
Linköping Studies in Science and Technology
Dissertation No. 969

Design of Programmable
Baseband Processors

Eric Tell

Department of Electrical Engineering
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2005

ISBN 91-85457-20-5
ISSN 0345-7524

ii

Design of Programmable
Baseband Processors
Eric Tell
ISBN 91-85457-20-5

Copyright c© Eric Tell, 2005

Linköping Studies in Science and Technology
Dissertation No. 969
ISSN 0345-7524

Department of Electrical Engineering
Linköping University
SE-581 83 Linköping
Sweden
Phone: +46 13 28 10 00

Author e-mail: eric.tell@ieee.org

Cover image
Visualization of the BBP1 architecture. Data memories and ac-
celerator blocks are connected to the central DSP core via a
configurable network. The image has been generated using
POV-Ray 3.5.

Printed by UniTryck, Linköping University
Linköping, Sweden, 2005

Abstract

The world of wireless communications is under constant change. Radio
standards evolve and new standards emerge. More and more functional-
ity is put into wireless terminals. E.g. mobile phones need to handle both
second and third generation mobile telephony as well as Bluetooth, and
will soon also support wireless LAN functionality, reception of digital au-
dio and video broadcasting, etc.

These developments have lead to an increased interest in software de-
fined radio (SDR), i.e. radio devices that can be reconfigured via software.
SDR would provide benefits such as low cost for multi-mode devices,
reuse of the same hardware in different products, and increased product
life time via software updates.

One essential part of any software defined radio is a programmable
baseband processor that is flexible enough to handle different types of
modulation, different channel coding schemes, and different trade-offs
between data rate and mobility.

So far, programmable baseband solutions have mostly been used in
high end systems such as mobile telephony base stations since the cost
and power consumption have been considered too high for handheld ter-
minals.

In this work a new low power and low silicon area programmable
baseband processor architecture aimed for multi-mode terminals is pre-
sented. The architecture is based on a customized DSP core and a num-
ber of hardware accelerators connected via a configurable network. The
architecture offers a good tradeoff between flexibility and performance

iii

iv Abstract

through an optimized instruction set, efficient hardware acceleration of
carefully selected functions, low memory cost, and low control overhead.

One main contribution of this work is a study of important issues in
programmable baseband processing such as software-hardware partition-
ing, instruction level acceleration, low power design, and memory issues.
Further contributions are a unique optimized instruction set architecture,
a unique architecture for efficient integration of hardware accelerators in
the processor, and mapping of complete baseband applications to the pre-
sented architecture.

The architecture has been proven in a manufactured demonstrator
chip for WLAN applications. WLAN firmware has been developed and
run on the chip at full speed. Silicon area and measured power consump-
tion have proven to be similar to that of a non-programmable ASIC solu-
tion.

Preface

The contents of this thesis present the research that I have done during
the last 4 years. Various parts of the presented architecture have been
described in the following conference papers:

• Eric Tell, Anders Nilsson, and Dake Liu, “A Low Power and Low
Area Programmable Baseband Processor Architecture”, in Proceed-
ings of the 5th International Workshop on System-on-chip for Real-Time
Applications (IWSOC), Banff, Canada, July 2005

• Eric Tell, Anders Nilsson, and Dake Liu, “A Programmable DSP
Core for Baseband Processing”, in Proceedings of the IEEE Northeast
Workshop on Circuits and Systems (NEWCAS), Quebec City, Canada,
June 2005

• Eric Tell, Anders Nilsson, and Dake Liu, “Implementation of a Pro-
grammable Baseband Processor”, in Proceedings of Radiovetenskap
och Kommunikation (RVK), Linköping, Sweden, June 2005

• Eric Tell and Dake Liu, “A hardware architecture for a multi-mode
block interleaver”, in Proceedings of the International Conference on cir-
cuits and systems for communications (ICCSC), Moscow, Russia, July
2004

• Eric Tell, Mikael Olausson, and Dake Liu, “A General DSP proces-
sor at the cost of 23k gates and 1/2 a man-year design time”, in Pro-
ceedings of the International Conference on Acoustics, Signal and Speech
Processing (ICASSP), Hong Kong, April 2003

v

vi Preface

• Anders Nilsson, Eric Tell, and Dake Liu, “An accelerator architec-
ture for programmable multi-standard baseband processors”, in Pro-
ceedings of the International Conference on Wireless Networks and Emerg-
ing Technologies (WNET), Banff, Canada, July 2004

Some early parts of my work are covered in the following book chapter:

• Dake Liu and Eric Tell, “Chapter 23 - Low Power Programmable
Baseband Processors”, in Low Power Electronics Design, editor Chris-
tian Piguet, CRC Press, July 2004

The following draft journal manuscript is a work in progress:

• Eric Tell, Anders Nilsson, and Dake Liu, “Low Area and Low Power
Programmable Baseband Processing”, to be sumitted

The following papers are also more or less related to the presented work:

• Eric Tell, Olle Seger, and Dake Liu, “A converged hardware solu-
tion for FFT, DCT, and Walsh transform”, in Proceedings of the Inter-
national Symposium on Signal Processing and its Applications (ISSPA),
Paris, France, July 2003

• Eric Tell and Dake Liu, “A Suitable Channel Equalization Scheme
for IEEE 802.11b”, in Proceedings of the Swedish system-on-chip confer-
ence (SSoCC), Eskilstuna, Sweden, April 2003

• Anders Nilsson, Eric Tell, and Dake Liu, “Design Methodology for
memory-efficient multi-standard baseband processors”, in Proceed-
ings of the Asia-Pacific Communications Conference (APCC), Perth, Aus-
tralia, October 2005

• Anders Nilsson, Eric Tell, and Dake Liu, “A Programmable SIMD-
based Multi-standard Rake-receiver Architecture”, in Proceedings of
European Signal Processing Conference (EUSIPCO), Antalya, Turkey,
August 2005

Preface vii

• Anders Nilsson, Eric Tell, and Dake Liu, “A fully programmable
rake-receiver architecture for multi-standard baseband processing”,
in Proceedings of the International Conference on Networks and Commu-
nication Systems (NCS), Krabi, Thailand, May 2005

• Dake Liu, Eric Tell, Anders Nilsson, and Ingemar Söderquist, “Fully
flexible baseband DSP processors for future SDR/JTRS”, in Proceed-
ings of Western European Armaments Organization CEPA2 Workshop,
Brussels, Belgium, March 2005

• Dake Liu, Eric Tell, and Anders Nilsson, “Implementation of Pro-
grammable Baseband Processors”, in Proceedings of CCIC, Hangzhou,
China, November 2004

• Haiyan Jiao, Anders Nilsson, Eric Tell, and Dake Liu, “MIPS cost
estimation for OFDM-VBLAST systems”, submitted conference pa-
per

viii Preface

Acknowledgments

There are many people who deserve my gratitude for their contributions
to my research and for making my time as a PhD student so enjoyable. I
would especially like to thank the following:

• My supervisor professor Dake Liu, for accepting me as his PhD stu-
dent, for coming up with the idea for this project, and for support
and encouragement.

• My closest cooperator Lic. Eng. Anders Nilsson, for many fruitful
discussions over the last two years as well as more concrete help
with coding, baseband algorithm development, and PCB design.

• Dr. Olle Seger for sharing his expertise in signal processing.

• Dr. Anders Edman for interesting discussions and ideas.

• My former and current fellow PhD students at Computer Engineer-
ing: Dr. Daniel Wiklund, Dr. Thomas Henriksson, Dr. Ulf Nord-
qvist, Lic. Eng. Mikael Olausson, Andreas Ehliar, Johan Eilert, Per
Karlsson, and Di Wu. Special thanks to Daniel for proofreading my
dissertation.

• Anders Edqvist for a good job on the C-compiler for the BBP1 pro-
cessor.

• ICC Shanghai for help with chip back-end work and fabrication.

ix

x Acknowledgments

• Ylva Jernling for making all administrative tasks so simple and An-
ders Nilsson (Sr) for technical support.

• The rest of the Computer Engineering group, for providing a pleas-
ant working environment.

• And finally, my parents for always supporting me and Lena for in-
spiration as well as much needed distraction from work.

This research was funded by the Socware program.

Eric Tell
Linköping, August 2005

Contents

Abstract iii

Preface v

Acknowledgments ix

List of Figures xvii

List of Tables xix

Abbreviations xxi

I Background 1

1 Introduction 3
1.1 Background . 3
1.2 Scope of the Thesis . 4

1.3 Contributions . 5

1.4 Organization of the Thesis 6

2 Multi-standard Radio Systems and Software Defined Radio 7
2.1 Trends in Wireless Systems and Devices 7

2.2 Software Defined Radio . 8
2.3 JTRS and SCA . 11

Bibliography . 12

xi

xii Contents

II Design of Programmable Baseband Processors 13

3 Application Specific Processors 15
3.1 Introduction . 15
3.2 Acceleration Techniques . 17

3.2.1 Instruction Level Acceleration 18
3.2.2 Special Addressing 19
3.2.3 Function Level Acceleration 19

3.3 Design Flow . 20
3.3.1 Requirement Specification 20
3.3.2 Behavior Modeling 21
3.3.3 Initial Architecture Plan and MIPS Estimation . . . 23
3.3.4 Instruction Set Design and Architecture Planning . 23
3.3.5 Instruction Set Simulator 24
3.3.6 Benchmarking and Profiling 25
3.3.7 Acceleration . 26
3.3.8 Architecture Design 27
3.3.9 RTL Implementation and Backend Flow 28
3.3.10 Verification . 28
3.3.11 Concluding Remarks 29

3.4 Processor Tool Chain . 30
3.5 Low Power Design . 30

3.5.1 Operand Stopping 31
3.5.2 Memory . 31
3.5.3 Control Overhead 32
3.5.4 Leakage . 32
3.5.5 Acceleration and Parallelism 32
3.5.6 Data Width Masking 33

Bibliography . 34

4 Introduction to Baseband Processing 37
4.1 System Overview . 37
4.2 The Transmitter . 38
4.3 The Receiver . 40

Contents xiii

4.3.1 Dynamic Range . 40

4.3.2 Synchronization . 41

4.3.3 Channel Estimation and Equalization 41

4.3.4 Frequency and Timing Offset 42

4.3.5 Mobility . 42

4.3.6 Demodulation and Channel Decoding 43

4.4 OFDM Modulation . 43

4.5 Spread Spectrum Modulation 44

4.6 MIMO Systems . 46

4.7 Computational Complexity 46

Bibliography . 48

5 Programmable Baseband Processors 51

5.1 Introduction . 51

5.2 Processing Requirements . 51

5.2.1 Convolution-Based Complex-Valued Processing . . 52

5.2.2 Bit-Based Processing 53

5.2.3 Error Correction . 53

5.3 Real-Time Requirements . 54

5.4 Memory Issues . 55

Bibliography . 56

6 Related Work 57

6.1 Introduction . 57

6.2 Rice University - Imagine 57

6.3 Morpho Technologies - M-rDSP 58

6.4 Sandbridge Technologies - Sandblaster 58

6.5 SystemOnIC - Hipersonic 59

6.6 Other Solutions . 59

6.7 Discussion . 60

Bibliography . 61

xiv Contents

III The BBP1 Architecture 63

7 The BBP1 Baseband Processor Architecture 65
7.1 Introduction . 65
7.2 Architecture Overview . 66

7.2.1 The Network . 68
7.2.2 The DSP Core . 68
7.2.3 The MAC Unit . 71

7.3 Vector Instructions . 72
7.4 The Accelerator Network 76

7.4.1 Accelerator Chaining and Function Level Pipelining 77
7.5 Data Memory Architecture 78

7.5.1 Address Generation 79
7.6 Function Level Acceleration for BBP1 80

7.6.1 Channel Coding . 81
7.6.2 Scrambling . 81
7.6.3 Interleaving . 81
7.6.4 Demapping . 82
7.6.5 Walsh Transform . 82
7.6.6 CRC . 82
7.6.7 Front-End Accelerator 82

7.7 Design Variations and Scalability Issues 83
7.7.1 Scalability - Increasing Computing Capacity 83
7.7.2 Simultaneous Multi-Standard Processing 84
7.7.3 The Network . 85

Bibliography . 86

8 Implementation 89
8.1 Introduction . 89
8.2 Design Tools . 89

8.2.1 The Assembler . 89
8.2.2 The Instruction Set Simulator 90

8.3 Firmware . 93
8.4 Prototype Chip . 94

Contents xv

8.5 Test Board and Measurement Setup 97
Bibliography . 97

IV Conclusions and Future Work 99

9 Conclusions 101
9.1 Issues in Design of Programmable Baseband Processors . . 101
9.2 An Architecture for Efficient Baseband Processing 103
9.3 Implementation Results . 103

10 Future Work 105
10.1 ISA Improvements . 105
10.2 Architecture Scaling . 105
10.3 Acceleration . 106
10.4 Low-Power Features . 106
10.5 Hardware . 106
10.6 Firmware Design Tools . 107
Bibliography . 107

V Appendix 109

A Application Profiling and Benchmarking 111
Bibliography . 115

B Scheduling and Hardware Allocation 117
B.1 The SIFS . 117
B.2 IEEE 802.11a . 118
B.3 IEEE 802.11b . 119
Bibliography . 124

Index 125

xvi Contents

List of Figures

3.1 Flexibility vs. performance/power 16
3.2 Methods for increasing performance 17
3.3 A simplified view of the ASIP design flow 21

4.1 Overview of a radio transceiver 37
4.2 Overview of baseband processing 38
4.3 Examples of signal constellations 39
4.4 OFDM processing flows . 45
4.5 DSSS/CDMA processing flows 47
4.6 Data rate and mobility for different standards 48

7.1 Overview of the BBP1 architecture 67
7.2 Instruction encoding formats 69
7.3 The control path . 70
7.4 The MAC unit . 73
7.5 Fraction of the execution clock cycles spent on vector in-

structions and other instructions 74
7.6 Illustration of instruction parallelism. FFT.64 and SQRAB-

SMAX.64 are vector instructions 74
7.7 Timing for execution of the instructions in the code exam-

ple from figure 7.6 . 75
7.8 Network transaction examples 77
7.9 Function level pipelining . 78
7.10 Combined IEEE 802.11a/b scrambler/descrambler 81

xvii

xviii List of Figures

8.1 Organization of the instruction set simulator 91
8.2 Simulator execution flow chart 92
8.3 Die photo . 96

B.1 Scheduling of IEEE 802.11a receiver for 160 MHz clock fre-
quency . 120

B.2 Scheduling of IEEE 802.11b preamble and header process-
ing for 154 MHz clock frequency 121

B.3 Scheduling of IEEE 802.11b 2 Mbit/s reception 122
B.4 Scheduling of IEEE 802.11b 11 Mbit/s reception 123

List of Tables

3.1 Relative dynamic power consumption using data masking
and reduced hardware precision. 34

7.1 Examples of vector instructions 76

8.1 Firmware implementation results 94
8.2 Chip feature summary . 95
8.3 Chip area usage . 96

A.1 Summary of IEEE 802.11a/b receiver processing 112
A.2 IEEE 802.11a/b MIPS costs at highest data rates 113
A.3 Cycle cost for IEEE 802.11a kernel operations 115

xix

xx List of Tables

Abbreviations

3G Third generation mobile telecommunication
ADC Analog to digital converter or conversion
AFC Automatic frequency control
AGC Automatic gain control
ASIC Application specific integrated circuit
BPSK Binary phase shift keying
CCK Complementary code keying
CDMA Code division multiple access
DAB Digital audio broadcasting
DAC Digital to analog converter or conversion
DBPSK Differential binary phase shift keying
DQPSK Differential quadrature phase shift keying
DSP Digital signal processor or processing
DSSS Direct sequence spread spectrum
DVB Digital video broadcasting
FIR Finite impulse response
FPGA Field programmable gate array
GPS Global positioning system
HDL Hardware description language
IDE Integrated design environment
IP Intellectual Property
ISA Instruction set architecture
ISI Inter-symbol interference

xxi

xxii Abbreviations

ISS Instruction set simulator
JTC Joint Technical Committee
GUI Graphical user interface
MAC Multiply-accumulate or Media access control
MIMO Multiple input multiple output
MIPS Million instructions per second
modem Modulator-demodulator
OFDM Orthogonal frequency division multiplexing
PC Program counter
PHY Physical layer
QAM Quadrature amplitude modulation
QPSK Quadrature phase shift keying
RISC Reduced instruction set computer
RTL Register transfer level
SDR Software defined radio
SDRF Software defined radio forum
SIFS Short intra-frame spacing
SIMD Single instruction multiple data
SNR Signal-to-noise ratio
UMTS Universal mobile telephony system
VLIW Very long instruction word
WCDMA Wideband CDMA
WLAN Wireless local area network

Part I

Background

1

Chapter 1

Introduction

1.1 Background

The evolution of wireless devices and systems is not slowing down. New
standards keep coming up in cellular telephony, wireless computer net-
works, and audio/video broadcasting. Another trend is convergence of
wireless devices. In other words, more and more functions are put into
wireless terminals. A device such as a mobile phone has to handle multi-
ple radio standards: both second and third generation mobile telephony
as well as Bluetooth are becoming mandatory. Many devices will in ad-
dition support networking standards such as WiFi and WiMax, reception
of broadcast radio and television, and possibly GPS.

This has lead to an increased interest in the concept of Software De-
fined Radio (SDR). The idea is that it should be possible to alter the func-
tionality of a radio device at run-time by simply replacing its software.
This means that the same hardware should be able to handle many differ-
ent frequency bands and modulation types as well as different demands
on data rate and mobility. This would make it possible for manufactur-
ers to reuse the same hardware for different products and ultimately for
users to connect to any system that happens to be available at any given
time and place.

One important component in any modern radio device is the modem

3

4 Introduction

(modulator/demodulator) or baseband processor which handles the heavy
digital signal processing required in the physical layer (PHY) of the radio
system. In order to realize SDR, a programmable baseband processor is
needed.

Although SDR has been discussed for many years, it is still only used
to some extent in large, high-cost components such as mobile telephony
base stations and military systems. In these systems, the SDR functional-
ity is typically handled by standard DSP processors or FPGA-type solu-
tions.

One reason why SDR has not yet had a breakthrough is that it has
been considered to expensive and power consuming for handheld, bat-
tery powered devices. In order to achieve the low cost and power con-
sumption required for such devices, the baseband processor must be opti-
mized for the types of operations that are needed in baseband processing.

Existing processors for SDR tend to be based on traditional architec-
tures where the required computing capacity is reached by e.g. traditional
VLIW and SIMD solutions. This usually leads to solutions which are too
area and power consuming for many applications. New architectures are
needed.

With this background, a research project on programmable baseband
processing was started at the Computer Engineering group at Linköping
University in the spring of 2002. This thesis is one result of that project.

1.2 Scope of the Thesis

The goal of the research project has been to find new efficient architectures
for programmable baseband processing. The focus has been on wireless
terminals, implying that features such as low cost and low power con-
sumption are essential.

The central part of the thesis is the presentation of the baseband pro-
cessor architecture which is the main result of the work in this project.
It also describes the implementation of a demonstrator chip, mainly fo-
cused on Wireless LAN (WLAN) applications, and the implementation of

1.3 Contributions 5

WLAN standards on this chip.

This thesis also includes an introduction to design of application spe-
cific processors and an overview of baseband processing tasks and chal-
lenges. General ideas for design of efficient programmable baseband pro-
cessors are also discussed.

A discussion of the design approach as well as experiences and conclu-
sions made during the design work is also presented. Some parts regard-
ing e.g. acceleration techniques and low-power issues are not baseband
specific but valid for application specific processors in general.

1.3 Contributions

The main contributions of the presented work can be summarized in the
following three points:

• Review of important issues in programmable baseband processing
such as SW-HW partitioning, instruction level acceleration, memory
issues, and low power design, and their impact in this specific case.

• Development and demonstration of an area and power efficient ar-
chitecture for baseband processing . This includes design of an in-
struction set including a new type of instructions operating on vec-
tors of complex numbers and a scheme for integrating hardware ac-
celeration blocks with the programmable DSP core. The feasibility
of the architecture as well as low silicon area and power consump-
tion has been proven by measurements on a manufactured demon-
strator chip.

• Mapping of baseband applications to the proposed architecture. The
WLAN standards IEEE 802.11a and IEEE 802.11b have been sched-
uled onto the processor. Firmware has been developed and demon-
strated on the manufactured chip, proving the correctness of the
hardware and that the programmable architecture can meet the re-
quirements and challenges in radio baseband processing.

6 Introduction

Although not presented in this thesis, significant work has also been
put into investigating and evaluating various baseband processing algo-
rithms from the perspectives of performance and suitability for software
implementation.

1.4 Organization of the Thesis

The thesis is divided into four parts. The first part contains the introduc-
tion and a short background on SDR.

The second part of the thesis contains an introduction to design of
application specific processors in chapter 3 and an introduction to base-
band processing in chapter 4. It also provides a short general discussion
about issues in programmable baseband processors in chapter 5 and a
brief overview of existing solutions in chapter 6.

The third part is the core of the thesis. Chapter 7 presents the proposed
processor architecture in general and chapter 8 describes the implementa-
tion of a demonstrator chip as well as firmware design and design tools.

The last part contains conclusions in chapter 9 and directions and
ideas for future work in chapter 10.

Some additional details regarding application profiling, benchmark-
ing, hardware mapping, and scheduling for WLAN standards are found
in appendices.

Chapter 2

Multi-standard Radio
Systems and Software

Defined Radio

2.1 Trends in Wireless Systems and Devices

The constant change in the world of wireless systems and the increasing
convergence of wireless devices was touched upon already in the intro-
duction of this thesis. Wireless devices like mobile phones (or their future
equivalent) will need to handle an increasing amount of different func-
tions. The processing requirements of modern standards are increasing
due to increased bandwidth in combination with high mobility. At the
same time power consumption continues to be very important for battery
powered devices.

The amount of upcoming standards and the constant demand for new
features and short development time increase the benefits of program-
mable baseband processors since the same hardware can potentially be
used in many different products and product generations. Adding to this
is the fact that it usually takes a long time for a standard to become sta-
ble and manufacturers have to start product development long before the

7

8 Multi-standard Radio Systems and Software Defined Radio

standard is finally fixed.

Programmable baseband is so far used in e.g. base station applications
but the cost and power consumption have been considered too high for
handheld terminals. Terminals would otherwise have the greater benefit
of such technology due to multi-mode capability and the constant de-
mand for new products and features.

2.2 Software Defined Radio

Due to the described developments there has been an increasing inter-
est in SDR over the last years. Although the concept has been around
for a considerable time, only recently circuit technologies (RF, analog and
mixed signal as well as digital) have reached a point where the goal is
within reach.

The following description of SDR is given by the Software Defined
Radio Forum (SDRF) [1]:

SDR is a collection of hardware and software technologies
that enable reconfigurable system architectures for wireless
networks and user terminals. SDR provides an efficient and
comparatively inexpensive solution to the problem of build-
ing multimode, multiband, multifunctional wireless devices
that can be adapted, updated, or enhanced by using software
upgrades. As such, SDR can be considered an enabling tech-
nology that is applicable across a wide range of areas within
the wireless industry.

Radios built using SDR concepts can allow:

• Standard, open, and flexible architectures for a wide range
of communication products.

• Enhanced wireless roaming for consumers by extending
the capabilities of current and emerging commercial air-
interface standards.

2.2 Software Defined Radio 9

• Over-the-air downloads of new features and services as
well as software patches.

• Advanced networking capabilities to allow truly porta-
ble networks.

• Unified communication across commercial, civil, federal,
and military organizations.

• Significant life cycle cost reductions.

In other words, an SDR is a wireless transceiver whose function can
be altered simply by executing another program. Parameters that can be
altered include frequency band, modulation type, bit rate, channel coding
schemes, and protocol stack.

In addition to the above mentioned benefits it has been shown [2]
that the increased degree of hardware multiplexing resulting from pro-
grammability may make it possible to reach smaller silicon area than a
corresponding direct mapped ASIC solution, even for systems only sup-
porting a small number of standards, such as IEEE 802.11a, b, and g.

The SDRF has defined the following tiers for describing the capabili-
ties of software defined radios:

Tier 0 - Hardware Radio (HR)
The radio is implemented using hardware components only and cannot
be modified except through physical intervention.

Tier 1 - Software Controlled Radio (SCR)
Only the control functions of an SCR are implemented in software - thus
only limited functions are changeable using software. Typically this ex-
tends to interconnects, power levels, etc. but not to frequency bands,
modulation types, etc.

Tier 2 - Software Defined Radio (SDR)
SDRs provide software control of a variety of modulation techniques,
wide-band or narrow-band operation, communications security functions

10 Multi-standard Radio Systems and Software Defined Radio

(such as hopping), and waveform requirements of current and evolving
standards over a broad frequency range. The frequency bands covered
may still be constrained at the front-end requiring a switch in the antenna
system.

Tier 3 - Ideal Software Radio (ISR)
ISRs provide dramatic improvement over an SDR by eliminating the ana-
log amplification or heterodyne mixing prior to digital-to-analog conver-
sion. Programmability extends to the entire system with analog conver-
sion only at the antenna, speaker, and microphones.

Tier 4 - Ultimate Software Radio (USR)
USRs are defined for comparison purposes only. It accepts fully pro-
grammable traffic and control information and supports a broad range of
frequencies, air-interfaces, and applications software. It can switch from
one air interface format to another in milliseconds, use GPS to track the
users location, store money using smartcard technology, or provide video
so that the user can watch a local broadcast station or receive a satellite
transmission

Most existing systems belong to the first two tiers although partly
software defined radios based on programmable DSP processors are em-
ployed in some larger systems such as mobile telephony base stations.
Today’s programmable DSP processors are typically not power and cost
efficient enough to enable true SDR in handheld terminals such as smart
mobile phones and PDAs.

Ideal Software Radio is currently hindered by the performance of ana-
log to digital conversion rather than by the performance of digital circuits.

To enable SDR in low-cost handheld terminals two solutions must
be available: low power configurable/tuneable radio front-ends and low
cost, low power programmable baseband processors. When it comes to
programmable baseband processors for terminals, few competitive re-
sults have been published. Some examples of existing programmable

2.3 JTRS and SCA 11

baseband solutions can be found in chapter 6.
Developments in RF and analog circuits for SDR is outside the scope

of this thesis. Generally, the availability of flexible radio front-ends for
SDR is still low although some products have been announced [3].

2.3 JTRS and SCA

The Joint Tactical Radio System (JTRS) is an initiative by the US Depart-
ment of Defense. JTRS is designed to provide a flexible approach to meet-
ing the diverse communication needs of different kinds of military units,
including everything from vehicles and fighter planes to soldier-carried
terminals. The goal is to provide seamless real-time communication be-
tween warfighters, through voice, data and video. The programmability
will also provide backward compatibility with a diverse set of legacy ra-
dio systems as well as systems used by coalition forces and allies.

JTRS is built upon the Software Communications Architecture (SCA)
which is an open architecture framework that specifies how various hard-
ware and software components should work together within the JTRS.

Among other things the SCA provides an abstraction layer between
the so called waveform application which specifies frequency bands, mod-
ulation type, channel coding, etc, and the radio set. This allows porting
of “waveform software” between different radio units. SCA also specifies
form factors, interfaces, software operating system, etc. More information
on JTRS and SCA can be found at the JTRS website[4].

The SCA is in the process of becoming endorsed as the open inter-
national commercial standard for software defined radio by the Object
Management Group [5], an international standards body which maintains
standards such as UML and Corba. SCA has also been chosen by SDRF
as its implementation architecture for software defined radios.

Availability of such a standardized, platform independent “waveform
API” together with programmable processors supporting this API would
be a huge step towards proliferation of SDR in all kinds of radio systems.
The development on this front will be of great interest for future research

12 Multi-standard Radio Systems and Software Defined Radio

on programmable baseband architectures and questions regarding how
this can be supported on instruction set architecture (ISA) level will cer-
tainly be considered in the continuation of this project. Unfortunately, the
general awareness of the ongoing standardization processes seems quite
low [6].

The suitability of the presented architecture in the context of JTRS has
been discussed [7].

Bibliography

[1] Software Defined Radio Forum. http://www.sdrforum.org.

[2] Eric Tell, Anders Nilsson, and Dake Liu, “A low area and low power
programmable baseband processor architecture,” in Proceedings of the
5th International Workshop on System-on-Chip for Real-Time Applications
(IWSOC), July 2005.

[3] Sirific Wireless Corporation. http://www.sirific.com.

[4] Joint Tactical Radio System. http://www.jtrs.army.mil.

[5] Object Management Group. http://www.omg.org.

[6] C. F. Leanderson, “Business potential of software defined radio tech-
nology,” in Proceedings of Radiovetenskap och Kommunikation, June 2005.

[7] Dake Liu, Anders Nilsson, and Eric Tell, “Fully flexible baseband DSP
processors for future SDR/JTRS,” in Proceedings of Wester European Ar-
maments Organization (WEAO) CEPA2 Workshop, Mar. 2005.

Part II

Design of Programmable
Baseband Processors

13

Chapter 3

Application Specific
Processors

3.1 Introduction

While the market for general DSP processors is dominated by a few large
players, the market for embedded DSP solutions is shared between more
than 100 different chip vendors providing a wide range of application
specific architectures [1]. Embedded DSP solutions constitute more than
two thirds of the entire market for DSP-centric circuits and this share is
increasing.

This chapter will give an introduction to application specific program-
mable processors or ASIPs (Application Specific Instruction set Proces-
sors). These are programmable processors which are optimized for a spe-
cific application or application domain.

An ASIP can be seen as an attempt to find the best trade-off between
flexibility and performance. Using programmable components such as
general processors and DSPs in an embedded system has the advantage
of flexibility throughout the product lifetime, faster development (soft-
ware instead of hardware), a certain degree of error tolerance (software
workarounds for hardware bugs), and the possibility of using the same
hardware component for a large set of different applications and func-

15

16 Application Specific Processors

tions. However, in many situations general processors can not reach the
necessary performance in terms of MIPS/mW or MIPS/mm2. To reach
the highest possible performance or the lowest possible power consump-
tion or cost, ASICs1 are the only solution.

ASIPs can be a way to find the golden middle path between these
two extremes. The art of ASIP design consists of reaching just the right
flexibility, function coverage, and performance for the application or ap-
plication domain while reaching significantly better area and power con-
sumption figures than a general processor or DSP. For some applications,
an ASIP can reach MIPS/mW in the same order of magnitude as a direct-
mapped ASIC and silicon area may be even smaller due to the difficulties
in reusing hardware between different functions in an ASIC. The means to
reach these goals are specialized non-traditional architectures, optimized
instruction sets, and hardware acceleration. Figure 3.1 illustrates the per-
formance vs. flexibility trade-off.

ASIC

ASIP

General
proc.

Performance/power

Fl
ex

ib
ili

ty

Figure 3.1: Flexibility vs. performance/power

Many ASIP architectures have features which are also common in gen-
eral DSP processors, while others such as network processors may use
completely unique solutions [2]. In order to design an efficient architec-

1It is not always clear what an ASIC is exactly, and maybe it would be better to avoid the
word entirely. However, in this thesis ASIC refers to any non-programmable circuit.

3.2 Acceleration Techniques 17

ture it is important to not only study what type of operations are used in
the application, but also issues like memory usage, memory access pat-
terns, and the presence of real-time processing requirements.

This chapter is intended to give an introduction to design of applica-
tion specific processors. A more thorough treatment of this subject is the
book by Liu [3].

3.2 Acceleration Techniques

The means available to enhance the performance of a programmable pro-
cessor can be summarized as follows, ordered according to increasing de-
sign cost:

1. Instruction level acceleration

2. Function level acceleration

3. Architecture enhancement (SIMD/VLIW/superscalar)

If this is not sufficient one may resort to a multi-processor solution.

(e.g. SIMD/VLIW)

architecture
enhancement

re
qu

ir
ed

 p
er

fo
rm

an
ce

 in
cr

ea
se

low flexibility high flexibility
(high power, high silicon cost)(low power, low silicon cost)

heterogenous homogenous
multi−processors multi−processors

acceleration

acceleration

function−level

instruction−level

Figure 3.2: Methods for increasing performance

18 Application Specific Processors

The existence of acceleration on instruction or function level is essen-
tially what separates an application specific processor from a general pur-
pose processor.

Architectural enhancements, i.e. adding more general execution units
and/or issuing multiple instructions per clock cycle, can of course be use-
ful in ASIPs as well as in general processors to increase general comput-
ing capacity. However, if the performance requirements can instead be
reached by acceleration of application specific functions, this will usually
lead to a more efficient solution.

3.2.1 Instruction Level Acceleration

Instruction level acceleration means that sequences of operations that are
common in an application or application domain are replaced by special-
ized instructions. The most common example of instruction level accel-
eration is probably the MAC (multiply-accumulate) instruction, which is
used by essentially every existing DSP instruction set. Other examples are
the ACS (add-compare-select) instruction which can be used to acceler-
ate the Viterbi algorithm [4] and instructions for efficient implementation
of FFT butterflies (either a complete butterfly or an ADDSUB instruction
computing a+b and a-b in parallel). Specialized instructions may also im-
ply special data memory addressing modes.

In some cases, new instructions can be added without adding any
new data path hardware but just extending the instruction decoder. In
other cases execution units must be modified or even new ones added.
In the worst case more extensive architectural modifications such as new
data buses and memory and register file ports are needed. This may im-
ply considerable extra verification cost in addition to the extra hardware
cost. The extent of the modifications needed must of course be weighted
against the number of clock cycles saved by adding a new instruction.

Implementation of instruction level acceleration is simplified by good
instruction set orthogonality and a well structured instruction decoder. To
facilitate future updates of an architecture it is also a good idea to do the

3.2 Acceleration Techniques 19

complete instruction decoding in the instruction decoder, instead of de-
centralizing parts of it to the respective execution units. Doing the latter
may reduce the number of wires between instruction decoder and execu-
tion unit, but may also result in more modifications needed in order to
add new instructions.

3.2.2 Special Addressing

Special addressing modes such as modulo addressing for implementa-
tion of circular buffers and bit-reversed addressing for FFTs are common
features in DSP processors. For ASIPs other special addressing modes
may be considered (e.g. for Viterbi decoding, rake receivers, or fast table
look-ups). Whether this should be considered to be instruction level ac-
celeration or function level acceleration or none of these is a philosophical
question which will not be discussed further here.

3.2.3 Function Level Acceleration

Function level acceleration means that an entire algorithm or subroutine
is replaced by fixed-function hardware. Examples are an FFT engine or
a complete Viterbi decoder. The process of deciding what function level
accelerators should be used is often (in this thesis and otherwise) referred
to as SW-HW partitioning.

Addition of function accelerator blocks typically implies a larger hard-
ware cost than instruction level acceleration but will on the other hand
result in a larger performance increase. A possible additional benefit is
that accelerators may run in the background while the processor contin-
ues program execution. This increases the degree of parallelism in the
system.

A risk when using function level acceleration is that the accelerator
block will be very application specific, i.e. that it only can be used for one
very specific variant of an algorithm that is only used for one specific task
or standard.

20 Application Specific Processors

Unless all future use of the processor is known at design time it is
important to not only consider the physical size of the accelerator and
the number of clock cycles saved. It should also be taken into account
to which extent the accelerator can be reused for different purposes or
standards. Thus it is suitable to make a configurable accelerator in many
cases. An FFT accelerator could handle different FFT sizes and a convolu-
tional channel coder could handle different polynomials and code rates.

3.3 Design Flow

It is not easy to describe the ASIP design flow in a simple illustration, but
one attempt at this can be found in figure 3.3. The following discussion
is based on the flow used and experiences gained during this research
project. The discussion is mainly applicable to embedded application spe-
cific DSP processors.

3.3.1 Requirement Specification

The assumption here is that we start from some kind of high level require-
ment specification. This includes a description of the function coverage
and peripheral environment (interfaces) together with any constraints on
performance, silicon area, power consumption, clock frequency, etc. In a
typical case, a specific functional coverage and computing performance
should be reached while minimizing power consumption, silicon cost,
and design/verification time.

The requirement specification in this research project was essentially
a set of baseband standards that should be covered, together with sys-
tem requirements such as maximum frequency and power consumption
based on what would be reasonable values in a handheld multi-standard
radio device.

3.3 Design Flow 21

Instruction set design
and architecture planning

specification
Requirement

Behaviour modelling
and application profiling

Instruction set simulator

Firmware design

RTL implementation

RTL verification

Verification &

Initial HW−SW partitioning
and architecture plan

instruction set profiling
Benchmarking and

Firmware verification
Cycle cost estimation

Acceleration

Architecture
design

backend flow

Figure 3.3: A simplified view of the ASIP design flow

3.3.2 Behavior Modeling

The first phase of the work consists of understanding the standards and
exploring algorithms. Based on this, behavioral models are created. The first
models are typically floating point models, for example Matlab models.
For the baseband processor case, both transmitter and receiver is modeled

22 Application Specific Processors

for each standard. In addition, realistic channel models are required as
well as models of hardware imperfections such as frequency offset and
radio non-linearities.

Channel models are often found in the standard documents. In other
cases, standard channel models such as the JTC models [5] for WLAN
indoor environments are used. It should also be possible to feed real
recorded air data to the receiver model. This setup allows realistic bit
error rate simulations and testing of different baseband processing algo-
rithms (to the extent which the algorithms are not specified in the stan-
dard).

The next step is to create fixed point models. This phase determines
the required precision needed at different stages of processing. In the
radio baseband case this includes specifying the number of bits in ADC
and DAC, unless this is given beforehand. Another issue to consider at
this stage is the implementation of Automatic Gain Control (AGC) and
Automatic Frequency Control (AFC) which is connected to the number of
bits needed (see section 4.3.1).

It is important to build the behavioral model with software implemen-
tation in mind, i.e. an effort should be made to find algorithms that are
suitable for software implementation and easily mapped to assembly in-
structions.

The output of the behavioral modeling stage is a bit-true model of the
application. This means that all algorithms and parameters have been
fixed as well as data widths and scaling factors. The behavioral models
have three main purposes:

1. Learning the standards and determining what algorithms should be
used.

2. Profiling the application, i.e. determining what types of operations
and what computing performance is needed. This information is di-
rectly used in hardware design to decide the necessary computing
capacity and to guide the initial SW-HW partitioning and architec-
ture decisions.

3.3 Design Flow 23

3. Specifying the firmware. Firmware is written by direct translation
of the behavioral model into hardware specific code (typically as-
sembly code). It is also used as an executable specification against
which the firmware can be verified.

3.3.3 Initial Architecture Plan and MIPS Estimation

Based on the behavioral models and profiling, an initial architecture pro-
posal is made. This includes decisions on architecture type (super scalar/
VLIW/SIMD, single or dual MAC unit, etc.), supported data types and
widths, memory organization, and possibly instruction or function level
acceleration of some very common and MIPS consuming functions.

With the architecture proposal as a starting point the behavioral model
is mapped to instructions in order to get an estimation of the required
number of clock cycles. It is important to not only consider the computing
cost in this process but also cost for memory accesses. This is necessary
both in order to get an accurate cycle cost estimation and to decide the
required memory bandwidth.

These steps will typically go through a few quick iterations with suc-
cessively more accurate cycle cost calculations. The result should be a
suitable architecture that meets the cycle cost requirements with some ex-
tra head room for control flow instructions.

It is essential (although easier said than done) to get an accurate cycle
cost estimation in order to avoid architecture redesign at later stages or
additional iterations in the more time consuming instruction set design
and benchmarking loop of the design flow.

3.3.4 Instruction Set Design and Architecture Planning

The goal of this stage is to specify the instruction set of the processor.
Note that what is designed here is the hardware/software interface (i.e.
the programming model), not the hardware itself. However, there are of
course some properties of the hardware that will be fixed here, such as
the register set and types of execution units.

24 Application Specific Processors

Designing an instruction set architecture (ISA) is a non-trivial task
which will typically go through several iterations. One fundamental trade-
off to make is between orthogonality and instruction word length.

Orthogonality is a somewhat vague concept in this case. It refers to the
completeness and regularity of the instruction set. An orthogonal instruc-
tion set has few special cases and all instructions use the same instruction
modes and the same registers in the same way. This makes the job easier
for programmers and compiler designers. An orthogonal instruction en-
coding means that all instructions are encoded according to the same pat-
tern; A certain bit in the instruction word should as far as possible always
have the same meaning. This reduces instruction decoding complexity
but also simplifies addition of new instructions and implementation of
operand stopping techniques in order to reduce power consumption (see
section 3.5).

The goal of good orthogonality is in direct conflict with the goal of
small code size. Orthogonal instruction encoding inevitably introduces
redundancy in the instruction word, leaving many codes unused. Means
towards shorter instructions such as implied addressing or restricting reg-
ister use also directly reduces orthogonality. So does the introduction of
complex application specific instructions introduced to improve perfor-
mance and reduce memory usage.

3.3.5 Instruction Set Simulator

The instruction set simulator (ISS) is a piece of software which simulates
the behavior of the processor in a bit-true and cycle-true way. This means
that it should be possible to input an assembly program and run it and
the ISS should produce exactly the same result as the hardware would, at
exactly the right clock cycle.

The ISS has multiple roles in the design flow:

Benchmarking tool: The ISS is used during the ISA design iteration to
benchmark the performance and profile application code.

Hardware specification: The ISS specifies the exact behavior of the hard-

3.3 Design Flow 25

ware. During RTL verification, the HDL code is verified against the
ISS behavior.

Firmware design tool: The ISS is the central component of the firmware
design environment. It provides firmware designers with a way of
designing and testing firmware without available hardware.

In order to be useful, the ISS provides debugging features such as
breakpoints, cycle-by-cycle execution, hardware observability, and con-
trollability. Statistics collection and profiling features are also useful both
for instruction set and firmware optimization.

Note: The requirements on the simulator for hardware development
and firmware development are slightly different. For hardware verifica-
tion it is essential that the simulator is bit and cycle accurate, while short
simulation time on the host machine is not as important since it will be
much faster than RTL simulation anyway. To reach reasonable execution
times for very large applications during firmware development, faster
simulation speed may be more important than to have cycle-exact sim-
ulations in all parts. One option could be to develop a separate version of
the simulator for firmware development once the ISA is fixed.

3.3.6 Benchmarking and Profiling

Benchmarking generally consists of running a specified piece of code on
a processor and collecting statistics such as execution time, cycle cost, or
memory usage. The purpose is typically to evaluate the performance of
a processor for a certain application or application domain and compare
it to other solutions. An introduction to benchmarking of DSP processors
can be found in [6].

In ASIP design however, the purpose is rather to verify that the per-
formance is sufficient for the application at hand, and if not to determine
what parts need improvement.

It is obviously essential that the code used for benchmarking and pro-
filing is representative of the entire application or at least the most timing
critical parts of the application. The ultimate benchmark would of course

26 Application Specific Processors

be the entire application itself. In reality though, this is typically not avail-
able until later stages of the design flow. Instead, kernel benchmarking is
applied. This means that the processor is benchmarked for the most com-
mon functions (i.e the kernel functions) of the application. Examples of
kernel benchmarks could be a filter, an FFT, or a finite state machine.

Notice that a useful kernel benchmark should include the overhead
for initialization and wrapping up as well as rounding and saturation
operations when appropriate. It is also important to benchmark control
oriented code since it is a significant part of most applications.

Third party kernel benchmarks for general DSP processing are avail-
able, e.g. from BDTi [6]. EEMBC [7] provides benchmarks targeted for
different application domains such as automotive/industrial, consumer,
networking, and telecommunications. Even if these are not representative
of your exact application they may still be useful for initial benchmarking.
Since they are quite well known, these benchmarks may also be important
for making comparisons to other processors for marketing purposes.

Profiling consists of collecting statistics on the occurrence of different
instructions and the execution time spent on different types of operations,
from the benchmarking. This includes initialization, addressing, and loop
overhead as well as actual useful arithmetic operations. Together with
statistics on program and data memory usage, this provides information
to guide instruction set improvements and further instruction or function
level acceleration.

Some details on benchmarking and profiling related to this research
project can be found in appendix A.

3.3.7 Acceleration

If the benchmarking shows that the performance requirements are not
met, additional acceleration must be applied. The profiling information
is used to guide the decision. Instruction level acceleration is typically
applied if the design is close to meeting the requirements, while function
level acceleration is applied if a larger performance increase is needed.

3.3 Design Flow 27

After acceleration has been applied, benchmarking is reiterated to ve-
rify if the speedup is sufficient or if additional acceleration is needed.

3.3.8 Architecture Design

Data Path

The data path is the part of the processor that does all the “useful” work,
e.g. execution units, register files, data memories, and buses connecting
these components. The data path design consists of mapping the instruc-
tion set to hardware. Execution units, registers, and interconnects (buses)
are added to the architecture until there is hardware to support all instruc-
tions. One goal is to reach the highest possible degree of multiplexing, i.e.
hardware components should be reused between as many instructions as
possible in order to minimize the total amount of hardware.

Another important issue is the pipeline design. The number of pipe-
line steps must be decided and the pipeline balanced to avoid unwanted
critical paths.

Control Path

The control path is all hardware needed to generate the appropriate con-
trol signals for the data path. This includes program memory, instruction
fetching, instruction decoding, and program flow control (logic handling
jumps, hardware loops, interrupts, pipeline hazards, etc).

While the data path constitutes the major part of the hardware, the
control path is usually the part requiring the most care in both design and
verification.

Memory Subsystem

Memory is a major performance bottleneck in many systems and the gap
between computing performance and memory performance keeps grow-
ing. The access time for memory is typically longer than the critical path
of computing logic except for small on-chip memories. DSP applications

28 Application Specific Processors

often require a large amount of memory and a very high memory band-
width, making design of the memory subsystem a major challenge.

In systems requiring large amounts of memory, much design effort
is put into features such as cache control, MMUs, and advanced DMA
features. These are complex functions and a large set of possible execution
cases must be carefully verified to avoid deadlocks or data corruption.

This thesis is however mostly concerned with processors using rela-
tively small on-chip memories. The issue of memory subsystem design
is thereby limited to number, types, widths, and sizes of memories, bus
organization, and addressing circuitry.

3.3.9 RTL Implementation and Backend Flow

The RTL implementation starts with stepwise refinement of the architec-
ture and results in the final implementation, e.g. in a hardware descrip-
tion language (HDL). The process is similar to that of any ASIC and will
not be discussed here. The same goes for the backend design flow.

3.3.10 Verification

As mentioned earlier the instruction set simulator is an important tool for
RTL verification since it is in fact an executable specification of the hard-
ware behavior. Apart from this the issues are the same as in verification
of HDL based hardware in general.

The applied flow is bottom-up, starting with testbenches for individ-
ual subblocks of the design. At top level, the verification is based on
running actual programs on the processor and comparing to the result
from the ISS. First the general behavior of each instruction is verified, fol-
lowed by verification of identified corner cases. This implies verification
of highest/lowest data values, overflow cases, etc. as well as potentially
problematic control flow cases such as interrupts during (nested) hard-
ware loops/subroutine calls etc. The last phase is random testing which
is an attempt to find any corner cases not previously discovered. The
random testing consists of running a program with randomly generated

3.3 Design Flow 29

input data. It is also possible to generate random assembly instructions,
although with some restrictions. The random testing should in principle
run as long as possible (the process of generating random data, running
it in the simulator and on the RTL code, and comparing the outputs must
of course be automated).

Backend verification (layout vs. schematic and physical verification)
will not be discussed here. See instead e.g. [8].

3.3.11 Concluding Remarks

The flow may be a lot more complex in a practical case than what is de-
picted in figure 3.3. If it is found during architecture design or RTL im-
plementation that some features are not practical for implementation, the
instruction set design may have to be iterated. If it is found in the backend
flow that timing constraints are not met, architecture design and/or RTL
implementation must be iterated, e.g. for pipeline repartitioning. If extra
pipeline steps are needed the process may even have to be reiterated from
instruction set design.

Furthermore, for some tasks it is not clear to which design step they
belong. One such task is pipeline design. Since a changed pipeline depth
typically will be visible to the programmer one could argue that it is part
of the instruction set design. However, the details can typically not be
fixed until RTL design. For designs operating at high frequencies using
deep pipelines, feedback may even be needed from the backend flow.

It is also important to notice that many of the activities will be going on
in parallel. This is necessary not only in order to reduce the total design
time. If architecture design and RTL implementation is started early it
can give valuable feedback to the instruction set design. It is also useful
for the backend team to get an early version of the RTL code in order to
plan layout, create necessary scripts, get an early estimation of the chip
area, and trim the flow. Of course it is also important to discover any
physical design problems as early as possible. Finally, firmware design
should also start early, not only because it is a resource demanding task,

30 Application Specific Processors

but also because there are no better benchmarking code than the actual
application firmware that will ultimately run on the processor.

3.4 Processor Tool Chain

In addition to the ISS, the assembler is obviously a necessary tool for pro-
gramming. Special architectures may also need specialized tools for tasks
like configuration, scheduling, and hardware allocation.

It may also be very valuable to be able to program the processor in a
higher level language such a C. However, it is often difficult to build a
compiler that can produce efficient code for irregular application specific
architectures. Typically a modified version of C is used, often with restric-
tions on data types, and using compiler known functions added for access
to architecture specific features. In fact, most code will often still be archi-
tecture specific and often practically as low level as the assembly code.
Kernel functions will probably still be written in hand-optimized assem-
bly code. However, constructs such as for-loops and function calls may
still be very useful, making a compiler valuable for writing non-timing-
critical code.

The tools are usually put together in an integrated design environ-
ment (IDE), typically consisting of a graphical user interface (GUI) used
by the programmer for writing code as well as for accessing the compil-
er/assembler, for simulation, and for debugging.

3.5 Low Power Design

Many generally available low-power design techniques can obviously be
used in processor design as well. However, this section will discuss low-
power issues that may be of particular interest in programmable proces-
sors.

3.5 Low Power Design 31

3.5.1 Operand Stopping

The purpose of operand stopping is to avoid toggling in registers and
logic blocks that are not producing any useful result. The input to an
execution unit could for example be forced to zero or keep its previous
value whenever the unit is not used. This is of particular interest in pro-
cessors since they typically use multiplexed buses with high activity that
are connected to several execution units. Without operand stopping any
toggling on the bus would ripple through all execution units, producing
a lot of unnecessary switching.

An instruction set with good orthogonality and a well structured in-
struction decoder will give a cost of implementing operand stopping in
a processor that is typically quite low both in terms of design time and
silicon area.

3.5.2 Memory

Memory normally contributes to a very significant part of the area and
power used by a processor. Minimizing the memory size and memory
accesses is therefore a very important issue. Memory power consump-
tion has been discussed widely in the context of memory hierarchies and
cache organization [9]. However, this project is restricted to systems with
only relatively small on-chip memories and without caches but typically
requiring a rather high memory bandwidth (in the order of hundreds of
bits per clock cycle). The design of the memory architecture in such sys-
tems still requires significant effort. E.g. increased memory bandwidth
can be reached either by using wider memories, multiple memory banks,
or multi-port memories. These variants offer different trade-offs between
flexibility, silicon area, and power consumption. The best choice depends
on the memory sizes and data access patterns of the application at hand.

32 Application Specific Processors

3.5.3 Control Overhead

One reason why a processor loses power in comparison to an ASIC is the
additional control overhead for program memory, instruction fetching,
and decoding. To reach power consumption close to an ASIC, the control
path must have a low complexity. The obtainable result depends on the
complexity of application.

One way of reducing the control power is by introducing idle or sleep
modes to avoid the need for busy-wait loops. One solution is to use an
idle instruction which halts instruction fetching until an interrupt event
occurs.

3.5.4 Leakage

With ever decreasing feature sizes, the issue of leakage in transistors be-
comes increasingly important [10]. Ways to deal with leakage, such as
shutting of the power supply or substrate biasing would typically be han-
dled by system level power management located outside the processor, in
either case it will not be further discussed here. However, one simple and
efficient way of reducing the leakage is to reduce the number of gates,
i.e. to make an area efficient design. There are cases where an ASIP can
actually reach a lower area than fixed function hardware, due to a higher
degree of hardware multiplexing. A multi-standard baseband processor
may be such a case, as shown in [11].

3.5.5 Acceleration and Parallelism

It is clear that power may be saved in a programmable processor by run-
ning a function unsuitable for software in a fixed function hardware ac-
celerator. However, this is not only a result of the higher efficency in the
hardware implementation. Increased parallelism can in itself also lead to
lower power consumption.

According to the well known formula, the dynamic power consump-
tion can be written P = αV 2fC, where V is the supply voltage, f is the

3.5 Low Power Design 33

clock frequency, C is the total capacitance, and α is the switching activity.

Consider a situation where we have a function running in a hardware
block. If we simply copy this block and instead perform the same opera-
tion using two identical blocks but running at half the frequency, the task
will finish in the same time and the dynamic power consumption will be
the same (C is doubled and f is halved). However, since the hardware is
now running at a lower clock frequency it will be possible to use devices
with lower drive strength and hence lower power consumption. It may
also be possible to lower the supply voltage or increase the threshold volt-
age to reduce leakage in the entire design. The end result is that power
consumption has been traded against silicon area.

To conclude, in addition to reduced control overhead, acceleration
leads to reduced clock frequency which further reduces power consump-
tion. One assumption made here is that the increased power due to paral-
lelization overhead, leakage in the added circuitry, and longer wires is not
large enough to cancel out the positive effects. This assumption may not
be true in all cases, especially not for future feature sizes with increasing
impact of both wires and leakage.

3.5.6 Data Width Masking

In fixed function hardware, the computing precision at every stage of an
algorithm is assigned to a specific computing or storage unit which can
be optimized to the minimum number of required bits in order to save
hardware and power. In a programmable processor on the other hand,
all computations use the same hardware. This means in principle that
the hardware must be designed for the largest precision required in the
application.

One way of reducing switching, mainly in arithmetic units, is by ze-
roing out the least significant bits of data whenever the native computing
precision is not needed. This can be done by adding hardware which can
be configured to mask out a selected number of least significant bits of the
data depending on the required precision. The masking can be performed

34 Application Specific Processors

Table 3.1: Relative dynamic power consumption using data masking and
reduced hardware precision.

Masked 16-bit MAC Different MAC unit precisions

Masked Precision Power Data path precision Power
16-bit (no masking) 1.00 16-bit 1.00
12-bit (mask 4-LSB) 0.47 12-bit 0.41
10-bit (mask 6-LSB) 0.31 10-bit 0.26
8-bit (mask 8-LSB) 0.18 8-bit 0.12
6-bit (mask 10-LSB) 0.09 6-bit 0.06
4-bit (mask 12-LSB) 0.04 4-bit 0.02

either at the input of arithmetic units or at the memory interfaces.
Table 3.1, originally presented in [12], shows results from an investiga-

tion of the effects of masking in a multiply-accumulate unit. The dynamic
power consumption in MAC units with different data widths was com-
pared to that of a MAC unit of full width but with data masking at the
inputs. The figures were obtained from toggling statistics generated by
simulations in Mentor Graphics ModelSim and physical parameters ex-
tracted by Cadence PKS synthesis, using the tool which is described in
the master thesis by J. Nilsson [13]. As can be seen, the switching power
reduction is more than 50% already at a reduction from 16 to 12 bits and
the difference between masking and using reduced hardware is only six
percentage points.

A more thorough investigation of the effects of adding variable data
width features in the scope of this project has not yet been concluded.

Bibliography

[1] Forward Concepts. http://www.fwdconcepts.com.

[2] Thomas Henriksson, Ulf Nordqvist, and Dake Liu, “Specification of
a configurable general-purpose protocol processor,” IEE proceedings
of Circuits, Devices, and Systems, no. 3, pp. 198–202, 2002.

3.5 Low Power Design 35

[3] Dake Liu, Design of Embedded DSP Processors, 2nd ed. Linköping Uni-
versity, 2004.

[4] Jeong Hoo Lee, Weaon Heum Park, Jong Ha Moon, and Myung H.
Sunwoo, “Efficient DSP architecture for Viterbi decoding with small
trace back latency,” in Proceeding of the IEEE Asia-Pacific Conference on
Circuits and Systems, pp. 129–132, Dec. 2004.

[5] Karen Hallford and Mark Webster, Multipath Measurement in Wireless
LANs. Intersil corporation, application note, 2001.

[6] Berkeley Design Technology, Inc. (BDTI), Evaluating DSP Processor
Performance (white paper). http://www.bdti.com.

[7] Embedded Microprocessor Benchmark Consortium.
http://www.eembc.com.

[8] Michel J. S. Smith, Application Specific Integrated Circuits. Addison-
Wesley, 1997.

[9] Vasily G. Moshnyaga and Koji Inoue, Low Power Electronics Design,
ch. 25 - Low Power Cache Design. Ed. Christian Piquet, CRC Press,
2004.

[10] Antonio Ferré and Joan Figueras, Low Power Electronics Design, ch. 3
- Leakage in CMOS Nanometric Technologies. Ed. Christian Piquet,
CRC Press, 2004.

[11] Eric Tell, Anders Nilsson, and Dake Liu, “A low area and low power
programmable baseband processor architecture,” in Proceedings of the
5th International Workshop on System-on-Chip for Real-Time Applications
(IWSOC), July 2005.

[12] Dake Liu and Eric Tell, Low Power Electronics Design, ch. 23 - Low
Power Programmable Baseband Processors. Ed. Christian Piquet,
CRC Press, 2004.

[13] Jesper Nilsson, Mixed RTL and gate-level power estimation with low
power design iteration (Master thesis). Linköping University, 2003.

36 Application Specific Processors

Chapter 4

Introduction to Baseband
Processing

The purpose of this chapter is to give an overview of the DSP tasks in-
volved in radio baseband processing, to define the function coverage of
the baseband processor, and to introduce some of the concepts and termi-
nology used later on.

4.1 System Overview

Baseband
processor

Application
processor

A
D

C
D

A
C

R
ad

io
 fr

on
t−

en
d

Figure 4.1: Overview of a radio transceiver

Figure 4.1 gives an overview of a radio transceiver. The application
processor runs the application that generates or consumes the transmit-

37

38 Introduction to Baseband Processing

ted data. It may be a voice codec in a mobile phone, a video decoder
in a digital TV receiver, or a general processor running an operating sys-
tem and a web browser. Here it is assumed that the application processor
also handles media access control (MAC) and higher protocol layers. In
reality the application processor is typically a micro controller or a gen-
eral purpose processor, often combined with a DSP or application specific
hardware.

The task of the baseband processor is to handle the digital parts of the
physical layer (PHY) processing (i.e. the “modem”). Figure 4.2 illustrates
the tasks involved. This chapter will give an introduction to the different
tasks. A more comprehensive discussion of many of the issues is e.g. [1].

channel
&

synchronization

equalization

symbol shaping modulation channel coding

error correction

BASEBAND PROCESSOR

M
A

C
 la

ye
r

A
D

C
D

A
C

demodulation

Figure 4.2: Overview of baseband processing

4.2 The Transmitter

The transmitter flow in the baseband processor consists of three main
functions: Channel coding, digital modulation, and symbol shaping.

Channel coding includes different methods for error correction (i.e.
redundant coding such as Reed-Solomon or convolutional codes) and er-
ror checking (e.g. cyclic redundancy check [CRC]). Interleaving is applied
after redundant coding in many systems to make sure that consecutive

4.2 The Transmitter 39

I

Q

0000

0001

0011

0010 0110 1110 1010

0111 1111 1011

0101 1101 1001

0100 1100 1000

I

Q

16−QAM
I

Q
+1

+1

+1

−1

−1

−1

+3

+3

−3

−3

−1

+1BPSK

−1 +1

0 1

01 11

00 10

QPSK

Figure 4.3: Examples of signal constellations

bits in the bit stream are not transmitted consecutively in time (or on the
same frequency in the OFDM case). Thereby the robustness against burst
errors is improved. Scrambling is often used to turn the bit stream into a
pseudo-noise sequence without long runs of ones or zeros.

Digital modulation is the process of mapping a bit stream to a stream
of symbols, each consisting of a number of complex samples. The first
(and sometimes the only) step of the modulation is to map groups of bits
to complex values according to a specific signal constellation as shown
in figure 4.3. In most cases, a second step called domain translation is
used. In an Orthogonal Frequency Division Multiplexing (OFDM) sys-
tem, an inverse fast Fourier transform (IFFT) is used for this step. In di-
rect sequence spread spectrum (DSSS) modulation the complex value is
multiplied by a so called spreading sequence of ones and minus ones, see
further sections 4.4 and 4.5.

The last step is symbol shaping which consist of transforming the
square wave into a band-limited signal, typically using a finite impulse
response (FIR) filter. This is necessary to make sure no part of the trans-

40 Introduction to Baseband Processing

mitted signal lies outside the permitted frequency band.
The real and imaginary part of the complex valued signal, also known

as the in-phase (I) and quadrature-phase (Q) signals, are converted into
analog signals and sent to the radio front-end. The I and Q signals are
mixed with carrier signals with a 90 degrees phase difference and added.
The result is a sinusoid signal at the carrier frequency with an amplitude
corresponding to the absolute value of the complex number and a phase
corresponding to the argument of the complex number. This signal is
amplified, filtered, and transmitted through the antenna.

4.3 The Receiver

The receiver flow is essentially the opposite of the transmitter flow: The
baseband processor receives the digitized I and Q signals and has to re-
generate the transmitted bit stream.

Reception is significantly more challenging than transmission since
the transmitted signal is affected by several kinds of distortions before
reaching the baseband processor.

Some challenges that must be handled are:

• Noise

• Multi-path channel fading

• Mobility

• Large dynamic range

• Frequency offset between transmitter and receiver

• Non-linearities and other distortion in RF and analog circuits

4.3.1 Dynamic Range

The strength of the received signal can vary dramatically depending on
the distance to the transmitter and depending on channel conditions. It

4.3 The Receiver 41

is not unusual to have to handle a dynamic range of 60-100 dB [2]. Since
it is not practical to design systems with so large dynamic range, several
levels of automatic gain control (AGC) is normally used. The received
energy must continuously be measured and the gain of front-end compo-
nents adjusted to normalize the received energy at the ADC. With a good
gain control algorithm fewer bits are needed in the ADC and baseband
processor.

4.3.2 Synchronization

Synchronization can be divided into two steps. The first step is to detect
an incoming signal or frame, this is known as energy detection. Functions
such as AGC, frequency offset estimation, and antenna selection may also
be carried out at this time. The next step is symbol synchronization which
aims to determine the exact timing of incoming symbols. These opera-
tions are typically based on complex auto or cross correlations. In many
systems, each frame contains a known preamble or pilot sequence used
for this purpose.

4.3.3 Channel Estimation and Equalization

In essentially all radio systems the transmitted signal is subject to multi-
path propagation, i.e. the received signal will contain multiple copies
of the tranmitted signal due to reflections of objects in the environment.
The different signal paths will have different strength and timing and will
add constructively or destructively at different frequencies. The effects of
multi-path propagation is known as fading. One such effect is overlap
between consecutive symbols, so called inter-symbol interference (ISI).

The fading can be characterized by the impulse response of the chan-
nel. One way of measuring the severity of the fading is the RMS delay
spread which describes the root-mean-square distance in time between
the different signal paths.

If the symbol time is significantly longer than the delay spread (or in
other words if the signal bandwidth is small enough), the fading can be

42 Introduction to Baseband Processing

considered constant over the signal spectrum, so called flat fading. When
flat fading can not be assumed the receiver must compensate for the fad-
ing by channel equalization.

In outdoor environments the difference between signal paths can be
in the order of several micro seconds. As an example a delay spread of 1
µs corresponds to a 300 m difference between the propagation paths. Un-
der such conditions the minimum symbol time without advanced channel
equalization would be approximately 10 µs (ten times the delay spread),
corresponding to a symbol rate of 100k symbols/s.

In most cases correlation with known data is used to estimate the
channel and some kind of filtering is used for equalization.

4.3.4 Frequency and Timing Offset

If the oscillator frequencies in the transmitter and receiver are not exactly
the same this will cause a small rotation in the complex number plane
between each consecutive sample. In many systems, this error must be
estimated and compensated. This is done either by modifying the oscil-
lator frequency via some adaptive algorithm, or by rotating each sample
slightly relative to its predecessor.

One way of avoiding part of the problem is by using differential modula-
tion where the information is represented by the phase difference between
two consecutive symbols instead of the absolute phase.

However, unless the oscillator frequency is controlled one may still
have to compensate for timing offset, i.e. the difference between sample
time in ADC and DAC. For example samples may have to be inserted or
removed from the data stream at regular intervals.

4.3.5 Mobility

In a situation where the transmitter or receiver is not stationary the chan-
nel conditions will change continously. This means that an estimated set
of channel parameters will become obsolete after a certain period of time,
known as the channel coherence time. In systems with high mobility, the

4.4 OFDM Modulation 43

channel coherence time may be in the order of one or a few symbol times
and the channel must therefore be continously tracked. This may con-
sume a very significant part of the processing power in the receiver. In
the WLAN applications discussed later in this thesis, the channel can be
assumed to be stationary for the duration of a frame.

Mobility also causes Doppler shift which results in effects similar to
those caused by frequency offset.

4.3.6 Demodulation and Channel Decoding

Demodulation is the opposite operation of modulation. It involves an
FFT in OFDM systems and correlation with the spreading sequence in
DSSS systems. The last step of demodulation is demapping, i.e. finding
the closest point in the constellation diagram and converting the complex
value into one or more bits.

Channel decoding consists of deinterleaving, error correction, descram-
bling, and possibly error checking. Error correction (e.g. Viterbi or turbo
decoding) tends to be very demanding functions.

4.4 OFDM Modulation

OFDM is a modulation method where the data is sent over a large num-
ber of adjacent sub-carrier frequencies simultaneously. The symbols to be
transmitted on each of the sub-carriers are collected in the frequency do-
main and are all simultaneously transformed to a time domain signal us-
ing an IFFT.

The idea is that each sub-carrier signal should have a very small band-
width and hence only be subject to flat fading. Thereby a complex chan-
nel equalizer can be avoided. Instead channel equalization only consists
of multiplying each sub-carrier with a complex valued constant in order
to scale and rotate the constellation point to its correct position. To fur-
ther increase the robustness against ISI a cyclic prefix (CP) is often added
to each symbol after the IFFT. The CP acts as a guard interval: as long as

44 Introduction to Baseband Processing

the delay spread is shorter than the CP, the ISI is not a problem.
OFDM presently seems to be gaining in popularity. It is used in e.g.

the IEEE 802.11a and IEEE 802.11g Wireless LAN standards, digital audio
and video broadcasting (DAB/DVB), and the recent WiMax standard. It is
being considered for several future standards including fourth generation
mobile telephony. Figure 4.4 illustrates typical OFDM processing flows.

4.5 Spread Spectrum Modulation

The purpose of spread spectrum modulation is to spread the radio signal
over a larger spectrum than necessary in order to make it less sensitive to
interference. Two basic types of spread spectrum modulation exists.

In frequency hopping spread spectrum, the transmitter regularly alter-
nates between different carrier frequencies according to a predetermined
pattern.

In direct sequence spread spectrum (DSSS), each symbol is multiplied
with a pseudo-noise sequence of lengthN to createN so called chips. This
operation is known as spreading andN is called the spreading factor. The
chips are then transmitted at N times the symbol rate. In the receiver the
chips are correlated with the spreading sequence to recover the symbol.
This is known as despreading. DSSS is used in the IEEE 802.11b WLAN
standard (a.k.a. WiFi).

A variant of DSSS is code division multiple access (CDMA) which is
used in the third generation mobile telephony systems. CDMA uses the
fact that if each user uses its own spreading sequence (or code), which
is orthogonal to all other used spreading codes, several users can trans-
mit on the same frequency in the same time slot. After despreading, the
interference from other users will just look like white noise.

In DSSS and CDMA systems a structure known as a rake receiver is
often used for channel equalization. In the rake receiver, different sig-
nal paths are despread separately (usually the 3-6 strongest paths are se-
lected) and the contributions from the different paths are then added con-
structively.

4.5 Spread Spectrum Modulation 45

filteringfiltering

offset
frequency

estimation

offset
frequency

compensation

remove
CP

FFT

equalization
channel

demapping

deinterleaving

correction
error

descramble scramble

coding
channel

interleaving

mapping

pilot
insertion

IFFT

CP
add

shaping
symbol

detection
packet
AGC,

symbol
sync.

bit−based
processing

processingprocessingprocessing
preamble receive transmit

estimation
channel

processing
complex−valued

Figure 4.4: OFDM processing flows

46 Introduction to Baseband Processing

In e.g. 3G systems which may have a large delay spread (several mi-
croseconds) and high mobility (terminals may travel at up to 250 km/h),
the rake processing is the single most computing intensive part of the re-
ceiver. Figure 4.5 illustrates the DSSS/CDMA processing flows.

4.6 MIMO Systems

MIMO, which stands for multiple input multiple output, is a method used
to reach higher data rate with a given bandwidth and SNR by using mul-
tiple antennas in both transmitter and receiver. MIMO has been widely
discussed over the last few years and is proposed e.g. for the upcoming
IEEE 802.11n WLAN standard.

MIMO will cause considerable processing challenges for future base-
band processors, e.g. in the form of matrix inversion operations necessary
in the receiver [3].

4.7 Computational Complexity

The computing capacity needed in the baseband processor depends main-
ly on the data rate and the mobility. The requirements increase superlin-
early with the data rate. For many parts of the flow, the number of oper-
ations per data bit is constant. Other parts, e.g. channel equalization, will
require more processing per bit when the symbol rate increases.

Mobility mainly determines how often channel estimation must be re-
peated. The processing requirements for channel estimation and track-
ing will be approximately inversely proportional to the channel coherence
time or proportional to the velocity of the transmitter or receiver.

Data rate and mobility for some standards is illustrated in figure 4.6.
One main motivation for using a programmable processor is that with
enough flexibility and a certain level of computing capacity a range of
systems with different types of modulation and different trade-offs be-
tween data rate and mobility can be covered.

4.7 Computational Complexity 47

demapping

deinterleaving

correction
error

descramble scramble

coding
channel

interleaving

mapping

filtering
shaping
symbol

processingprocessingprocessing
preamble receive transmit

filtering

detection
packet
AGC,

symbol
sync.

bit−based
processing

estimation
channel

processing
complex−valued

spreaddespread/
rake

Figure 4.5: DSSS/CDMA processing flows

48 Introduction to Baseband Processing

Bluetooth

data rate

m
ob

ili
ty

complexity
(MIPS)

computing

IEEE 802.11a

IEEE 802.16
(WiMax)IEEE 802.11b

WCDMA (3G)
GSM

(MIMO)
IEEE 802.11n

Figure 4.6: Data rate and mobility for different standards

The performance of conventional DSP processors is typically only suf-
ficient to manage low-rate, low-mobility systems. Even for moderate data
rates (more than a few hundred kbit/s) or mobility requirements (more
than walking speed), high-end processors using VLIW/SIMD technolo-
gies and/or operating at several GHz will be required. These processors
are often too expensive and power consuming. The rest of this thesis dis-
cusses how more cost- and power-efficient programmable solutions can
be obtained.

Bibliography

[1] John B. Anderson, Digital Transmission Engineering. IEEE Press, Pren-
tice Hall, 1999. ISBN 0-7803-3457-4.

[2] Bosco Leung and Behzad Razavi, RF Microelectronics. Prentice Hall,
Pearson Education, Inc., 2004. ISBN 0-13-861998-0.

4.7 Computational Complexity 49

[3] Haiyan Jiao, Anders Nilsson, Eric Tell, and Dake Liu, “MIPS cost es-
timation for OFDM-VBLAST systems,” in paper submitted for review,
2005.

50 Introduction to Baseband Processing

Chapter 5

Programmable Baseband
Processors

5.1 Introduction

This chapter will discuss what implications the properties of typical base-
band applications have on the design of ASIPs for baseband processing.
The focus is on terminals for mobile telephony and computer networking.
The requirements are slightly different for unidirectional or broadcasting
standards such as DAB and DVB since the latter need more data memory
but have less requirements on latency.

5.2 Processing Requirements

Going back to figures 4.4 and 4.5 it is clear that the operations needed in a
baseband processor can be divided into to two main classes: Calculations
based on complex valued data and bit manipulation operations. This sec-
tion will discuss the implementation of these two types of operations.

51

52 Programmable Baseband Processors

5.2.1 Convolution-Based Complex-Valued Processing

The data between the ADC/DAC and the mapping/demapping consists
of I/Q-pairs, which are treated as complex values. The functions to be car-
ried out are modulation/demodulation, synchronization, channel equal-
ization, etc. The FFT function is heavily used in OFDM systems. In DSSS
systems, modulation/demodulation is based on multiplication/correla-
tion with a spreading sequence. Other common operations are correlation
and filtering. These are all very common DSP algorithms, most of them
convolution based. Traditional DSP processors are able to carry out these
kinds of algorithms rather efficiently thanks to MAC units and optimized
memory and bus architectures.

The following areas where optimizations can be made have been iden-
tified:

Complex-valued computations: Since almost all computations are based
on complex-valued numbers, it is beneficial to optimize the ISA for
complex calculations. This includes using complex data paths and
data types, and instructions for operations such as conjugate, mul-
tiply by i, multiplication/MAC with conjugate, and complex abso-
lute value.

Instruction level acceleration: In addition to the above mentioned oper-
ations on complex values, a few operations common in baseband
processing were found to be suitable for instruction level accelera-
tion. This includes finding the position of the maximum complex
absolute value in a vector, accumulation of square absolute values,
FFT butterfly, and combination of the last layer of FFT butterflies
with frequency domain filtering. All of these are certainly opera-
tions that are common in other applications too. In a processor that
should handle the IEEE 802.11b standard it may also be suitable
to accelerate the modified Walsh transform butterfly (essentially a
radix-4 FFT butterfly without multiplications). However, because
of the high symbol rate in IEEE 802.11b it may be more suitable to
use function level acceleration for the modified Walsh transform.

5.2 Processing Requirements 53

Data width optimization: The requirements on data precision is gener-
ally low in baseband processing. As discussed in section 3.5.6, sig-
nificant reduction of hardware size and power consumption can be
achieved by keeping down the data width. The BBP1 baseband pro-
cessor, presented in chapter 7, uses 16 bit native data width (16 bits
for real and 16 bits for imaginary part) and 12x12 bit precision for
multiplications. This was proven to be sufficient by behavioral sim-
ulations of IEEE 802.11a and b systems.

5.2.2 Bit-Based Processing

Many of the processing steps between the interface to the MAC-layer and
the mapping/demapping are operations which are based on manipula-
tion of individual data bits (e.g. channel coding, scrambling, interleav-
ing, and CRC checksum calculation). This tends to make them rather in-
efficient for software implementation. On the other hand, many of these
operations can be implemented in very small hardware blocks. For exam-
ple, both scrambling, convolutional coding, and CRC can be implemented
as simple linear feedback shift registers with XOR-gates. This fact often
makes these operations suitable for function level acceleration. These op-
erations are also rather similar between different standards, which makes
it beneficial to build configurable accelerators.

The required computing cost is on the other hand not extremely high,
implying that software implementation may be suitable in some cases
with low or moderate data rates.

5.2.3 Error Correction

Error correction (e.g. Reed-Solomon, Viterbi, and turbo decoders) is gen-
erally very demanding. Instruction level acceleration has been suggested,
e.g. Galois field operations for Reed-Solomon [1] and add-compare-select
instructions for Viterbi [2]. However, even with such instructions the
MIPS cost is still high and in most cases these operations should be ac-
celerated on function level. Again, good possibility of reusing such accel-

54 Programmable Baseband Processors

erators in several standards makes function level acceleration even more
attractive.

5.3 Real-Time Requirements

Essentially all radio systems we are interested in are hard real time sys-
tems. Transmitted samples must be sent to the ADC at exactly the right
clock cycle and incoming data must be taken care of.

In many cases the latency requirements are also very though. One
example is the latency requirement for acknowledging a received packet
in a WLAN system. As mentioned earlier, broadcasting systems such as
DAB/DVB where latency is not a big issue are not considered here.

Implications of this is for example that regular cache memories or
branch prediction cannot be used because of the unpredictability in ex-
ecution time it introduces, and that interrupt latencies need to be kept
short.

During the course of this project it was found that neither of these
factors were limiting. The required memory sizes are quite small since
the latency requirements does not allow a lot of data to be buffered in the
baseband processor. For example, in the BBP1 processor the total amount
of memory is 65 kbit for program and 100 kbit for data. The use of caches
is of no interest with such small memory sizes. Furthermore, since the
processing flow is to a large extent known, only rather simple control
features and interrupt handling are sufficient, which simplifies reaching
low interrupt latencies.

The challenge was rather to find an architecture that allowed efficient
scheduling and communication between the DSP core and accelerators.
Once sufficient computing power and low communication overhead was
reached remaining problems were minor.

It should be noted though that detailed scheduling is necessary to de-
termine the real hardware requirements. Simply using the average MIPS
cost is not sufficient. This is due to e.g. dependencies within received
data. In many cases, heavy processing is required during the preamble

5.4 Memory Issues 55

of a frame in order to perform synchronization and channel estimation.
These operations must be completed before processing of the data sym-
bols can start.

5.4 Memory Issues

As mentioned above, the required amount of data memory tends to be
rather small in baseband processing. On the other hand the memory ac-
cess rate tends to be quite high. This means a significant total memory
bandwidth is required if a moderate clock frequency is to be used.

Example 1: IEEE 802.11a is an OFDM system using 64-point FFTs. One
FFT+channel equalization requires a total of 1152 memory access. Each
access reads or writes a complex value of 16+16 bits. The symbol time is
4µs resulting in 1152 ∗ (16 + 16)/4 = 9212 bits accessed per microsecond.
If the processor runs at 160 MHz this means an average of 9212/160 =

58 bits per clock cycle just for the FFT and channel equalization during
payload processing. Memory access rates for various systems has been
further studied in [3].

Example 2: The BBP1 processor has a dual complex MAC unit. To keep
the MAC fully occupied, up to 4 complex values needs to be read and two
written every clock cycle, resulting in a required memory bandwidth of
(16 + 16) ∗ (4 + 2) = 192 bits per clock cycle for the MAC unit only. At the
same time incoming data from the ADC have to be buffered and memory
may also be accessed by accelerators. On the other hand, the total amount
of data memory needed for 802.11a reception (including FFT coefficients
and housekeeping variables etc.) is only 18.7 kbit, or equivalent to 585
samples.

The conclusion of these examples is that a typical programmable base-
band processor will have multiple memory blocks of relatively small size.
Thanks to the regular access patterns and well known scheduling in base-
band processing, dual port memories with their extra area and power
cost can typically be avoided. Though dual port memories may simplify
design, solutions using standard memories with smaller power and area,

56 Programmable Baseband Processors

and without increased cycle cost can usually be found. The memory issue
is further discussed in section 7.5.

Bibliography

[1] H. Michel Ji, “An optimized processor for fast Reed-Solomon encod-
ing and decoding,” in Proceeding of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, pp. III–3097–III–3100, May
2002.

[2] Jeong Hoo Lee, Weaon Heum Park, Jong Ha Moon, and Myung H.
Sunwoo, “Efficient DSP architecture for Viterbi decoding with small
trace back latency,” in Proceeding of the IEEE Asia-Pacific Conference on
Circuits and Systems, pp. 129–132, Dec. 2004.

[3] Anders Nilsson, Eric Tell, and Dake Liu, “Design methodology for
memory-efficient multi-standard baseband processors,” in Proceedings
of Asia-Pacific Communications Conference (APCC), 2005.

Chapter 6

Related Work

6.1 Introduction

Not many academic publications are available in the area of program-
mable baseband processors. Most of the existing publications focus on
small parts of the system or on high level issues and very few on new
architectures.

For many of the commercial solutions it is difficult to obtain detailed
information without a none-disclosure agreement. Nevertheless, this chap-
ter briefly presents some other, mainly commercial, solutions.

6.2 Rice University - Imagine

Rajagopal et al. have published one of the few existing academic papers
on programmable baseband processor architectures [1]. The architecture
is a modification of a media processor architecture from Stanford called
“Imagine” [2]. It has eight VLIW-based computational clusters organized
in a SIMD fashion. Each cluster has three adders and three multipliers.
The memory subsystem is stream based and optimized for media appli-
cations.

At 500 MHz it can run WCDMA multi-user-detection [3] (i.e. the pro-
cess used in a base station for simultaneous channel estimation and rake

57

58 Related Work

reception for several users) for 32 users under low or medium mobility.

6.3 Morpho Technologies - M-rDSP

Morpho Technologies provides the M-rDSP architecture[4]. It is based
on an array of between 8 and 64 reconfigurable cells (RCs) controlled by
a 32-bit RISC unit. Each RC contains an ALU, a MAC unit, and special
functional units for wireless applications. The configuration of all RCs
and interconnects is specified in a “context”. A context memory that can
store up to 512 different contexts allows the function of the RC array to be
changed every clock cycle.

The MS1-16 IP core has 16 reconfigurable cells and WCDMA-specific
blocks for sequence generation and interleaving. Running at 500 MHz it
supports WCDMA, GSM/GPRS, and IEEE 802.11a/b/g. The silicon area
is claimed to be 65% less and estimated power consumption 50% less than
other fully programmable DSP solutions.

6.4 Sandbridge Technologies - Sandblaster

Sandbridge Technologies Inc. has a processor architecture called “Sand-
blaster” [5]. The processor has a RISC based integer unit and a SIMD unit.
The Sandblaster uses a form of multithreading. The core holds contexts
for up to 8 threads simultaneously. The treads take turns to issue instruc-
tions in a round-robin fashion. Every clock cycle one of the treads can is-
sue one instruction. When a thread only issues one instruction every eight
clock cycles, data dependency problems due to the deep pipelines and
memory latency are avoided. The Sandblaster architecture is intended to
handle both media and baseband processing.

The SB9600 chip contains four Sandblaster processors and an ARM
micro controller. Each Sandblaster core has 64 kByte of data memory
divided into 8 memory banks and a 64 kByte instruction cache. There
is also a 256 kByte level two cache for each core. The SB9600 supports
2Mbit/s WCDMA, GPS/GPRS and IEEE 802.11b running at 600 MHz.

6.5 SystemOnIC - Hipersonic 59

Low-power circuit techniques and fine-grained clock gating is used to
achieve a power consumption of less than 500 mW.

6.5 SystemOnIC - Hipersonic

SystemOnIC, now acquired by Philips, developed a programmable base-
band processor called “Hipersonic 1” [6]. Hipersonic 1 is designed for
the OFDM standards IEEE 802.11a and HIPERLAN/2. It is based on a
flexible DSP core called OnDSP. It has one general data path and 8 SIMD
data paths, each including a 40-bit ALU, a barrel shifter, and MAC unit
with a 40-bit accumulator. The data paths are connected to a 128-bit-wide
data memory via an interconnect unit. The general data path, memory, in-
terconnect unit, and SIMD data paths are controlled using VLIW instruc-
tions. A dynamic code-width reduction technique called tagged VLIW [7]
is used to reduce program size. A small instruction cache (loop cache) is
also used.

Transmit and receive filters, channel coding (convolutional encoding,
scrambling, CRC and Viterbi), and DES (Data Encryption Standard) en-
cryption/decryption is handled by a hardwired coprocessor. A DMA unit
handles data transfers between the DSP core and the coprocessor.

A chip including the Hipersonic core and ADC/DAC has a transistor
count of 7.6 million. The chip has 32 kByte of program memory and 15
kByte of data memory. Extensive clock gating is used and the maximum
power consumption is 300-800 mW running at 120 MHz in a 0.18 µm
CMOS technology.

6.6 Other Solutions

A common solution for reaching some flexibility is to use a general pro-
cessor or DSP together with ASIC blocks. Usually the ASIC block has
low flexibility and most parts are standard specific. The programmable
processor will mostly execute the control flow and very little of the data
processing.

60 Related Work

FPGA based solutions are discussed occasionally. These are to expen-
sive and power consuming for most applications. Reconfiguration time is
also a problem.

Another alternative is configurable architectures [8]. These typically
consist of a configurable fabric of computing elements which are con-
trolled by a programmable processor. The advantage compared to FPGAs
is that they can be reconfigured dynamically at run-time. However, the
reconfiguration time is still typically in the order of micro seconds which
makes it difficult to reuse computing units for more than one task in a
transmitter or receiver flow. So far the power consumption also tends to
be high.

6.7 Discussion

The solution from Rice university is just a minor modification of a pro-
cessor designed for media applications. The performance for bit oriented
tasks, e.g. Viterbi decoding, is low. It seems more focused on base station
processing and area and power efficiency is expected to be low.

The Sandbridge and Hipersonic solutions are in principle based on
well known VLIW and SIMD solutions. The solution from Morpho tech-
nologies seems more innovative. Unfortunately, no detailed information
about e.g. the interconnect and memory organization has been found.

None of the presented solutions use natively complex data paths, al-
though it may be possible to execute a complex operation in one clock
cycle by combining VLIW/SIMD execution units.

The Hipersonic processor has a SW-HW partitioning similar to the one
proposed in this thesis while the other architectures rely more on wide
SIMD/VLIW data paths even for bit oriented processing. None of these
projects have any focus on flexible and efficient integration of hardware
accelerators.

It is difficult to make quantitative comparisons between architectures
since the function coverage varies. Nevertheless, it seems very likely that
the BBP1 processor presented in chapters 7 and 8 is more area and power

6.7 Discussion 61

efficient than all of the architectures described in this chapter, with the
possible exception of the solution from Morpho technologies. However,
the other architectures may have more flexibility outside the baseband
processing domain. The more regular architectures may also simplify
firmware design and design tools. Sandblaster is programmed in stan-
dard C while Hipersonic uses “Systemonic-C” which is described as a
“C++ based high level assembler”.

Bibliography

[1] Sridhar Rajagopal, Scott Rixner, and Joseph R. Cavallaro, “A pro-
grammable baseband processor design for software defined radios,”
in Proceedings of the 45th Midwest Symposium on Circuits and Systems,
pp. 413–416, 2002.

[2] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D.
Owens, B. Towles, A. Chang, and S. Rixner, “Imagine: Media process-
ing with streams,” IEEE Micro, no. 2, pp. 140–147, 2001.

[3] S. Rajagopal, S. Bhashyam, J. R. Cavallaro, and B. Aazhang, “Real-
time algorithms and architectures for multiuser channel estimation
and detection in wireless base-station receivers,” No. 3, pp. 468–479,
2002.

[4] Morpho Technologies. http://www.morphotech.com/.

[5] John Glossner, Daniael Iancu, Jin Lu, Erdem Hokenek, and Mayan
Moudgill, “A software-defined communications baseband design,”
IEEE Communications Magazine, no. 1, pp. 120–128, 2003.

[6] Johannes Kneip, Matthias Weiss, Wolfram Drwscher, Volker Aue, Jür-
gen Strobel, Thoms Oberthür, Michael Bolle, and Gerhard Fettweis,
“Single chip programmable baseband ASSP for 5 GHz wireless LAN
applications,” IEICE Transactions on Electron., pp. 359–367, Feb. 2002.

62 Related Work

[7] Matthias Weiss and Gerhard Fettweis, “Dynamic codewidth reduc-
tion for VLIW instruction set architectures in digital signal proces-
sors,” in Proceedings of IWISP, 1996.

[8] Srikathyayani Srikanteswara, Ramesh Chembil Palat, Jeffrey H. Reed,
and Peter Athanas, “An overview of configurable computing ma-
chines for software radio handsets,” IEEE Communications Magazine,
no. 7, pp. 134–141, 2003.

Part III

The BBP1 Architecture

63

Chapter 7

The BBP1 Baseband
Processor Architecture

7.1 Introduction

This chapter will describe the main contribution of the presented work;
the baseband processor architecture. The main goals set up at the start of
the project can be summarized as follows:

• Find an efficient instruction set for baseband processing.

• Find which functions in a baseband processor are suitable for hard-
ware acceleration and especially if it is possible to build flexible
hardware accelerators that can be reused between standards and
functions.

• Find an efficient baseband processor architecture focusing on

1. Low computing latency and predictable hard real-time perfor-
mance.

2. Minimized memory size and memory access overhead.

Meeting these goals would contribute greatly in reaching the ultimate
goal of finding power and area efficient architectures for programmable
multi-standard baseband processors.

65

66 The BBP1 Baseband Processor Architecture

The main achievements resulting from this project are:

1. The DSP core and its instruction set, including a novel type of vector
instructions.

2. The overall architecture, using a configurable network to connect
the accelerators and memories to the processor.

3. HW-SW codesign for IEEE 802.11a/b. Mapping and scheduling of
these standards on the architecture.

The first two points are intimately connected since the efficient execu-
tion of vector instructions relies on the network design and especially the
memory subsystem with a number of small data memories with decen-
tralized address generation.

This chapter will give an overview of the architecture followed by a
more detailed description of the novelties of the instruction set, the mem-
ory subsystem and the integration of accelerator units in the baseband
processor. Sections 7.2 - 7.6 refers primarily to the first implementation
of the architecture which was a baseband processor focused on WLAN
applications. Much of these details have previously been published [1, 2].
Section 7.7 will describe some possible variations of the architecture as
well as some scalability issues.

Chapter 8 discusses the demonstrator chip which was manufactured
as well as the developed design tools (assembler and simulator) and firm-
ware for IEEE 802.11a and IEEE 802.11b1.

Appendix A contains a summary of the algorithms used in the WLAN
applications and a quantitative motivation of ISA design choices based on
the MIPS costs and timing requirements of the standards.

7.2 Architecture Overview

Figure 7.1 gives an overview of the architecture. The core of the processor
is an application specific DSP processor with a simple ALSU (arithmetic-

1In the rest of this thesis the IEEE 802.11a and IEEE 802.11b standards will sometimes be
refered to as just 11a and 11b

7.2 Architecture Overview 67

logic-shift unit) and a specialized complex-MAC unit. The DSP core is
connected to a number of memories and accelerators via a configurable
network.

256x16

IM

256x32

DM1DM3

256x32

Application
processor

ALSU

RF

16 bit

16x16 bits

16 bit datapath

C
on

tr
ol

 R
eg

is
te

rs

MAC

cADD16

CM

AR1

AR3

Port IF
2048x32

cMUL12x12 cMUL12x12

cADD16

cADD32 cADD32

Network DM0

256x32

DM2

256x32

MAC
IF

AR0 (32+32 bits)

AR2

CRC

DAC ADC

Interleave

Walsh

Demap

packet.det.
rotor
FIR

Viterbi
Conv.enc./

Scramble

Figure 7.1: Overview of the BBP1 architecture

68 The BBP1 Baseband Processor Architecture

7.2.1 The Network

The network design allows a large number of concurrent communica-
tions, allowing a high degree of parallelism in the system. It also mini-
mizes the number of memory accesses by letting accelerators pass data
between each other without intermediate memory storage and by en-
abling “swapping” of entire memories between different units by recon-
nection of the network. The network is a simple crossbar, configured en-
tirely by the processor core. This eliminates the need for an arbiter and
addressing logic and makes the network interfaces simple.

7.2.2 The DSP Core

The DSP core has two separate data paths. The first one is a rather simple
data path consisting of a 16-bit ALSU and sixteen 16-bit general purpose
registers. This data path executes RISC-style instructions mostly used for
control flow, integer arithmetics, and configuration tasks. The main fea-
ture of the DSP core is the dual complex MAC unit which is optimized for
execution of the operations on vectors of complex numbers (I/Q-pairs)
common in baseband processing. The MAC unit executes a novel type of
vector instructions, further described in section 7.3.

Instruction Set

Minimization of the program size was one of the main design goals and
an efficient instruction set is obviously essential in order to reach this goal.

The instruction set can be divided into three classes of instructions:

• RISC-style instructions for both real and complex data.

• Instructions for network and accelerator configuration.

• Vector instructions.

All instructions are 16 bits wide, resulting in very efficient use of pro-
gram memory. Figure 7.2 shows the instruction encoding. The numbers
within parentheses are the number of bits in each field. Together with the

7.2 Architecture Overview 69

vector instructions and acceleration of selected functions this results in
very small program memory requirements (see table 8.1).

0 instr. (2−6) arguments (4−11)subtype (2−5)

10 instruction (4) ports (3) vector size (7)

Normal instruction (4 different formats):

Accelerator instruction:

Vector instruction:

11 control vector (10)accelerator ID(4)

Figure 7.2: Instruction encoding formats

Use of dedicated instructions for configuration of the network and
accelerators will reduce the overhead for such tasks compared to using
memory mapped registers or similar for configuration. Considering the
extent to which the architecture relies on efficient integration of acceler-
ators and how a baseband application typically would make use of the
possibility of swapping memories between units, the small extra com-
plexity of the control path due to these special instructions can certainly
be justified.

Much of the configuration can also be carried out via a control reg-
ister file. The control register space is also used for e.g. data path and
interrupt configuration, and for communicating status information from
accelerators and other hardware components.

Pipelining

All non-vector instructions use three pipeline stages (fetch, decode, and
execute), except instructions reading from the network which use two ex-
ecution stages. Vector instructions have 5-8 pipeline stages.

70 The BBP1 Baseband Processor Architecture

PC

C
ontrol 0

C
ontrol 1

flags
interrupts

Program Flow Control
(jumps, interrupts,hardware loops etc.)

Control

Vector

check

instr.

instr. type

instr.

nop

Datapath

PM
Instruction

Decoder

count

Instruction

C
ontrol 5

Figure 7.3: The control path

Control Path Features

An overview of the control path of the processor can be found in figure
7.3. The control path complexity is similar to what can be found in sim-
ple DSP processors or micro controllers but with the addition of the vec-
tor instruction control unit which handles the multi cycle vector instruc-
tions. The control path has been kept very simple to eliminate control
overhead which is typically quite substantial in enhanced processor types
such as VLIW and superscalar processors. The vector instruction control
unit adds only little extra hardware. Much of the control path originates
from a previously developed extensible DSP processor [3].

Features of the control path include a zero overhead hardware loop
instruction and hardware PC and loop stacks, allowing fast interrupts,
subroutine jumps, and nested hardware loops. Operand stopping is used
to reduce power consumption.

The processor uses fast interrupts, meaning that only PC and status
registers are saved on interrupts. Data registers will have to be saved
manually. This simple approach was chosen because it allows very short
interrupt latency (five clock cycles in the worst case) and small hardware
cost. It was found that most interrupt handling routines in the applica-

7.2 Architecture Overview 71

tions of interest are simple tasks such as reconfiguration of the network
or some of the accelerators, which does not require context switching.

The processor uses programmable interrupt vectors (i.e. the interrupt
address for each interrupt source is programmable) for up to 8 separate
interrupt sources. This includes two external interrupt pins, timers, inter-
rupts from accelerators, and a special interrupt signaling the completion
of a vector instruction. Accelerators may generate interrupts after com-
pleting a task, after processing a certain number of samples or on events
such as packet detection (see section 7.6.7).

Pipeline conflict checks are not done by the hardware. This means that
undefined execution results may occur if illegal instruction sequences are
used (e.g. executing an instruction using the MAC unit when a vector
instruction is being executed). All such checks are instead done automat-
ically by the instruction set simulator during software development.

Although some dependency checking was implemented in the previ-
ous processor [3] it was not implemented in BBP1, mainly to save imple-
mentation and verification time. Such features are typically not as im-
portant in embedded processors since the applications are usually well
known and extensively simulated before deployment.

Register forwarding features are are of little interest in BBP1 since (1)
RISC instructions only have a single execution cycle, so the result is avail-
able for the next instruction anyway and (2) for network accesses it would
increase the critical path as long as the network is not further pipelined.
The only situation where it may be applicable is when a vector instruction
is followed by a data move from accumulator to general register.

7.2.3 The MAC Unit

The MAC unit is the most substantial part of the DSP core. It is opti-
mized for operations on vectors of complex numbers. Since such a sig-
nificant fraction of the convolution/multiply-accumulate based opera-
tions in baseband processing is complex valued it was found beneficial
to optimize the MAC unit for such computations even at the expense of

72 The BBP1 Baseband Processor Architecture

slightly larger overhead for real-valued computations. Figure 7.4 depicts
the MAC unit.

The unit contains two complex 12x12 bit multipliers (i.e. eight real
multipliers), two 32-bit complex adders (for accumulation 8 guard bits
and 8 precision bits are added to the 16 native bits), and two 16-bit com-
plex adders. It has four 32+32 bit accumulator registers. It can carry out
for example two complex multiply-accumulate operations or one radix-2
FFT butterfly each clock cycle. It also supports scaling, rounding, and
saturation of the result.

7.3 Vector Instructions

The introduction of vector instructions is the single most important nov-
elty in the design of the processor core. Through their introduction we
reach a higher efficency, smaller program size, and increased parallelism
during execution of complex vectors operations, such as vector addition,
scalar products, correlation, FIR-filtering, FFT, vector absolute maximum
search, etc.

The vector instructions have the following properties:

• They operate on vectors of complex numbers. The vector size can
be any number between 1 and 128 and is given explicitly in the in-
struction.

• The operand vectors are normally read from memory but may also
come directly from an accelerator or external interface (see further
section 7.4). The result is stored in memory or sent to an accelerator
or external interface, unless the result is scalar (i.e. the result of a
scalar product or max search) in which case it is stored in one of the
four accumulator registers.

• Vector instructions require multiple clock cycles to complete, de-
pending on the vector size. However other instructions not using
the MAC unit may execute in parallel with the vector instruction.

7.3 Vector Instructions 73

+/−+ +/−+

trunc trunctrunc trunc

CMUL12 CMUL12

shift

conj.

neg.

shift

round

shift

conj.

neg.

round

shift

SAT SAT

conjugate conjugate

trunc

trunc

"0" "0"

16b 16b 16b 16b

12b 12b 12b

24b 24b

12b

"0" "0"

ara arc

ardarb

AR0 AR1 AR2 AR3

conj/swap conj/swap

sgn. ext. sgn. ext.

opa opb

opa
opbfrom general register

from ports

I n p u t f r o m p o r t s

ara arb arc ardto ports or general registers

Figure 7.4: The MAC unit

74 The BBP1 Baseband Processor Architecture

only vector instruction: 53%

vector instruction + "free" instruction: 10%

instruction: 37%
only non−vector

Figure 7.5: Fraction of the execution clock cycles spent on vector instruc-
tions and other instructions

FFT.64 port1,port0 ; last layer of 64-point FFT

ADD R0,R1 ; “free” control flow instructions

MVR2CR R1,CR25

ACL dm0,read|0x00 ; setup addressing for...

ACL dm0,rstep|2 ; ...square abs max search

IDLE mac ; wait for FFT vector instruction to finish

SQRABSMAX.64 port2,AR0 ; find square absolute max value

Figure 7.6: Illustration of instruction parallelism. FFT.64 and SQRABS-
MAX.64 are vector instructions

The fact that other instructions, such as integer arithmetics and ac-
celerator and network configuration, can execute in parallel often allows
part of the cycle cost for control flow code to be hidden behind vector
instructions. This is illustrated in figure 7.6. Note that although vector
instructions and RISC instructions execute in parallel, they are not issued
in parallel. In other words, during the clock cycle the vector instruction
is started, no other instruction can execute. The first RISC instruction is
executed in the next clock cycle. This is illustrated in figure 7.7. It is this
fact that allows us to keep a very simple control path, instead of resorting
to a VLIW or superscalar solution.

Statistics collected from the execution of the implemented firmware
showed that approximately 20% of all non-vector instructions were hid-
den and executed without any extra cycle cost. Figure 7.5 shows the frac-
tion of the execution cycles spent executing vector instructions and non-
vector instructions. Table 7.1 gives some examples of vector instructions
and their use.

7.3 Vector Instructions 75

idle:
instruction
fetch stopped

clock cycles

ADD
MVR2CR
ACL
ACL
IDLE

FFT.64

ACC.64

interrupt from
vector ctrl.

FFT finished:

Figure 7.7: Timing for execution of the instructions in the code example
from figure 7.6

Vector Instructions vs. Hardware Loops

At a first glance the vector instructions may seem similar to single instruc-
tion hardware loops which are available in many general DSP processors.
However, there are a few important differences.

The most obvious difference is perhaps that no dedicated hardware
loop or repeat instruction is needed (saving one line of program code and
one clock cycle). More significant is however the possibility to execute
other instructions in parallel as described above. As a natural extension
to this concept it is also possible to add additional execution units with
their own vector instruction control units, thereby allowing several vector
instructions to execute in parallel on different execution units.

Another point worth mentioning is the fact that the vector instruction
control unit may implicitly handle any prolog/epilog processing, i.e. any
special conditions occurring at the start or end of a loop. One example
of this is the last step of a vector instruction of odd size, in which only
one operation is executed instead of two parallel operations which is the
normal case. This feature becomes even more important if the execution
units are made wider in order to further increase the computing capacity.
The two latter of these points are further discussed in section 7.7.

76 The BBP1 Baseband Processor Architecture

Table 7.1: Examples of vector instructions
MAC Scalar product, correlation, FIR filtering
VADD Vector addition
VMUL Elementwise vector multiplication, multiply vector

by scalar
FFT One layer of fast Fourier transform butterflies
FFT2 Includes frequency domain filtering in last layer of

and FFT, e.g. for OFDM channel equalization
SQRABS Vector elementwise square absolute value
SQRABSACC Sum of square absolute values, vector energy
SQRABSMAX Find value and position of maximum square abso-

lute value

7.4 The Accelerator Network

Most components are connected to the DSP core via the network. This
includes data memories, accelerators, and external interfaces (ADC, DAC
and MAC-layer interfaces). All components have essentially the same
interfaces (although data width may vary) and look the same to the pro-
cessor core.

The network behaves like a crossbar switch which is configured en-
tirely by the core by way of dedicated instructions. This eliminates the
need for arbitration and addressing logic thereby reducing the complex-
ity of the network and the accelerator interfaces while still allowing many
concurrent communications. Since some units will never need to commu-
nicate directly, the complexity of the network can be further reduced by
applying restrictions to what connections are possible.

Each network port consists of a pair of one read port and one write
port. A connection is set up by connecting one read port to one write port.
The reading unit requests one word of data by asserting a ReadRequest sig-
nal during one clock cycle and the transmitting unit uses a DataAvailable
signal to indicate that new data is available on the port. The requesting
unit may have up to two outstanding read requests, but must then halt

7.4 The Accelerator Network 77

if no data available signal is received. This simple protocol allows a new
data item to be communicated every clock cycle, but still provides suffi-
cient flow control. Figure 7.8 shows examples of network transactions.

(data not ready...)

reader stall cycles:

DAV:

data:

RR:

data:

DAV:

RR:

Reading from a slow accelerator:

Reading from a memory (reader is never stalled):

Figure 7.8: Network transaction examples

The network in BBP1 has 16 ports, two of which are connected to the
core, five to data memories, and the remaining to accelerators or external
interfaces.

7.4.1 Accelerator Chaining and Function Level Pipelining

A chain of network components connected together will automatically
synchronize and communicate without any interaction from the proces-
sor core. This is a very important feature which allows truly concurrent
operation of the core and any number of accelerators. It also reduces
the number of memory accesses since no intermediate memory storage
is needed when sending data between accelerators.

Accelerator chaining also enables a type of function level pipelining.
This is illustrated for an OFDM receiver in figure 7.9. At the same time
the core is computing the FFT for one symbol, the previous symbol could
be processed by a chain of accelerators for demapping, interleaving, and

78 The BBP1 Baseband Processor Architecture

channel decoding, while the next symbol is received, decimated, and dero-
tated by the front end accelerator (see 7.6) and stored in memory.

Synchronization between the pipeline steps can be achieved by inter-
rupt signals from accelerators upon completion of tasks, by timers, or by
a sample counter feature in the front-end accelerator.

n n+1 n+2
Timeslots:

Symbol n+2Symbol n Symbol n+1

Symbol n+1Symbol n

Symbol n

Pipeline stage 1
(front−end accelerator)

Pipeline stage 2

Pipeline stage 3
(accelerator chain)

(DSP core) channel
compensation

compensation

bits to MAC−layer

samples from DAC,
decimation,

FFT,

frequency offset

demapping,
decoding,

Figure 7.9: Function level pipelining

7.5 Data Memory Architecture

As mentioned earlier, reducing the amount of memory and memory ac-
cesses was a major goal in the design. Using a number of small data mem-
ories gives enough memory bandwidth to keep the core and MAC fully
occupied while simultaneously buffering incoming data from the radio
front-end interface and feeding accelerators or the MAC-layer interface.

Since the memories are so small and thereby fast, there is no need for
cache memories. Thereby a major source of control overhead and unpre-
dictability is eliminated. The network always gives a unit (core or accel-
erator) exclusive access to a memory. This eliminates stall cycles due to
access conflicts and gives a highly predictable architecture.

Another important feature of the architecture is the possibility of switch-
ing memories between units. In other words, when e.g. the DSP core has

7.5 Data Memory Architecture 79

finished a computation on a block of data, the entire memory contain-
ing the result can be “handed over” to another unit by reconfiguration of
the network. This eliminates data moves between memories and almost
eliminates the communications overhead in terms of core clock cycles for
sending data between core and accelerators. The only remaining over-
head is typically 1-2 clock cycles for reconfiguration of the network and
1-4 clock cycles for configuration of the memory addressing.

7.5.1 Address Generation

Address generation is carried out by address generation logic in each
memory block. This means that no addressing information has to be sent
over the network. It also eliminates the need for address generators in the
accelerators.

In the simplest case, the address generation unit in a memory block
is initialized by setting a base address and an increment register. In most
cases the increment register value will be one, e.g. for fetching consecu-
tive elements of a vector one at a time, or two if two vector elements are
fetched in parallel, see below.

All memories in BBP1 also support modulo addressing for implemen-
tation of circular buffers. The four complex data memories DM0-DM3
also support bit-reversed addressing for FFTs.

To increase the memory bandwidth all memories except IM consists of
two interleaved memory banks. Thus all odd addresses are in one bank
and even addresses in the other, allowing consecutive addresses (vector
elements) to be accessed in parallel. The implementation of the interfaces
for these units are essentially two network ports with shared control logic
(i.e. both data, ReadRequest, and DataAvailable signals are doubled, but
the control logic is not).

One argument against each memory having its own address genera-
tor is that accelerators may use special addressing schemes and then it
would be more natural to have the address generation in the accelerator
instead. Otherwise each memory block that could potentially commu-

80 The BBP1 Baseband Processor Architecture

nicate with the accelerator would need to support a special addressing
mode. However, it turned out that in fact all accelerators in BBP1 only
uses post-increment addressing with an increment of one, i.e. always
reading/writing consecutive vector elements one at a time. Therefore the
used solution is more beneficial.

One operation that typically is associated with irregular addressing is
interleaving. However, since this is a bit level operation it is much more
efficient to implement the interleaving with an entirely specialized mem-
ory structure, i.e. the interleaver accelerator will have its own memory,
designed specifically for interleaving, and the input and output to the
network will still use linear addressing. Such a block has been described
earlier [4].

A similar case would be an accelerator for FFT which may be a good
idea for OFDM based standards using very large FFTs, e.g. DVB. In that
case it is also believed that a better idea would be to have dedicated cus-
tomized memory blocks in the FFT accelerator, thereby eliminating the
need for FFT addressing for other memories. One possible design of an
accelerator for FFT, DCT, and Walsh transform (used at the higher data
rates in 11b) has also been described [5].

One final example, which is of interest especially in CDMA systems,
is addressing in a programmable solution for rake receivers. This was
discussed in [6].

Another solution is to use special address generator components con-
nected to the network [7]. This is however not suitable in the presented
architecture due to increased latency, increased number of required net-
work ports, and increased network traffic among other things.

7.6 Function Level Acceleration for BBP1

This section will briefly describe the hardware accelerators used in BBP1.
Acceleration decisions are based on MIPS costs (see appendix A) and es-
timated hardware cost for each function in the IEEE 802.11a and b stan-
dards.

7.6 Function Level Acceleration for BBP1 81

7.6.1 Channel Coding

IEEE 802.11a uses a convolutional encoder for channel coding and the
Viterbi algorithm for decoding. Puncturing is used to achieve different
code rates. Both these functions are good candidates for acceleration, as
stated in section 5.2. Since convolutional encoding and Viterbi decoding
never run simultaneously the two functions are built into the same accel-
erator unit in order to save network ports and configuration logic.

7.6.2 Scrambling

To cover 11a and 11b scrambling and descrambling, three different modes
are needed (since for 11a scrambling and descrambling are identical). The
three different functions are very similar. A multi-mode scrambler can
easily be designed and uses very little hardware. Figure 7.10 shows the
kernel logic of the scrambler.

xor x x x x1 2 3 4 x x x5 6 7

xor

mode

in

out

Figure 7.10: Combined IEEE 802.11a/b scrambler/descrambler

7.6.3 Interleaving

IEEE 802.11a uses a block interleaver. The block size is equal to one OFDM
symbol, i.e. between 48 and 288 bits depending on the data rate. The
multi-mode block interleaver described in [4] is used.

82 The BBP1 Baseband Processor Architecture

7.6.4 Demapping

Demapping is rather cycle consuming for large constellations such as 16-
QAM and 64-QAM and acceleration is needed to reach enough through-
put at the highest data rates for 11a. The demapper is a simple unit based
on four small adders.

7.6.5 Walsh Transform

A modified Walsh transform plus absolute maximum value search are the
kernel operations of the CCK demodulation used in 11b. Acceleration of
these steps decreased the required clock frequency for 11b reception at the
highest data rate by approximately 60 MHz. The hardware in the imple-
mented accelerator contains 15 adders and and two multipliers making
this the second largest accelerator after the Viterbi decoder.

7.6.6 CRC

CRC check sums are used for the 11b header and for the MAC frames (the
MAC layer is the same for both standards). The cycle cost for software im-
plementation would not be very high if only the 11b PHY checksum was
implemented, but it does require a substantial amount of data memory
for look-up table storage. The core of the CRC hardware is similar to the
scrambler and consists of a feedback shift register and three XOR-gates.

7.6.7 Front-End Accelerator

The front-end accelerator contains the interfaces to ADC and DAC, a con-
figurable FIR filter that can be used for symbol shaping or decimation, a
rotor (essentially an NCO and a complex multiplier) used for frequency
offset compensation, and a packet detector based on auto correlation used
to wake the processor from sleep mode when an incoming packet is de-
tected. These functions are used by many standards, runs much of the
time, and especially the filtering can be rather demanding.

7.7 Design Variations and Scalability Issues 83

7.7 Design Variations and Scalability Issues

7.7.1 Scalability - Increasing Computing Capacity

As mentioned in section 7.3, a natural extension of the vector instruction
concept would be to add more execution units with their own vector ex-
ecution control. It would then be possible to execute multiple vector in-
structions in parallel. The cost of this, apart from the extra execution units
themselves, would be the additional vector execution controllers and net-
work ports. The cost of the vector execution control unit is very low and
increasing the network size is also not believed to be a problem in a prac-
tical case, see section 7.7.3.

Another way of increasing computing capacity would be to increase
the width of the execution units, e.g. using a 4-way complex MAC unit in-
stead of a double complex MAC. The two main complications this would
introduce is: (1) Increased memory bandwidth requirements to keep the
unit fully occupied and (2) more complex prolog/epilog processing.

The first of these problems could be handled either by increasing the
number of memory blocks, which would imply that the number of net-
work ports would also be increased, or by making the memories wider.
The latter solution seems more attractive, since it does not increase the
logical depth of the network and gives lower control complexity. The
slightly reduced flexibility with that solution is not believed to be an is-
sue since vector elements are most often accessed sequentially.

The more complicated prolog/epilog conditions would lead to a slight-
ly more complex vector execution control unit. Note however that this
complexity otherwise would have to be handled explicitly in the program
by extra assembly instructions (as in a VLIW or SIMD processor) and/or
conditional execution.

A possible configuration for future implementations of this architec-
ture was presented in [6]. Here the MAC unit has been extended to a
4-way unit and a 4-way complex ALU unit primarily optimized for de-
spread and rake processing has been added. This configuration will sup-
port most current OFDM and CDMA standards.

84 The BBP1 Baseband Processor Architecture

7.7.2 Simultaneous Multi-Standard Processing

One issue that was not addressed in BBP1 is the possibility of handling
standards using full duplex or even running multiple standards simulta-
neously. In a practical case it is not obvious that one actually will want
to run multiple standards simultaneously on the same processor, mainly
due to the scheduling and certification issues mentioned below. A multi-
processor solution in which all simultaneously active baseband applica-
tions run on separate processors would simplify things in both these as-
pects. Nevertheless, the following issues have been identified and may
be considered in future work:

Fast Context Switching

As mentioned in section 7.2.2, the need for supporting context switch-
ing on interrupts was not found in the applications for which BBP1 was
designed. However, in order to process several separate flows simultane-
ously, fast context switching on interrupts would be helpful. One possi-
ble solution is something similar to what is used for fast interrupts in the
ARM architecture [8], i.e. to duplicate some or all of the general registers
and swap to a new set of registers in a single clock cycle on interrupts.

Multiple Front-End Interfaces

The implemented radio front-end interface allows simultaneous reception
and transmission and can therefore in principle handle the full duplex
case. It is also possible to add several front-end interface blocks of the
same type (or any other kind of interface for that matter) in order to han-
dle simultaneous reception and transmission of multiple streams. In that
case, more memory blocks would probably also be added for buffering in
the different streams.

7.7 Design Variations and Scalability Issues 85

Scheduling Issues

One very important issue that has not been thoroughly investigated is
scheduling. In the implemented firmware each standard has been indi-
vidually statically scheduled by hand and the feasibility of the schedule
has been proven in simulation. Scheduling of multiple simultaneously
running standards is much more complex and dynamic scheduling may
be necessary. Approaches to scheduling and the need for scheduling tools
will be further investigated.

Certification

One issue that has come up in the context of simultaneous multi standard
processing is that of certification. Any radio device must go through a cer-
tification process to ensure that it will behave correctly in the system and
not interfere illegally with other devices. This is typically a rather time
consuming and costly process. A multi-standard device must go through
a certification process for each of the supported standards. One risk is
that if the firmware of different standards are intertwined and running
simultaneously on the same processor, a modification of the firmware for
one standard would make it necessary to recertify the device for all im-
plemented standards. The cost of this process may be prohibitively high.

7.7.3 The Network

In the implemented BBP1 demonstrator chip (see section 8.4) the network
has 16 ports. This network constitutes approximately 10% of the logic
area and has no critical signal paths. However, since the size of a full
crossbar grows as the square of the number of ports, and the logic depth
grows as the logarithm of the number of ports, a limit on the number of
ports will eventually be reached with the current network architecture.

In practical cases this is not believed to be a problem since the number
of ports will not be so much larger.

As previously discussed, the network complexity can be reduced by
restricting the crossbar. One solution of interest would be to divide the

86 The BBP1 Baseband Processor Architecture

network into two separate networks: One handling complex valued data
and one handling bit oriented data. The mapper/demapper accelerator
and the core could act as bridges between the two networks.

Finally it should be mentioned that the next generation processors in
this project will use fewer rather than more network ports. For example
the possibility of building a general bit manipulation processor to replace
both CRC, scrambling, channel encoding, and interleaving accelerators
will be investigated.

Bibliography

[1] Eric Tell, Anders Nilsson, and Dake Liu, “A programmable DSP core
for baseband processing,” in Proceedings of IEEE Northeast Workshop on
Circuits and Systems (NEWCAS), June 2005.

[2] Eric Tell, Anders Nilsson, and Dake Liu, “A low area and low power
programmable baseband processor architecture,” in Proceedings of the
5th International Workshop on System-on-Chip for Real-Time Applications
(IWSOC), July 2005.

[3] Eric Tell, Mikael Olausson, and Dake Liu, “A general DSP processor at
the cost of 23k gates and 1/2 a man-year design time,” in Proceedings of
IEEE International Conference on Acoustics, Signal, and Speech Processing
(ICASSP), pp. 657–660, Apr. 2003.

[4] Eric Tell and Dake Liu, “A hardware architecture for a multi mode
block interleaver,” in Proceedings of the International Conference on Cir-
cuits and Systems for Communications (ICCSC), June 2004.

[5] Eric Tell, Olle Seger, and Dake Liu, “A converged hardware solution
for FFT, DCT and Walsh transform,” in Proceedings of the International
Symposium on Signal Processing and its Applications (ISSPA), pp. 609–
612, July 2003.

7.7 Design Variations and Scalability Issues 87

[6] Anders Nilsson, Eric Tell, and Dake Liu, “A programmable SIMD-
based multi-standard rake-receiver architecture,” in Proceedings of EU-
SIPCO, Sept. 2005.

[7] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and
J. M. Rabaey, “A 1-V heterogeneous reconfigurable DSP IC for wire-
less baseband digital signal processing,” IEEE Journal of Solid State cir-
cuits, vol. 35, pp. 1697–1704, Nov. 2000.

[8] David Seal, ed., ARM Architecture Reference Manual, 2nd ed. Addison-
Wesley, 2000. ISBN 1-201-73719-1.

88 The BBP1 Baseband Processor Architecture

Chapter 8

Implementation

8.1 Introduction

To prove the feasibility of the presented architecture, the programmable
WLAN processor described in chapter 7 has been implemented together
with design tools and firmware for IEEE 802.11a and IEEE 802.11b. This
chapter will give a brief overview of these various parts.

8.2 Design Tools

An assembler and an instruction set simulator, as described in section 3.3,
were developed as soon as the first draft of the instruction set was com-
pleted. These tools have later been updated according to the design itera-
tions of the ISA as well as to add various features to increase their usabil-
ity for RTL verification, firmware debugging, and benchmarking/profil-
ing.

8.2.1 The Assembler

The assembler was implemented in C++ using the Flex lexical analyzer
generator [1], and Bison compiler generator [2]. It is based on a generic
assembler implemented by Dr. Daniel Wiklund.

89

90 Implementation

8.2.2 The Instruction Set Simulator

The bit-true and cycle-true instruction set simulator was implemented in
C++. The simulator features include:

• Standard debugging features for observability and controllability,
breakpoints, etc.

• Data dependency checking (read-write, write-read, and write-write
dependencies) and structural pipeline hazard checking. No such
checks are performed in the hardware, as mentioned section in 7.2.2.

• Tracking of undefined data values.

• Possibility to load/save memory contents and input/output data in
various file formats to simplify exchange of data with other appli-
cations, e.g. Matlab and RTL simulators.

• Possibility to run script files and use batch mode execution.

Organization of the Simulator

The organization of the simulator is illustrated in figure 8.1.
The bottom layer consists of completely hardware independent classes

for bit true arithmetic operations on various data widths and tracking
of undefined values. There are also classes for support of scheduling,
dependency checking, and logging as well as base classes for defining
operations and instructions.

The middle layer consists of one class that stores the complete state
of all hardware except for accelerators, and classes for describing all op-
erations that instructions can perform on the hardware. Each instruction
is described by a class that defines which operations it performs in each
pipeline stage. There are also classes describing different types of accel-
erators. Which accelerators should be instantiated and which network
ports they are connected to can be defined at runtime.

The next layer is a simulator class with methods for controlling the
hardware, execution of instructions, breakpoints, etc. Finally, a user in-

8.2 Design Tools 91

Hardware
independent
classes

(hardware state)
processor

simulator

arithmetic
operations scheduling base class for

operations

base class for
instructions

dependency
checking logging

Hardware
description

Simulator
interface

user
interface

accelerators instructions

operations

Figure 8.1: Organization of the instruction set simulator

terface layer is implemented to let the user interact with the system via
the simulator class. The currently used implementation has a simple text
based user interface, but a GUI is under development.

The simulator was designed to allow easy plug-in of accelerators and
to be simple to reuse for future architectures.

Simulator Execution Flow

Figure 8.2 depicts the flow used in the simulator to achieve cycle-true ex-
ecution. When an execution command is issued by the user the simulator
will fetch the next instruction from program memory at the address given
by the program counter (PC). The resource usage table of the instruction
is first checked against already scheduled instructions. If any resource us-
age conflict is found an error message is printed and execution is stopped.

Otherwise data dependency checking is done. If a possible data de-
pendency error is found, a warning is displayed (the most common case

92 Implementation

clear stall flag

save accelerator results

execute accelerators

data dependency check

fetch instruction at PC

schedule operations for
new instruction

from user
’execute’ command

execute scheduled operations

single step execution?

break point?

end of program?

set stall flag

user input
halt, wait for

update PC

scheduling conflict? error message

save operation execution results

stall flag?

N

Y

N

Y

Y

Y

Y

Y

N

N

N

N

stall?

Figure 8.2: Simulator execution flow chart

8.3 Firmware 93

is that the instruction tries to use a result of a previous calculation which
is not yet completed). Next, all the sub-operations of the instruction is
scheduled into their respective time slot (pipeline stage).

Each of the accelerators reads any input data and executes one clock
cycle. The resulting output is not yet made available to other units, since
they may still need data from the previous clock cycle. This way synchro-
nization is kept.

Next all operations scheduled for the current clock cycle (belonging
to one or more previous instructions) are executed. If any operation can
not execute due to network delays a stall flag is set and no result from
any operation will be saved. Instead all instructions will be delayed one
clock cycle and operations that was executed the current clock cycle will
be executed again during the next clock cycle.

If the processor was not stalled, the results of instruction execution are
stored and PC is updated. The next PC value is a function of interrupt
conditions, control flow instructions, hardware loops, and the status of
the idle flag. Delayed jumps are implemented by scheduling a PC-update
operation in a later clock cycle. The idle flag is set by the IDLE instruction
and cleared when an interrupt occurs.

After saving all results produced by instructions, the outputs from ac-
celerators are also saved (regardless of the stall flag). Execution is now
stopped if a break point or the end of the program is reached. Otherwise
execution continues. If either of the stall or idle flags are set, no new in-
struction is fetched during the next clock cycle.

8.3 Firmware

11a and 11b transmitters and receivers have been scheduled onto the de-
scribed architecture and firmware has been implemented. The perfor-
mance of the processor was evaluated in terms of the minimum clock
frequency necessary to meet all latency and throughput requirements at
the highest data rate in each standard (54 Mbit/s in 11a and 11 Mbit/s in
11b). Table 8.1, shows the required frequencies and the program and data

94 Implementation

Table 8.1: Firmware implementation results
Task Required freq. Program size Data memory

11a Tx 155 MHz 1020 bytes 3456 bytes
11a Rx 160 MHz 1658 bytes 2340 bytes
11b Tx 120 MHz 476 bytes 484 bytes
11b Rx 110 MHz 1090 bytes 304 bytes

memory usage for each module.

The frequency limit for the 11b receiver is imposed by the throughput
requirements at the highest data rate while the 11a receiver has through-
put requirements and latency requirements for minimum size packets
that are approximately equally restricting. For both transmitters through-
put requirements are the limiting factors.

The required program and data memory sizes are small, proving the
efficency of the instruction set and the memory architecture. A combined
11a and 11b firmware would require approximately half of the available
program and data memory on the demonstrator chip. The requirements
are lower than the sum of the figures in the table since a lot of the data
memory and some subroutines are reused between modules.

A detailed description of the scheduling and hardware mapping is
provided in appendix B. Since this is the first firmware version it is be-
lieved that further optimizations of the code should be possible. It is also
possible to make other trade-offs between cycle cost and program size.

8.4 Prototype Chip

The design was implemented in VHDL using the HDL Designer tool from
Mentor Graphics. Mentor Graphics’ ModelSim was used for RTL simula-
tion, verification, and post synthesis net list simulation. Output from the
instruction set simulator was used as golden results.

Synthesis and backend flow was carried out using Synopsis backend
tools. An Artisan standard cell library and memory generator was used.

8.4 Prototype Chip 95

The chip was manufactured in a 0.18 µm CMOS process from Chartered
Semiconductor Manufacturing (CSM).

Power consumption is quoted at 160 MHz since that is the clock fre-
quency that would be used for IEEE 802.11a or IEEE 802.11g processing.
The quoted idle power is measured after execution of the IDLE instruc-
tion, meaning that instruction fetching is stopped but all clocks are still
running at full speed.

Figure 8.3 shows a photo of the manufactured chip. All white boxes
are memories. PM is the program memory and the remaining boxes are
data memories. Table 8.2 summarizes the chip features.

The chip does not include the Viterbi decoder. It was skipped in order
to meet the tapeout deadline. Hardware implementation of the Viterbi
algorithm is a well explored area [3]. The silicon area of a Viterbi decoder
for IEEE 802.11a is estimated to approximately 1 mm2.

Table 8.3 shows the approximate area used by different parts of the
processor. The estimations for individual logic blocks may be inexact
since it is based only on the fraction of the logic cell area (and not the rout-
ing area) occupied by each block. The network in particular is expected
to use a larger fraction of the logic area because of the large amount of
interconnects in that block.

Table 8.2: Chip feature summary
Feature Value
Technology 0.18 µm CMOS
Chip area 5 mm2

Memory area 1.0 mm2

Logic area 1.9 mm2

Max frequency 240 MHz
Package 144 pin fpBGA
Power consumption @160 MHz:
Idle 44 mW
Peak for 11a Reception 126 mW

96 Implementation

Figure 8.3: Die photo

Table 8.3: Chip area usage
Component Area Fraction of total area
Control path 0.18 mm2 6.1%
MAC unit 0.46 mm2 15.8%
Core data path except MAC 0.20 mm2 7.0%
Memory addressing and control 0.22 mm2 7.7%
Network 0.17 mm2 5.9%
Accelerators 0.66 mm2 22.9%
Logic total 1.89 mm2 65.4%
Program memory 0.30 mm2 10.4%
Data memories 0.70 mm2 24.2%
Memory total 1.00 mm2 34.6%

8.5 Test Board and Measurement Setup 97

8.5 Test Board and Measurement Setup

A printed circuit board for test purposes was built. In addition to the
BBP1 chip the board has an Atmel AVR microcontroller that is used for
booting and controlling the BBP1 via a serial cable from a PC. The BBP1
can be clocked by an oscillator on the board, by an external clock, or by
a slow clock generated by the microcontroller. For measurements, the
board is connected to a Tektronix TLA721 pattern generator and logic an-
alyzer system.

The chip was tested with the same test suits that were used for RTL
verification and with the implemented 11a and 11b transmitter and re-
ceiver firmware. Receivers were tested with ADC data generated by be-
havioral models and with recorded air data. The chip functions correctly
up to a clock frequency of approximately 240 MHz.

For power measurements, a special program was designed that con-
tinuously computes 64-point FFTs and simultaneously operates most ac-
celerators as well as ADC and MAC interfaces. This is believed to corre-
spond to the peak power conditions during 11a processing.

Bibliography

[1] Free Software Foundation, GNU Flex 2.5 – Reference manual.
http://www.gnu.org/software/flex/manual/, 2005.

[2] Free Software Foundation, GNU Bison 2.0 – Reference manual.
http://www.gnu.org/software/bison/manual/, 2005.

[3] S. Bitterlich and H. Meyr, “Efficient scalable architectures for Viterbi
decoders,” in Proceedings of the International Conference on Applications-
Specific Array Processors, pp. 89–100, Oct. 1993.

98 Implementation

Part IV

Conclusions and Future
Work

99

Chapter 9

Conclusions

This chapter summarizes some of the most important conclusions and re-
sults from the presented work. This includes general conclusions regard-
ing programmable baseband processing, a unique programmable base-
band processor architecture, and demonstration of the architecture in a
manufactured demonstrator chip running application firmware at full
speed.

9.1 Issues in Design of Programmable Baseband

Processors

Design of programmable baseband processors has been discussed. Start-
ing from general knowledge in design of application specific processors,
the specific properties and requirements of baseband processing applica-
tions have been studied. The focus has been on low-cost and low-power
architectures useful in handheld wireless terminals.

Some general conclusions regarding design of programmable base-
band processors have been drawn:

Complex-valued computations: A large part of the computations in base-
band processing is convolution-based operations on complex data.
Convolution-based operations can in general be implemented ef-
ficiently in programmable processors (i.e. general DSP processors).

101

102 Conclusions

By introducing instructions and data paths for complex calculations,
complex convolution-based functions can also be implemented effi-
ciently.

Function level acceleration: Making the right choice of accelerators is im-
portant to reach a power- and area-efficient solution. Bit manipula-
tion operations such as scrambling, CRC, and channel coding are
usually inefficient in software but have very small hardware imple-
mentations. These operations are therefore often good candidates
for acceleration although the MIPS may not be very high. Viterbi
and Turbo decoding should be accelerated in most cases. These
operations occur with small variations in many standards, making
configurable accelerators a good choice. It is also a good idea to
accelerate some operations close to the ADC/DAC interface, such
as symbol shaping, decimation, and frequency offset compensation.
Such functions are used in most standards, are running a large frac-
tion of the time, and are rather computing intensive at high sample
rates.

Since the data blocks in baseband processing are usually small, it is
important to integrate the accelerators in the architecture in a way
that provides low communication and control overhead.

Memory issues: The amount of memory required in a baseband proces-
sor is generally low but the required memory bandwidth is often
relatively high. High memory bandwidth can be reached either by
using wider memories, several memory banks, or dual port memo-
ries. The memory access patterns in baseband processing are known
in advance and often very regular. Therefore dual port memories,
being the most flexible but also the most costly solution, usually can
and should be avoided.

9.2 An Architecture for Efficient Baseband Processing 103

9.2 An Architecture for Efficient Baseband Pro-

cessing

A programmable baseband architecture has been presented. The architec-
ture enables a good tradeoff between flexibility and performance and has
proven to result in area- and power-efficient implementations of multi-
standard programmable baseband processors.

Important novel features are:

• Vector instructions in which the vector size is given explicitly in
the instruction. This saves program memory and allows instruction
level parallelism without significant increase of control path com-
plexity.

• An instruction set optimized for baseband processing, including
vector instructions for operations on complex data.

• A scheme for interconnection of accelerators, memories, and pe-
ripherals to the programmable core via a configurable network. This
scheme allows a high degree of parallelism and low overhead for
communication and accelerator configuration. This is achieved by
using a simple network which is statically scheduled and config-
ured by the programmable core. The network is closely coupled to
the instruction set architecture e.g. in terms of dedicated instruc-
tions for network and accelerator configuration.

9.3 Implementation Results

A demonstrator chip was manufactured to prove the architecture. The
implemented processor was optimized for the WLAN standards IEEE
802.11a, b, and g. It includes accelerators for front-end operations, demap-
ping, scrambling, CRC, interleaving, channel coding, and modified Walsh
transform.

11a and 11b baseband PHY was mapped and scheduled on the archi-
tecture. Firmware was developed and tested on the manufactured chip.

104 Conclusions

The required silicon area is similar to what can be reached in a fixed func-
tion 11a/b baseband solution.

Measurements proved that the chip can operate at significantly higher
speeds than those needed for the mentioned standards. Power consump-
tion was also found to be competitive to fixed function solutions.

The ultimate conclusion is that the central ideas of the presented archi-
tecture are useful for implementation of low-cost, low-power program-
mable baseband processors, suitable for handheld multi-standard wire-
less terminals.

Chapter 10

Future Work

This chapter summarizes different directions the future work in this proj-
ect may take. Much of this has already been touched upon in previous
chapters. Some of the points are just small implementation issues or
instruction set modifications and some could be entire PhD projects in
themselves. Some things are already being taken care off and some prob-
ably never will.

10.1 ISA Improvements

The programmer and compiler friendliness of an instruction set may be
an important issue which has not been deeply considered so far in this
project. Based on the experience from firmware development and design
of a C-compiler for BBP1, some areas for improvements have be identi-
fied and are currently being implemented. Some concrete examples of
improvements are better support for software stacks and context switch-
ing.

10.2 Architecture Scaling

Ways of improving performance, such as using more and wider vector
execution units, was discussed in section 7.7. Much of this is currently

105

106 Future Work

being investigated for the next generation of the architecture.

Related issues which have not been studied so far are multiple core so-
lutions and scheduling issues, especially for running multiple standards
simultaneously.

10.3 Acceleration

The Viterbi accelerator that is needed by IEEE 802.11a/g and other stan-
dards is not yet available. A Viterbi or combined Viterbi/turbo decoder
should be implemented. For example 3G standards and WiMax also use
Reed-Solomon codes. Acceleration of Reed-Solomon decoding has so far
not been studied at all in this project.

Another idea that has been considered is to design a more general
bit manipulation processor that could handle many of the less complex
bit manipulation tasks, such as channel coding, scrambling, CRC, and
possibly interleaving.

Support for MIMO is certainly of great interest for the future. So far
an initial study has been carried out. Some results from this can be found
in [1].

10.4 Low-Power Features

Several generally available low power features may be considered for fu-
ture implementations. Thanks to the modular architecture, clock gating
for unused accelerators should be relatively straight forward to imple-
ment. Data-width masking may also be considered together with a more
methodical way of determining data precision requirements.

10.5 Hardware

Having a hardware platform including ADC/DAC, radio, and MAC as
well as the baseband processor would be invaluable for demonstration

10.6 Firmware Design Tools 107

purposes. Access to a radio front-end and ADC/DAC will also be nec-
essary in order to gain a better understanding of what the real problems
are and to look further into issues such as automatic gain and frequency
control and the effects of radio impairments. These issues have not been
sufficiently investigated so far in this project.

A hardware platform including radio, ADC/DAC, a high performance
FPGA capable of running the baseband processor, and an ARM7 TDMI
processor for control and MAC processing is currently being designed by
Lic. Eng. Anders Nilsson.

10.6 Firmware Design Tools

More advanced design tools may be needed with a more complex archi-
tecture. If multiple standards should run simultaneously, tools to help
scheduling are probably needed. If multi-processor solutions are used, a
multi-processor simulation platform will be needed.

Bibliography

[1] Haiyan Jiao, Anders Nilsson, Eric Tell, and Dake Liu, “MIPS cost es-
timation for OFDM-VBLAST systems,” in paper submitted for review,
2005.

108 Future Work

Part V

Appendix

109

Appendix A

Application Profiling and
Benchmarking

This appendix contains an overview of profiling and benchmarking fig-
ures that motivate the presented architecture and the choice of instruction
set.

As a starting point, table A.1 gives an overview of the types of opera-
tions that are used in the WLAN applications for which the processor was
designed (IEEE 802.11a [1] and IEEE 802.11b [2]). The focus is on the re-
ceiver flow since that is more demanding than the transmitter processing.

In the table, CMUL stands for operations based on complex multipli-
cations and CMAC for operations based on complex multiply-accumulate
operations (such as correlation, filtering, or scalar products).

Table A.2 shows the estimated MIPS capacity needed for the differ-
ent functions in a general DSP processor in order to meet the timing re-
quirements from the standards, assuming that a complex MAC unit ex-
ists. Most numbers were previously published in [3].

In order to reach a moderate clock frequency (no more than 200 MHz)
without excessive hardware it is necessary to accelerate the receive/dec-
imation filter and the Viterbi decoder. It is also suitable to accelerate
demapping, interleaving, scrambling, and CRC, considering the negligi-
ble hardware size for these operations. Software implementation of CRC

111

112 Application Profiling and Benchmarking

Table A.1: Summary of IEEE 802.11a/b receiver processing
Function IEEE 802.11a IEEE 802.11b
Receive filtering FIR filter FIR filter

CMAC CMAC
Packet detection Auto correlation on short pi-

lots
Auto correlation on preamble

CMAC CMAC
Fine synchronization Frequency-domain cross cor-

relation on long pilot
Cross correlation with barker
sequence

FFT, CMUL, IFFT, absolute
maximum search

CMAC, absolute maximum
search

Frequency offset esti-
mation

Calculate argument of pi-
lots autocorrelation. Tracking
based on pilot tones

Not needed thanks to differ-
ential modulation

CMAC and cordic algorithm
Frequency offset Rotor Not needed thanks to
correction CMUL differential modulation
Channel estimation Frequency-domain channel

estimation based on long
pilots

Cross correlation with barker
sequence, uses result from
synchronization step

vector addition, FFT, CMUL
Channel equalization Each sub-carrier multiplied

by individual compensation
factor

Channel-matched filter

CMUL CMAC
Domain translation FFT barker despread CMAC
Demapping BPSK, QPSK, 16-QAM, 64-

QAM
DBPSK/DQPSK: CMUL +
BPSK/QPSK
CCK: Modified Walsh trans-
form + absolute maximum
search + DQPSK

Deinterleaving Block interleaver -

Error correction Viterbi algorithm -

Descrambling 8-bit LFSR 8-bit LFSR

Error checking CRC-32 for MAC frame CRC-16 for PLCP Header
CRC-32 for MAC frame

113

Table A.2: IEEE 802.11a/b MIPS costs at highest data rates
Function 11a 11b
Receive filter 600 660
Packet detection 80 44
Synchronization and channel estimation 108 12
Frequency offset compensation 80 -
Channel compensation 16 60
FFT/Walsh 108 160
Demapping 108 22
Deinterleaving 270 -
Viterbi 4000 -
Descrambling 162 33
CRC 37 5.5

also consumes significant data memory for look-up table storage, espe-
cially since 11b would need both a CRC-16 and a CRC-32 table.

Focusing on the remaining operations, the first observation that can be
made is that they are almost entirely based on complex-valued data. It is
therefore beneficial to go for an architecture that handles complex valued
data natively.

Secondly it can be observed that for 11a (as for any OFDM standard),
FFT calculations constitutes a very large part of the total computing load.
Hence computation of FFT should be accelerated either on function or
instruction level.

During continuous processing of data symbols, one 64-point FFT must
be computed for every symbol, i.e. every 4 µs. Assuming that a radix-2
FFT algorithm is used, every 64-point FFT consists of 192 butterflies. This
gives an average of 192/4 · 10−6 = 48 · 106 butterflies per second. The
available time for synchronization and channel estimation gives a similar
value for the FFT computing requirements for that part of the flow. With
somewhere between 1/4 and 1/3 of the computation time budgeted for

114 Application Profiling and Benchmarking

the FFTs, this means that an FFT instruction allowing one radix-2 butter-
fly to be calculated every clock cycle should be enough to reach a clock
frequency below 200 MHz.

Next to FFT calculations, the biggest challenge in 11a is the heavy
processing in the beginning of each frame which must be finished early
enough to reach the latency requirements given by the short intra frame
pacing (SIFS, see appendix B.1) for minimum size packets. This process-
ing mostly consists of heavy multiplication/MAC based computation for
synchronization and channel estimation. A data path including two com-
plex multipliers was therefore deemed necessary to meet the latency re-
quirements.

The SIFS requirement is less challenging for 11b. The largest prob-
lem is instead to reach enough throughput at the highest data rate (11
Mbit/s). The most cycle consuming function in 11b is the modified Walsh
transform (see table A.2).

The first instruction set architecture proposal included dual complex
MAC vector instructions, as described in section 7.3, and instruction level
acceleration for FFT and Walsh transform.

During early benchmarking of the 11a receiver on the instruction set
simulator it was found that the SIFS requirements would not be met at the
target frequency of 160 MHz (four times the sampling frequency). One
reason is that the absolute maximum search in the synchronization step
requires a lot of clock cycles. Due to its inherit conditional operations, the
max search does not benefit significantly from the dual MAC. The MAC
unit was therefore extended to also allow instruction level acceleration for
finding absolute maximum value and position in a complex vector.

During 11b benchmarking it was found that the throughput require-
ments were not reached for the highest data rate at the target frequency
of 154 MHz (seven times the sampling frequency). For this reason it was
decided to apply function level acceleration for the modified Walsh trans-
form. The extra hardware requirement is not excessive since the modified
Walsh transform only has multiplications by +/-1 and +/-i.

Table A.3 illustrates the impact of the dual complex MAC and instruc-

115

Table A.3: Cycle cost for IEEE 802.11a kernel operations
Benchmark A B C
size 64 complex vector add 138 38 38
size 64 complex scalar product 270 36 36
64-point FFTa 1900 650 228
64 sample abs max search 460 362 34

11a fine synchronization 4700 1990 540
11a FFT+channel compensation 2130 695 228

A: General single MAC DSP
B: DSP with dual complex MAC unit
C: DSP with dual complex MAC and instruction level

acceleration for FFT and absolute max search

aaddressing support for FFT is assumed to exist

tion level acceleration on the cycle cost for some 11a kernel operations.
Column A shows cycle costs for a general single MAC unit DSP processor.
The estimations are based on data from The Buyer’s Guide to DSP Processors
[4]. Column B are estimated cycle costs for the proposed architecture but
without the hardware acceleration for FFT and absolute maximum search.
Column C are values from simulations of the presented BBP1 baseband
processor. Apart from kernel operations, the table also contains cycle cost
for the fine time synchronization, which is composed of a vector addi-
tion, an FFT, a vector multiplication, an IFFT, and an absolute maximum
search. FFT and channel equalization (e.g. a vector multiplication) which
are the heavy parts of the data symbol processing is also included. The
FFT acceleration instructions allow the vector multiplication to be inte-
grated into the FFT at no extra cycle cost in both these cases.

Bibliography

[1] “IEEE 802.11a - 1999, wireless LAN medium access control (MAC)
and physical layer (PHY) specifications: High-speed physical layer in

116 Application Profiling and Benchmarking

the 5 GHz band,” 1999.

[2] “IEEE 802.11b - 1999, wireless LAN medium access control (MAC)
and physical layer (PHY) specifications: Higher-speed physical layer
in the 2.5 GHz band,” 1999.

[3] Anders Nilsson, Eric Tell, and Dake Liu, “An accelerator architecture
for programmable multi-standard baseband processors,” in Proceed-
ings of the International Conference on Wireless Networks and Emerging
Technologies (WNET), pp. 644–649, July 2004.

[4] Berkley Design Technology, Inc., Buyer’s guide to DSP processors, 2001
ed. BDTi, 2001.

Appendix B

Scheduling and Hardware
Allocation

This chapter contains diagrams showing the timing and and hardware
allocation of the receiver flows for IEEE 802.11a [1] and IEEE 802.11b [2].
Since transmission is less challenging it is only discussed briefly and no
diagrams are included.

B.1 The SIFS

The one timing requirement from the IEEE 802.11 standards that has the
largest impact on the design of the baseband processor is the so called
short intra-frame spacing (SIFS). Among other things, the SIFS specifies
the time from reception of the last bit of a packet at the antenna of the
receiver until the transmission of a response should start. This imposes
strict latency requirements on the receiver.

The SIFS in 11a is 16 µs and in 11b it is 10 µs. Assuming 2 µs for
switching the front-end from receive to transmit mode, 2 µs delay through
the front-end interface (mainly the filter), and a total of 2 µs for delays
through the radio front-end and the MAC layer, 10 µs remains for the
delay through the baseband receiver in the 11a case and 4 µs in the 11b
case. The delay through the baseband transmitter is essentially zero since

117

118 Scheduling and Hardware Allocation

the preamble is precomputed and stored in memory.

B.2 IEEE 802.11a

IEEE 802.11a is an OFDM standard using 64 sub-carriers (48 data carriers,
4 pilot tones and the remaining are unused guard carriers). The sample
rate is 20 MHz. A cyclic prefix of 16 samples is used which gives a total
symbol time of 4 µs.

The 11a frame starts with ten identical short pilot symbols of 16 sam-
ples each. These are used for packet detection and frequency offset es-
timation. Once the frequency error has been estimated, the rotor in the
front-end accelerator is set to compensate it.

Next comes two identical long pilot symbols, each 64 samples, pre-
ceeded by a 32 sample cyclic prefix. The long pilots are used for synchro-
nization and channel estimation.

The long pilots are followed by a header symbol containing packet
information, like data rate and packet size. These fields must be decoded,
descrambled, and extracted before the complete first payload symbol has
arrived. Otherwise additional buffer memory is needed and the control
flow will be more complex resulting in difficulties in reaching the latency
requirements

Figure B.1 shows the scheduling for 11a reception. The only difference
between different data rates is the delay through the accelerator chain.
The schedule shows a receiver delay of less than one symbol time (4 µs),
clearly meeting the SIFS requirements.

The pilot symbols for transmission are stored in memory and trans-
mitted directly. Transmit processing consists of scrambling, convolutional
encoding, interleaving, and mapping which are all handled by a chain
of accelerators. The core handles insertion of pilot carriers from values
stored in a table in coefficient memory and IFFT calculation.

B.3 IEEE 802.11b 119

B.3 IEEE 802.11b

For the lower data rates IEEE 802.11b employs direct sequence spread
spectrum (DSSS) using a Barker sequence of length 11 for spreading. At
the higher data rates it uses complementary code keying (CCK) which
encodes groups of four or eight bits into eight complex chips. CCK is
based on a modified Walsh transform. A description of CCK can be found
in [3]. The chip rate is 11 Mchip/s giving a symbol time of 1 µs for DSSS
and 8/11=0.727 µs for CCK.

The 11b frame starts with a SYNC field consisting of 128 (or optionally
56) scrambled ones at the lowest data rate, used for symbol synchroniza-
tion and channel estimation. Next is the 16 bit start frame delimiter (SFD)
which is used to find the beginning of the header. The 48 bit header con-
tains information on data rate and packet size and is protected by a CRC-
16 check sum. Figure B.2 shows the schedule for the header processing.

Figure B.3 shows the payload processing in DSSS mode. The proces-
sor load is very low for this mode. The limiting part is CCK demodulation
at 11 Mbit/s which is demanding due to the short symbol time and the
complexity of the Walsh transform and the following absolute maximum
search. The Walsh accelerator which handles both the actual modified
Walsh transform and the absolute maximum search requires 70 clock cy-
cles to complete. Figure B.4 shows the 11 Mbit/s schedule. The SIFS
requirements are easily met as long as the CCK throughput is enough.

The transmitter is also limited by 11 Mbit/s CCK modulation. It re-
quires some bit manipulation, a table look-up, a DQPSK mapping, and
eight complex multiplications.

120 Scheduling and Hardware Allocation

sync.
fine

estimation
channel

extract RATE
& SIZE,

accelerators
configure

eq.
channel
FFT

H
E

A
D

E
R

D
ata sym

bol 0

FFT
channel

eq.

keeping
house

pilot
tracking,

D
ata sym

bol 1

detection
packet
AGC,

SH
O

R
T

 PIL
O

T
S

L
O

N
G

 PIL
O

T
S

estimation
offset

frequency

8 us

0 us

16 us

20 us

24 us

28 us
FFT

channel
eq.

CORE demapper interleaver Viterbi scrambler MAC interfacefront−end

sub carriers
extract data

sub carriers
extract data

Figure B.1: Scheduling of IEEE 802.11a receiver for 160 MHz clock fre-
quency

B.3 IEEE 802.11b 121

SY
N

C
SFD

PSD
U

 (payload)
C

R
C

L
E

N
G

T
H

SE
R

V
IC

E
SIG

N
A

L

packet
detection,
AGC

sync.
symbol

despread, dem
odulate D

B
PSK

 (m
ostly idle)

(m
ostly idle)

extract SIGNAL
and SERVICE

extract LENGTH

check CRC

CORE scrambler CRC
o us

144 us

192 us

128 us

search for SFD

front−end

Figure B.2: Scheduling of IEEE 802.11b preamble and header processing
for 154 MHz clock frequency

122 Scheduling and Hardware Allocation

despread,
demodulate
DQPSK

despread,
demodulate
DQPSK

despread,
demodulate
DQPSK

C
R

C

192 us

193 us

194 us

195 us

PSD
U

 sym
bol 0

demodulate
DBPSK

CORE

despread,

scrambler CRC MAC interface

check CRC

Sym
bol 1

Sym
bol 2

Sym
bol 7

Figure B.3: Scheduling of IEEE 802.11b 2 Mbit/s reception

B.3 IEEE 802.11b 123

DQPSK +
bit op.

DQPSK +
bit op.

C
R

C

192 us

PSD
U

 sym
bol 0

demodulate
DBPSK

CORE

despread,

check CRC

Walsh scrambler CRC MAC interface

192.73

193.45

194.18

Sym
bol 1

Sym
bol 2

Figure B.4: Scheduling of IEEE 802.11b 11 Mbit/s reception

124 Scheduling and Hardware Allocation

Bibliography

[1] “IEEE 802.11a - 1999, wireless LAN medium access control (MAC)
and physical layer (PHY) specifications: High-speed physical layer in
the 5 GHz band,” 1999.

[2] “IEEE 802.11b - 1999, wireless LAN medium access control (MAC)
and physical layer (PHY) specifications: Higher-speed physical layer
in the 2.5 GHz band,” 1999.

[3] B. Pearson, Complementary Code Keying Made Simple. Intersil corpora-
tion, white paper, 2001.

Index

abbreviations, xx
acceleration, 17, 32

addressing, 19
function level, 19, 53, 80
instruction level, 18, 52

accelerator chaining, 77
acknowledgments, ix
addressing, 19, 79
application processor, 37
architecture

BBP1, 66
configurable, 60
design, 27
planning, 23

ASIP, 15
assembler, 89
automatic gain control, 41

baseband
processing, 37
processor, 4, 37, 51

BBP1, 65
behavior modeling, 21
benchmarking, 25, 111

CCK, 82

CDMA, 44

certification, 85

channel

coding, 38, 81

coherence time, 42

equalization, 41

estimation, 41

model, 22

chip, 94

clock frequency, 94, 95

compiler, 30

conclusions, 101

context switching, 84

contributions, 5

control overhead, 32

control path, 70

design, 27

CRC, 82

cyclic prefix, 43

data path, 67

design, 27

125

126 Index

data width, 22, 53
masking, 33

delay spread, 41
demapping, 43, 82
demodulation, 43
design flow, 20
die photo, 96
DSP core, 68
dynamic range, 40

error correction, 43, 53, 81

fading, 41
flat, 42

firmware, 93
FPGA, 60
frequency offset, 42
front-end

accelerator, 82, 84
radio, 40

full duplex, 84
future work, 83, 105

IDE, 30
implementation, 89
instruction set, 68

design, 23
simulator, 24, 90

inter-symbol interference, 41
interleaving, 38, 81
interrupt, 54, 70

JTRS, 11

kernel benchmark, 26

leakage, 32
low power design, 30

MAC
instruction, 18
unit, 71

measurement setup, 97
media access control, 37
memory, 55, 78

bandwidth, 55
design, 27
low power design, 31
usage, 94

MIMO, 46
mobility, 42
modulation, 39

differential, 42
OFDM, 43
spread spectrum, 44

multi-path propagation, 41
multi-standard processing, 84

network, 76, 85

OFDM, 43
operand stopping, 31, 70
orthogonality, 24

parallelism, 32
physical layer, 4
pipelining, 69

function level, 77
power consumption, 95
preface, v

Index 127

processing requirements, 46, 51,
113

profiling, 25, 111
protocol, 77

rake receiver, 44
real-time requirements, 54
receiver, 40
related work, 57
requirement specification, 20

SCA, 11
scalability, 83
scheduling, 85, 117
scope, 4
scrambling, 39, 81
SIFS, 117
signal constellation, 39
silicon area, 95, 96
software defined radio, 3, 8
spreading, 44
SW-HW partitioning, 19, 80
symbol, 39

shaping, 39
synchronization, 41
system overview, 37

test board, 97
timing offset, 42
transmitter, 38
trends, 7

vector instructions, 72
verification, 28

Walsh transform, 82
word length

data, see data width
instruction, 24

