Beteende och fysiologiska reaktioner hos människovanadrävlingar i fälla

Anna Karin Strömgren

Magisteruppsats från Grundskollärarprogrammet år 2004
Beteende och fysiologiska reaktioner hos människovana grävlingar i fälla

Nyckelord
Grävling, Jakt, Fälla, Telemetri, Beteende, Stress

Keywords
Badger, Hunting, Trap, Telemetry, Behaviour, Stress
Sammanfattning

Innehållsförteckning

SAMMANFATTNING ... 3
INNEHÅLLSFÖRTECKNING .. 4
INLEDNING .. 6

BAKGRUND .. 6
Grävling .. 7
Ordning och förekomst ... 7
Utseende och fysik .. 7
Föda ... 8
Levnadsförhållanden ... 8
Jakt ... 9
Stress ... 10
Fysiologisk påverkan .. 11
Beteende .. 11
Individuella skillnader ... 12

SYFTE OCH HYPOTES .. 12

MATERIAL OCH METOD .. 13
Etisk notering ... 13
Djur ... 13
Hägnet ... 15
Fällan .. 16
Försöksprocedur .. 17
Behandlingar ... 17
Praktiskt genomförande .. 17
Insamling av data ... 19
Beteendeobservationer ... 19
Telemetri ... 23
Hormonmätningar ... 25

DATABEHANDLING OCH ANALYS .. 26
Databehandling .. 26
Beteende ... 26
Beteendedata från fällan ... 26
Beteendedata från hägnet ... 26
Telemetri ... 27
Statistisk analys ... 28
Data från fällan .. 28
Data från hägnet ... 28

RESULTAT ... 30
Beteende i Fällan .. 30
Inledning
Som examensarbete för en grundskollärare är det här ett ganska udda projekt. Ämnet för uppsatsen är naturvetenskap och jag har i och med detta arbete fått inblick i kunskapsområdet biologi. Det får dock ses som en djupdykning, i detta fall inom etologi. Arbetet har gett mig en stor förståelse för hur mycket arbete som ligger bakom studier av djur. Både när det gäller förberedelser, genomförande och efterarbete. När det gäller att handskas med levande djur och all teknisk utrustning som ingått i det här projektet kan mycket oförutsätt hända och man får fatta beslut och handla därefter. Den erfarenhet arbetet har gett mig kommer jag att ta med mig in i min yrkesroll och kommer nog tack vare det fånga elevers uppmärksamhet och väcka deras nyfikenhet för ämnet.

Bakgrund
I det övergripande projektet ingår fyra delar

- Test där grävling möter hund i ett konstgjort gryt
- Test då grävling möter hund i hägn
- Test då grävling sitter i fälla
- Test då sekret från främmande grävlingar placeras i hägn
Den här uppsatsen behandlar frågeställningar kring testet då grävling sitter i fälla (figur 1). De parametrar som studeras är beteende och fysiologi såsom hjärtfrekvens, kroppstemperatur samt stresshormon i avföring.

Figur 1. White Right i fällan. Foto: Anna Karin Strömgren

Grävling

Ordning och förekomst

Utseende och fysik
Föda

Levnadsförhållanden

Jakt

Jakt med ställande hund. Hunden spårar upp grävlingen och jagar den tills grävlingen blir ställd (dvs. inte vågar röra sig) och jägare kan gå fram och skjuta den på nära håll.

Grytjakt med hund. Hund släpps ned i grytet och ska nere i grytet hålla grävlingen på plats så att jägaren sedan kan gräva sig ned och då grävlingen syns skjuts den (Skoog, 1988).

Stress

Studier av enbart djurs beteende eller dess fysiologi kan inte avgöra om det är stressat. Det är i själva verket en kombination av fysiologiska faktorer och hur djuret upplever situationen som är avgörande (Jensen, 1996).

Fysiologisk påverkan

Beteende

Individuella skillnader

Syfte och hypotes

Jag avser att med valda metoder kunna urskilja skillnader, såväl beteendemässiga som fysiologiska, mellan olika vistelser i fälla. Min hypotes är att jag tror att grävlingarna under fällvistelsen kommer att försöka ta sig ut. På grund av den förväntade fysiska ansträngningen tror jag att grävlingarna kommer att ha en högre hjärtfrekvens och kroppstemperatur under vistelsen i fällan, jämfört med för grävlingarna normal hjärtfrekvens och kroppstemperatur under aktivitet. Möjligen kommer den största skillnaden ligga under dagtidsvistelserna fällan eftersom grävlingar normalt söker skydd på mörk plats under dagtid. Jag tror att det obehag
de upplever under fällvistelsen kommer att påverka deras beteende i hägnet efter fäll-
behandlingen genom att deras beteende är oroligare efteråt. Jag förväntar mig en förhöjd
kortisolhalt efter fällvistelsen men att halten sjunker de närmaste dygnen efter behandlingen.

Material och Metod

Studien genomfördes under perioden 11 augusti till 5 september, 2003. Platsen var ett hägn i
Kolmårdens djurpark. Ansvarig och samordnande för projektet är Karin Schütz, Etolog. För
att genomföra ett så omfattande projekt som detta krävs dock en hel del arbetskraft. Vi har
varit tre grundskollärarstudenter, fem biologstudenter (varav två från Holland) samt två
veterinärstudenter inblandade. Under den del av projektet som berörs av min frågeställning
har jag tillsammans med en grundskollärarstudent, två biologstudenter från Sverige och en
biologstudent från Holland medverkat. Vi har delat på alla praktiska arbetsuppgifter vilka
består av matning, träckhantering, filmning, analys av videobanden samt arbete som att bära
grävlingarna vid försöken och att montera utrustning.

Etisk notering

För att få genomföra studien krävdes ett tillstånd från en djuretisk nämnd. En sådan nämnd
har till uppgift att se till att djur inte lider i onödan och att det eventuella lidande som åsakas
djuren står i proportion till nytan med försöken. De tittar även på om försöken är en
upprepning eller om det tillför något nytt. Det måste finnas en försöksplan att granska. Detta
projekt har fått tillstånd av Uppsala djurförsöksäthetiska nämnd.

Djur

Försöken är baserade på studier av fyra grävlingar. Samtliga är honor i åldrarna 4-8 år.
Anledningen till att det bara är honor ligger i att vi då undviker exempelvis parningsbeteenden
och som i så fall skulle göra den individuella spridningen större (Martin & Bateson, 1993).
Grävlingarna är uppfödda av privatpersoner och kan anses vara människovana i bemärkelsen
att de är vana att bli hanterade av människor, som ger dem mat och även flytta dem i sina
bohyddor. Grävlingarna går inte att klappa utan flyr då människor närmar sig. De är även
vana att leva i ett begränsat och inhägnat område. Grävlingarna är dock inte tama i
bemärkelsen att de går att klappa. Den dagliga skötsel grävlingarna får är vatten, mat och tillsyn. Varje eftermiddag under studien får de 1/8 kg rå kalvfärs var. Varje natt sprids ca 4 dl hundtorrfoder samt ca 1dl nötter ut i hägnet så att grävlingarna själva får leta upp maten.

![Diagram](image)

Figur 2. Märkning av grävlingar genom klippning.
Hägnet

Hägnets yta är ca 750 m² och består av kuperad mark med berg, stenar, skogsmark med ris och buskar samt 10 större träd. Staketet är invikt och nedgrävt i marken. Det är ett överhäng i ovan kanten. Det är förstärkt med elstängsel på insidan av tre sidor. I hägnet finns fem bohyddor (1-5) och ett observationstorn, T (figur 3a-c) och (bilaga 1).

Bohyddorna är tillverkade av trä och invändigt avdelade med öppning mellan. Den inre delen är en innerlåda i vilken grävlingarna kan låsas in och flyttas i. Innerlådan har två väggar av trä och två av galler och grävlingarna utnyttjade den att sova i undre dagtid (figur 4).
Taket på bohyddorna sitter endast fast med gångjärn i bakkant, vilket gör att de går att öppna. Ingången till bohyddorna är försedda med luckor som går att stänga och även reglas med armeringsjärn, vilket visat sig nödvändigt då grävlingarna annars har lyft luckan och smtit ut. När ingen verksamhet pågår kan grävlingarna röra sig fritt i hägnet och i bohyddorna.

Observationstornet är placerat vid ett av staketen. Tornet är täckt och har en yta av cirka 3 m².

Fällan

Fällan vi använde är av en flytbar gallermodell och helt i metall. Den har luckor av plåt i båda ändar. Fällan gillras genom att en vippbräda i mitten av fällan hålls i horisontellt läge då de båda luckorna öppnas helt. Vippbrädan hålls kvar i horisontellt läge med hjälp av ett motstånd. Fällan slår igen då djuret går på vippbrädan. En liten spärr finns vid varje lucka så att de inte skulle gå att öppna inifrån. Fällans mått är 125 cm lång, 32 cm bred och 32 cm hög. Gallrets maskor är 4x5 cm. Vippbrädan är ca 19 cm bred.
Försöksprocedure

Behandlingar

![Tabell 1. Schema för behandlingar av grävlingar genom vistelse i fälla](image)

Praktiskt genomförande

Figur 5. Utrustning vid behandling. Foto: Anna Karin Strömgren
dagarna. Under tiden den första grävlingen var på kort dagbehandling fick de övriga
grävlingarna fick mat i respektive bohydda. När de åtit upp öppnades bohyddorna för alla
grävlingar utom den som stod på tur för nästa behandling, lång dag. Under nattbehandlingarna
genomfördes även observationer från tornet. Inför hämtningen av grävlingen för den korta
nattbehandlingen, lästes den in i bohyddan av den person som befann sig i hägnet. Det gjordes
under en tiominuterspaus mellan två observations-cykler. Grävlingen transporterades sedan
till fällan av två andra personer. I nästa tiominuters-paus låstes sista grävlingen in och
hämtades medan den andra grävlingen kom tillbaka. Den sista grävlingen bars tillbaka i en
paus senare på natten.

Insamling av data

Studien bestod av fyra behandlingsdygn. Varje behandlingsdygn (B1-B4) följdes av tre
observationsdygn (O) och sist det vi kallade naturligt beteende observationer (NB) under sex
dygn (figur 6).

<table>
<thead>
<tr>
<th>B1</th>
<th>O</th>
<th>O</th>
<th>O</th>
<th>B2</th>
<th>O</th>
<th>O</th>
<th>B3</th>
<th>O</th>
<th>O</th>
<th>B4</th>
<th>O</th>
<th>O</th>
<th>NB</th>
<th>NB</th>
<th>NB</th>
<th>NB</th>
<th>NB</th>
<th>NB</th>
</tr>
</thead>
</table>

Figur 6. Schema för studien. Behandlingsdag (B1-B4) 1-4, observationsnätter efter behandling (O) samt naturligt
beeteende (NB).

Under och efter varje behandlingsdag/natt genomfördes förutom beteendeobservationer, tre
nätters hjärtfrekvens- och kroppstemperaturregistrering samt insamling av träck. Samma
datainsamling har gjorts under naturligt beteende perioden (NB). Då möjlighet har funnits har
vi även samlat saliv för hormonanalys.

Beteendeobservationer

Insamling av beteendedata har gjorts under grävlingens vistelse i fällan samt i hägnet under
varje natt av perioden.
Beteende och fysiologiska reaktioner hos människovana grävlingar i fälla

Fällobservationer
Under vistelsen i fälla har grävlingarna filmats nattetid med IR-lampa. Beteende observerades och registrerades direkt med hjälp av en handdator (PSION workabout och Observer 3.0) (Noldus Information Technology, the Netherlands) Videofilmerna var i detta fall bara för säkerhets skull. Beteenden som registrerades var följande enligt tabell 2.

<table>
<thead>
<tr>
<th>Gräva</th>
<th>Gräver med framtassarna.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bita</td>
<td>Biter eller sitter pressar nosen mot gallret.</td>
</tr>
<tr>
<td>Ligger / sitter</td>
<td>Ligger på rygg eller mage. Sitter avslappnad med huvudet böjt mot marken.</td>
</tr>
<tr>
<td>Rullar</td>
<td>Rullar runt på rygg. (Endast frekvens mäts)</td>
</tr>
<tr>
<td>Går</td>
<td>Går genom att förflytta mer än två tassar i följd.</td>
</tr>
<tr>
<td>Står / Står alert</td>
<td>Står upp</td>
</tr>
<tr>
<td>Nosar</td>
<td>Nosar i luften, på fällan eller marken.</td>
</tr>
<tr>
<td>Drar</td>
<td>Drar i gallret med tänderna. (Endast frekvens mäts)</td>
</tr>
<tr>
<td>Åter</td>
<td>Åter hundmat. Hörs tydligt krasande ljud.</td>
</tr>
<tr>
<td>Annat</td>
<td>Annat beteende än listade samt vid start av observationerna.</td>
</tr>
</tbody>
</table>

Observationer i hägnet
Insamlingsmetoden i hägnet har varit att använda fokaldjur dvs. man observerar ett djur i taget (Jensen m.fl., 1986).

För att dokumentera beteendet nattetid har filmkamera med IR-lampa använts. Kameran var monterad över taket på observationstornet med en styrarm så att den kunde manövreras inifrån observationstornet. Filmningen har bandats på en vanlig videobandspelare som även kopplats till en ”Time code” som gjorde att rätt inspelningstid registrerades och sedan kunde avläsas på videobandet. Utrustningen var placerad i observationstornet. För avkodning av videoband användes Observer 3.0 och VideoPro (Noldus Information Technology, the Netherlands).

Tabell 3. Beteenden som registrerades då grävlingar observerades i hägnet

<table>
<thead>
<tr>
<th>Beteende</th>
<th>Förklaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gå</td>
<td>Gå, flytta tassar, tre tassar på marken samtidigt.</td>
</tr>
<tr>
<td>Trava</td>
<td>Trava, flytta tassar, två diagonal tassar på marken samtidigt.</td>
</tr>
<tr>
<td>Galoppera</td>
<td>Galloppera, oregelbunden rörelse, snabbt.</td>
</tr>
<tr>
<td>Sniffa i luften</td>
<td>Huvudet i samma höjd som ryggen, eller högre, nosen horisontell eller högre, sniffar (stående, gående eller sittande).</td>
</tr>
<tr>
<td>Dricka</td>
<td>Huvudet ovanför vattenskål, nosen i vattnet.</td>
</tr>
<tr>
<td>Åta/Undersöka</td>
<td>Alla beteenden, sakta gående eller stillastående, med nosen i rörelse vid eller strax ovanför marken. Sökande eller ätande.</td>
</tr>
<tr>
<td>Gräva</td>
<td>Använder en eller båda framtassarna för att flytta markmaterial.</td>
</tr>
<tr>
<td>Putsa sig</td>
<td>Använder nosen eller mundelar för att rengöra eller kliar sig själv.</td>
</tr>
<tr>
<td>Klia sig</td>
<td>Kljar sig själv med fram- eller baktass.</td>
</tr>
<tr>
<td>Ligga</td>
<td>Ligger på magen, ryggen eller sidan.</td>
</tr>
<tr>
<td>Ej synlig</td>
<td>Grävlingen syns inte till, utanför kamerans räckvidd, kan vara i en bohydda.</td>
</tr>
<tr>
<td>Beteende</td>
<td>Förklaring</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Aggressivitet*</td>
<td>Grävlingen har kontakt med annan grävling och agerar aggressivt. Gör utfall mot grävling som reagerar antingen med flykt eller undfållande beteende.</td>
</tr>
<tr>
<td>Utsättas för aggressivitet*</td>
<td>Grävlingen har kontakt med annan grävling och mottar aggressiv kontakt. Blir attackerad av grävling och reagerar antingen med flykt eller undfållande.</td>
</tr>
<tr>
<td>Markera*</td>
<td>Urinerar eller stämplar omgivningen genom att trycka analöppningen / körtelfickan mot något i omgivningen.</td>
</tr>
<tr>
<td>Stämpla grävling*</td>
<td>Stämplar annan grävling. En grävling trycker analöppning / körtelfickan mot annan grävling.</td>
</tr>
<tr>
<td>Bli stämplad *</td>
<td>Blir stämplad av annan grävling.</td>
</tr>
<tr>
<td>Ej aggressiv sniff*</td>
<td>Lukter på annan grävling, ej aggressivt. Mottagande grävling blir ej skrämd.</td>
</tr>
<tr>
<td>Ta emot ej aggressiv sniff*</td>
<td>Blir sniffad på av annan grävling, ej aggressivt, blir ej skrämd av detta.</td>
</tr>
<tr>
<td>Hota grävling</td>
<td>Hotar annan grävling, på mellan ca 1-5m avstånd. Den andra grävlingen reagerar med flykt eller undfållande. Ingen kroppskontakt.</td>
</tr>
<tr>
<td>Bli hotad</td>
<td>Blir hotad av annan grävling, på mellan ca 1-5m avstånd. Reagerar med flykt eller undfållande.</td>
</tr>
<tr>
<td>Bestiga grävling</td>
<td>Parningsbeteende, bestiga annan grävling.</td>
</tr>
<tr>
<td>Bli bestigen</td>
<td>Parningsbeteende, bestigen av annan grävling.</td>
</tr>
<tr>
<td>Skaka*</td>
<td>Skakar / ruskar på sig.</td>
</tr>
<tr>
<td>Sitta</td>
<td>Sitter på baken.</td>
</tr>
<tr>
<td>Putsa annan grävling</td>
<td>Använder nosen eller mundelar för att rengöra eller klia annan grävling, eller blir putsad av en annan grävling.</td>
</tr>
<tr>
<td>Blockera</td>
<td>Blockerar en annan grävling med hela kroppen, för att försvara mat.</td>
</tr>
<tr>
<td>Samla material</td>
<td>Grävling drar backandes material mot bohydda.</td>
</tr>
<tr>
<td>Övrigt</td>
<td>Alla andra beteenden, (ex: reser sig mot staket eller bohydda)</td>
</tr>
</tbody>
</table>
Beteende och fysiologiska reaktioner hos människovana grävlingar i fälla

Uppgiften om var grävlingen befinner sig är uppdelat på fem områden. Både varaktigheten och frekvensen mättes. Se tabell 4.

Tabell 4. Platser som registrerades när grävlingarna observerades i hägnet

<table>
<thead>
<tr>
<th>Plats</th>
<th>Förklaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohydda 1</td>
<td>Grävling är med mer än halva kroppen inne i bohydda 1.</td>
</tr>
<tr>
<td>Bohydda 2</td>
<td>Grävling är med mer än halva kroppen inne i bohydda 2.</td>
</tr>
<tr>
<td>Bohydda 3</td>
<td>Grävling är med mer än halva kroppen inne i bohydda 3.</td>
</tr>
<tr>
<td>Bohydda 4</td>
<td>Grävling är med mer än halva kroppen inne i bohydda 4.</td>
</tr>
<tr>
<td>Bohydda 5</td>
<td>Grävling är med mer än halva kroppen inne i bohydda 5.</td>
</tr>
<tr>
<td>Bohydda</td>
<td>Grävlingen är inne i en bohydda, okänt vilken.</td>
</tr>
<tr>
<td>Staket</td>
<td>Staketområde, inom ca 1,5 m från staketet. (se bilaga 1)</td>
</tr>
<tr>
<td>Övre</td>
<td>Övre delen av hägnet. (se bilaga 1)</td>
</tr>
<tr>
<td>Nedre</td>
<td>Nedre delen av hägnet. (se bilaga 1)</td>
</tr>
<tr>
<td>Ej synlig</td>
<td>Utanför kamerans räckvidd, kan vara i en bohydda.</td>
</tr>
</tbody>
</table>

Telemetri

För att registrera grävlingarnas kroppstemperatur och hjärtfrekvens användes en utrustning som består av sändare inopererade i bukhålan. Sändarens storlek var 90 x 27 x 18 mm och vägde 50 gram. Den hade ett plastnät fäst på ena sidan. Från sändaren gick två elektroder, den ena lite kortare än den andra, som var isolerade förutom i ändarna vilka även de hade plastnät. Grävlingarna sövdes och opererades liggandes på rygg. Operationsområdet (figur 6) klipptes och tvättades. Ett cirka sju centimeter långt snitt lades i buken i riktning från svans mot nos. Två snitt på 1 centimeter lades vid övre delen av bröstbenet med cirka en decimeters mellanrum. Sändaren placerades i buken och de två ledarna dros fram till de två små snitten. Sändaren och ledarna suterades med hjälp plastnätet så att de skulle sitta kvar i rätt läge (Ågren, 2000).
Hjärtfrekvens och kroppstemperaturdatalagras i sändarna 1 gång/min under ca 180 dagar. I utrustningen ingår även en mottagare och programvara där man kan mäta och lagra data 1 gång/min samt 1 gång/sek direkt (medelvärde hjärtfrekvens och kroppstemperatur). Data bearbetas i Access med programmet som heter RX-2360 Empfänger. Under studien har vi gjort direkt mätningar under observationsnätterna, tre nätter efter behandlingsnatten samt under naturligt beteende perioden. Antennen till mottagaren var placerad på tornets tak. Mottagaren, kopplad till en PC med programvaran fanns inne i tornet. Data lagrades på den grävling som filmades genom att observatörens manuellt ställde in rätt frekvens för aktuell grävling. Under en natt lagrades alltså data under 90 minuter per grävling.

Figur 7. Telemetrisändare med två elektroder som opereras in i bukhål lan. Foto: Veterinärmedicinska Universitetet i Wien

Under behandlingsnatten flyttades antennen, mottagaren och datorn till observationstältet där mätningar gjordes under behandlingen samt under vistelsen i innerlådan tio minuter före och efter behandling. Data på grävlingarna som var kvar i hägnet mättes alltså inte under behandlingsnätterna. Under perioden med naturligt beteende gjordes mätningar under hela dygnet per automatik. Kanal byttes var 10e minut. Data från Access överfördes till Excel.
Sändarna (figur 7) opererades ut ur bukhålan den 17 oktober och skickades till Dr. F. Schober vid Veterinärmedicinska Universitetet i Wien, Österrike. Där plockades data från 2003-05-08 t.o.m. 2003-10-17 ut.

Hormonmätningar

Vid matningen separerades grävlingarna genom att låsa in dem i var sin bohydda. Om flera grävlingar befann sig i samma bohydda då vi kom med maten separerades de genom att en grävling i taget släpptes ut och låstes in i den bohydda den sprang in i.

Databehandling och analys

Databehandling

Beteende

Beteendedata från fällan
Beteende gräva och bita slogs ihop då de oftast utfördes samtidigt. En kategorisering på beteenden gjordes enligt tabell 5.

Tabell 5. Kategorisering av beteenden då grävlingar vistas i fälla

<table>
<thead>
<tr>
<th>Flykt %</th>
<th>Aktiv %</th>
<th>Inaktiv %</th>
<th>Övrigt %</th>
<th>Rulla/Dra frekvens</th>
<th>Flykt frekvens</th>
<th>Aktiv frekvens</th>
<th>Inaktiv frekvens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gräva/bita</td>
<td>Gå</td>
<td>Ligga</td>
<td>Övrigt</td>
<td>Rulla</td>
<td>Gräva/bita</td>
<td>Rulla/dra</td>
<td>Ligga</td>
</tr>
<tr>
<td>Stå /Stå alert</td>
<td>Sitta</td>
<td>Dra</td>
<td>Stå / stå alert</td>
<td>Sitta</td>
<td>Gå</td>
<td>Nosa</td>
<td>Åta</td>
</tr>
</tbody>
</table>

Jag har även tittat på beteendet i fällan mer översiktligt. Detta genom att göra cirkeldiagram av kategorierna som visar beteenden i procent av tiden. Dessa presenterar jag i samband med telemetri data.

Beteendedata från hägnet
Med utgångspunkt från de separata beteenden som ingår i studien gjordes en hopslagning av beteenden. Tabeller nedan visar vilka beteenden som ingår i kategorierna. Tabell 6 innehåller beteenden där varaktigheten mätts och tabell 7 beteenden där enbart frekvensen mätts.
Beteende och fysiologiska reaktioner hos människovana grävlingar i fälla

Tabell 6. Kategorisering av beteenden som mäts i procent av tid vid observationer i hägnet

<table>
<thead>
<tr>
<th>Aktiva</th>
<th>Inaktiva</th>
<th>Utforska / Åta</th>
<th>Komfort</th>
<th>Sociala, ej aggressiva</th>
<th>Sociala, aggressiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gå</td>
<td>Sitta</td>
<td>Åta / utforska</td>
<td>Putsa sig</td>
<td>Putsa annan grävling</td>
<td>Blockera</td>
</tr>
<tr>
<td>Trava</td>
<td>Ligga</td>
<td>Sniffa i luften</td>
<td>Klia sig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galoppera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samla material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stå</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Övrigt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 7. Kategorisering av beteenden som mäts i antal vid observationer i hägnet

<table>
<thead>
<tr>
<th>Sociala, ej aggressiva</th>
<th>Sociala, aggressiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stämpla grävling eller bli stämplad</td>
<td>All aggressiv kontakt</td>
</tr>
<tr>
<td>Ge eller ta emot ej aggressiv sniff</td>
<td>Alla hot på avstånd(mot / av grävling)</td>
</tr>
<tr>
<td>Putsa annan grävling</td>
<td>Blockera</td>
</tr>
</tbody>
</table>

Telemetri

För att göra en begränsning av mitt arbete har jag valt att titta på telemetri enbart under behandling. Jag har sammanställt data per grävling och behandling i diagramform. Infällt vid varje diagram finns även ett beteendediagram över de beteenden i procent av tid som grävlingarna utövade. Jag har gjort en jämförelse av kroppstemperaturen två timmar före behandling, under behandling och två timmar efter behandling. För att få en känsla av varje

Statistisk analys
Materialet är statistiskt behandlat i Minitab (version 12.21). Beteendet under nattobservationerna analyserades på gruppnivå med ANOVA, GLM (General Linear Model) och med Dunnett´s parvisa jämförelser mot en kontroll (Naturligt Beteende). Pga. att inte all beteenden var normalfördelade genomfördes även ett icke-parametriskt Kruskal-Wallis test.

Data från fällan
Statistisk analys har utförts på grävlingarna som grupp med syfte att se om någon behandling påverkat beteendet på grävlingarna mer eller mindre än de andra. Då frekvensmätningarna inte går att jämföra mellan kort och lång behandling har en uppdelning gjorts dem emellan. Jämförelse av beteenden i procent av tiden har dock gjorts mellan samtliga behandlingar.

Data från hägnet
För att kunna titta på data från behandlingsnätterna måste jag först ta bort de observationer som gäller grävling som inte har utsatts för behandling än, dvs. cyklerna före behandling. För grävling med kort nattbehandling har data från första cykeln plockats bort och för grävling med långbehandling har data från första och andra cykeln tagits bort. Jämförelser har sedan gjorts av data från behandlingsnätterna samt första natten efter behandlingsnatt med perioden naturligt beteende, NB. Jag har delat upp jämförelserna i tre steg.
Data från behandlingsnatten av samtliga djur utom grävling med lång nattbehandling jämfördes mot NB.
Data från grävling med lång nattbehandling, under de två sista cyklerna då den var tillbaka i hägnet jämfördes mot motsvarande två cykler under NB.
Data från natten efter behandlingsnatten mot NB.

Statistik kördes på de separata beteendena och den lätta hopslagningen.
I litteraturen föreskrivs att tester med P-värden mindre än 5% ses som statistiskt signifikanta. Även en gradering kan göras då P<0.05 är *, enstjärnig, P<0.01 är **, tvåstjärnig och P<0.001 är ***, trestjärnig (Ejlertsson, 1992). Jag har dock valt att analysera statistiken genom att titta på P-värden <0,1 pga. att i denna studie, som i viss mån får ses som en pilotstudie, även tendenser kan vara av intresse.
Beteende och fysiologiska reaktioner hos människovana grävlingar i fälla

Resultat

Beteende i Fällan

Vid jämförelse mellan alla behandlingar fanns en signifikant effekt av behandling på aktiva beteenden (ANOVA: $F_{3,15}=3,99$, $P=0,046$). Grävlingarna var mer aktiva under korta nattbehandlingen än under de övriga behandlingarna (Tukey: $T=3,32$, $P=0,037$) se figur 8.

Figur 8. Medelvärde per cykel och natt för aktiva beteenden under vistelse i fälla för grävlingar (n=4). En jämförelse mellan behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) samt natt (Lång Natt, LN). Signifikans: * $<0,05$ (ANOVA, GLM)

I jämförelsen mellan de långa behandlingarna visade beteendet rulla/dra en nästan signifikant effekt av behandling (ANOVA: $F_{1,7}=6,59$, $P=0,083$). Grävlingarna utförde beteendet mer frekvent under den långa nattbehandlingen än under den långa dagbehandlingen, se figur 9.

Figur 9. Medelvärden per cykel och natt för frekvensen av utfört beteende rulla/dra för grävlingar (n=4) under vistelse i fälla under fyra timmar dagtid (Lång Dag, LD) jämfört med nattetid (Lång Natt, LN). (ANOVA, GLM)
Beteende i hägn

Under behandlingsnatten jämfört med NB finns signifikanta effekter av behandling på beteenden dricka, trava, stå, sniffa luft samt ligga. För de grävlingar som fått de tre första behandlingarna per behandlingsnatt fanns en signifikant effekt av behandling på aktiva beteenden (ANOVA: $F_{3,35}=2,94$, $P=0,05$) från den lätta hopslagningen, alltså exklusive utforska / äta beteenden. Grävlingarna var mest aktiva efter den korta nattbehandlingen (Dunnett: $T=2,496$, $P=0,053$) än under naturligt beteende, se figur 10.

![Aktiva](image)

Figur 10. Medelvärden per cykel och natt för beteendekategori aktiv för grävlingar ($n=4$) vid nattobservationer efter vistelse i fälla samma dygn. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) mot naturligt beteende (NB). (ANOVA, GLM).

När jag tittade närmare på de separata beteendena såg jag att gemensamt för alla grävlingar var förändringar i omfattningen av att trava och dricka. Vid jämförelse mellan dagbehandlingarna och kort nattbehandling mot naturligt beteende fanns en effekt av behandling vad gäller beteendet dricka (ANOVA: $F_{3,35}=2,69$, $P=0,065$). Grävlingarna drack mer efter den korta nattbehandlingen än under naturligt beteende (Dunnett: $T=2,82$, $P=0,025$) se figur 11. En effekt av behandling fanns även vid jämförelse av den långa nattbehandlingen mot naturligt beteende. Grävlingarna drack mer efter lång nattbehandling än under naturligt beteende, (ANOVA: $F_{1,27}=3,23$, $P=0,086$) se figur 12.
Det fanns en signifikant effekt av behandling på beteendet trava (ANOVA: $F_{3,35}=3,98$, $P=0,017$). Grävlingarna travade mer efter kort nattbehandling (Dunnett $T=2,65$, $P=0,038$) än under naturligt beteende, se figur 13. Även den långa nattbehandlingen visade signifikant effekt på trava (ANOVA;$F_{1,27}=5,08$, $P=0,034$) i jämförelse med naturligt beteende, se figur 14.

Figur 11. Medelvärden per cykel och natt för beteendet dricka för grävlingar (n=4) vid nattobservationer efter vistelse i fälla samma dygn. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) mot naturligt beteende (NB). Signifikansnivå: * <0,05 (ANOVA, GLM).

Figur 12. Medelvärden per cykel och natt för beteendet dricka för grävlingar (n=4) vid nattobservationer efter vistelse i fälla under fyra timmar (Lång Natt, LN) samma natt. En jämförelse mot naturligt beteende (NB). (ANOVA, GLM).

Figur 13. Medelvärden per cykel och natt för beteendet trava för grävlingar (n=4) vid nattobservationer efter vistelse i fälla samma dygn. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) mot naturligt beteende (NB). Signifikansnivå: * <0,05 (ANOVA, GLM).

Figur 14. Medelvärden per cykel och natt för beteendet trava för grävlingar (n=4) vid nattobservationer efter vistelse i fälla samma natt (Lång Natt, LN). En jämförelse mot naturligt beteende (NB). Signifikansnivå: * <0,05 (ANOVA, GLM).
Data från de två sista cyklerna under behandlingsnatten visade signifikant effekt av den långa nattbehandlingens när det gäller beteendet stå (ANOVA: $F=4,98$, $P=0,036$). Grävlingarna stod mer efter den långa nattbehandlingen under motsvarande cykler under naturligt beteende observationerna, se figur 15.

![Stå](image)

Figur 15. Medelvärden per cykel och natt för beteendet stå, för grävlingar (n=4) vid nattobservationer efter vistelse i fälla under fyra timmar samma natt (Lång Natt, LN) jämfört mot naturligt beteende (NB). Signifikansnivå:* $<0,05$ (ANOVA, GLM).

Frekvensen för samma beteende visade även det effekt av behandlingen (ANOVA: $F=5,68$, $P=0,026$), då grävlingarna stannade upp oftare än under naturligt beteende.

För behandlingarna kort dag, lång dag och kort natt jämfört med naturligt beteende fanns en effekt av att sniffa luft (ANOVA: $F_{3,35}=2,78$, $P=0,059$), ligga (ANOVA: $F_{3,35}=2,66$, $P=0,067$) och bli utsatt för aggressiv kontakt (ANOVA: $F=5,46$, $P=0,004$). Grävlingarna sniffade luft mer efter kort dagbehandling (Dunnett: $T=2,77$, $P=0,028$) än under naturligt beteende, se figur 16. De låg ned mer efter den korta dagbehandlingen (Dunnett: $T=2,76$, $P=0,029$) än under naturligt beteende, se figur 17.
Beteende och fysiologiska reaktioner hos människovana grävlingar i fälla

Sniffa luft

![Sniffa luft diagram]

0 0,5 1 1,5 2

Varaktighet % SE

KD LD KN NB

Figur 16. Medelvärden per cykel och natt för beteendet sniffa luft för grävlingar (n=4) vid nattobservationer efter vistelse i fälla samma dygn. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) mot naturligt beteende (NB).

Signifikansnivå:* <0,05 (ANOVA, GLM).

Ligga

![Ligga diagram]

0 1 2 3 4 5 6

Varaktighet % SE

KD LD KN NB

Figur 17. Medelvärden per cykel och natt för beteendet ligga för grävlingar (n=4) vid nattobservationer efter vistelse i fälla samma dygn. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) mot naturligt beteende(NB).

Signifikansnivå:* <0,05 (ANOVA, GLM).

Grävlingarna blev utsatta för aggressiv kontakt oftare efter kort nattbehandling än under naturligt beteende (Dunnett: T=3,91, P=0,002) se figur 18.

Ta emot aggressiv kontakt

![Ta emot aggressiv kontakt diagram]

0 0,1 0,2 0,3 0,4

Antal % SE

KD LD KN NB

Figur 18. Medelvärden per cykel och natt för beteendet ta emot aggressiv kontakt för grävlingar (n=4) vid nattobservationer efter vistelse i fälla samma dygn. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) mot naturligt beteende (NB).

Signifikansnivå:** <0,01 (ANOVA, GLM).

När det gäller jämförelse mellan natten efter behandlingsnatten och naturligt beteende fanns några skillnader i beteende. En signifikant effekt av behandling fanns på beteendet trava (ANOVA: $F_{4,39}=3,16$, $P=0,027$). Data visade att grävlingarna travade mer efter de långa
behandlingarna än under naturligt beteende. Lång dag (Dunnett: $T=2.45, P=0.076$) och lång natt (Dunnett: $T=2.62, P=0.051$) se figur 19.

Trava

![Trava diagram](image)

Figur 19. Medelvärden per cykel och natt för beteendet trava för grävlingar ($n=4$) vid nattobservationer natten efter behandlingar med vistelse i fälla. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) och natt (Lång Natt, LN) mot naturligt beteende (NB). (ANOVA, GLM).

Frekvensen för aggressiva beteenden i den gemensamma kategorin påverkades också (ANOVA: $F_{4,39}=2.44, P=0.067$) i jämförelse mot naturligt beteende. Mest ökad aggressiv aktivitet fanns efter kort nattbehandling (Dunnett: $T=2.67, P=0.045$) se figur 20.

Aggressiva

![Aggressiva diagram](image)

Figur 20. Medelvärden per cykel och natt för frekvensen av aggressiva beteenden för grävlingar ($n=4$) vid nattobservationer natten efter behandlingar med vistelse i fälla. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) och natt (Lång Natt, LN) mot naturligt beteende (NB). Signifikansnivå:* <0.05 (ANOVA, GLM).
När jag tittade på de separata beteendena såg jag att det främst gällde att ta emot aggressiv kontakt efter kort nattbehandling (Dunnett: T=2,85, P=0,029).

När det gäller frekvensen av att bli stämplad av grävling fann jag en signifikant effekt av behandling (ANOVA: F_{4,39}=3,73, P=0,013). Grävlingarna blev stämplade oftare efter den korta dagbehandlingen än under naturligt beteende (Dunnett: T=3,57, P=0,005).

Placering i hägnet

Vid jämförelse mellan behandlingsnatten och naturligt beteende för alla djur utom grävling med lång nattbehandling fanns en signifikant effekt av behandling för tid tillbringad i bohydda (ANOVA: F_{3,35}=5,09, P=0,006). Grävlingarna tillbringade mindre tid i bohyddorna efter den långa dagbehandlingen (Dunnett: T=-3,15, P=0,011) och den korta nattbehandlingen (Dunnett:T=-2,67, P=0,036) se figur 21.

Jag fann en signifikant effekt av behandling för frekvensen för platserna staketområde (ANOVA: F_{3,35}=4,45, P=0,011), övre delen (ANOVA: F_{3,35}=2,67, P=0,066) och nedre delen (ANOVA: F_{3,35}=5,17, P=0,006). Grävlingarna var i jämförelse med naturligt beteende mer frekvent i dessa områden efter den korta nattbehandlingen, staketområde (Dunnett: T=3,15, P=0,110), övre delen (Dunnett: T=2,22, P=0,097) och nedre delen (Dunnett: T=3,51, P=0,004). För grävling som fått lång nattbehandling fanns under behandlingsnatten en signifikant effekt av behandling. Det var frekvensen för platsen bohydda (ANOVA: F_{3,35}=4,45, P=0,011).
Beteende och fysiologiska reaktioner hos människovana grävlingar i fälla

Grävlingen gick oftare in i bohyddan den återstående delen av behandlingsnätterna än under motsvarande tid under naturligt beteendenätterna, se figur 22.

Figuur 22. Medelvärden per cykel och natt för antal gånger grävlingar (n=4) gick in i bohydda vid nattobservationer efter vistelse i fälla under fyra timmar samma natt (LN) jämfört mot naturligt beteende (NB). Signifikansnivå:* <0,05 (ANOVA, GLM).

Placeringen i hägnet natten efter behandlingsnatt jämfört med naturligt beteende visade signifikant effekt av behandling för tid i bohydda (ANOVA: F_{4,39}=7,42, P<0,001). I förhållande till naturligt beteende vistades grävlingarna mindre tid i bohyddan efter kort dagbehandling (Dunnett: T=-3,26, P=0,010), lång dagbehandling (Dunnett: T=-4,24, P=0,001) och kort nattbehandling (Dunnett: T=-2,85, P=0,029) se figur 23.

Figuur 23. Medelvärden per cykel och natt för vistelse i bohydda för grävlingar (n=4) vid nattobservationer natten efter behandlingar med vistelse i fälla. En jämförelse av behandlingar om femton minuter dagtid (Kort Dag, KD), natt (Kort Natt, KN), fyra timmar dagtid (Lång Dag, LD) och natt (Lång Natt, LN) mot naturligt beteende (NB). Signifikansnivå:* <0,05 (ANOVA, GLM).
Telemetri

Medelvärdet av kroppstemperaturer
Medelvärdet av grävlingarnas kroppstemperatur och hjärtfrekvens under två timmar innan behandling, under behandling samt efter behandlingar.

![Diagram](image)

Figur 24a-c. Medelkroppstemperatur hos grävling två timmar innan behandling i fälla, under behandling i fälla samt två timmar efter behandling i fälla. Behandlingstiden kort motsvarar femton minuter och lång motsvarar fyra timmar.
Medelvärden av hjärtfrekvenser
Medelvärden av grävlingarnas kroppstemperatur och hjärtfrekvens under två timmar innan behandling, under behandling samt efter behandlingar.

Figur 25a-c. Medelhjärtfrekvens hos grävling två timmar innan behandling i fälla, under behandling i fälla samt två timmar efter behandling i fälla. Behandlingstiden kort motsvarar femton minuter och lång motsvarar fyra timmar.
Fällbehandling
Grafer med kroppstemperatur och hjärtfrekvens under vistelse i fälla samt under de tio minuter innan och efter behandlingarna som grävlingarna satt ostörda i innerlåda presenteras behandling för behandling i figur 26-29.

Kort dag

a) Green Left

Avvikande kroppstemperatur
Hjärtfrekvens

Avvikande kroppstemperatur
Hjärtfrekvens

b) Purple Left

Avvikande kroppstemperatur
Hjärtfrekvens

Avvikande kroppstemperatur
Hjärtfrekvens

Beteende Varaktighet %

- Flykt
- Aktiv
- Inaktiv
- Övrigt

Beteende Varaktighet %

- Flykt
- Aktiv
- Inaktiv
- Övrigt
Figur 26 a-d. Avvikande kroppstemperatur, hjärtfrekvens samt beteende hos grävlingar under femton minuters vistelse i fälla dagtid. Markeringar i grafen avgränsar före och efter fällvistelsen då grävlingarna var ostörda i bolådor intill fällan.
Lång dag

a) Green Left

- Avvikande kroppstemperatur (°C)
- Hjärtfrekvens (slag/min)

b) Purple Left

- Avvikande kroppstemperatur (°C)
- Hjärtfrekvens (slag/min)
Figur 27 a-d. Avvikande kroppstemperatur, hjärtfrekvens samt beteende hos grävlingar under fyra timmars vistelse i fälla dagtid. Markeringar i grafen avgränsar före och efter fällvistelsen då grävlingarna var ostörda i bolådor intill fällan.
Beteende och fysiologiska reaktioner hos människovanade grävlingar i fälla

Kort natt

![Diagram a) Green Left](image)

![Diagram b) Purple Left](image)
Figur 28 a-d. Avvikande kroppstemperatur, hjärtfrekvens samt beteende hos grävlingar under femton minuters vistelse i fälla natt tid. Markeringar i grafen avgränsar före och efter fällvistelsen då grävlingarna var ostörda i bolådor intill fällan.
Lång natt

a) Green Left

![Diagram](attachment:DiagramA.png)

- Avvikande kroppstemperatur
- Hjärtfrekvens

Beteende Varaktighet %

- Flykt
- Aktiv
- Inaktiv
- Övrigt

b) Purple Left

![Diagram](attachment:DiagramB.png)

- Avvikande kroppstemperatur
- Hjärtfrekvens

Beteende Varaktighet %

- Flykt
- Aktiv
- Inaktiv
- Övrigt
Beteende och fysiologiska reaktioner hos människovanade grävlingar i fälla

Figur 29 a-d. Avvikande kroppstemperatur, hjärtfrekvens samt beteende hos grävlingar under fyra timmars vistelse i fälla natt tid. Markeringar i grafen avgränsar före och efter fällvistelsen då grävlingarna var ostörda i bolådor intill fällan.
Telemetri vila/aktivitet
Grävlingarnas medeltemperatur och medelhjärtfrekvens mellan klockan 09.00-15.00, vila och 22.00-03.00, aktivitet (tabell 8).

Tabell 8. Grävlingarnas kroppstemperatur och hjärtfrekvens under vila och aktivitet

<table>
<thead>
<tr>
<th>Grävling</th>
<th>Period</th>
<th>Kroppstemperatur °C</th>
<th>Hjärtfrekvens slag/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Left</td>
<td>Vila</td>
<td>37,03</td>
<td></td>
</tr>
<tr>
<td>Green Left</td>
<td>Aktiv</td>
<td>36,19</td>
<td></td>
</tr>
<tr>
<td>Purple Left</td>
<td>Vila</td>
<td>37,57</td>
<td>64</td>
</tr>
<tr>
<td>Purple Left</td>
<td>Aktiv</td>
<td>36,83</td>
<td>79</td>
</tr>
<tr>
<td>White Left</td>
<td>Vila</td>
<td>36,86</td>
<td>56</td>
</tr>
<tr>
<td>White Left</td>
<td>Aktiv</td>
<td>36,12</td>
<td>63</td>
</tr>
<tr>
<td>White Right</td>
<td>Vila</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>White Right</td>
<td>Aktiv</td>
<td></td>
<td>69</td>
</tr>
</tbody>
</table>

Hormonmätningar
Tyvärr hann inte resultaten av analyserna bli klara innan tiden för detta arbete var slut. På grund av detta hade jag inte möjlighet att ta hänsyn till den parametern i slutsatser och diskussion.

Sammanfattning av resultat

Fällbehandling
Under den korta dagbehandlingen i fällan som varade under femton minuter var två av grävlingarna, Green Left (G) och White Right (WR) under den övervägande tiden av vistelsen inaktiva. De satt eller låg ner i fällan. De andra grävlingarna, Purple Left (P) och White Left (WL) visade i den största delen av tiden flyktbeteenden som att bita på fällan eller genom att gräva. Kroppstemperaturen för G som var inaktiv sjönk något under vistelsen i fällan. WR hade inte fungerande utrustning för temperaturmätning men jämfört med två timmar innan ökade hjärtfrekvensen markant under behandlingen, för att sedan sjunka igen efter behandlingen. Grävlingarna med flyktbeteende hade en sänkt kroppstemperatur och en ökad hjärtfrekvens under behandlingen. Jämfört med de tio minuter innan behandlingen de satt i bolådan intill fällan. WL hade en hjärtfrekvens på över 125 slag per minut och P på över 140 slag per minut.

Efter det blivit mörkt genomfördes den korta nattbehandlingen som varade under femton minuter. Ingen grävling var under den här behandlingen inaktiv under mer än 20 % av tiden. WL grävde eller bet (flyktbeteenden) under 90 % av tiden. I övrigt var grävlingarna aktiva. G hade en kroppstemperatur som under behandlingen var i stort sett oförändrad, men i förhållande till medelkroppstemperaturen två timmar innan behandling och medelkroppstemperaturen under behandling steg den något (0,4 grader). P och WL visade en ökning av medelkroppstemperaturen under behandlingen (P 0,1 och WL 0,2 grader). Grävlingarna hade en ökad medelhjärtfrekvens under behandlingen jämfört mot två timmar innan. Minst ökning hade P som ökade med 29 slag per minut och WL med 57 slag per minut. Skillnaden i ökningen (P ökade sitt medelvärde under varje behandling) mellan medelvärdet under två timmar innan och medelvärdet under behandlingen är för P den minsta under just kort nattbehandling.

Den långa nattbehandlingen ägde rum under fyra timmar när det blivit mörkt. P och WL grävde eller bet/pressade nosen mot fällan under större delen av tiden och hade som följd av det en markant förhöjd hjärtfrekvens. P ökade under den första timmen sin kroppstemperatur med 1,26 grader i jämförelse med beräknat utgångsvärde, sedan sänktes temperaturen igen. WL hade en något stigande kroppstemperatur under behandlingen, men den sänktes sedan igen. Skillnaden i ökningen (P ökade sitt medelvärde under varje behandling) mellan medelvärdet under två timmar innan och medelvärdet under behandlingen är för P den minsta under just kort nattbehandling.
hjärtfrekvensen nere på 70 slag/min vilket jämfört med beräknat normalvärde under aktivitet (65 slag/min) får anses som normalt.

Observationer efter behandling

Under natten efter behandlingsnatten fanns en tendens till att grävlingar som fått långa behandlingar under både dag och natt travade mer än under NB. De aggressiva beteenden, att attackera eller att bli attackerad av annan grävling, ökade efter kort nattbehandling jämfört mot NB. Även den här natten var det en ökning antalet observationer av att bli attackerad, ta emot aggressiv kontakt. Nu var det dock efter den korta dagbehandlingen som den statistiska skillnaden fanns. Spridningen var mycket stor. Tiden grävlingarna var i bohyddorna minskade efter dagbehandlingarna och den korta nattbehandlingen.

Diskussion

Fällbehandlingen
En av mina frågeställningar var hur grävlingarnas beteende, hjärtfrekvens och kroppstemperatur såg ut under olika vistelser i fälla. Sammanslagna som grupp var grävlingarna aktivare under längre tid under den korta nattbehandlingen än under de övriga behandlingarna. Grävlingarna rullade också över fler gånger på rygg och drog med tänderna i fällan åtter gånger under den långa nattbehandlingen än under den långa dagbehandlingen. Rulla över på rygg var ett beteende som oftast utfördes i samband med grävande och är
troligen ett beteende som grävlingen använder sig av under jord. Dessa resultat kan tyda på att grävlingarna reagerar på fällan med att försöka ta sig ut och om de misslyckas med det, att vissa individer ger upp eller blir utmattade av den fysiska ansträngningen. Resultaten kan också tydas som att grävlingarna upplever det som mer obehålagligt att vistas i fällan under natten än under dagen. På grund av det låga individantalet och den höga individuella variationen var det svårt att för övrigt dra några generella slutsatser av jämförelser mellan de olika fällvistelserna. I stället har jämförelser gjorts på individnivå med hjälp av grafer över beteenden och hjärtfrekvens och kroppstemperatur för att på så sätt få en viss uppfattning av olikheterna mellan individerna. Två av grävlingarna, Green Left (G) och White Right (WR), uppfattar jag som mer inaktiva under båda dagbehandlingarna än under nattbehandlingarna. För de två grävlingar, Purple Left (P) och White Left (WL), som under alla behandlingar mest grävde eller bet/pressade med nosen i fällan eller var aktiva i någon form uppfattar jag ingen skillnad mellan dag- eller nattbehandlingar. Som grupp var grävlingarna mer aktiva under natten. Detta beteende kombinerat med den höga hjärtfrekvensen ger en signal om att grävlingarna upplevt vistelserna i fällan negativt. Djuren har utfört ett för arten naturligt beteende, att fly vid fara. Om grävlingen inte lyckas med att ta sig ur situationen som upplevs som hotande eller obehålig så är det möjligt att återkopplingen av beteendet uteblir och djuret därför kan beskrivas som stressat (Jensen, 1996).

Lång dagbehandling motsvarade fyra timmar innan grävlingarna blev aktiva. Intressant under denna behandling var kroppstemperaturen hos G. Medelvärdet visar att jämfört med en medeltemperatur under två timmar före behandling hade hon en lägre medeltemperatur i fällan. Detta skulle kunna tyda på att hon inte upplevde situationen så negativ men jag saknar hennes hjärtfrekvens för att avgöra det. Tilläggas ska att Green Left var den mest tama av grävlingarna. Hon kom oftast ut ur bohyddan då någon närmade sig hägnet, även dagtid. Hon var mycket intresserad av mat och undersökte om hon fick något. Om inte gick hon ibland in i bohyddan igen. Green Left var alltså inte så skygg för ljuv som grävlingar enligt litteraturen är (Skoog, 1988). Å andra sidan var hon den som tyckte sämst om att vara inläst i bohyddan, vilket var fallet under matningen eftersom grävlingarna blev utfodrade individuellt. I detta
beteende skiljde hon sig från de övriga grävlingarna som oftast inte kom ut förrän i skymningen och inte försökte gå ut ur bohyddan vid matning. Alla grävlingar med fungerande hjärtfrekvensmätning (WL; WR och P) hade en markant ökad hjärtfrekvens under dagbehandlingarna. WR visade dessutom ett inaktivt beteende. Under dagbehandlingarna gick medeltemperaturen hos grävlingarna ofta ned. Vilket kan på att de för det mesta låg och sov allihop i en bohydda och att det var varmt. Kanske hade det blivit en ökning om de sovit själva i en bohydda.

Efter det blivit mörkt genomfördes den korta nattbehandlingen som varade under femton minuter. Under den här tiden på dygnet var grävlingarna normalt aktiva. Den här behandlingen var den som grävlingarna som grupp var mest aktiva.

Den långa nattbehandlingen ägde rum under fyra timmar när det blivit mörkt under en period då grävlingarna normalt är aktiva och bl.a. uträttar födosök. P och WL grävde eller bet/pressade nosen mot fällan under större delen av tiden och hade som följd av det en markant förhöjd hjärtfrekvens. G ägnade ungefär lika stor del av tiden åt inaktivitet, aktivitet och flyktbeteende. WR var även under denna behandlingen övervägande inaktiv med hög medelhjärtfrekvens.

Observationer efter behandling
Den begränsning jag gjort i att inte ta med telemetriresultaten från nattobservationerna i hägnet och det faktum att hormonanalyserna inte blev klara i tid för detta arbete, gör att det är svårt att dra några säkra slutsatser om grävlingarna påverkades av de olika fällvistelserna under längre tid. Grävlingarnas beteende när de kom tillbaks till hägnet efter de olika behandlingarna samt beteendet första natten efter behandlingsdagen/natten studerades och jämfördes med ostörda förhållanden (naturligt beteende, NB). Själva behandlingsnattens resultat pekar på en ökad aktivitet efter vistelsen i fällan vilket jag ser som ett mått av påverkan i jämförelse med det normala. Grävlingarna drack också mer efter nattbehandlingarna. Att detta beteende ökar kan tyckas rimligt då de inte hade tillgång på vatten i fällan. Det här resultatet kan vara viktigt med tanke på att med det lagkrav som finns
idag ska fällan kontrolleras minst en gång per dygn, och det ska vara på morgonen (NSF
2002: 18). Grävlingarna tillbringade också mindre tid i bohyddorna efter båda
dagbehandlingarna och den korta nattbehandlingen än under naturligt beteende perioden ser
jag som ett tecken på att de blivit påverkade. Grävlingarna mottog fler aggressiva beteenden
efter den korta nattbehandlingen än under NB. Något i samband med behandlingen har alltså
gjort att de blir mer utsatta för aggressiv kontakt från andra grävlingar när de har varit borta
från hägnet under grävlingarnas aktiva tid på dygnet. Jag kan tänka mig att det har med
rangordningen inom gruppen att göra. Green Left som var högst i rang (enligt min erfarenhet
då de andra grävlingarna lämnade plats eller visade underlägset beteende då hon närmade
sig), blev inte utsatt för aggressiv behandling under behandlingsnätterna eller under NB.

Under natten efter behandlingsnätter skilde sig några delar av beteendet mot de beteenden
som fanns under NB. Det var beteenden som, trava, aggressiva beteendena, att attackera eller
att bli attackerad av annan grävling och att bli attackerad, ta emot aggressiv kontakt.
Grävlingarna var under korta nattbehandling mindre i bohyddorna än under NB under . En
påverkan av behandlingarna fanns alltså även natten efter behandlingarna även om det är svårt
att dra några säkra slutsatser.

Felkällor och förbättringsförslag
För den som i framtiden skulle vilja upprepa studien har jag några tankar och
rekommanderar. Vid beteendeobservationerna i hägnet ser jag den största bristen i att
observationstornet var placerat inne i hägnet. Hade det istället varit placerat utanför hägnet
hade flera vinster gjorts. För det första hade vi inte på samma sätt stört grävlingarna då vi gick
till och från tornet. För det andra hade kameran nått alla delar av hägnet. Grävlingarna
försvann ofta in under tornet där vi exempelvis kunde höra dem gräva, men kunde inte nå dem
med kameran. En annan felkälla kan ligga i att vi inte visste vad grävlingarna gjorde i
bohyddorna. Vi hade ju hjärtfrequens data så vi kunde ju se att frekvensen var låg, och vi viste
hur lång tid de tillbringade i bohyddorna, men det är dock inget vi har valt att kategorisera
som inaktivt beteende. En av grävlingarna hade en plats i hägnet där den tillbringade mycket
tid då de inte var i bohyddan. Platsen var vid staketet med ett träd som skyms de dem för
kameran. Vi har alltså inte registrerat vad de gjorde bakom trädet. Ibland var det svårt att
avgöra vilken grävling som man såg, därför hade det varit bra med tydligare märkning. Det
var främst Purple och White Left som i vissa vinklar var mycket svårt att skilja från varandra.

För att ett projekt som detta ska vara praktiskt genomförbart krävs en stor arbetsinsats med
flera personer inblandade. Detta kan på grund av den mänskliga faktorn innebära en risk för

För att få en bättre uppfattning om sambandet mellan telemetri och beteende hade det varit till hjälp om jag hade haft en graf över tid med beteenden parallellt med hjärtfrekvens och kroppstemperatur.

Slutsats

naturligt beteendeperioden. Det tror jag kan bero på att den ligger närmast i tiden för observationerna. Den långa nattbehandlingens effekt efteråt kunde bara observeras under två cykler under behandlingsnatten, sedan dröjde det till nästa natt innan nya observationer gjordes. Då fanns en tendens av att de långa behandlingarna påverkat grävlingarna mer än de korta eftersom grävlingarna travade mer då.

Man bör påpeka att grävlingarna som användes i den här studien var halvtama och vana vid att stängas in och transporteras. Det är därför mycket troligt att vilda grävlingar skulle ha reagerat kraftigare på samma behandlingar. Eftersom delar av det som krävs för att enligt den definition av stress jag valt att ta upp inte uppfylls i den här studien, kan jag inte dra slutsatsen att grävlingarna blev stressade under eller av vistelserna i fällan. Som ett resultat av studien tycker jag att det går att se att metoderna med beteendeobservationer och telemetri fungerat bra. Utrustningen som använts har varit lämpad för ändamålet.

Flera jägare säger sig veta att grävlingar fångade i fälla ofta är lugna och t.o.m. sover. Det anser jag att den här studien kan ge ett klart svar på att så inte behöver vara fallet. Jag anser med bakgrund av resultaten i den här studien att det kravet på att fällor för grävling endast måste vittjas på en gång per dygn är mycket otillräckligt. Min uppfattning är att fällan borde kontrolleras oftare, även under natten. Med bakgrund av den påverkan som fällvistelsen innebär för grävlingen tycker jag även att anledningarna till fälljakt bör ses över. Jagas grävling med fälla av rimlig orsak eller för jägarnas nöjes skull?
Referenslista

Bilaga 1

Skiss över hägn