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PACS 73.20.-r – Electron states at surfaces and interfaces
PACS 73.20.Mf – Collective excitations (including excitons, polarons, plasmons and other charge-

density excitations)

Abstract – Surface plasmon polaritons (SPPs) have recently been recognized as an important
future technique for microelectronics. Such SPPs have been studied using classical theory. However,
current state-of-the-art experiments are rapidly approaching nanoscales, and quantum effects can
then become important. Here we study the properties of quantum SPPs at the interface between
an electron quantum plasma and a dielectric material. It is shown that the effect of quantum
broadening of the transition layer is most important. In particular, the damping of SPPs does
not vanish even in the absence of collisional dissipation, thus posing a fundamental size limit for
plasmonic devices. Consequences and applications of our results are pointed out.

Copyright c© EPLA, 2008

The excitation and propagation of surface modes at
plasma interfaces have long been important in space
physics, magnetic confinement fusion, and laboratory
plasma physics [1–4]. Moreover, studies of electron oscill-
ation excitations (surface plasmons, surface plasmon
polaritons (SPPs) and magnetoplasmons) [5–7] in nano-
structured systems [8–11] have recently attracted much
interest. It has been found that at condensed matter inter-
faces, such plasmon excitations could be of crucial impor-
tance in future electronic components [12–15], the latter
referred to as plasmonic devices [16,17].
Furthermore, the field of quantum plasmas has recently

developed rapidly [18]. This field started already in the
1960’s, when Pines studied the excitation spectrum of
quantum plasmas [19], with a high density and a low
temperature as compared to normal plasmas. In such
systems, the finite width of the electron wave func-
tion makes quantum tunnelling effects crucial, leading
to an altered dispersion relation. Since then, a number
of theoretical studies of quantum statistical properties
of plasmas have been published (see, e.g., ref. [20] and
references therein). For example, Bezzerides and DuBois
presented a kinetic theory for the quantum electrodynam-
ical properties of nonthermal plasmas [21], while Hakim
and Heyvaerts used a covariant Wigner function approach
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for relativistic quantum plasmas [22]. It has also been
shown that, under certain conditions, plasmas can display
remarkable properties due to the quantum properties of
the constituents. Thus, there are quantum multistream
instabilities [23,24], quantum modified Zakharov dynam-
ics [25,26] together with soliton formation and nonlinear
quantum interactions [27,28], spin effects on the plasma
dispersion [29,30], quantum plasma turbulence [31], ferro-
magnetic plasma behaviour and Jeans-like instabilities due
to quantum effects [32].
Many of the current studies involving quantum plas-

mas are motivated by the rapid experimental progress
and development of new materials, e.g., nanostructured
materials [33] and quantum wells [34], and the labo-
ratory realization of ultracold plasmas [35] and experi-
mental demonstration of quantum plasma oscillations in
Rydberg systems [36]. Quantum dispersive effects can also
be important for diagnostics of inertial fusion plasmas [37].
In parallel, the field of plasmonics and its use of surface
waves, such as surface plasmon polaritons (SPPs), has
emerged as a new route to electronic devices [38].
In this letter, methods from quantum plasma physics are

used for analyzing SPPs in nanoscale systems. In partic-
ular, we determine the dispersion relation for quantum
SPPs on a conductor-dielectric interface. It is shown that
wave function dispersion introduces an intrinsic damp-
ing, even in the absence of collisions. Such damping is
due to the irreversible propagation of resonant plasmons
towards lower density regions. This is of importance for the

17006-p1



M. Marklund et al.

Fig. 1: The structure of the electron density profile for the SPP
excitation. The width d of the transition layer is determined
by quantum effects. A dielectric material, with electron density
nd(x), is on the left, while the metal with the corresponding
plasma oscillations is on the right. The small panel in the
upper left corner shows the Airy-like structure of the density
perturbations δn/n0.

short length scales in forthcoming electronic components
based on SPPs in waveguide slots. An expression for the
damping length, limiting the size of such devices, is
presented. For wavelengths of the order of tens of nanome-
ters, the propagation distance for the SPPs is only a frac-
tion of the wavelength.
The governing equations for the electrostatic electron

dynamics are [18] the continuity equation ∂tn+∇· (nv) =
0, the momentum conservation equation

mn(∂t+v ·∇)v=−enE−∇p−mnνv+ �
2n

2m
∇
(∇2√n√

n

)
,

(1)
and Poisson’s equation ∇· (ε0E+P) = e(ni−n), where
n is the electron density, ni is the ion density (here
we treat the lattice constituents in terms of the ion
density, in order to demonstrate the analogy to classical
plasmas and surface plasmons), m is the electron mass,
v is the electron velocity, e is the magnitude of the
electron charge, E denotes the electric field strength, p
is the electron pressure, � is Planck’s constant, ε0 is the
vacuum dielectric constant, ν is the collisional frequency
between the electrons and the ions, P= ε0(εd− 1)E is the
polarization due to bound charges in the system, and εd is
the permittivity. The last term in eq. (1), the gradient of
the Bohm-de Broglie potential, corresponds to the effect
of wave function dispersion.
We consider the ions as stationary, and write the

perturbed electric field according to δE=−∇δφ. More-
over, we assume that the conducting medium is semi-
infinite in the positive x-direction, so that the stationary
background electron density n0 is a function of x (see
fig. 1). Next, we linearize the governing equations. In the

cold classical case we obtain the SPP dispersion relation
∇· [ε(x)∇δφ] = 0, where ε(x) = εd(x)−ω2p(x)/ω(ω+ iν)
is the total dielectric function for a cold classical plasma
with collision frequency ν, and ωp(x) = [e

2n0(x)/ε0m]
1/2

is the electron plasma frequency. We note that the
collisional frequency is a function of the ion density. In
the general case, we obtain

∂a
[
ε̂ab∂bδφ

]
= 0, (2)

where we use the index notation ∇→ ∂a etc., as well as
Einstein’s summation convention and let all perturbed
quantities be of the form g(x) exp(iky− iωt) [39]. Here
the dielectric tensor operator is given by

ε̂ab = δabε+

[[
∂ac2s
ω2
− ω

2
p∂
a

4m2

{
�
2∂c

ω2p

[
ω2p∂

c

ω2

(
1

ω2p

)]}]]
∂bεd,

(3)
where cs = [(dp/dn)|n0/m]1/2 is the sound speed. We
will from here on consider a pressure p= (4π2�2/5m)×
(3/8π)2/3n5/3 of a non-relativistic degenerate electron
gas, so that the sound speed becomes cs = (2π�/

√
3m)×

(3n0/8π)
1/3.

We consider a plasma which can be divided into three
regions (see fig. 1). For x< 0, the unperturbed plasma
density is zero. For 0� x� d, we have a transition layer
where the plasma density is a monotonously increasing
function of x. Lastly, the plasma density is constant for
x> d. Furthermore, for the surface waves to be only
weakly damped, the condition kd� 1 must be fulfilled.
The physics inside the transition layer is then essentially
one-dimensional, since k� ∂/∂x applies here.
Integrating eq. (2) across the transition layer, we obtain

[
ε̂xx∂xδφ+ ikε̂

xyδφ
]d
0
=

∫ d
0

[
k2ε̂yyδφ− ikε̂yx∂xδφ

]
dx.

(4)
Moreover, δφ(d) and δφ(0) are related by

δφ(d)− δφ(0) =
∫ d
0

∂δφ

∂x
dx=− ie

ω

∫ d
0

n0(x)vx(x) dx.

(5)
The integrals in eqs. (4) and (5) are correction terms
proportional to kd. Similarly the off-diagonal quantum
terms in the left-hand side of (4) are also proportional to
one of two small parameters, namely k4�2/m2ω2p (from
the Bohm-de Broglie potential) or k2c2s/ω

2
p (from the

Fermi pressure). If we drop both these quantum terms and
let d→ 0, we obtain the well-known electrostatic disper-
sion relation ω= ω

(0)
p (1+ ε

(0)
d )

−1/2, where ε(0)d = εd(x< 0)
is the constant dielectric permittivity for x< 0, and ω

(0)
p is

the plasma freqency at x= d. Within this approximation,
the electrostatic surface wave has a zero damping as well
as a zero group velocity. The quantum terms modify
this result, since d now remains finite. To adress this
case properly, we must determine n0(x)vx(x) inside the
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transition layer. Using the approximation k� ∂/∂x inside
this region we find

ε̂xx[n0(x)vx(x)] =− iωk
e
ε̂xx(0)δφ(0). (6)

We can here treat δφ(x) as a constant within the
layer, in which case the right-hand side of (4) reduces

to δφ(0)
∫ d
0
k2ε(x) dx. Moreover, when the inhomoge-

neous derivatives on the left-hand side of (4) vanish,
the remaining quantum terms become proportional to
∇2δφ. However, for k2c2s/ω2p� 1 and k4�2/m2ω2p� 1,
the homogeneous regions are classical to first order, i.e.,
∇2δφ= 0. The dispersion relation for SPPs then becomes

ω=
ω
(0)
p(

1+ ε
(0)
d

)1/2
[
1+
k

2

∫ d
0

[ε(x)+ q(x)] dx

]
, (7)

where q(x) is the solution to eq. (6) for the plas-
mon field inside the transition layer, defined by
q(x) = ien0(x)vx(x)/ωkδφ(0).
The integral contribution in (7) depends on the equi-

librium profile. Before turning our attention to the full
quantum equilibrium profile we consider the following.
i) Classical case. Here a finite width of the electron

distribution in the transitions layer is determined by
a finite width of the ion profile. From (6) we obtain
q(x) = ε(0)/ε(x). The singularity in this equation can be
dealt with using the Landau prescription, which results in

an imaginary contribution to the integral, Im{∫ d
0
q dx}=

iπε(0)(∂ε/∂x)−1ε=0 in eq. (7), where the subscript indicates
that the derivative should be evaluated at the resonant
surface where ε= 0. The imaginary part representing
damping of the SPP due to energy transfer to the resonant
plasmons in the transition layer.
ii) Fermi pressure effects. Assuming that the width is

determined by the ion-density profile, we drop the Bohm-
de Broglie potential. In this case, (6) has the solution
q(x) =Gi(xdε/dx)+ iAi(xdε/dx), where we for simplic-
ity assume that ε(x) is a linear function. Here Gi and
Ai denote solutions to the inhomogeneous and homoge-
neous Airy equation [40], respectively. The proper causual
solution has been found by taking the nondivergent solu-
tion to eq. (6) that represents resonant plasmons propa-
gating towards lower densities. Due to negligible reflection
of the plasmons at the dielectric interface, the energy is
irreversibly lost, even in the absence of dissipation. As a
consequence, the damping of the surface wave coincides
between cases i) and ii).
Next, we investigate the equibrium density profile in the

transition layer, determined by

d

dx̄

{
εd
d

dx̄

[
ηn̄2/3− 1√

n̄

d2
√
n̄

dx̄2

]}
= n̄−H(−x), (8)

where we have introduced the normalized distance x̄= x/

(�/
√
2mω

(0)
p )1/2, the normalized density n̄= n0(x)/n

(0)
0 ,

taken the normalized ion-density as a step function
H(−x̄), and introduced the dimensionless parameter
η≡ 4π2(�/√2mω(0)p )(3n(0)0 /8π)2/3. The relative impor-
tance of the the Fermi pressure and the Bohm-de Broglie
potential is determined by the parameter η. We first
consider the case η� 1, i.e., the Bohm-de Broglie
potential dominates over the Fermi pressure. Noting that
n̄−H(−x̄) is of order unity after passing the ion density
step, the normalized width d̄ must be of order unity, i.e.,

in dimensional units we have d∼ (�/mω(0)p )1/2. On the
other hand, assuming a dominating Fermi pressure, i.e.,

η� 1, the width becomes d∼ (η�/mω(0)p )1/2. For a solid
state plasma, which is the case of most interest, η is of

order unity, and thus we get d∼ (�/mω(0)p ) independently
of which of the two estimates we use. Assuming η∼ 1, we
can deduce a number of properties of the resonant plasmon
field inside the transition layer using the solutions to (6).
With n0(x) determined by (8), we can now treat the

full quantum case. We start with the simple observation
that q(x) is independent of k, as terms involving k can be
neglected in (6) due to k� ∂/∂x. Solving eq. (6) to find a
full solution for q(x) is a nontrivial task, requiring a solu-
tion to the equilibrium equation (8), that has to be found
numerically. However, a qualitative understanding can be
obtained by Taylor expanding eq. (6) close to the classical
plasmon resonance ε(x) = 0. We obtain an Airy like behav-
ior of the plasma oscillations along the x-direction in the
transition layer, depicted in the upper left panel of fig. 1.
The full quantum case gives two major changes to the clas-
sical and Fermi pressure cases. Firstly, the inhomogeneities
in the transition layer shifts the plasmon resonance some-
what towards higher densities. Secondly, the typical plas-
mon wavelength in the x-direction becomes comparable
to the width of the transition layer. Using this as a basis
for an estimate, together with the condition that no plas-
mons propagate towards higher densities in the transition

layer, we find that
∫ d
0
q(x) dx≈ (π�/mω)1/2 (0.6+2i).

The uncertainty in this expression is directly linked to
the uncertainty in the unperturbed density profile and
the expression for the transition layer width d. Making

a similar estimate of the term
∫ d
0
ε(x) dx in (7), we

use a linear profile for ε(x), in which case we obtain∫ d
0
ε(x) dx= (π�/mω)1/2[ε(x= d)− ε(x= 0)]≈ 0, where

the last equality follows from the dispersion relation (7).
A more accurate density profile gives a finite contribution.

However, the plasmon coupling term ∝ ∫ d
0
q(x) dx will

still dominate. Thus, we can write our final dispersion
relation for the SPPs as

ω≈ ω
(0)
p(

1+ ε
(0)
d

)1/2

1+ (0.6+2i)

(
�k2

mω
(0)
p

)1/2 . (9)

The group velocity and the damping rate of the electro-
static SPPs are Vg = ∂ω/∂k= 0.6Vq and Imω= 2kVq,
respectively, where we have introduced the characteristic

velocity Vq = [�ω
(0)
p /m(1+ ε

(0)
d )]

1/2. In fig. 2 we display
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Fig. 2: The classical dispersion relation (thin curve), and the
quantum dispersion relation (thick curve) for the SPPs. The
dashed horizontal line gives the classical resonance frequency.
For wave numbers larger than kc ≡ (ε(0)d ω(0)p )5/6(m/�c4)1/6, the
quantum contribution to the group velocity is larger than the
classical electromagnetic contribution. We note that quantum
damping, as represented by Imω in (9), can be important for
wave numbers lower than kc.

the real part of the dispersion relation (9). Apart from the
shortest wavelengths, the dispersive properties are domi-
nated by electromagnetic effects. In the short-wavelength
limit the group velocity of the classical dispersion relation
approaches zero, whereas the quantum corrected value
Vg approaches a small but nonzero constant value Vq.
Let us point out that there might be classical effects not
included in our model that can modify the given picture,
e.g. thermal effects which can induce a k-dependence of ε.
We note, however, that within a fluid model, the density
perturbation of the surface wave approaches zero, which
leads to negligible modifications of our model. Within a
kinetic picture, on the other hand, thermal effects induce
classical modifications with a k-dependence of ε, which
might lead to modifications of the dispersive properties
also in the short-wavelength limit.
However, the main importance of the dispersion rela-

tion (9) concerns the dissipative (i.e. imaginary) part,
which can have significant consequences for the rapidly
emerging fields of plasmonics [14,16,17], where plasmon
wave propagation along metallic-dielectric interfaces is
studied as a means to pave the way for even smaller and
faster electronc circuits [14,15]. Naturally, energy losses
must be minimized if this undertaking is to be successful.
Currently the propagation distances of the SPPs range
from a few 100 nanometers up to tens of microns [14]. The
way to improve performance has so far been to consider
wavguide slots [14,16,17], where most of the energy is
distributed in a dielectric, limiting the collisional losses
in the metal surface. By cooling the system collisional
losses can be further minimized [41]. However, when
reducing the size towards the nanoscale, the wavelength
of the SPP is also decreased. Assuming that collisional
effects are minimized when approaching such a regime,
our treatment of quantum losses becomes important.
For such nano-sized systems, a damping of the order

Im(ω)/|ω| ∼ k(�/mωp)1/2, as given by eq. (9), becomes
crucial, and sets a fundamental limiting factor for how
small systems that can be designed. The damping
length of the SPP due to quantum effects is given by

δSP = Vg,em/Imω, where Vg,em ≈ (ε(0)d /c)2(ω(0)p /k)3 is the
group velocity including electromagnetic effects [4] in the
short-wavelength region, while Imω is given by (9). It
should be stressed that the electromagnetic contribution
to the group velocity dominates over the quantum
induced contribution Vq for wavelengths λ� 30 nm.
Assuming that the dielectric consists of SiO2, we have [42]

ε
(0)
d ∼ 3–5, and with the plasma frequency of the metal as
ω
(0)
p ≈ 4× 1015 s−1, we obtain

δSP ≈
(

λ

100 nm

)4
µm, (10)

where λ= 2π/k is the wavelength. Thus, due to the
strong wavelength dependence in (10), µm-waves can
propagate without significant quantum damping, while
decreasing the scale much below the µm regime will
affect the effective propagation distance. For example,
for λ∼ 30 nm the damping length δSP ∼ 10 nm. Although
different geometries may affect the possibilities to design
smaller devices [14], our result (10) is robust, and its
consequences must therefore be considered in the design
of plasmonic devices.
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