only for the terminations on bori-
dene in paper II. In close relation however is ref. 84 – where Ti4MoSiB2
studied in paper I was first reported – and also ref. 85. Ref. 84 studies the
phase stability of different quaternary T2 phases with ordered or disordered
alloying on the M sites in the model ternary T2 phase M5SiB2, and in ref.
85 disorder was considered for vacancy formation in Sc2Al2C3.
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As with most phenomena there are different ways to model disorder.
Herein the special quasirandom structure (SQS) method has been used,86
a method which explicitly accounts for microstructure by modelling disorder
quasirandomly on a supercell.

3.3.1 A short note on the cluster formulation

The SQS method is based on the cluster expansion formalism, and hence
a brief introduction to this formalism will be given first. The essential
idea is to identify the different “clusters” or “figures” making up the crystal
structure, where each cluster consists of a subset of atoms in the crystal.
The crystal is then described in terms of the different clusters. Conceptually
this is similar to expressing a complicated wavefunction as a sum of simpler
basis functions, where the crystal is the analogue of the wavefunction, and
the clusters that of the basis functions.

Each lattice site i is assigned a “spin variable” σi, which can signify spin
or, as is the case here, an atomic species. Depending on the number of
alloyed species M , σi may take different values. E.g. for M = 2, σi = ±1
and for M = 3, σi = ±1, 0. Then the full lattice is described in terms of
its clusters fp(k,m), where k denotes how many lattice sites are part of the
cluster, m denotes the nearest neighbour shell or order, and p the position
and orientation of the cluster f . Examples of clusters can be seen in figure
3.3.1(a), where three two-site (k = 2) clusters and one three-site (k = 3)
cluster are depicted. Out of the three two-site clusters, fp(2, 1), fq(2, 1)
and f(2, 2), the first two are first order clusters (m = 1) with different
position and orientation indicated by the subscripts p and q, and for the
ordered solid shown in figure 3.3.1(a) they are symmetrically equivalent.
The latter, f(2, 2), is a second order (m = 2) cluster. The different orders
are indicated in figure 3.3.1(b). The three-site cluster in figure 3.3.1(a) is
of first order, since it is the smallest possible three-site cluster and can be
found within the first next neighbour shell from the blue coloured atom.
For clusters larger than two-sites, the chosen notation with m specifying the
order is ambiguous without further definitions of howm is to be interpreted.
However, since this section only aims to give a qualitative understanding of
the topic of cluster expansion it is enough knowing that clusters involving
different number of lattice sites and of different orders can be identified
within any crystal, without going into further detail on how to label them.

The next step in the procedure is to define a set ofM orthogonal polyno-
mials Θn(σi) for each lattice site i. The index n runs between 0 and M −1.
Hence for the simplest case of M = 2, as in figure 3.3.1(a), there are only
two such polynomials per lattice site, which are found to be Θ0(σi) = 1
and Θ1(σi) = σi. How they are constructed can be found in ref. 87.

Finally the cluster characteristic functions Φn
f (σ) are defined as:
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A
σi = 1

B
σi = −1

fp(2, 1) fq(2, 1) f(2, 2)

f(3, 1)

m = 1 m = 4

(a) (b)

Figure 3.3.1: (a) shows four clusters f(k,m) of different order m and
numbers of sites k. The clusters fp and fq are symmetrically equivalent.
The two different species A and B are implied by brown and blue respectively.
(b) shows the closest neighbour shells to the larger grey site in the bottom
left corner, indicating clusters of different order.

Φn
f (σ) =

∏

i∈f

Θn(σi). (3.16)

For a specific lattice and concentration of atomic species, a lattice average
Φ̄f (σ) can be found for each characteristic function. This can be used to
describe any crystal in terms of its clusters, and for attaining the energy or
other expectation values of the structure. This is not something that will
be further discussed here, but more details can again be found in ref. 87.
What is important to this discussion is that they can be used to describe
disorder in a solid, which is utilised in the SQS method described below.

3.3.2 Special quasirandom structures

When considering disorder there are two different approaches: either the ef-
fect of disorder is considered explicitly, or on average. To accurately model
the electronic effects of disorder in a material, it is often not enough to
purely consider average effects, but disorder must be considered explicitly.
This can be done by constructing a supercell with the alloyed elements
randomly assigned to the lattice sites, relax the ionic positions of the su-
percell and find the electronic ground state. The primary problem with this
approach is that the computational cost increases drastically with the num-
ber of atoms, i.e. large supercells are computationally expensive to model.
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Due to an artificial periodicity introduced by the periodic boundary condi-
tions, it is important to converge any supercell computation with respect
to supercell size, and in addition it is not immediately obvious whether
any particular (pseudo) random population of lattice sites provides a good
representation of the true random alloy.

There isn’t all that much to be done about the requirement to converge
computations with respect to supercell size without reverting to methods
only considering average effects of disorder, but the problem of accurately
representing the random alloy on the supercell can indeed by amended
to some extent through the generation of special quasi random structures
(SQS),86 rather than (pseudo) random ones. The idea is to, given a super-
cell size, find the configuration that best mimics the site population of the
true random alloy. The best structure is chosen by considering the Φ̄f (σ)
of clusters in the supercell, and trying to match those to the values for
the true random alloy. In practise the alloy is most commonly assumed
to be completely random, but this is not a fundamental assumption of the
method. The SQS is found through construction of supercells according to
specified alloying species and concentrations, evaluating the Φ̄f (σ), called
correlation functions in this context, and comparing them to those of the
true random alloy. The better they agree, the better the SQS mimics the
true random alloy.

Since the supercell on which the SQS is constructed is of finite size, only
clusters up to a certain order are meaningful to include, and therefore there
are limitations on how small supercells can be and still give meaningful
results. Therefore one should in principle always confirm convergence of
the relevant physical aspects with respect to supercell size, although this
might not always be feasible due to computational limitations.
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Chapter 4

Modelling of chemical
bonding in solids

Bonding is a widespread and commonly pondered upon topic within chem-
istry, and it is a way to describe interaction between atoms in various
compounds. For a diatomic molecule, it is quite intuitive to identify the
bond strength through the energy needed to break the single bond in
that molecule or the force induced by stretching the bond, but for larger
molecules it is not as trivial since all atoms interact with each other, and
it is rarely possible to view the separation of the molecule into two parts
as only breaking a single bond. The same problem carries over to crystals,
which in a sense are just extended molecules. At the same time, differ-
ent interactions within a molecule or crystal can clearly exhibit different
characteristics, for example manifested through anisotropy in solid state
phases. Hence it would clearly be interesting to have some way to esti-
mate or rate the interaction between atoms in different compounds, which
is exactly what will be considered in this chapter.

First, the Bader partitioning scheme is presented, which is a method
for assigning charge to charge maxima, indicating charge transfer between
atoms and thus serving as a measure of the ionic bonding characteristics.
Next the crystal orbital Hamilton population (COHP) is considered, which
gives an indication on covalency, and finally a bond projection of the force
constants, which were introduced in chapter 3.1, is considered.

4.1 Bader analysis

Bader partitioning is a scheme used to estimate ionic bonding in a molecule
or crystal, by assigning charge to identified charge maxima. There are
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several different schemes for this purpose, where the Bader scheme has the
advantage of being independent on the basis functions used for the charge
density representation. The key idea is to identify charge maxima in the
atomic structure as separated by dividing surfaces defined by the density
gradient being zero along the surface normal. The charge assigned to each
maximum is then attained by integrating over the charge distribution within
the volume defined by the dividing surfaces.

One way of performing the Bader partitioning is by expressing the
charge density on a regular grid, and assign each grid point to a charge
maximum by following the density gradient.88 These maxima commonly
correlate with the ionic positions, but they need not do so and are not
assumed to do so from the design of the algorithm. The charge assigned
to each maximum is found by summing over all grid points assigned to
said maximum. This straightforward way, not utilising any advanced inter-
polation scheme or explicitly finding the dividing surfaces, requires a grid
dense enough for linear interpolation between the grid points to be suffi-
cient. The computational efforts required scales linearly with the number
of grid points, and in the initial proposal of this algorithm it was found
that the convergence with respect to grid point density was similar to that
of more computationally demanding schemes depending on more advanced
interpolation.88

The grid based Bader partitioning has the additional advantages of be-
ing easy to implement, computationally efficient, and robust compared to
earlier proposed schemes. Later papers has amended a shortcoming in the
original algorithm proposed by Henkelman et. al.,88 which fails to fully
converge the Bader volumes with respect to increasing grid density by in-
correctly assigning grid points to maxima in a way that favours dividing
surfaces following the direction of the grid.89–91

4.2 Crystal orbital Hamilton population

A crystal orbital Hamilton population (COHP) is an energy weighted over-
lap integral between two quantum states. The concept is specifically de-
signed to quantify bonds within solid state structures, and aims to give a
qualitative estimate of the covalent characteristics of a bond. To define
the COHP, we start by defining one electron wavefunctions |ψj⟩ as linear
combinations of atomic wave functions |χµ⟩:

|ψj⟩ =
∑

µ

cµj |χµ⟩ . (4.1)

Here j stands for band index, and µ is shorthand notation for a specific
orbital denoted by angular momentum l and quantum number ml at lattice
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site R within the unit cell. The cµj are the mixing coefficients ⟨χµ|ψj⟩. The
overlap matrix Sµν is defined as

Sµν = ⟨χµ|χν⟩ , (4.2)

and because of the orthogonality of the wave function, we also have that

δij = ⟨ψj |ψi⟩ =
∑

µ

∑

ν

⟨ψj |χµ⟩ ⟨χµ|χν⟩ ⟨χν |ψi⟩

=
∑

µ

∑

ν

c∗µjSµνcνi. (4.3)

The one-particle Schrödinger equation for the state |ψj⟩ can be written
as

(Ĥ − ϵj) |ψj⟩ = 0 ⇒ ⟨χµ| (Ĥ − ϵj)
∑

ν

cνj |χν⟩ = 0

⇒
∑

ν

cνj ⟨χµ| (Ĥ − ϵj) |χν⟩ = 0

⇒
∑

ν

cνj(⟨χµ| Ĥ |χν⟩ − ϵjSµν) =
∑

ν

(Hµν − ϵjSµν)cνj = 0.

Multiplying by c∗µi from the left, summing over µ and using equation (4.3)
yields

∑

µ

∑

ν

c∗µi(Hµν − ϵjSµν)cνj = 0

⇒
∑

µ

∑

ν

c∗µiHµνcνj =
∑

µ

∑

ν

c∗µiϵjSµνcνj = ϵj ⟨ψi|ψj⟩ = ϵjδij , (4.4)

so that we now have an expression for the one electron energies ϵj . We then
express the so called band structure energy Eband as the energy integral over
one electron occupation numbers fj , and substitute for the band energy ϵj :
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Eband =

∫ ϵF

dϵ
∑

j

fjϵjδ(ϵj − ϵ)

=

∫ ϵF

dϵ
∑

j

fj
∑

µ

∑

ν

c∗µjHµνcνjδ(ϵj − ϵ)

=

∫ ϵF

dϵ
∑

µ

∑

ν

Hµν

∑

j

fjc
∗
µjcνjδ(ϵj − ϵ)

︸ ︷︷ ︸
DOS matrix

=

∫ ϵF

dϵ
∑

µ

∑

ν

HµνNµν(ϵ)

=

∫ ϵF

dϵ
∑

µ

∑

ν

COHPµν(ϵ). (4.5)

Equation (4.5) defines the COHP, which is the contribution to the total
band structure energy from the atomic orbitals µ and ν. The COHP has two
contributions, the Hamiltonian matrix element Hµν = ⟨χµ| Ĥ |χν⟩, which
can be positive, zero or negative, and the DOS-matrix element Nµν , which
is strictly positive or zero. Thus the COHP is a function of energy, and can
be positive, negative, or zero.

Equation (4.5) can be divided into two contributions: on-site COHPs
(R = R′), corresponding to atomic contributions, and off-site contributions
(R ̸= R′). The latter can be interpreted as bonding descriptors of the inter-
action between two states µ and ν, and represent the covalent contribution
of the bond92. By performing the energy integral, the so-called integrated
COHP (iCOHP) is obtained, which is related to the energy of the bond
between the two involved states. A thorough discussion on the correspon-
dence between the iCOHP and bond energy can be found in the original
work,92 with the main conclusion that although the iCOHP in general can
not be used as a quantitative measure of the bond energy, it is nevertheless
a sensible descriptor for qualitative bond characteristics. Commonly, the
COHPs from all possible combinations of µ and ν at the two sites R and R′

are then summed to yield a total COHP for the two sites, which describes
the overall characteristics of the particular bond.

4.2.1 COHP with a plane wave basis set

The theoretical derivation of the COHP presented in the previous section
makes it clear that the very concept of COHP is highly local in nature, since
it describes the electronic structure in terms of atomically centred wave
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4.2. CRYSTAL ORBITAL HAMILTON POPULATION

functions χµ. At the same time, some of the most popular and versatile
electronic structure codes use a plane-wave basis set, as is the case for
the vasp code used exclusively in this work. The band functions ψj are
then in addition to the position r also functions of the wave vector k. We
may, however, carry through with an analogous procedure as previously,
but the wavefunctions ψj now also carry a k-dependence. This procedure
is outlined in detail in reference 93, and results in a so called projected
COHP (pCOHP) which carries a k-dependence. Performing an integration
over k results in the real-space pCOHP, which for a few selected structures
is shown to be qualitatively very similar to the COHP attained from an
electron structure computation based on a local basis set.93

Another complication arising in performing COHP analysis on results
from a plane-wave basis code comes from the use of the PAW method,
outlined in chapter 2.3. Fortunately enough, there is a work-around to
this problem too 94, through the development of a projection scheme for
the PAW method augmentation wavefunctions. This needs some general-
isations compared to the previously presented scheme, related to the aug-
mentation wavefunctions not being necessarily orthogonal. The generalised
projection scheme is shown to produce results which compare well with
those produced using a local basis set for both covalent and metallic solids.
It is also shown to give a better projected DOS than the built in method
of vasp, which is why it is used to evaluate the DOS throughout the work
of this thesis.

4.2.2 The difference between COHP and DOS

We end this part of the chapter with a small example, demonstrating the
difference between the DOS and (p)COHP. Figure 4.2.1 shows the partial
and total DOS in panel a), and the total −pCOHP and partial −pCOHP
for a specific bond in b), for the layered MAB phase Ti4MoSiB2 studied in
Paper I. The 12 shortest bonds are considered for the evaluation of the total
−pCOHP, which was found sufficient for convergence. Due to convention,
the −pCOHP is shown rather than the pCOHP, coming from a wish to
maintain analogy with an earlier bonding descriptor called crystal orbital
overlap population (COOP), since positive COOP corresponds to bonding
regions and negative to antibonding95.

For the DOS, shown in panel a), we see that there are plenty of available
states above the Fermi level, primarily coming from the Ti-atoms. How-
ever, looking at the total −pCOHP shown in panel b) by dark green, there
are only a small contribution from bonding states (positive −pCOHP), in-
dicating that although there are plenty of available states at the Fermi
level, there are not that many states available that would actually lower
the total energy if populated. Thus, the Ti4MoSiB2 structure is rather well
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non-bonding antibonding

bonding

Figure 4.2.1: DOS and −pCOHP for the quaternary boride Ti4MoSiB2
investigated in Paper I. The Fermi level is set at zero energy along the x-
axis. (a) DOS and partial DOS of the four different species: Ti, Mo, Si
and B. (b) −pCOHP summed over all orbitals for the Ti-Mo interaction
in bright green, and the total −pCOHP in darker green. Green, yellow and
red bars indicate bonding, non-bonding and antibonding regions of the total
−pCOHP respectively.

optimised from a bonding perspective, with the Fermi level being close to
the region of non-bonding states (zero −pCOHP). Optimally, all bonding
states should be filled, while all antibonding states (negative −pCOHP)
should be empty. The green, yellow and red bars indicate the bonding,
non-bonding and antibonding regions of the −pCOHP, respectively

Another thing to note is the peak in the Ti and Mo partial DOS at
−1 eV below the Fermi level. In the −pCOHP corresponding to the Ti-Mo
bond, shown in light green in panel b), we see that this peak corresponds to
considerable bonding contributions to the −pCOHP coming from the Ti-Mo
interaction. We can also see that besides this peak, the Ti-Mo interaction
does not contribute significantly to the bonding of this material.
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4.3 Force constants as bond descriptors
The last bonding descriptor to be discussed here is that of the force con-
stants in a solid. The force constants correspond to the second order deriva-
tives of the crystal potential energy with respect to lattice site displace-
ments, as described in chapter 3.1, and thus they relate displacements of
any two atoms to each other. The force constant between any two atoms is
represented by a 3 by 3 matrix, and a few different ways of reducing them to
a scalar value have been proposed in the literature, e.g. by taking the trace
which is invariant with respect to coordinate rotations,28,96 or by project-
ing the force constant along the vector between the two involved atoms97.
Within the work presented in this thesis, the latter has been used.
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Chapter 5

Summary and Outlook

Paper I

Investigation of Out-Of-Plane Ordered Ti4MoSiB2 from
First Principles

Journal of Physics: Condensed Matter, 2022, 34, 185501

In this project the bonding properties of the out-of-plane ordered quater-
nary boride Ti4MoSiB2 were compared to those of its ternary counterparts
Ti5SiB2 and Mo5SiB2. Ti4MoSiB2 is a recently discovered compound,84
which was theoretically predicted by the means described in chapter 3, and
then successfully synthesised experimentally and converted into a 2D tita-
nium oxide. Another 50 quaternary borides on this structure were predicted
stable in the same study, out of which ten also display out-of-plane order,
while the rest were predicted to display disorder.

All the structures considered in ref. 84 belong to the family of struc-
tures called T2 phases. Binary T2 phases were investigated during the
1950’s17,98, and the ternary Mo5SiB2 was first reported in 1957,16 where B
and Si were assumed in solid solution, with the detailed crystal structure
established soon after.17 However, Ti5SiB2 has to the best of our knowl-
edge never been reported and is also predicted unstable in ref. 84. Yet,
Ti4MoSiB2 is stable, a curiosity this project aims to understand. Addition-
ally, the mechanical properties of the three phases are investigated from
first principles.

Bonding analysis was carried out using the three methods described in
chapter 4. The discussion included the 12 shortest bonds, with main focus
on the 6 shortest of these, which were found to be the most important from
the COHP analysis. The characteristics of five of these bonds didn’t show
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distinct differences between the three structures, whereas the bond between
the two different metallic sites showed a distinct peak of bonding states
close to the Fermi level, shown in Figure 4.2.1 for Ti4MoSiB2. For the two
stable phases this bonding peak was found to be completely filled, while for
Ti5SiB2 it is partially empty. The instability of Ti5SiB2 was thus suggested
to be due to this peak of bonding states not being completely populated,
rendering Ti5SiB2 energetically disfavoured to other Ti-containing phases.

Paper II

Investigation of 2D Boridene from First Principles and
Experiments

Advanced Functional Materials, 2022, 32, 2109060

In this project the properties of the novel 2D boridene Mo4/3B2Tz , first
reported in ref. 36, were investigated both computationally and experimen-
tally. Boridene is etched from the hexagonal i -MAB phase (Mo2/3Y1/3)2AlB2
where the Mo and Y species populate the transition metal layer with in-
plane order99. Upon etching of the parent phase (Mo2/3Y1/3)2AlB2, Al and
Y are removed, leaving the boridene Mo4/3B2Tz which thus has vacancies
where the minority transition metal element, Y in this case, used to sit in
the parent MAB phase. In-plane ordered vacancies originating from the
in-plane order of the parent phase are also observed for etching of i -MAX
phases100.

The project is focused on investigation of the terminations of boridene,
from both computational and experimental perspectives, with a detailed
XPS analysis performed to determine the concentrations of different ter-
minating species. Just as for MXenes prepared by similar methods as the
boridene, terminations were found to consist of a mixture of O, F and OH
species. Computational analysis of termination sites and band structure
for different terminations was then performed, showing that for termina-
tion with only a single species, the boridene is likely to be a small bandgap
semiconductor. However, with terminations of mixed species, as determined
through the XPS analysis, metallic behaviour was found to be more likely.
An optical absorption measurement of the boridene showed no peaks in the
visible to UV-range, indeed implying a metallic behaviour.

The dynamical stability was assessed through evaluation of the phonon
dispersion for all structures with ordered terminations, as described in chap-
ter 3.1. Stable structures were identified for all considered terminations,
while the unterminated or bare boridene was found to be dynamically un-
stable. For structures with disordered terminations, the dynamical stabil-
ity was not considered because of the considerable computational efforts

50



needed, making the procedure unfeasible. Finally, the boridene was consid-
ered for the hydrogen evolution reaction (HER), and was found to display
promising properties with high activity and a low onset potential which
further decreased during the experiment, a behaviour which has been seen
also in i -MXenes.101

Paper III

Computational Screening of Chalcogen-Terminated Mul-
tilayer MXenes and M2AX Precursors

Submitted

This study addresses the transition metal carbochalcogenides (TMCCs),
which are a family of vdW bonded solids with the general formula M2CCh2,
where M is a transition metal element, C is carbon and Ch is a chalcogen
element. The individual layers of a TMCC have the structure of chalco-
gen terminated MXene sheets, which can be seen in Figure 1.1.1c), where
the TMCC structures is shown schematically. In a recent study the two
TMCCs Nb2CS2 and Ta2CS2 were exfoliated into single sheet MXene (ss-
MXene) by intercalation, sparking new interest in the TMCCs, or multilayer
(ml-)MXenes, as we have chosen to call them to highlight their structural
characteristics102.

The possibility for realisation of additional ss-MXene through exfoli-
ation of ml-MXene phases is therefore considered here, by evaluation of
the thermodynamical and dynamical stability of additional hypothetical
ml-MXenes and successive assessment of the possibility for delamination,
via the interlayer binding energy. M2CCh2 are considered with M=Sc, Y,
Ti, Zr, Hf, V, Nb, Ta, Mo and W, and Ch=S, Se and Te. Seven ther-
modynamically and dynamically stable ml-MXenes are identified, where
V2CSe2 incorporates a new transition metal compared to previously re-
ported phases. Additionally, we consider the family of MAX phases for the
indicated compositions, because the synthesis route for Nb2CS2 is based on
manipulation of the corresponding MAX phase103. We identify 15 thermo-
dynamically stable MAX phases. All the identified stable ml-MXenes are
found to have similar binding energies, indicating that they should all be
possible to exfoliate into the corresponding MXene.

Further, the electronic properties of the ml- and ss-MXenes are assessed
by calculation of the band structure and density of states for each structure.
Depending on the exact configuration of the chalcogen terminations, the
materials may be conductors, small-bandgap semiconductors or semimet-
als. Exfoliation into 2D affects the electronic structure moderately, with
the ml-MXenes that are predicted to be zero-bandgap semiconductors or
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semimetals generally becoming finite bandgap semiconductors upon exfoli-
ation, due to a systematic separation of the electronic bands upon exfolia-
tion.

Paper IV

Computational Screening of the MOX2 Transition Metal
Oxydihalides with M=V, Nb, Ta, Mo, Ru and Os, and
X=Cl, Br, I
In manuscript

This project studies the family of transition metal oxyhalides MOX2. These
are van der Waals (vdW) bonded layered materials, consisting of oxygen-
transition metal chains bound together by O-atoms into a rectangular lat-
tice, and decorated by halogens on each side. Two of the MOX2 family
members have been reported in single layer form, NbOCl2 and NbOI2 9,25,
both of which show intriguing optical properties. In this work, the elec-
tronic properties of all members of this family are studied. A number of
phases not reported experimentally are also included, to cover all possible
compositions given the elements which have been experimentally found in
these phases, i.e. M=V, Nb, Ta, Mo, Ru and Os, and X=Cl, Br and I. The
thermodynamical stability of all phases is assessed by comparison to the
Materials Project database, as is the dynamical stability by evaluation of
the phonon dispersion.

The bulk phase of all but one of the considered compositions is predicted
to be thermodynamically stable, and all are found to be dynamically stable
in both bulk and 2D forms. Four different prototype structures are iden-
tified for the family, with different types of distortions introduced to the
most symmetrical prototype. Firstly, there is an in-plane Peierls distor-
tion along the direction of the M-M bonds, causing the M-atoms to form
localised dimers. This behaviour indicates a pseudo-1D nature of the tran-
sition metal chains. This distortion is observed for MOX2 with M=V, Nb,
Ta or Mo. For M=V and Nb, an additional distortion along the perpendic-
ular in-plane direction of the M-O bonds is observed. This is referred to as
a pseudo Jahn-Teller (pJT) distortion and causes these materials to be fer-
roelectric. For M=V, previous computational studies suggest magnetically
ordered ground states without Peierls distortions7,104, with results in the
last prototype which only have the pJT distortions.

The most symmetrical phases which exhibit no Peierls distortion, RuOX2
and OsOX2, has a band structure which shows conducting behaviour. Upon
introducing the Peierls distortion, a bandgap opens up for the VOX2,
NbOX2 and TaOX2 structures. There is a highly localised populated state
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in the gap, originating from the dimerisation of the transition metal atoms.
Optical transition directly from the localized state to the conduction band
minima (cbm) is forbidden since both are primarily contributed to by tran-
sition metal d-states. Therefore, the gap between the cbm and valence
band maxima (vbm) disregarding the localised dimer state was considered
for analysis of bandgap trends, since the vbm constitutes of halogen p-
states. We observe that this extended bandgap is primarily related to the
halogen size, and it decreases with increasing size of the halogen. We fur-
ther identify the set of Ta-based phases, TaOX2, as being most similar to
the set of NbOX2 phases. In particular, the dimerisation in terms of dimer
bond length relative to transition metal covalent radius in TaOI2 is slightly
stronger than in NbOI2 which suggest that TaOI2 could display nonlinear
optical effects similar in strength as seen in NbOI2 105.

Paper V

Expanding the Structural and Compositional Space of
2D M2X2Ty Materials through Simulated Etching of 3D
YM2X2 Parent Phases
In manuscript

This project is a follow-up study of a screening study where a 2D material,
Ru2SixOy, was predicted and successively synthesised. This is exciting
from two perspectives. Firstly, Ru2SixOy was predicted using a newly
developed methodology for predicting chemically exfoliated materials. This
methodology is the first computational framework to successfully explain
the etching (and lack of etching) of MAX-phases into MXene, which has
long been a challenge to the community of computational 2D materials.
Secondly, it is exciting because Ru2SixOy belongs to a completely new
family of 2D materials, and is etched from parent phase belonging to a very
large family of layered 3D phases with formula AM2X2.

The study consists of three steps. Firstly, a large compositional space is
screened for thermodynamical stability of potential parent phases AM2X2.
We consider A=Y, which is the element that is expected to be removed
in the etching process, specifically because Ru2SixOy was synthesised by
removal of Y from the parent phase YRu2Si2. For the M-site, all 3d, 4d
and 5d transition metal elements were considered, except Sc and Y (be-
cause they are found at the A-site of the YM2X2 materials), and Cd and
Hg (because of their high toxicity). For the X-site, the elements Al, Ga, In,
Si, Ge, Sn, P, As, Sb, S, Se, and Te were considered. Out of these 300 com-
pounds, 31 were predicted as thermodynamically stable, and another 6 as
close enough to being thermodynamically stable that they were included in
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the next step of analysis. Thus, 37 potential 3D structures were identified,
out of which nine are not experimentally reported.

In the second step, the newly developed methodology is employed to
simulate the etching process for the 37 potential parent phases identified
in the first step106,107. This was done by considering the possibility for
vacancy formation of the different constituent elements, requiring that it
should be thermodynamically preferable to form a Y-vacancy while not to
form an M- or X-vacancy. This procedure identified 24 of the 37 proposed
parent phases as promising. Additionally, the potential for chemical etching
was assessed through the exfoliation and solvation free energies, requiring a
phase to prefer exoliation to no etching and to complete solvation. 17 out of
the 24 promising phases also proved favourable from this perspective, which
identifies them as possible to etch chemically and predicts a corresponding
2D material for each 3D phase.

In the last step, the dynamical stability of the predicted 2D materials
were assessed, and their electronic properties were simulated through cal-
culation of band structure and density of states (DOS). 15 out of the 17
2D materials predicted in the second step were deemed dynamically stable.
Nine of the 15 predicted 2D structures are reported here for the first time,
and three of those are etched from parent phases not previously assessed
through the simulated etching methodology. The electronic property simu-
lations indicate metallic behaviour for most 2D materials, while four show
semimetallic properties.

Contribution to the Field
The work concluded within the scope of this thesis can be said to be either
sprawling or broad, depending on ones attitude. It does not claim to cover
significant ground within any specific subfield of two dimensional materi-
als science, but instead it makes a dent on several different places on the
border to that subset of human knowledge. The work within this thesis
considers both 3D and 2D materials, with Paper I, which only considers a
3D structure, and II, which focus solely on a derived 2D material, each be-
ing the extreme on this scale. For the remaining three manuscripts, a more
complete view has been adopted, where each project starts from a layered
3D material and ends with the corresponding 2D derivative. These three
manuscripts are also more complete from the perspective that they are all
screening studies, covering not only one or a small set of structures, but
instead address a larger compositional space. Simultaneously, they might
be deemed less complete as well, from the perspective that they are purely
computational.

This thesis adds to our understanding of bonding characteristics in the
set of laminated borides M4M′SiB2, and it contributes insights into the
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termination concentration of boridene, the first 2D boride, and its effect
on the electronic properties of this material. It also predicts expansions
to two well established families of vdW structures, and summarises and
puts into some perspective previous literature on these respective families.
And finally, it pokes at truly the forefront of development in the field of
2D materials, by exploring the entire process of selective etching, from the
identification of potential parent phases all the way to the prediction of
novel 2D materials.

Outlook
So again comes the question: where do we go from here? The herein pre-
sented computational work claims multiple predictions and suggest several
possible implications, but all computational conclusions ultimately need
experimental verification; Where do the chalcogen-terminations sit on ml-
MXene? What are their electronic properties? Are the VOX2 structures
magnetic or do they dimerise? Do TaOX2 exhibit second harmonic gen-
eration? Can we actually etch YM2X2 into the respective predicted 2D
materials? And so on. However, given the experimental insights required
to answer any of these questions, one might say they are outside the scope of
an outlook accompanying a work as computationally focused as the present
one.

Conforming to the computational nature of this thesis, there are alterna-
tive directions to pursue. The already established 2D structures discussed
in this thesis could be studied in more detail, in particular those that we pre-
dict, but also those which are already realised. By introducing distortions
corresponding to the imaginary branches of the YM2X2 derivatives found to
be dynamically unstable, perhaps even more different 2D structures could
be identified as derivatives of the YM2X2 materials. Additionally, there
are suggested expansions to the MOX2 family which are computationally
shown to exhibit curious properties, for which a thermodynamical stability
analysis is lacking but highly motivated108,109. There are also a number
of large scale screening studies predicting plenty of 2D materials5,107, as
well as materials databases dedicated to 2D phases110, where candidate 2D
materials and structures for further study may be found.

Remaining closer to the computational screening focus of the present
work, perhaps the most obvious path forward would be to wield the method-
ology of simulated etching at yet more laminated materials. The family of
ThCr2Si2 structures is far from depleted, and other families of chemically
bound laminates exist as well. Additionally, other etching chemistries than
that of HF acid could be considered, which may lead to predictions of ad-
ditional 2D materials also in the systems already studied. There is really
no end to the possibilities, which is in itself a central challenge within the
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topic of materials design. It leads to an overwhelming parameter space,
and although computational probing is vastly more efficient than experi-
mental probing, computational screening is still a resource intense activity
in terms of computation time. The natural next step in the development
would be to include some machine learning aspect in the screening process,
both to more effectively identify potential parent phases and to assess the
possibility for exfoliation.

Thus, there is not a shortage of directions to consider in the search for
the next generation of materials, but rather, as well put by Gandalf: All
we have to decide is what to do with the time that is given us.
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