
Linköping Studies in Science and Technology

Dissertation No. 758

Library Communication Among
Programmers Worldwide

by

Erik Berglund

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2002

Printed in Sweden by UniTryck, 2002

Abstract

Programmers worldwide share components and jointly develop components on
a global scale in contemporary software development. An important aspect of
such library-based programming is the need for technical communication with
regard to libraries – library communication. As part of their work, program-
mers must discover, study, and learn as well as debate problems and future
development. In this sense, the electronic, networked media has fundamen-
tally changed programming by providing new mechanisms for communication
and global interaction through global networks such as the Internet. Today,
the baseline for library communication is hypertext documentation. Improve-
ments in quality, efficiency, cost and frustration of the programming activity
can be expected by further developments in the electronic aspects of library
communication.

This thesis addresses the use of the electronic networked medium in the
activity of library communication and aims to discover design knowledge for
communication tools and processes directed towards this particular area. A
model of library communication is provided that describes interaction among
programmer as webs of interrelated library communities. A discussion of elec-
tronic, networked tools and processes that match such a model is also provided.
Furthermore, research results are provided from the design and industrial eval-
uation of electronic reference documentation for the Java domain. Surprisingly,
the evaluation did not support individual adaptation (personalization). Fur-
thermore, global library communication processes have been studied in relation
to open-source documentation and user-related bug handling. Open-source
documentation projects are still relatively uncommon even in open-source soft-
ware projects. User-related bug handling does not address the passive behavior
users have towards bugs. Finally, the adaptive authoring process in electronic
reference documentation is addressed and found to provide limited support
for expressing the electronic, networked dimensions of authoring requiring pro-
gramming skill by technical writers.

Library communication is addressed here by providing engineering knowl-
edge with regards to the construction of practical electronic, networked tools
and processes in the area. Much of the work has been performed in relation to
Java library communication and therefore the thesis has particular relevance

i

for the object-oriented programming domain. A practical contribution of the
work is the DJavadoc tool that contributes to the development of reference
documentation by providing adaptive Java reference documentation.

ii

Much human ingenuity has gone into finding the ultimate Before. The
current state of knowledge can be summarized as thus:

In the beginning, there was nothing, which exploded.

Other theories about the ultimate start involve gods creating the universe
out of the ribs, entrails and testicles of their father. There are quite a lot
of these. They are interesting, not for what they tell you about cosmology,
but for what they say about people.

–Terry Prachet

Lords and Ladies
Victor Gollancz Ldt.

1992

iii

iv

Acknowledgement

First and foremost I would like to thank my supervisor Henrik Eriksson for
his dedicated support in this research venture. I am grateful for his constant
availability and detailed supervision. Furthermore, I am also grateful for his
keen interest in my project and the fascination of technology that we share.
I would also like to thank my secondary supervisors Sture Hägglund, Kjell
Olhsson, and Kristian Sandahl for their participation.

Magnus B̊ang, fellow Ph.D. candidate and close friend, deserves thanks for
contributing to this thesis. Our constant discussions and his philosophical skill
have contributed much to my thinking. Thank you Magnus!

Michael Priestley at IBM Toronto Lab deserves special thanks for fruitful
discussions and for co-authoring Paper III. Furthermore, I would like to thank
Ulf Magnusson, Peder Gunnbäck, and Martin Rantzer at Ericsson and Douglas
Kramer and the Javadoc Team at Sun Microsystems.

Continuing, I would like to thank my colleges at the Department of Infor-
mation and Computer Science at Linköping University, particularly past and
present members of HCS and ASLAB. Moreover, thank you Ivan Rankin and
Pamela Vang for improving my English.

The SSF (Swedish Foundation for Strategic Research) have been my pri-
mary financial supporter through ECSEL (Excellence Center in Computer Sci-
ence and Systems Engineering in Linköping). Furthermore, my work has been
supported by the Swedish National Board for Industrial and Technical Devel-
opment (Nutek) under grant no. 93-3233 and the Swedish Research Council
for Engineering Science (TFR) under grant no. 95-186.

Finally, I must also pay tribute to the guardians of my non-scientific life.
Thank you family and friends! I would particularly like to mention Aseel, my
parents B̊age and Margareta, and the boys. In closing, a particularly warm
thought of gratitude goes to Hoffman (a dog without plans for world domina-
tion).

v

vi

List of Papers

Papers Included in this Thesis

I Berglund E. (in press) Designing Electronic Library Reference Documen-
tation. Accepted for publication March 2002, Journal of Software and
Systems

II Berglund E. (submitted 2002) Helping Users Live With Bugs

III Berglund E. and Priestley M. (2001) Open-Source Documentation: in
search of user-driven, just-in-time writing In Proceedings of SIGDOC
2001, October 21– 24, 2001 in Santa Fe, NM

IV Berglund E. (2000) Writing for Adaptable Documentation In Proceedings
of IPCC/SIGDOC 2000, September 24 – 27, Cambridge, Massachusetts

V Berglund E. and Eriksson H. (2000) Dynamic Software Component Docu-
mentation In Proceedings of the Second Workshop on Learning Software
Organizations, in conjunction with the Second International Conference
on Product Focused software Process Improvement June 20 2000, Oulu,
Finland

VI Berglund E and Eriksson H (1998) Intermediate Knowledge trough Con-
ceptual Source-Code Organization In Proceedings of the 10:th Interna-
tional Conference on Software Engineering & Knowledge Engineering,
June 18-20 San Francisco Bay CA USA, pp 112 – 115

Other Publications by the Author

Eriksson H., Berglund E., Nevalainen P. (2002) Using Knowledge Engi-
neering Support for a Java Documentation Viewer In Proceedings of The
14:th International Conference on Software Engineering and Knowledge
Engineering (SEKE’02), July 15-19, Ischia, ITALY

vii

Granlund R., Berglund, E. and Eriksson H. (2000) Designing web-based
simulation for learning in Journal Future Generation Computer Systems,
special issue with the best papers from the International Conference on
Web-Based Modelling and Simulation 1998, Elsevier.

Berglund E (1999) Use-Oriented Documentation in Software Develop-
ment Linköping Studies in Science and Technology, Thesis no. 790,
School of Engineering at Linköping University

Berglund E and Eriksson H (1998) Distributed Interactive Simulation
for Group-Distance Exercises on the Web in Proceedings of the 1998
International Conference on Web-based Modelling & Simulation, January
11-14 1998 San Diego CA USA, pp 91 – 95

Contents

Abstract i

Acknowledgement iv

List of Papers vi

1 Introduction 1
1.1 Research Question . 3
1.2 Library-Based Programming . 5
1.3 Library Communication . 9

1.3.1 Program Understanding 10
1.3.2 Language . 10

1.4 Literate Programming . 10
1.5 Electronic, Networked Medium 11
1.6 Contributions . 12
1.7 Thesis Overview . 13

2 Research Method 15
2.1 Methods in Library Communication 15

2.1.1 Industry Laboratory . 16
2.1.2 Iterative and Explorative Development 17
2.1.3 Subjective and Objective Data 18
2.1.4 Summarizing: Library Communication Research 19

2.2 Methods Applied . 19
2.2.1 Explorative and Iterative Development 19
2.2.2 Data Collection . 20
2.2.3 Standard Tools or Bleeding Edge 20

2.3 Future Considerations . 21
2.3.1 Open-Source Explorative Development 21
2.3.2 Individual Data . 22

ix

3 Library Communication 23
3.1 Libraries and Programming . 23

3.1.1 What are Libraries? . 23
3.1.2 Who is the Library User? 26
3.1.3 What is Library-Based Programming? 27
3.1.4 Library UI . 28

3.2 A Model of Library Communication 30
3.2.1 Current Model . 30
3.2.2 Improving the Current Model 32

3.3 Conclusive Remarks . 33
3.3.1 The standard design . 33
3.3.2 The good examples . 34

4 Designing for Library Communication 37
4.1 Design Criteria on Library Communication 37

4.1.1 Source Code and Documentation Interruption 38
4.1.2 Publication Platform and Programming Environment In-

terruption . 39
4.1.3 Feedback and Documentation Interruption 40

4.2 new Javadoc() . 41
4.2.1 Source Code and Documentation Interruptions 41
4.2.2 Publication Platform and Programming Environment In-

terruption . 42
4.2.3 Feedback and Documentation Interruptions 43

4.3 Programming Languages and Communication 44

5 Related Work 47
5.1 Analysis of Library-Based Programming 47
5.2 Formal Approaches to Library Communication 48
5.3 Component Browsing . 48
5.4 Exploring Functionality . 49
5.5 Brief History of Electronic Reference Documentation 50
5.6 Summary of Related Work . 51

6 Discussion 53
6.1 Community Software Development 53
6.2 Understanding Valuable Adaptation 54
6.3 User-Driven Communication . 55
6.4 Passive Reading . 56
6.5 Summary of Discussion . 56

7 Conclusion 59

8 Summaries of the Papers 63
8.1 Paper I: Designing Electronic Library Reference Documentation 63
8.2 Paper II: Helping Users Live With Bugs 64
8.3 Paper III: Open-Source Documentation: in search of user-driven,

just-in-time writing . 64
8.4 Paper IV: Writing for Adaptable Documentation 65
8.5 Paper V: Dynamic Software Component Documentation 65
8.6 Paper VI: Intermediate Knowledge through Conceptual Source-

Code Organization . 66

References 67

Paper I:
Designing Electronic Library Reference Documentation 79

Paper II:
Helping Users Live with Bugs 97

Paper III:
Open-Source Documentation: in search of user-driven, just-in-
time writing 112

Paper IV:
Writing for Adaptable Documentation 132

Paper V:
Dynamic Software Component Documentation 145

Paper VI:
Intermediate Knowledge trough Conceptual Source-Code Or-
ganization 157

A Appendix A:
Javadoc 169

B Appendix B:
Dynamic Javadoc (DJavadoc) 179

Chapter 1

Introduction

The global sharing of software components collected in libraries is the basis
of contemporary software development, visible for instance in object-oriented
programming languages. Global sharing has not only added to the program-
mer’s toolbox; it has also introduced changes to the software-development pro-
cess, perhaps representing a general transition from language-based develop-
ment to library-based development. Traditionally libraries are viewed as man-
aged collections of software assets, mainly reusable components (Atkinson and
Mili 1999). However, in contemporary programming the library becomes the
language for programmers, a foundation of programming based on thousands
of components. For instance, Java programming is programming based on
the Java standard development kit (SDK) and Visual C++ programming is
programming based on the Microsoft foundation classes (MFC, Prosise 1999).
These libraries are not reused in the traditional sense where the libraries are
first selected, then adapted, and finally integrated into development and where
retrieval is a major issue (Kruger 1992, Basili et al. 1996, Frakes and Fox 1995,
Mili et al. 1995, Mili et al 1999). Instead the libraries become a program-
ming language that consists of thousands of constructs that are less stable, less
formally specified, and subject to more rapid growth and change compared to
languages.

An important change that occurs in this transition from language to library
is an increased need for technical communication in relation to libraries, that
is, library communication. In library-based development, programmers han-
dle large, complex, and evolving sets of programming constructs which it is
neither possible nor relevant to learn or memorize. Rosson (1996) states that
programmers spend considerable time communicating with others in their orga-
nization. Library-based programming leads to communication expanding and
including a community outside the team or the organization, through library
reference documentation, mailing lists, FAQs, and other channels of commu-
nication. Programmers communicate within technical communities that form

1

around the libraries they use.
Library communication, partly due to global sharing, places new require-

ments on technical communication compared to traditional language commu-
nication. In language-based development, resources are in some sense limited,
stable, and non-evolving and the need for communication can be summarized
as tutorial (reading to learn). However, in library-based programming, re-
sources change, grow, and multiply even during relatively short periods which
has become apparent from the development of Java core libraries first publicly
release in 1995 during which time it has undergone 5 versions and grown from
3 to 135 libraries (see Table 1.1 on page 6). Libraries change their content, the
grow, new libraries appear, and the development of some libraries is discontin-
ued. As a result of the evolution of libraries, development and use of libraries
sometimes become parallel or overlapping activities. Library specifications are
released early to the public, sometimes even before an implementation exists,
and the use of the library may therefore precede, run in parallel, overlap, or
await the development of libraries. As an example, Sun Microsystems has
on several occasions released Java library specifications without existing im-
plementations or with implementations limited to specific operating systems
(e.g. Java Speech API, Java TV API). Tutorial and reference communica-
tion becomes continuous communication needs. Furthermore, because libraries
change it becomes necessary to debate libraries, that is to discuss issues con-
cerning current implementation and the future of development. Bugs, features,
design, and implementation issues become relevant to the library community
as a whole and not just the core development team.

Communication becomes a central activity in library-based programming.
Library-based programmers may even spend more time reading documentation
and communicating within the technical community than they do actual coding
with regards to time spent using library functionality. The purpose of the com-
munication is to increase the speed and quality of development and decrease
the cost and frustration. Efficiency in presentation and global distribution of
evolving content are relevant aspects of this communication. Commonly, li-
brary communication is most commonly system-oriented, that is designed as
encyclopedic descriptions of systems. As such, library communication provides
little services facilitating the execution of programmers’ communication tasks.
Good quality library communication requires information design (e.g. Jacob-
son 1999, Rosenfeld and Morville 1998). The usability of communication tools
and processes is also dependent on how well they correspond to readers’ men-
tal models of the communication (Norman 1990). Hence, information design
needs to be based on knowledge about library-based programming and the
programmer’s mental model.

In this work, I have studied the design of communication tools and processes
in library-based programming (sometimes referred to as literate programming
see Section 1.4 [Knuth 1991]). In particular I have worked towards a use-
oriented design of automated or user-driven communication processes in the

2

electronic, networked medium for this domain. My work has also resulted in
a model of library-based programming from the perspective of technical com-
munication. Though some of the papers presented in this thesis are written as
general papers, they are clearly and particularly relevant for library communi-
cation (see Papers III and II).

Much of this work has been centered on the Java programming language
domain (JAVA, Campione and Walrath 1998) and the Javadoc tool that pro-
vides automatic generation of reference documentation from Java source files
(JAVADOC, Kramer 1999, Friendly 1995). I have studied the design of Javadoc
documentation, for instance, requirements for individual adaptation and re-
design of Java library reference documentation. The Java language domain is
relevant to library communication because it is focused on the construction of
libraries as a means of sharing software components. Moreover, it is currently
one of the largest and most frequently used programming languages. Javadoc
is also relevant to library communication since it represents state of the art in
automated documentation generation and also produces state of the art online
reference documentation.

Part of this work has been conducted though the development and evalu-
ation of a practical documentation tool called Dynamic Javadoc (DJavadoc).
DJavadoc produces adaptive documentation for Java source files by extending
Javadoc. The interested reader can try DJavadoc at http://www.ida.liu.
se/~eribe/djavadoc using Microsoft Internet Explorer (version 4 or higher).
DJavadoc should be viewed as a practical result of my research.

1.1 Research Question

The overall research question addressed by this thesis can thus be summarized
as:

How do we improve communication in library-based programming using
the electronic, networked medium?

The goal is thus to make it easier to develop programs using libraries and to
develop libraries for global communities. In this context I have focused on
the issue of communication within the library community (among developers
and users concerning the use and development of libraries). Communication
is in my opinion a highly relevant research issue in library-based programming
that has received little attention in the past. Furthermore, I limit my work to
the electronic, networked medium in which new possibilities appear due to the
recent changes in electronic text and the software development activity brought
about by the popularization of Internet.

We can further decompose the overall question based on a communication
process division:

3

1. How do we improve content production? – Users and developers produce
communication content, such as documentation. Concrete examples of
research questions include: How do we maximize automation from on
source files (from both developer and user)?

2. How do we improve content publication? – Produced content must also be
published to its intended audience. In this area it is relevant, for instance,
to ask how do we identify relevant receivers in a global community?

3. How do we improve content acceptance? – Published content must also
be accepted by users, by which I mean that the information is actually
used in some way. An example of a research question is: How do we
determine which content is being used?

(a) How do we improve content to source transfer? – A particular rel-
evant sub-question that concerns the integration of communication
content into library or project source files.

4. How do we improve content debate? – In the library communication
process, discussion and feedback (debate) is often a cornerstone. An
example of a research questions is: How do we automate routine debate
content?

(a) How do we improve content error handling? – An especially rele-
vant sub-question because errors are unexpected and may be highly
frustrating and costly.

The decomposition of the overall question provides a large research area
that is beyond the scope of this thesis. Therefore I have identified a number of
concrete sub-questions of the overall question and focused my work on them:

• How should electronic reference documentation be designed? – Reference
documentation is an important library communication tool. What can
the electronic, networked medium provide for reference documentation?
What are programmers’ requirements on electronic reference documen-
tation? Mainly relevant to questions 2 and 3. (Papers I, VI, V, and
Appendix B)

• How should adaptation be used in electronic reference documentation? –
It is plausible that adaptation of reference documentation can provide
improvements in library communication. At what level of individuality
is adaptation relevant for programmers? Is it relevant on an individual
level, an application-category level, or a general level? Relevant mainly
to questions 2 and 3. (Paper I)

4

• How should open-source documentation processes work? – Open-source
development is an electronic, networked development process currently
exploited in the development of libraries and software. How do open-
source documentation processes work? What type of open-source docu-
mentation projects exist today? How do open-source software projects
treat documentation? How does the state of the art in open-source li-
brary communication match the requirements of open-source develop-
ment? Relevant mainly to questions 1 and 4. (Paper III)

• How should user-related bug handling be designed? – Integration of users
in the bug handling process is one element of the electronic, networked
medium currently exploited in library communication. What is the state
of the art in user-related bug handling? What are users’ requirements for
the bug-handing process and the distribution of bug knowledge? How well
does the state of the art match the requirements? Relevant to question
4a. (Paper II)

• How can adaptive authoring in reference documentation be supported?
– Library communication requires an authoring process. What are the
elements of authoring in electronic reference documentation? How does
writers’ work with real-time redesign as a literary quality? What support
do common web languages, such as HTML, have for adaptive authoring?
Relevant to question 1. (Paper IV)

In closing, research questions that address the improvement of library com-
munication also address the issue of understanding the library communication
activity. This thesis therefore also address the question: What is the library
communication activity? (Chapters 3 and 4)

1.2 Library-Based Programming

Library-based programming can be viewed as programming based on an evolv-
ing programming language with continuous creation of constructs that are not
organized or specified by one organization. For a long time, programmers have
shared software components on a global scale. Fortran II, released in 1958,
enabled the use of separately compiled subroutines (Carver 1969). Today how-
ever, global sharing is not just a possibility but a foundation of programming.
Languages such as Java are highly integrated with the library concept (called
application programming interfaces or APIs in the Java world) and the de-
velopment and sharing of libraries has increased dramatically over the last
decade because of the popularization of Internet. The development of the Java
language core library, Java SDK, points to this fact, see Table 1.1. Another
example is the open-source language, Python, which in November 2001 had
252 global modules with over 2,200 functions (PYRD).

5

Table 1.1: Development of the Java standard development kit (Java SDK) so
far (JAVA).

SDK version Packages Classes Ref. Doc. (Mbytes)
1.0 (1995) 3 70 3
1.1 (1997) 22 600 8
1.2 (1998) 59 1,800 80
1.3 (2000) 76 2,150 97
1.4 (2001) 135 2,700 131

Library-based programming can also be viewed as one behavioral strategy
that programmers apply to produce program executables. It is based on col-
lections of externally built abstract data types (ADTs) that were not part of
the programming language to begin with. Bruce (1996) considers ADTs to be
perhaps the most important development of programming languages. However,
in “No Silver Bullet” Brooks (1987) points out that much of the complexity of
software comes from conformance to other software, that is, other ADTs.

As a programming activity, library-based programming and language-based
programming are different, illustrated by Table 1.2. Of course, few program-
mers or programming projects are completely library-based.

Table 1.2: Some difference in behavior between language-based programmers
and library-based programmers.

Language-based programmers Library-based programmers
Constructs ADTs Searches for ADTs

Implements algorithms Uses implemented algorithms
Knows the language Knows where to locate information

Defines the structure of programs Defines the structure of programs
Builds his or her own ADTs Shares ADTs

Builds new ADTs Requests new ADTs
Programs by modelling Programs by finding models

Changes

In library-based programming, many of the premises of programming change
compared to language based programming:

• Changing platform – Language-based programming is based on a sta-
ble technology: the programming language. Library-based development,
however, takes place within a technological environment that continu-
ously evolves and expands, see Table 1.1.

6

• Large amounts of constructs – Language-based programming is based
on relatively limited amounts of constructs. Library-based development,
however, is based on very large sets of components that also continue to
grow. As a comparison the Java language has about 50 reserved words
but the Java core class library (Java SDK) has over 2,700 classes, see
Table 1.1.

• Community activity – Language-based development can be regarded as
process in which the development team is a well-defined unit (often from
the same organization and sometimes including customers). Library-
based development, on the other hand, is a community process in which
independent groups without a common goal jointly develop the platforms
which particular applications build upon and thereby also determine stan-
dards and structures through de-facto processes. In library-based devel-
opment projects intertwine through the libraries they reuse and develop.
Development is performed both by using available libraries and by par-
ticipating in the development of libraries.

• Less formal – Language-based development is highly formal with gram-
matical definitions of languages. Library-based development is based on
a foundation of loosely defined relations among components that can
include many implicit structures. One example is the abstract win-
dow toolkit (AWT) in Java which requires Components to be placed in
Containers to become visible even though this relation is not explicitly
stated in library specification (i.e. a implicit library assumption).

As a result of the popularization of the Internet and as a result of the
changes in programming behavior that global sharing of has brought about we
today find an increased:

• Openness – Across organizations concerning technology and technological
direction.

• Standardization – Global cooperation leads to (de facto) standards. Fur-
thermore, an increased use of distributed, joint platforms of development
lead to more similarities in development projects.

• Publication – Elimination of production and distribution costs makes
publication of libraries and related documents and GUIs easier.

• Communications flow – Library specifications, debate, and publications.

The recent trend in open-source development illustrates this fact. Successful
global development projects have arisen due to joint, global sharing of software,
such as the Linux platform (today a common platform [LINUXO, Torvalds
1999]) and the Apache web server (currently the most common web server with

7

more than half the market [AP, NETCRAFT]). Another relevant example is the
open-source development platform SourceForge, providing free tool support for
open-source projects, which in October 2001 had 28,000 projects and 270,000
registered users (SF).

Reuse

A relevant question is whether or not library-based programming and global
sharing constitute software reuse. In my mind, library-based programming is
software reuse. However, I use the term global sharing instead to place focus on
issue of communication among programmers that software reuse imply. Soft-
ware reuse is most commonly defined as the process of creating software from
existing software rather than building it from scratch (Kruger 1992, Basili et
al. 1996, Frakes and Fox 1995, Mili et al. 1995). However, the term reuse also
carries with it the idea that reuse is an engineering practice where reusable
components are developed as part of application development through gener-
alization. Beck (2000) argues against this, because generalization constitutes
work spent on possible future benefits that may never materialize. Frakes
and Fox (1995), however, showed that programmers like reuse as a basis for
programming. Basili et al. (1996) showed significant benefits from reuse in
software development in terms of reduced defect density and rework as well as
increased productivity. However, the study was performed on 8 smaller student
projects and does not necessarily represent industrial projects. Glass (1998)
argues that reuse is not so commonplace as one may think and that in reality
few components that are reused from collections such as the Java SDK. This is
of course an empirical research questions that Glass does not answer. However,
reuse is definitively an issues considered relevant to software engineering. For
instance, Mili et al. (1999) state that software development cannot possibly
become an engineering discipline so long as it has not perfected a technology for
developing products from reusable assets in a routine manner on an industrial
scale.

However, my view of library-based programming differs somewhat from
the traditional view of software reuse. Software reuse is commonly described
as programming using existing software components. Here library-based pro-
gramming and therefore also reuse is characterized as a community activity
where the use of libraries and the development of libraries are not clearly sep-
arated activities. (This community perspective does not require but includes
open-source approaches to development.) Public beta release has become com-
monplace as well as to involve users in the development or libraries though beta
testing, mailing lists, discussion forums, and features requests. In my mind,
users are therefore participating in development rather than simply locating,
adapting and integrating stable reusable components.

8

Component

Furthermore, I have chosen not to use the term “component-based program-
ming” which could have been suitable in this context. In the software engi-
neering community the term component is used to denote binary, independent
software product with clear and defined purposes that can be directly deployed
in development (Szyperski 1999, Brown and Wallnau 1998). Library-based
programming is closer to a process using parts of more open and more general
components. Also, using the library metaphor is relevant because development
to a large extent requires going to the library, asking around for the right in-
formation, collecting it, studying it, applying it, and adding new information
to a global library.

1.3 Library Communication

In the literature on software engineering and programming tools, communica-
tion within a technical community (such as reading reference documentation)
is an aspect of programming that is often omitted or treated lightly (Pressman
2000, Schach 1997, Reiss 1996, van Vilet 1993, Sommerville 1989, Brookshear
1994). An underlying reason for overlooking such communication may be that
programming traditionally involved limited sets of programming-language con-
structs that could be learnt by programmers. Currently, however, programmers
base development on large collections of software component libraries.

I use the expression communication in library-based programming to de-
note activities taken by professionals in the act of transferring knowledge and
code as part of programming using globally shared libraries. Mainly I refer
to communication with the external technical environment and not so much
within the project team. Such a definition also includes the actual transfer of
source code, via humans, among programs (where humans initiate transfer but
not necessarily perform the transfer). Because software is information itself,
the transfer task can reach all they way to the application or all the way back
to the library product in the electronic, networked medium.

Typical communication activities include writing documentation and exam-
ple code, reading documentation and example code, participating in mailing
lists, extracting code and including it in project source files, reporting bugs,
requesting features, reading FAQs, searching for knowledge, locating people
with skill, and explaining to others. Most commonly communication with the
external technical community is performed in writing, but also by copying and
pasting from web pages directly to source files. I also consider using code-
completion functionality in development environment as acts of communica-
tion (the environment generates a context-specific documentation from which
it enables code transfer by direct manipulation).

9

1.3.1 Program Understanding

Library communication includes program understanding but not commonly
on such a level of detail that is commonly addressed in relation to program
understanding and software comprehension. Program understanding is the
issue of making sense of programs (Birgerstaff et al. 1994, Woods and Yang
1996, Bohem-Davis 1988, Rugaber 1995). Often these issues are relevant in
relation to software maintenance, and include work in reverse engineering (see,
for instance, Tilley et al. 1992).

1.3.2 Language

A relevant aspect of library communication is the existences of two types of
languages: natural language and code language. Both are used to support
the knowledge transfer process with the difference that code can be directly
used in coding but may also be less expressive compared to natural language.
Another relevant aspect of library communication is that the vast majority of
participants are programmers (both developers of products and the users of
these products). The difference in technical competence between the developer
and the user is not so distinct as in other areas.

1.4 Literate Programming

Literate programming, in a restrained view, is the combination of writing de-
scriptions and writing code in the same process – an essayist view of program-
ming. In an open view, literate programming is the aim for a programming
process that supports the communication tasks at hand in relation to program-
ming in which case my work can be regarded as work in literate programming.
The open view does not necessarily require a changed coding activity, but
rather a focus on support for the construction of efficient communication tools
and processes. The term literate programming has been around since the 1980s
and is accredited to Donald Knuth (Knuth 1984, Knuth 1991, Ramsey 1994,
Østerbye 1995). Knuth’s vision for programming was that programs should be
considered works of literature for humans. Literate programming is a view of
programming where the purpose of a program is to communicate to other hu-
mans what the author wants the computer to do (Knuth 1991). In this sense,
literate programming addresses program readability. Ramsey regards literate
programming tools as tools that allow parts of programs to be organized in
any order and from which both documentation and code can be extracted
(Ramsey 1994). Programming and documentation should be mixed into a lit-
erary activity where descriptions and code mix naturally (Knuth 1991). Knuth
also implemented a system called WEB, which initially combined Pascal pro-
gramming and TeX writing (Knuth and Silvio 1994). A number of literate
programming systems have followed of which Javadoc can be considered the

10

most commonly known system (Friendly 1995, Kramer 1999, Østerbye 1995,
Normark et al. 2000, Johnson and Johnson 1997).

1.5 Electronic, Networked Medium

The electronic, networked medium gives rise to new possibilities in communi-
cation. Electronic text has a history of less than half a century. According to
Dillon (1994), electronic text arrived as late as in the 1980s and is still evolv-
ing. Screen resolution is still a major issue of electronic reading (Dillon 1994,
Kahn and Lenk 1998). However, electronic text is not just text presented on
the screen (Hackos 1997).

Compared with the art of writing, which is over 5,000 years old, and the
art of bookmaking, which has been around since Gutenberg invention of the
printing press in the 15th century, electronic text is still in its infancy. As
a result, I expect electronic text will continue evolve for quite a long time.
However, currently electronic text provides new possibilities that include:

• Expression – Addition of time, interactivity, action, global connectivity,
meta information, document relations, and so forth as a means of expres-
sion in text. Kahn and Lenk state that the most exciting characteristic
of type on the screen is the added dimensions of time and focus on the
resulting ability of electronic text to move (Kahn and Lenke 1998). Mov-
ing text is also related to exploration of animation as part of expression
(Zellweger 2000, Lewis and Weyers 1999, Wong 1996). Adaptability in
electronic media has also been addressed (Brusilovski and Vassileva 1996,
Brusilovski 1996, Kantorowitz and Sudarsky 1989 Rutledge et al. 1997,
White 1998, ADH&H).

• Cross-referencing – Unlimited cross-referencing within and among docu-
ments with near instantaneous access. During most of the latest decade
the electronic text area has been focused on hypertext (Bush 1945, Nelson
1987, Bolter 1991, Dillon 1994, Nielsen 1995). On his homepage Nelson
describes hypertext as a concept that is still misunderstood and misused
(Nelson 2001). Though hyper linking is relevant, it may be more im-
portant to investigate other aspects of the electronic, networked medium
(besides non-linearity).

• Standards – Development of a commonly used communication infrastruc-
ture that new solutions can be based on. In the web area, the World Wide
Web Consortium (W3C) is a central organization in the global standard
process of web languages.

• Global aspects – Global, joint cooperative editing of text and global de-
velopment of resources. The open-source development paradigm that has

11

drastically evolved during the past half decade is one important example
of the global aspects of electronic text (OSIWS, SF, DiBona et al. 1999,
Raymond 1999a).

Based on these possibilities it becomes possible to construct, for instance:

• Adaptation – Changing communication in relation to user models.

• Evolution – Released material that include new content during the life
cycle of a topic.

• Reading books – Books that search for information and include new in-
formation, that is, reading agents inside books.

• Annotation-based discussion – Global annotation as a means of discus-
sion, debating directly in globally distributed documents.

• Live communication – Global scale, people-to-people communication.

• Task integration – Integration of actions in texts, for instance to issue
commands to programs from text.

These new possibilities give rise to new types of services in global com-
munication. Generally, the electronic, networked medium (e.g. online text)
provides new possibilities requiring new authoring and design techniques in
the field of technical communication (Hackos 1997, Baker 1997, Smart 1994).
It is also likely that new communication patterns will emerge. For library com-
munication, it is relevant to explore the new design spaces that have appeared
to facilitate programming. However, it is important to remember that the
electronic, networked medium is itself also still evolving.

1.6 Contributions

This thesis contributes to the software development process through an analysis
of communication in programming and the construction of communication pro-
cess and tools in the electronic, networked medium. Specifically, the individual
scientific contributions are the following:

• A model of library communication, contributing to the understanding of
the communication process in relation to programming based on glob-
ally shared libraries. Design criteria that such a model leads to are also
provided. (Chapters 3 and 4.)

• An empirical analysis of user needs in library communication, studying
Javadoc users in the industry laboratory, providing requirements on the
design of electronic library reference documentation and uncovering defi-
ciencies in the Javadoc design. In particular, I provide an evaluation of

12

individual adaptation in Javadoc documentation examining the adaptive
dimensions of the electronic, networked medium. (Paper I)

• An analysis of open-source development of documentation, providing a
framework for open-source development in technical communication, dis-
cussing the use of the global and evolving aspects of electronic, networked
media. (Paper III)

• An analysis of the requirements of passive, global bug knowledge sharing,
providing an architecture for use-oriented design of error communication
throughout the lifecycle of products and discussing global aspects of the
electronic, networked media. (Paper II)

• Evaluation of electronic authoring, studying the support for expression of
electronic concepts on an authoring level and, in particular, the support
in client-side web technologies. (Paper IV)

The DJavadoc system is also a practical contribution of my research, di-
rectly usable in programming projects, which have also been tested in a real-
work situation as part of this thesis work. DJavdoc provides a concrete design
alternative to Javadoc and traditional online reference documentation and also
provides a testing platform for the evaluation of individual adaptation in the
electronic, networked media. (Appendix B and Papers I, V, and VI)

1.7 Thesis Overview

This thesis is organized in the following way: Chapter 2 discusses the research
methods in relation to research in library communication and the work pre-
sented in the thesis. Focus is placed on explorative, iterative systems devel-
opment based on evaluation in the industry laboratory. Chapter 3 provides a
model of library communication. Chapter 4 provides a discussion on design
considerations called for by the model in chapter 3. Chapter 5 discusses work
related to the research presented in this thesis, discovering a lack of studies
of programmer behaviour in relation to library-based programming and a lack
of evaluation of existing communication tools in this specific area. Chapter 6
provides a discussion of issues of relevance to this work, addressing issues such
as individual adaptation, user-driven communication, and community software
development. The conclusions of the thesis are provided in chapter 7. In chap-
ter 8, summarises the six papers included in the thesis after which the papers
are provided. Finally Appendix A describes background on technologies such
as Javadoc and DHTML that are needed to understand the DJavadoc system
described in Appendix B.

13

14

Chapter 2

Research Method

Finding and developing knowledge is a difficult task that requires scientific
methods that deliver reproducible, reliable, and valid results. Many practical
considerations must also be taken into consideration, because they affect the
design of research experiments. In this chapter, I will discuss methodological
issues of consideration in relation to software-component library communica-
tion and thereby propose methods for research in library communication. I will
also describe what I have specifically done from a methodological perspective
and finally address what I would have done differently given the knowledge and
experience I have today.

There are two general points that currently set the stage for research in
library communication:

• Early phase of research – In recent years much has changed both con-
cerning the premises of programming and the possibilities of the commu-
nication (the social behavior of programmers and the possibilities of the
electronic, networked medium).

• Applied science – The study of library communication is an applied sci-
ence striving towards improved programming tools and programming pro-
cesses rather than the discovery of general knowledge. General knowledge
about programming behavior in relation to libraries however, is needed
to accomplish applied scientific results.

2.1 Methods in Library Communication

Research in library communication should aim at uncovering how the electronic,
networked media can be used to provide adequate tool and process support for
library-based programming. This research should also focus on the practitioner,

15

uncovering the requirements of both the user of libraries and the producer of
the libraries. In particular, it is relevant to address user-oriented design of
library communication in contrast to the state of the art approaches, which are
system-oriented (see Section 3).

2.1.1 Industry Laboratory

Laboratory studies have often failed to predict real-world usability. However, it
is the lack of the correct context rather than laboratory experimentation per se
that is responsible for this failure (Dillon 1994). Brooks (1980) argues that gen-
eralizing between student programmers and experience programmers is not jus-
tifiable. Therefore, in Computer Science and, in particular, for human-related
areas such as library communication, relevance in research requires experimen-
tation in real-work situations with experienced subjects. This is often discussed
in terms of performing research in the industry-as-laboratory (Yin 1994, Basili
1996, Potts 1993, Glass 1994). At first glance the industry laboratory approach
requires evaluation of academic work in real-work situations. Equally impor-
tant however, is acquiring empirical problem definitions from industry. Potts
argues that what researchers think are major practical problems often have
little relevance to professionals, whereas neglected problems often turn out to
be important (Potts 1993). Though Potts is more focused on empirical ex-
perimentation and analysis than technology development, the same principles
are likely to apply to architectural-oriented research ventures. Industry-related
problem definition also comes into focus in Davis’ (1994) article on “Fifteen
Principles of Software Engineering”. These principles are proposed as (tempo-
rary) laws of physics for software engineering. Glass (1994) advocates the use
of evaluation in the engineering model of research (where the value of models
is also tested). Tichy et al. (1995) showed that research papers in Computer
Science to a large degree failed to provide empirical evaluation.

A difficult part of research in the industry laboratory is gaining and main-
taining access to data collection (Gummesson 1991). Industry may be reluc-
tant to provide resources and to expose internal details, such as source code
or processes. Many practical constraints may be placed on the controlled ex-
perimentation, requiring the researcher to bargain with the rigorous design of
experiments. The publication of results may be in question and time-consuming
negotiation of research contracts may be required to reach a settlement that
both camps can accept. Even though contracts are developed, changes in staff
and priorities for companies may also disrupt data collection. Nonetheless,
the industry laboratory is essential to the study of library communication be-
cause the purpose of this applied science is to further support the professional
programming activity in relation to libraries.

It is also important to remember that other communities may provide access
to members of the programming profession. An increasingly relevant alterna-
tive is open-source communities, often consisting of professionals but based

16

on independent, cross-organizational groups (DiBona et al. 1999, Raymond
1999a). In recent years open-source activities have increased and, in practice,
become a major development method in software engineering. Here restrictions
are less demanding and access to data more open, particularly to source files
and communication archives that are distributed under an open license policy.

2.1.2 Iterative and Explorative Development

The open exploration of design alternatives is relevant to produce new ideas,
new architectures, and new concepts, particularly in early phases of research.
Basili (1996) states that the software-engineering discipline requires a cycle
of model building, experimentation, and learning to uncover or develop knowl-
edge. In library communication the need for explorative development is focused
on an open and broad exploration of the design space and the possible ap-
proaches to design. The search for knowledge can be compared to the search for
requirements in software development. Learning from software development,
the explorative development should be performed in an iterative manner, where
requirements are generated in every step by evaluating developed tools in the
industry laboratory (see Section 2.1.1). To conduct an iterative development in
which systems are created in a design-evaluate-redesign loop is currently part
of many development methods (Sotirovski 2001, Russ and McGregor 2000,
Brooks 1987, Jacobson et al. 1999, RHP, Beck 2000). Sotirovski (2001) states
that: “Practiced all along, often introduced by practitioners through the back
door, iterative development methods are lately receiving their overdue formal
recognition.” Brooks (1987) advocates a growing perspective on software de-
velopment rather than a building perspective.

In an iterative research process, the researcher must balance between cy-
cles that are too short and too long. As a goal, iteration cycles should be
short rather than long to get frequent feedback from the industry laboratory.
The iterative process must, of course, start somewhere and the initial design
should therefore be based on general knowledge from fields such as technical
communication (SIGDOC, IEEEPCS), human-computer interaction (SIGCHI,
Helander et al. 1997), and software engineering (SIGSOFT, SEWEB).

In human-computer-interaction research and design, prototyping is used to
explore the design space and to visualize potential designs. Houde and Hill
(1997) provide an in-depth discussion of prototypes. Prototyping, of course, is
highly relevant for explorative development and should precede system build-
ing. However, it is relevant to go further in library communication to gain
access to the industry laboratory. More complete system development also
provides hands-on experience with technology, exposing relevant issues such as
implementation feasibility, and system performance.

17

2.1.3 Subjective and Objective Data

In library communication, with exploration as a goal, it is highly relevant to
address subjective data in relation to the desires and needs of professionals.
Qualitative methods (which provide subjective data, e.g., results from inter-
views) are often criticized for a lack of strict control of research variables,
questioning the validity and reliability of results. There is a continuing debate
about the value of qualitative methods, addressed for instance in (Kvale 1989,
Kvale 1996, Gummesson 1991). I acknowledge this debate but do not consider
it further in this thesis. In my view, both qualitative and quantitative meth-
ods are valuable but imperfect tools that both have roles to play in Computer
Science and library communication research.

In the industry laboratory, it may be difficult to collect large amounts of
highly detailed and rigorous subjective data because of the difficulty of gaining
and maintaining access. As a result, it can be risky to base research on larger
subjective data collection because data collection can be interrupted or discon-
tinued by subjects. For exploration, open methods, such as semi-structured
interviews are appropriate (Kvale 1996). It is even useful to conduct informal
discussions to gain some opinions from professionals whenever the opportunity
arises.

Naturally, objective data is relevant to research on library communication.
Industry may still view logging as potentially dangerous but once access is
granted maintaining access is not a problem. Objective data can provide highly
valid data, but also lacks the richness of the qualitative methods which ques-
tions the relevance of such data collection. Fundamentally, it is the interpre-
tations related to objective data that is problematic in research (subjective
interpretations prior to choosing what to collect and afterwards in creating
meaning) (Kvale 1989). It is even argued that there is no such thing as ob-
jective data since subjective interpretation precedes or follows data collection
(Kvale 1989, Gadamer 1989). Furthermore, Pfleeger discusses the limitation of
measurement and how it may misdirect researchers. A more probabilistic than
natural view on measurement is advocated combined with a design-evaluate-
redesign approach to research (Pfleeger 1999). Once again, I acknowledge the
discussion but do not consider it further in this thesis.

Objective data can be collected, for instance, by logging user interaction
with tools. Another relevant area for objective data collection is system evalu-
ation. Though the research area is in an early phase, there are many different
systems developed in the practice of library communication. These systems
represent both the state-of-the-profession and the state-of-the-art. Studying
the design of existing tools, the data and knowledge they collect, how they
treat issues such as copyright and so forth, enable the discovery of common or
best practice. System evaluation may very well lead to the discovery of lack
of support for arguable needs. Internet has increased the accessibility of soft-
ware downloads for evaluating purposes, making it much less costly and time

18

consuming to conduct system evaluation. Yet another means of objective data
collection is analyzing source code produced in programming projects. Though
produced source code does not directly determine the communication needs
of programmers, it does expose the results of the project and can also answer
some questions about the related communication.

2.1.4 Summarizing: Library Communication Research

In my mind, it is relevant to conduct explorative, iterative development in
design-evaluate-redesign cycles (similar to Basils building-experimentation-
learning cycle [Basili 1996]). Evaluation should focus on professionals providing
input to the general architectural process.

2.2 Methods Applied

In this section I will reflect upon the methods I have used in my research, the
choices I have made, and the consequences of these choices.

2.2.1 Explorative and Iterative Development

I started my work in explorative development, first working with low-level pro-
totypes, described in Paper VI and in Appendix B and later develop a system
that could be applied in the real work situations, see Paper I, IV, and V. The
DJavadoc system was the result of this work but the work I did with DJavadoc
also inspired the analytic papers I produced: Papers IIand III. Originally I was
inspired by general design knowledge from technical writing and HCI and also
by my own personal experience of using Javadoc as a programming tool. An
important source of inspiration has been the minimalism approach to technical
writing. Minimalist instructional material should inspire action, support and
encourage exploration, be brief, provide error information, and so on (Carroll
1990, Carroll 1998). These basic values can be transferred to the design of tool
support in library communication, though the minimalist approach focuses on
technical writing.

During the iterations, I started with less rigorous evaluation to keep itera-
tion cycles short. I gradually increased the level of rigor in the cycles. To start
with rigorous experiments was deemed inappropriate because little is known
about library-based programming as an activity (see chapter 5) and relevant
research questions are unknown for this particular area. Instead, the intention
was to find questions, design systems that address these systems, and answer
them more rigorously later on. Looking back I have completed one full circle
in my process (described in Appendix B and Papers V, IV, and I).

19

2.2.2 Data Collection

I have collected data by:

• User studies – based on long real-work use experience by professionals
and through semi structured interviews, described in Paper I.

• System evaluation – of existing tools and projects in the software com-
munity, in Papers II and III.

The combination of user studies and system evaluation provide a comple-
menting data collection process.

2.2.3 Standard Tools or Bleeding Edge

In my work I have deliberately stayed close to standard tools by utilizing client-
side web technology and have also adhered to the design of Javadoc. For
explorative development and evaluation in library communication, it is relevant
to stay within the bounds of standard development platforms, such as standard
web browsers or common development environments. There are several reasons
for developing within the standard tool space:

• Relevance – For practitioners, the relevance of tools is higher if they are
integrated with standard tools. Using client-side web technologies pro-
fessionals were also able to test my systems without installing programs
on their computer, thus making it easier to overcome difficulties in eval-
uation.

• Familiarity – By expanding existing tools that users are familiar with
questions of design that are not relevant to the study but required to
create a working systems can be avoided. Users remember what to do
and how to do it when they work with the tool; they have knowledge
in their head and knowledge in their tools (Norman 1990). Introducing
new tools with different functionality and visual appearance can cause
complications because users lose their tool memory.

• Ease of development – Working within the standard tool set makes it
easier to develop systems because more tools support is available (perhaps
in the form of libraries). The development of the global community also
continues to produce new tools along during research projects.

• Testability – Standard tools are more stable and therefore more reliable in
experimental situations. Technical errors are likely to appear less often,
which reduces the risk of research results being flawed because of technical
deficiencies.

20

• Attracting development resources – It is easier to extract external devel-
opment resources, for instance though open-source projects, for popular
and common platforms than for uncommon. The popularity of technol-
ogy is likely to be one of the major factors for independent participation
in open-source projects.

The term “standard tools” seems to indicate old technology. For explo-
rative development in research it may perhaps be argued that the “bleeding
edge” technology should be applied (the latest and most advanced). However,
standard tools are not necessarily old and low-tech. For instance, web technol-
ogy has evolved at high speed during my thesis work. Furthermore, for research
ventures aiming at use-oriented designs that provide solutions usable by pro-
fessionals bleeding edge does not always provide the best solution. Standard
tools may also provide underestimated and highly relevant features that can
be further exploited to provide relevant development. However, standard tools
must not stop researchers from exploring unconventional ways of design.

2.3 Future Considerations

After every research venture it is relevant to reflect on what could have been
done differently.

2.3.1 Open-Source Explorative Development

I have been restrictive with the distribution of my explorative systems without
clear indications of cooperation. In retrospect, I recommend more full-blown
open-source projects for similar research ventures. From a research perspec-
tive, open-source is a new but relevant area of investigation with few in-depth
analyses published (Feller and Fitzgerald 2000, Feller et al. 2001). There are
also some publications written by key figures in the early days of open source
(DiBona et al. 1999, Raymond 1999a, Perence 1999). Open-source develop-
ment is based on massive parallel development (Raymond 1999a, Sanders 1998,
Raymond 1999b, Feller and Fitzgerald 2000). It has resulted in notable soft-
ware products such as Linux (LINUXO, Torvalds 1999), GNU software (GNUS,
Stallman 1999), and the Apache web server (currently covering more than half
the market [AP, NETCRAFT]). Open-source projects can be utterly decen-
tralized where no authority dictates what who shall work on and how. Still,
tremendous organization and cooperation emerges in this decentralized activity
(Perkins 1999). Robustness is one of the benefits claimed for open source (Will-
son 1999, Perkins 1999). It is also a process driven by demand for the product
in the programming community itself (Vixie 1999). In Paper III, open-source
is discussed in more detail in relation to the documentation process and the
ability to provide user-driven, just-in-time production of documentation.

21

As a method for research, open-source development combines peer review
with peer collaboration. Users can freely contribute to projects, either by pro-
viding input or by becoming developers in their own right. Because the process
is open to a global community, it can generate knowledge about user require-
ments and user attitudes. Granted that a project is able to attract a large and
globally distributed community, it can bridge cultural gaps and provide a well-
grounded exploration of functionality. We can also consider the development
process itself as a research process that delivers valid results through open peer
review and collaboration. In this case, global research projects should be that
include large sets of independent research groups.

2.3.2 Individual Data

In my experience it has been difficult to maintain access of person resources in
industry, in particular without support from upper management. One way to
reduce the risk of losing access to data is to focus on empirical material such
as source code, and discussion forums archives rather than subjective data
collected directly from individuals. However, such empirical material should
not be regarded as a substitute for person resources in terms of what knowledge
it can uncover.

22

Chapter 3

Library Communication

In this chapter I describe a model of programming based on software component
libraries focusing on the communication activities involved. The relevance of the
model lies in its approach to communication in programming and the resulting
design requirements it places on tools and processes, which are discussed in
chapter 4. The model is not complete and relative values of different issues are
not assessed.

3.1 Libraries and Programming

Library communication faces a completely different reality than traditional
programming communication (based on the language model of programming).
Both programming behavior and the communication medium have changed.
Most approaches to technical communication and programming tools are de-
signed for the traditional model. In order to address the specific needs of library
communication it is necessary that we understand what library programming
constitutes and what the electronic, networked medium can offer library-based
programming.

3.1.1 What are Libraries?

Somewhat naively, software component libraries can be viewed simply as collec-
tions of reusable components. However, because of the frequent use of libraries
in languages such as Java, the role of the library becomes more complicated.
Libraries represent a technological framework that has been pulled down over
the programming languages that we use to build software. They represent the
joint efforts of global software-development communities but are also the joint
boundaries within which these communities develop software. Compared to
programming languages, libraries contain much larger amounts of constructs,

23

more implicit structures, are often released early and relatively untested, and
are also sometimes published before being completed. To exemplify the ex-
tended meaning of the library in a global development perspective, I elaborate
on what libraries may represent beyond being collections of reusable software
components:

• Extensions to programming languages – What could be integrated in the
languages can also be added without change to the language through
the construction of libraries. One example of this is remote invocation
of methods across networks in Java that the Java RIM library provide
(JRIM). RIM is a typical language concept that has been placed in a
library.

• Attraction of platform value-providers – Libraries acquire value-providers
to platforms by opening platforms to external extension and facilitate the
development of valuable applications. One example is the Java SDK itself
that help users quickly develop Java programs and thereby helps create a
demand for Java products. Another example is the rational extensibility
libraries that open rational tools for external development (RSE).

• Distribution formats for software components – Libraries are a commonly
used format for the distribution of software components. Many program-
ming languages and operating systems provide some form of packaging
construct to collect components into libraries. They may be called pack-
ages, modules, namespaces, or DLLs but they are all libraries.

• Evolving base for programming – Libraries constitute an evolving, chang-
ing, unstable base for development compared to programming languages.
The development of the Java SDK exemplifies this, see Table 1.1 on page
6. In the transition between version 1.1 and version 1.2 of Java SDK the
event model was completely changed (AWT). Evolution often takes the
form of the introduction of new design and the gradual phasing out of old
designs rather than the direct change (to handle backward compatibility).

• Networks of interrelated libraries – Together, different libraries form tech-
nological webs of globally dependant technologies. Most Java libraries are
based on another Java library (even if we exclude the default java.lang
dependence in Java). Java SDK itself is contains a few examples of this.
For instance, javax.swing is to a based on java.awt, and java.rmi is
based on java.net and java.io. Third party libraries, developed outside
Sun Microsystems, also provide relevant examples. Apache, for instance,
includes a number of Java projects that have use several libraries as their
basis in implementation (JAPACHE).

• De-facto standards – Libraries are the working documents of future stan-
dards that provide the basis for technology. Popular libraries, in real-
ity, form standard implementations that later may be formalized into

24

standards. One example of this is the SAX parser library specification
for XML parsers that originally was released in May 1998 and that has
been implemented in over 20 different parsers in 5 different programming
platforms. SAX is not currently a formal standard but it is a de-facto
standard because of the strong support it has in the XML community
and because it has been built into much of the XML-related technology
(SAX). Another type of libraries that become de-facto standards are li-
braries that act as middleware between applications and system types
such as databases management systems. One such example is the Java-
database-connectivity library (JDBC) for which many database providers
develop implementations. Other similar examples are Java Speech and
Java TV (JSPEACH, JTV). Middleware libraries have the ability to be-
come programming de-facto standards because they simplify the process
of using multiple systems of the same type. However, they also dictate
the interface these system types must adapt to and may thereby also
create standards for these systems types.

• Boundary objects among independent groups – Libraries are objects that
connect may different groups developing software. The connection is often
implicit and social rather than structured and defined. The different
groups develop their own software but are also affected by each other
through the communication they have in relation to the libraries. The
SAX library is once again a good example of this. On the web site, 85
different individuals are given credit for having contributed to the design
of SAX (SAX).

• Implicit contracts – Library developers and library users form implicit
contracts for the design of business value. Libraries bind different providers
together. Invested time and cost in learning and communication ensure
that users of libraries continue to use the same libraries. Software ap-
plications based on libraries are bound to the libraries. Considering the
fact that Java SDK 1.4 includes 20,000 methods distributed over 2,500
classes (JSDK1.4), users will be reluctant to make drastic changes.

Libraries are more complex than simple collections of software components,
in particular through the social implications of library-based programming.
Libraries represent a development continuum rather than distinct releases and
are also more of a service than a product. Furthermore, the library is the
primary connecting element for globally distributed independent developers.

3.1.2 Who is the Library User?

At first glance, the library user is a programmer developing software using a
library as a resource in development. However, the question of the library user
is also more complex. In software reuse, user roles are commonly divided into

25

to component locator, adapter, and integrator (Kruger 1992, Basili et al. 1996,
Frakes and Fox 1995, Mili et al. 1995, Mili et al 1999). However, this separation
of roles is too limited in my view. Here I propose an expanded and more detailed
categorization of user roles with regards to library communication specifically:

• Locator – Finds libraries, primarily from the Internet or by word of mouth
(or email). For libraries of Java SDK’s size, finding the library is not as
problematic as finding valuable components within the library. However,
for smaller libraries locaters locate libraries rather than components. To-
day, libraries are located mainly by searching the web or looking though
specially designed web portals such as Jars (JARS) or SourceForge (SF).
Mailing lists also provide a source of references for locators, as libraries
sometimes are discussed here. So far, however, automated processes for
the location of libraries have not been successful (Mili et al. 1998).

• Announcer – Places libraries where locaters are likely to find them. An-
nouncers are required because automated processes for component re-
trieval are still not working satisfactory (Mili et al. 1998). At first glance,
this seems to be a strict developer role but library users also act as an-
nouncers. In my mind, word of mouth or in this case word of email is
still probably one of the more powerful announcement activities.

• Examiner – Studies a library as part of a feature evaluation. The exam-
iner, for instance, must determine if a library can be used in development.
Besides determining if and how a library can be used, the examiner needs
to assess the current and future status of the library, for instance with
regards to the probability of future support.

• Learner – Learns how to use the library, both in terms of what the library
provides and how to integrate that functionality. This is the role most
commonly addressed in library communication see Section 3.3.1.

• Requester – Makes requests for the future development of the library,
including bug fixes. Public beta release of libraries is common practice
today and many libraries have bug databases. Feature requesting is han-
dled in much the same way and sometimes bug reporting and feature
request are handled by the same system. Requesters work with library
bug and feature databases. They need to make requests and to receive
relevant information to avoid replicating other requesters work (partic-
ularly in relation to bugs). Paper II discuss this issue more in depth
(focusing on the user-related bug handling).

• Debater – Actively discuss matters related to the library: a library lob-
byist that influences the direction of library development. This role is
linked to the requester role, but include other social aspects such as

26

networking. Many larger companies have discussion forums where li-
braries they release are discussed. Examples include, the Sun Microsys-
tems’ Java Discussion Forum (JAVADISC), IBM’s Alphaworks Discussion
Forum (ALPHADISC), and Microsoft’s Developer Community web site
(MICRODISC). The debater may also be passive and participate by lis-
tening to the debate to keep up to date with current events. Most users
are probably passive debaters rather than active.

• Anticipator – Waits for the implementation of new features and bug fixes,
hopeful that development will be completed within the timeframe of their
own project. The anticipator role becomes increasingly relevant as the
speed of development increases and it becomes more feasible to wait from
new solutions. Compared to debaters, anticipators need progress signals
rather than knowledge and, in my mind, the anticipator role needs to be
treated as separate from the debater role in efficient communication tools
and processes.

• Developer – Finally, users can become developers in the library devel-
opment process that provides actual source code. Open-source develop-
ment is entirely based on this user role, see Paper III. Users playing the
developer role need to become members of the development team and
communicate on the same premises.

These different roles view the libraries differently and require different things
from library communication. Often, the same individual plays these roles at
different times. For instance, an user is first a locator and then an examiner in
relation to a new library. If the library seems useful the application programmer
becomes a learner. If the application programmer discovers that the library
is relatively new he/she may become an anticipator. Depending on personal
interest or on the relevance of the particular library, the programmer may also
become a debater.

To facilitate library use by these different roles, library communication must
provide suitable process and tool support. What constitutes good design may
differ for different roles or different users.

3.1.3 What is Library-Based Programming?

A library-based programming model must focus on several aspects of develop-
ment that differ from the language based development perspective. Program-
ming cannot simply be regarded as an activity involving the production of code
based on a learnt set of language constructs. Such a library-based programming
model contains aspects such as:

• Multiplicity – Programmers use multiple libraries from different sources
that do not have a joint production system and that are not completely

27

integrated. The libraries may not even be from the same programming
language.

• Evolution – Libraries are evolving elements in programming that con-
tinue their development throughout their use. First public release may
be an alpha-release or more likely a beta-release. Libraries must also up-
date themselves to include new user needs and to adhere to technological
standards and frameworks to stay competitive. For instance, XML is
currently one of the strongest standards that libraries should match.

• Legacy – Libraries will be accompanied by a legacy of older version and
out dated information sources that will make drastic change difficult. If
design concepts change in the version flow, the old solutions will remain
in the background, making understanding and communication about the
library more difficult. Furthermore, old books and web pages may also
foster the belief that the old model is still in use.

• Debate – Library-based programming includes technical debate, that is
the participation of library development in the user community. The
needs and desires of library users end up in mailing lists, discussion fo-
rums, and also sometime as feature requests. Error reports also fall into
this category. Library design must facilitate this activity by providing
suitable support for participating and at the same time extracting value
from that debate.

Compared to language-based programming, library-based programming in-
cludes changes in the technical environment and therefore also the continuous
inclusion of new material and changed material. Communication becomes a
more important aspect of programming. In essence, libraries should be con-
sidered as community services facilitating application programming. Library
users from all around the world are interlocked socially through the library.
An active community with a social structure of users and power users, where
sharing of knowledge and actual code takes place, is relevant to the popularity
of libraries.

3.1.4 Library UI

Generally libraries are considered to be non-graphical tools. However, li-
braries have user interfaces (UIs) through which users access their function-
ality (McLellan et al. 1998, Pemberton 1997). Online documentation is the
most common example of a library UI through which programmers learn about
the syntax and semantics of libraries. Discussion forums and mailing lists on
the Web are other examples supporting the communication tasks that library
users and library developers have in relation to the library. Also, bug-handling
systems are often provided to handle error and feature requests in relation

28

to libraries. Moreover, code-completion functionality in development environ-
ments can be thought of as GUIs through which programmers can access the
functionality of the library by direct manipulation.

It seems there are many different library services spread out over a large
number of UIs. There is no common UI through which the user performs
library-related tasks. Supplying a common UI would of course make library-
use easier by automating the manual steps taken to cross UI boundaries but it
may also counteract the role of libraries in other tools, such as the editor, and
place too much emphasis on the library.

Let us make the basic comparison between library UIs and the UI of a
common word processor (in this case examples are taken from MS Word). A
word processor that works like reference documentation would require you to
read about the save function in the manual and there find the correct syntax to
enter at the prompt to issue the command. Available functionality is described
in textual format and has to be copied manually into the source code. Copying
is even hindered by the use of hyperlinks in documentation since hyperlinks are
difficult to select as text (the pointer keeps shifting to the hand, which cannot
be used to copy). Code-completion functionality, on the other hand, supports
copying and syntax correctness. Furthermore, all commands are presented with
equal relevance, that is without a meaningful structure. The time it takes to
locate and issue the open file command is equal to or even longer than the time
it takes to open a web page to the office at the web. Commands are organized
without regard to the probability of use. Commands are listed alphabetically,
which in the word processor case would place Autotext in the top and Undo at
the bottom of the menu system.

The comparison with the common UI of a desktop application uncovers the
lack of user-oriented design in library communication. However, in all fairness,
it is also relevant to point out that library users are a particular brand of
software users perhaps who require a different style of support than the general
user. Library users are generally programmers and as such separate themselves
from traditional users quite distinctly in some aspects:

• Code-fluent – Library users are or should become fluent in the program-
ming language the library is based on. Therefore, natural language is not
necessarily the main language of choice for the transfer of knowledge.

• Commando-based – Library users are accustomed to a commando-style
interface of programming languages and perhaps more accustomed to a
UI style (placing commandos) than a GUI style (direct manipulation)
interaction models.

• Expert computer users – many library users are expert computer users
competent enough to make use of flexible, open systems that allow them
ample room for the construction of individually developed support sys-

29

tems. Designs that are too rigid may become obstacles in their work
processes.

Though there is a need for use-oriented-interaction design for library users
this does not necessarily translate to the type of design that suits the general
desktop user.

3.2 A Model of Library Communication

The model of library communication presented here treats library communi-
cation as a community activity where independent developers and users with
different goals use and develop libraries.

Library communication is the act of communicating as part of library-based
programming. Compared to languages, libraries are much larger, continuously
changing, seldom complete, less well tested, and less formally specified sets of
constructs. Technical evolution during programming projects, legacy of pub-
lished and inconsistent documentation as well as debate are elements of library
communication. Programmers use multiple libraries from independent develop-
ers with little or no cooperation in the communication process. Distinguishing
between developers and users is not so relevant, because developers are often
users of other libraries. Members of library communities are simply program-
mers with varying technical competence. It is more important to distinguish
between roles, such as examiners and learners, to help support programmer
tasks.

Ultimately, programmers have the same need for use-oriented designs in
library UIs as users do in general. However, programmers are also different
from traditional users. They are code-fluent, used to command-based UIs, and
are expert computer users. Supporting a programming model described here
with the premises of the programmer as a user and the web of interconnected
libraries and programmers is, in my mind, an important step in the development
of global software engineering. In chapter 4, the design of electronic, networked
tools and processes in relation to this model is discussed.

3.2.1 Current Model

Most commonly, contemporary library communication is conducted according
to the model presented in Figure 3.1. In this model, developers write docu-
mentation based on source code and publish it on web sites. Users then obtain
documentation on their own initiative and provide feedback though debate fo-
rums such as bug data-bases and mailing lists. In this model, there are three
distinct interruptions in the flow of communication:

• Source code and documentation – An interruption between the documen-
tation and source code that exists on both sides of the developer-user

30

Figure 3.1: The contemporary communication model between developers and
users of libraries. There are three distinct interruptions in the communication
flow: (a) between source code and documentation, (b) between developers web
site and users programming environment, and (c) between feedback database
and developer documentation.

31

relation. Deviation between documentation and source code is a well-
known problem in software engineering.

• Publication platform and programming environment – An interruption
between publication platforms for documentation and programmers de-
velopment environment. Users are required to perform an active search
to acquire updates of developer documentation, which commonly reside
outside their standard development environment on a web site they have
little reason to frequently visit or in a set of books. Email distribution of
documentation removes this interruption to a certain degree. However,
emails are not always read even though the programmer’s mailbox has
received them.

• Feedback and documentation – An interruption between user feedback
and the documentation it concerns. This interruption is both physical
and organizational. The physical interruption comes from a lack of in-
tegration of debate into documentation. The organizational interruption
comes form the difference of thread-based discussion and topic-based doc-
umentation where content has to be recompiled before being used.

In general, these interruptions can be difficult and time-consuming elements
in library communication because they introduce stops in the process that re-
quire active transfer of content among different platforms. From the developer’s
side, they cause problems because information is published but not received.
From the user’s side, they cause problems because feedback is collected but
not handled. For both sides, they cause problems because communication and
source-code development is not synchronized.

3.2.2 Improving the Current Model

Interruptions in library communication could be removed by a more direct
model of communication. Figure 3.2 presents such a simplified model. Here
communication is truly bi-directional and communication potentially flows all
the way from source files to source files. How to achieve this mode is discussed
in Chapter 4. Parts of this model however, exist today in different formats.
Javadoc, for instance, removes part of the interruption between source code and
documentation (not back from documentation to source code, JAVADAOC,
appendix A). Annotated manuals, see section 3.3.2, can handle the feedback
interruption by introducing discussion inside manuals. The model in Figure
3.2 is essentially a single connection between two programmers in a library
community. If the model is expanded to webs of interconnected programmers
with relations across organizations and in some cases even across programming
languages.

32

Figure 3.2: Removing the interruptions of Figure 3.1 creates a truly bi-
directional channel of communication between developers and users.

3.3 Conclusive Remarks

The state of the art for library communication is provided here, by providing
a description of the standard design and the highly relevant exceptions to the
norm.

3.3.1 The standard design

The standard design of library communication varies of course, with respect
to the different forms of communication. There are also varying degrees of
different materials for different libraries, dependent both on size and the de-
velopment organization. However to summarize, most libraries provide the
following library communication pattern:

• Tutorial material – Most commonly libraries have so called “get started”
or “hello world” texts. These texts are task oriented and provide valu-
able material for users of libraries. However, beyond the absolute basics
tutorial material seldom provides detailed task-based instruction.

• Reference documentation – This is the majority of the communication
produced in relation to libraries. Reference documentation is, with few
exceptions, system-oriented in nature and works as alphabetic encyclope-
dias without connection to tasks or user profiles. Code completion func-
tionality in development environments provides active support for the
transfer of code but also provides extremely minimalist tutorial value.
Sometimes libraries provide specifications documents that can be used
as reference material, but they are often too complicated, provide too

33

detailed technical information, and do not provide enough concrete de-
scriptions of how to use libraries.

• Ongoing debate – Mailing lists and discussion forums allow the library
community to discuss both the current and the future implementation
of libraries. Libraries must be relatively large to accumulate an active
online debate. Smaller libraries use mailing lists more as a channel for
announcements. Mailing lists and discussion forums provide task-oriented
approaches to instruction and also facilitate people-to-people connections
across organizations. Elements such as future requirements, misunder-
standings, poor design, and use frequency could potentially be extracted
from the archives of these forums. However, it can be very difficult to ex-
tract value from compilations of knowledge spread over multiple threads
of conversation without a clear topic structure. Moreover, debate on bugs
focuses mainly on collecting bug knowledge rather than the distribution
of bug knowledge to users. Though bug databases are made available for
search online, the active search required by users means that bug knowl-
edge is poorly communicated (see Paper IIfor a discussion on why this is
the case).

Hyper linking is generally the only feature that separates online reference
documentation from printed reference documentation. In some cases hyper-
links match concepts in the programming domain, such as return values or
parameters of subroutines. Javadoc, for instance, uses hyperlinks to illustrate
relations among components. The hypertext network becomes a direct map-
ping of Java component relations. Though structures are relatively invisible in
the documentation, programmers can understand them by browsing the docu-
mentation. Still, in many cases, hyperlinks are not used to represent relations
in library communication.

3.3.2 The good examples

There are a few highly relevant examples of library communication systems
representing the most advanced library communication system utilizing the
potential of the electronic, networked medium. I will discuss these systems
here to give a reflection of what can be accomplished.

• Annotated manual – The annotated manual is an example of how the user
community can be included in the creation process (discussed in depth in
Paper III). The annotated manual provides prototype documentation to
start with. Users can then provide comments on the documentation and
on comments written by other users. A debate can be held in the doc-
umentation which becomes a foundation for the continued development,
error handling, and development of documentation. Examples include

34

the PHP annotated manual and the MySQL annotated manual (PHPAM,
MYSQLAM).

• Completely open manuals – Even more flexible are the collectively written
manuals that are completely open for rewriting. Users have complete
freedom to edit the documentation. Examples include the Squeek manual
(SQEM). Squeek is an implementation of the Smalltalk programming
language.

• Execution in manuals – Manuals that include execution options can pro-
vide the user with the ability to try out library functions directly. This
functionality is included in the Mathematica Help Browser (Wolfram
1996). JSP Explorer is another recent example system that allows users
to test Java server pages code online (JSPEXP).

• Adaptive manuals – The adaptive manual changes its content and pre-
sentation in relation to the user. The Mathematica Help Browser and
MSDN Web Workshop also include limited adaptive mechanisms (Wol-
fram 1996, MSDNWW). DJavadoc is a more advanced adaptive system
that allows the user to define views of information (DJAVADOC).

35

36

Chapter 4

Designing for Library
Communication

In this chapter I present design implications of the model of library commu-
nication presented in Chapter 3. There are three of design discussions: one
general for library communication, one specific for Javadoc (see Appendix A),
and finally one for programming languages. The discussions are focused on the
communication interruptions presented in Section 3.2.1.

4.1 Design Criteria on Library Communication

In May 2001 Sun Microsystems reported having 2 million registered members
to their developers connection web site (Nourie 2001), which is a minimal esti-
mate of the number of Java developer worldwide. If at the same time libraries
continuously grow and change, development teams will have difficulties keeping
up with the demand for library communication that their user community re-
quires. This problem has two solutions: automatic or user-driven approaches to
communication. Being able to automate library communication from library
source code is the aim of several scientific and commercial ventures (Knuth
1991, JAVADOC, SODARR). A reasonable guess however, is that automa-
tion will not be able to meet every need. Eventually human effort will be
required to close the gap between automation and good, solid user-oriented li-
brary communication. The most plausible solution lies somewhere in-between,
where automation both produces content and automatically develops tools for
the continued user-driven production of content. This however, is a process
that requires tool support built with a different frame of mind than which is
currently produced. In this section, I focus on general design requirements for

37

removing the interruptions of Section 3.2.1 based on automated or user-driven
communication.

4.1.1 Source Code and Documentation Interruption

This interruption refers to the manual work required to write documentation
and to provide communication tools that are based on the content of library
source files. It also refers to the manual work required to move feedback from
feedback databases such as bug databases to source files. The following design
issues are relevant to the removal of this interruption:

• Communication-facilitating infrastructures – Automating the construc-
tion of communication facilitating infrastructure from library source files
is an important starting point for a library communication process. Gen-
eration of debate systems (such as mailing lists) is one example of what
such automation can provide, where different communication systems are
automatically set up from a library project. Today, automation in library
communication is more focused on generating content that on providing
communication tools.

• Automated Writing – The writing processes need automation both to save
time and to provide a standard look and feel. Javadoc exemplifies this
in the production of documentation from Java source codes, providing
a straightforward method of producing standard Java reference docu-
mentation. However, Javadoc does not provide complete automation and
still requires much manually written documentation. By analysing source
code it could be possible to provide explanation of the use of methods.
Test code written to verify the functionality of library components could
also be used for this purpose. However it is perhaps not realistic to expect
complete automation of the writing process (though desirable).

• Example-code extraction – Developing automatic example-code extrac-
tion strategies is highly relevant because users frequently request exam-
ple code. Algorithms need to be developed that facilitate the extraction
of useful code examples from source code. One example of such an algo-
rithm extracts all occurrences of a construct (e.g. a method) and provides
them in line-number order. Example code is manually constructed today.

• Feedback Integration – Integrating feedback into source files is relevant
to facilitate the process of working with a user community that actively
participates in development. Though filters may be required to determine
whether feedback is relevant and correct, once feedback is deemed cor-
rect it should appear inside source files to reduce the amount of parallel
tools developers use and thereby increase the visibility of feedback. For
instance, bug reports should be added to the source files containing the
bug. Feedback however, is handled by separate systems today.

38

4.1.2 Publication Platform and Programming Environ-
ment Interruption

This refers to format differences used in communication and in programming.
For instance, documentation is expressed mainly in natural language where as
programs are expressed in programming languages. Further more, documenta-
tion is increasingly web based (services as well as documents) but programming
still is mainly based on local resources. The following design issues are relevant
to the removal of this interruption:

• Documentation-to-code transfer – Writing should focus on facilitating the
transfer of knowledge (ultimately source code) from the library specifi-
cation and source files. Example code is one example of documentation
designed for documentation-to-code transfer. Integrated development en-
vironments also provide support in this area, commonly though code-
completion functionality. However, documentation as an activity is still
focused on teaching the use of library concepts rather than providing
documentation-to-code transfer services.

• Living documents – Documents need to be more living in the sense that
they evolve and include new material as the community continues to
develop its resources. Downloaded resources need to incorporate new
content as well as illustrate its changes. Local copies of documentation
must themselves track the evolution of their originals to help users dis-
cover when new information is available. In essence, this requires the
production of documents that read other sources and integrate material.
Today however, most documents are dead on arrival and do not develop
new material. Annotated manuals are examples of living documents, see
Section 3.3.2.

• Communication portal – It is essential to provide some form of common
communication portal that allows users to easily participate in the com-
munication processes that concern a library. A suitable candidate to the
communication portal is library reference documentation. For users of
development environments, the environment is perhaps a more suitable
candidate. The important issue, regardless of platform, is to avoid spread-
ing communication services (e.g. bug reporting) over a large amount of
disconnected communication platforms, such as web sites and local copies
of documentation which unfortunately is the common design today.

• Programming-language communication – For library users, it is relevant
to focus on the programming language rather than the natural language.
Today, documentation uses code snippets to explain descriptive texts.
The opposite focus is desirable, where natural language is used to explain
code. One way of focusing more on code is to provide example code as

39

illustrations of how a component is used rather than natural language
explanations. Besides being directly usable in programming, code also
teaches the syntactical specification of the programming language.

4.1.3 Feedback and Documentation Interruption

This refers to the separation of feedback resources and document resources
where debate and requests are handled separately. Provided is a list of design
issues with regards to this:

• Just-in-time writing – The speed of growth and change requires just-in-
time approaches to content production that delivers content when desired
and thereby avoid producing content that is not required by the user
community. A stronger focus is put on online forms of communication
such as chats and mailing lists. A majority of the communication work
will be performed after product release, though an early documentation
prototype may be required. Today however, the documentation process is
assumed to be relatively complete on product release. Paper III discusses
this issue in more detail.

• Short release cycles – Short release cycles will be required to quickly de-
liver content, in particular for early phases of the library communication.
Such short cycles may require large staffs that cannot be matched by
the development organization, advocating user involvement in the writ-
ing process. Today, documentation release cycles are too long because
the production of documentation focuses on professional products such
as books or official websites. One exception however, is library mailing
lists where response time may be under 24 hours.

• Request-response driven writing – Just-in-time writing requires a request-
response driven writing process where request are generated and responded
to either automatically or by members of the library community (includ-
ing both users and developers). Some requests could be automated, for
instance by analyzing online documentation access logs. For more quali-
tative requests, members of the community have to provide request. To-
day, users are included in user-centered design but as subjects rather
than peers in the production of content. As Paper III shows, today even
open-source project have a restricted approach towards user involvement
in document production.

• Open-source approaches – Essentially, an open-source approach to writing
is required to accomplish efficient request-response driven writing. The
major benefits of such a design are relevance and priority in the content
production phase. In many cases, library users are competent enough to
understand the inner workings of the library and can also contribute to

40

the communication flow by providing responses. Unfortunately, today one
commercial drive in software development is documentation and support.

• Structured writing – To facilitate user involvement in the production of
requests and responses, users need structured writing processes (exempli-
fied by Javadoc that provides some structure though predefined tags, see
Appendix A). Library users are most commonly programmers without
training in technical writing. A controlled, well designed structure on a
content level can support users both by providing dispositions of quality
documentation and by automating typographical design. Today however,
most user contributions are provided in raw text.

4.2 new Javadoc()

In its current form, Javadoc provides a straightforward generation process that
produces streamlined documentation for Java libraries, see Appendix A. It
uses a structured documentation process that integrates code and comments
in the same format and produces batch HTML documentation. Javadoc is one
of the strong features of Java that has also become something of a model for
documentation generation tools for (object-oriented) programming languages.
However, Javadoc also produces system-oriented, encyclopedic reference docu-
mentation and need to be further developed to facilitate library communication.
The strength of the Javadoc structure is the generation process that provides
disposition for the writing process, supporting communication and providing
quality control through structured writing. Here I focus on how Javadoc can be
further developed to help remove the interruptions described in Section 3.2.1.

4.2.1 Source Code and Documentation Interruptions

This interruption refers to issue of automation with regards to the source-to-
documentation relation and to the feedback-to-source relation. The following
design issues are relevant to the removal of this interruption:

• Speed of navigation – Reduce the time it takes to find information. Cur-
rently, Javadoc shows some bad design choices in this area. For instance,
methods are listed last in the document although they are the most com-
monly used type of information in Java library documentation. The de-
sign should focus on users tasks, which may require multiple designs to
accommodate different roles.

• Component execution – Include execution functionality in Javadoc docu-
mentation to provide direct exploration of component functionality. Many
components can be visualized graphically and it is relevant to be able test

41

the components directly while learning about the components. For in-
stance what happens to a graphical component when methods are applied
can be visualized.

• Internal documentation – The internal documentation process during the
development of libraries and of applications, could benefit from a separate
documentation structure to save time in the writing phase and to visualize
project progress in documentation directly. For instance, the comment
structure could include tags that relate to testing, such as unit-tested,
user-tested, and integration-tested.

• User-roles – Include user roles in the comment structure; see Section 3.1.2
for a discussion of library user roles. Providing different commenting
structures for these different roles enables developers to address multiple
users in the same source for different builds of the documentation.

• Multiple sources – Increase the integration of documentation from mul-
tiple sources. Users download libraries from multiple sources. For the
user it is therefore relevant to integrate the communications flows, for in-
stance by building joint reference documentation from multiple sources.
Javadoc currently does not support multiple documentation sources.

4.2.2 Publication Platform and Programming Environ-
ment Interruption

This refers to issue of similarity in formats between the communication platform
and the programming platform. The following design issues are relevant to the
removal of this interruption:

• Flow of communication – Reduce the amount of information that users
must handle for instance by providing multiple builds from the same doc-
umentation and allowing categorization in the structured writing process.
Many users could benefit from a basic profile that only lists the most basic
and useful information.

• Task-orientation – Increase the coupling between the information orga-
nization and user tasks. By providing clearly task-related content the
library communication both decreases the amount of information and
helps teach the use of libraries. Categorizations that are useful in this re-
spect include application types (e.g. database applications, 3D games and
so forth) and internal or external components (for application developers
and library developers).

• Directly usable code – Users ultimately want to fill their source files with
code, part of which comes from the library specifications. Being able
to cut and paste various forms of code from the communication flow

42

into the source files increases the speed of development and provides
syntax correctness. This is what code-completion functionality provides.
However, example codes and larger, more complex pieces of code are
also desirable. Finding ways to automate the production of code in the
documentation is desirable, but manual processes can also be supported
by the automatic generation of tool support.

4.2.3 Feedback and Documentation Interruptions

This refers to the separation of feedback resources and document resources
where debate and requests are handled separately. Provided is a list of design
issues with regards to this:

• Debate infrastructure – Just as Javadoc provides a straightforward pro-
cess for the production of reference documentation, it should also produce
debate infrastructures such as mailing lists, bug handling, and feature re-
quest systems. An automatic production process would decrease the time
needed to produce such systems and also enable more detail-level discus-
sion directly coupled to the source files (to organize discussion forums
inside the source files or at least match the elements in the source files).

• Integrate debate access – If Javadoc produces the debate infrastructure
it can also directly connect reference documentation to the debate and
thereby make reference documentation a portal to the ongoing communi-
cation flow. Unnecessary steps in the communication could be removed
(e.g. locating web sites with these debate structures and providing version
and component information). Distributing the debate directly though the
documentation would also support passive search by the user, which is
particularly relevant for the distribution of bug knowledge (see Paper II
for an in depth discussion of why this is the case). Integrating debate
access would result in annotated Javadoc documentation.

• Request and response functionality – To support just-in-time production
of content, users must be able to request information and also to respond
to previously issued requests for instance using an annotated manual, see
Section 3.3.2. Both the request and the response need to be integrated
into copies of the documentation and the original source files (i.e., the
documentation must be able to upload new content). There may also be
a need to propagate requests and responses directly into the source code
from which the Javadoc documentation has been built.

• Reorganization functionality – To support just-in-time production of task-
based documentation organization, users should be allowed to change the
organization of documentation, for instance by adding bookmark struc-
tures or by rearranging indices. In a global user community, this can

43

enable dissemination of task-related knowledge among users and devel-
opers. It also means that the user community can jointly improve the
organization of the documentation.

• Open-source infrastructure – In its extreme, just-in-time production needs
to become an open-source development process. Javadoc could help gen-
erate the technological infrastructure required to generate and support
that process from source code directly. Open-source places other require-
ments on the generation process such as building social structures in the
user community (e.g. though rating mechanisms). See Paper III for a
framework of open-source documentation.

• Disposition – Increase disposition support in the comment structure.
Continue the development of the comment structure to include a more
detailed disposition of what constitutes quality documentation. Part of
the benefit of structured writing is that users do not themselves have to
define what constitutes quality documentation. Javadoc currently pro-
vides little disposition beyond the general description tag. For instance,
for parameter descriptions the comment structure should support the de-
scription of meaning for different input values.

4.3 Programming Languages and Communica-
tion

Human Readability has been a factor in the development of programming
languages previously, for instance, leading to the abandonment of GOTO-
statements (Djikstra 1968, Louden 1993). With respect to the large number of
libraries that have been developed and shared during the last decade, the de-
sign of programming languages should perhaps also focus on the support that
is provided for automatic generation of communication tools and process.

The design of programming language fundamentally affects the develop-
ment of communication; in particular automatic generation of communication
infrastructure and content. By analyzing aspects of programming languages it
is possible to develop languages that are more adapted to library-based pro-
gramming. Mainly programming languages can help remove the interruption
between source code and documentation, see Section 3.2.1. Here I provide
some examples of how programming languages can be further developed for
this purpose.

• Typing – Strong typing is beneficial in communication. Java, which is
strongly typed, can automatically generate relations among components
in the documentation and thereby allow for cross component browsing
and structural browsing in libraries. Non-typed languages cannot enable

44

this automatic generation based on type. Consequentially, documenta-
tion has less ability to illustrate the implicit relations that do exist in the
implementation.

• Inheritance – In principle, from a communication point of view there is
nothing wrong with inheritance. It can even be beneficial, because manu-
ally written documentation can also be inherited. However, inheritance,
in practice, leads to large structures. The Java SDK is an example of
this (forinstance, the javax.swing.JPasswordField class has 6 levels of
inheritance and over 300 methods [JSDK1.4]). As a result, it becomes a
practical necessity to differentiate between declared and inherited meth-
ods in the documentation. However, inherited methods are often more
useful than declared methods (which is why they are collected in an ab-
stract class to begin with). As a result, the documentation organization
does not illustrate the usefulness of method. In Javadoc, often less useful
declared methods are more visible than more useful inherited methods.
In essence, inheritance is useful for the development of software libraries
but not necessarily for the use of libraries and library documentation.

• Scope Modifier – Modifiers are used among other things to describe the
scope of method calls (subroutines) for instance. In Java the private, pub-
lic, and protected modifiers are used to determine the external usability
of a class member, such as a method. As an example, all other classes
can use a public method. In practice, however, the scope modifiers in
Java give rise to many public methods because large structures require
public methods for internal cooperation across packages (collections of
classes). The Java language thereby externalizes many methods that are
not intended for library users. That this is a real problem can be seen
from the many requests for internal and external documentation com-
ments. The amount of such requests has been so high that the Javadoc
Team has reserved words for the implementation of such comments in
the future (JAVADOC). An alternative programming language solution
is a more explicit definition of scope modifiers (e.g. similar to the C++
friends concept).

45

46

Chapter 5

Related Work

Library communication is a wide area of research involving many different as-
pects of human-to-human communication in programming. In my research I
have covered some of these issues. In this chapter I address systems and studies
in relation to my work and to library communication. Communication within
development teams is not addressed because I work mainly with communication
within the external technical environment.

5.1 Analysis of Library-Based Programming

Studying library-based programming is a requirement of developing communi-
cation tools and processes. Uncovering programmers’ work habits in relation to
libraries and what they need from a communication perspective is imperative
to the development of library-communication tools and processes. It is also rel-
evant to study professional programmer’s behavior because the behavior of stu-
dents may not be representative of professionals (Brooks 1980). Unfortunately,
little work has been performed specifically in this area. Frakes and Pole (1994)
studied representation models of reusable software components and search ef-
fectiveness for different representations and found no significant differences or
no clear preferences from programmers. The study contained 3000 keywords
which is similar to the number of classes in Java SDK 1.4 (see Table 1.1). The
study was performed using professional programmers as subjects. Shull et al.
(2000) performed a study sing reading techniques for object-oriented framework
learning and found that example-based techniques are well suited for beginners
but that hierarchy-based techniques are not. The Shull et al. (2000) study was
performed on students.

Programming behaviour has been studied at a more general level. The
studies often differentiate between expert and novice behavior (e.g. Soloway

47

and Ehrlich 1984, Altmann et al. 1995, Fix et al. 1995). For instance, Fix et
al. (1993) studied display navigation by expert programmers. They reported
that navigation is aided by long-term memory, working memory and the dis-
play itself. There has also been a lot of performed on software comprehension
and program understanding (e.g. Bohem-Davis 1988, Rugaber 1995). Stud-
ies of expert programmer behavior, however, mainly focus on language-based
programming, which may limit the relevance of the findings to this thesis.

5.2 Formal Approaches to Library Communica-
tion

A fair amount of work has been reported on formal approaches to library com-
munication, mainly regarding component retrieval in relation to libraries (e.g.
Mili et al. 1997, Fisher et al 1994, Penix and Alexander 1996, Yoëlle et al.
1991, Fischer 1998, Michail and Noitiks 1999). Mili et al. (1998) surveyed
the state of the art of component storage and retrieval and came to the conclu-
sions that though many solutions have been proposed, no solution has offered a
breakthrough in software reuse, being either too inaccurate or too untraceable
to be useful. The fact that new technology such as Internet keeps opening up
new opportunities for packaging and organizing software was considered partly
the reason why reuse storage and retrieval methods are still is not successful.

General to software reuse and component retrieval is the idea of software
reuse being performed by locating and adapting software components to exist-
ing projects. Most approaches ignore the human programmer as an asset in
the process (Maiden and Sutcliff 1993).

The development of formal methods that enhance software reuse is highly
relevant. However, my work is more directed towards the social aspects of
global cooperating programmers and their communication needs in relation
to library-based programming. Formal approaches are complementary to the
work presented here and will not be discussed further.

5.3 Component Browsing

Browsing nformation sources such as reference documentation, source files, and
tutorials is relevant to library communication. The electronic, networked media
provide new possibilities to improve efficiency, quality, cost, and frustration
in this area. Hypertext browsing is common in library communication, see
Section3.3, of which Javadoc is one of the most developed examples in common
use (JAVADOC, Kramer 1999, Friendly 1995). The study I have performed in
relation to DJavadoc involves information browsing based on adaptability in
reading; see Papers IV, V, and I.

48

Adaptability in documentation can also be used to limit documentation
resources and thereby decrease the information users handle. Mathematica
and MSDN Web Workshop provide limited adaptability by allowing users to
open and close sections of information on an individual page basis (Wolfram
1996, MSDNWW). Another common way to adapt information is to filter based
on modifiers where components are removed depending on their type, such as
public and abstract in the Java domain (e.g. Stanchfield and Mauny 2001).
This technique was used in the prototype systems discussed in Paper V.

There are other relevant examples in this context. For instance, command
based browsing that allows programmers to browse systems by using keyboard
short cuts and by writing names of known components. Examples include the
Info system for GNU documentation (Chassell and Stallman 1997) and code-
completion functionality in development environments (e.g. VC and Stanchfield
and Mauny 2001). For interpreted languages such as LISP, documentation can
also be integrated into the components and called on from the command line
(Steele 1990). Though users may not program interactively, they may still
call documentation functions directly. For experienced users, command-based
interaction provides browsing efficiency.

Context-dependent browsing also enables form for efficient browsing where
the context of the programmer facilitates information browsing. Code-completion
functionality provides context-dependent browsing to a highly limited docu-
mentation set related to the components the programmer is currently using.
More generally, some development environments allow documentation brows-
ing from the source code the user is working on (e.g. VC, Stanchfield and
Mauny 2001). In this sense, use-oriented browsing of documentation is avail-
able but only works for components that have already exist in the source code
and is perhaps most relevant for software maintenance and program under-
standing. Even more general, documentation and code can be interrelated into
a combined information browsing process. This combination is possible in the
Elucidator, which allows cross browsing in separate windows of both documen-
tation and source code (Normark et al. 2000). Another relevant example is the
HyperPro system for Smalltalk hypertext browsing which allows the splitting of
code and documentation into several information nodes thereby enabling simul-
taneous browsing of several parts of a long literate program without splitting
the program into subroutines for documentation purposes (Østerbye 1995).

5.4 Exploring Functionality

The electronic, networked medium provides the ability to test components di-
rectly in the documentation (e.g. JSPEXP, Wolfram 1996). The documenta-
tion includes a runtime environment that can execute code and visualize the
result. One of the major advantages of trying out code directly is saving time
designing test programs and enabling more detailed exploration. The useful-

49

ness of exploring functionality in documentation, however, is dependent on
component types. For graphical components, for instance, the availability of
interactive component exploration is easily appreciated. However, the same
may not always be said about all abstract data types. Similarly, in interactive
environments for interpreted environments, functionality can be tested directly,
for instance in LISP (Steele 1990).

5.5 Brief History of Electronic Reference Doc-
umentation

The DJavadoc system, developed and evaluated as part of this work (see Ap-
pendix B and Papers Iand IV), is an electronic reference documentation system.
It has been developed as part of a long tradition on electronic reference docu-
mentation for programming (documentation read from screens). Here I address
that history by discussing how electronic reference documentation has evolved.

Early examples of electronic reference documentation include LISP docu-
mentation functions, which later developed into Common LISP (Steele 1990).
The documentation was called from the command line. Unix man pages work
in a similar fashion (UNIX). These examples came into use in the 1970s. In
these approaches non-typeset documentation is printed in shells as output.

Later hypertext elements were introduced into online reference documen-
tation systems. Examples include the Texinfo system (described in Chassell
and Stallman 1997) which came into use in the mid-1980s. The Texinfo system
provides navigational hypertext functionality among pages and documentation
elements. Graphical style was originally not as elaborate as it is today due to
hardware limitations. The Texinfo system also contains hyper linking for the
page or book metaphor where concepts such as previous and next exist (i.e.,
independent of the content of the manual). Online manuals that use the page
metaphor are still relatively common on the web.

Today most electronic reference documentation consists of online hypertext
manuals that provide descriptive system-oriented, encyclopedic list of compo-
nents in a relatively traditional book format that are distributed through the
web. Elaborate graphical style is commonly used. Still reference documenta-
tion is often downloaded and read locally rather than directly from web sites.

The most recent contributions to electronic reference documentation are
the evolving or annotated hypertext online manuals, which provide annota-
tion functionality and manuals, with direct exploration of functionality. For a
discussion on this topic see section 3.3.2

50

5.6 Summary of Related Work

Library communication is a relatively open field of investigation where most
of the scientific work has been performed on formal methods. Little is known
about the behavior of library-based programmers and about the usability of
existing tools. Unfortunately, I have found nothing published on open-source
documentation or on bug handling in relation to library-based programming
(and nothing in general about bug handling). On the bright side, the field
is open for investigation, providing many relevant problems for research in
relation to programming.

51

52

Chapter 6

Discussion

This thesis addresses the issue of how we should use the electronic, networked
medium as a platform for library communication? In general, the work illus-
trates the great potential for development in electronic communication tools and
processes for library-based programming. However, it also illustrates the need to
incorporate knowledge specifically related to the area of library communication.
In this chapter, I discuss aspects of design in electronic library communica-
tion related to the thesis. The first issue is the global behavior of contemporary
programming (community software development) and the relation to software
development methods. Furthermore, I discuss continued studies on the value of
adaptation in reference documentation. Moreover, user-driven documentation
is discussed with regards to its value and to the possibility of such processes
working in practice. Finally, passive reading as a component in library com-
munication is discussed.

6.1 Community Software Development

This thesis illustrates that the electronic, networked medium gives rise to a
new type of software development. I model library communication and library-
based programming as a community activity, software, even at a project level,
is developed within technical communities of independent organizations. These
organizations have completely different goals but they still jointly determine
the design of their independent applications through the design of their shared
components. In contemporary development, this trend can be seen in the
way component libraries are handled, in the community activities that these
libraries give rise to such as discussion forums, web sites, and conferences, and
how technical standards are developed and accepted by the communities.

On the extreme end of this community axis we find the ideal open-source
projects, in which sharing and co-operation is present in all aspects of devel-

53

opment (e.g. design, development, and management). New levels of speed,
quality, standardization, cost and efficiency are attainable in application de-
velopment, as open-source projects illustrate (DiBona et al. 1999, Raymond
1999a). Commercial projects are currently moving towards the open-source
end of community axis, illustrated by the fact that multinational corporations
such as Apple, IBM, Intel, Nokia, and Sun have their own open-source licenses
(OSIWS).

At the same time, contemporary industrial-strength software-development
methods model development as a single-organization activity. Most develop-
ment methods, such as the rational unified process (Jacobson et al. 1999,
RHP) and extreme programming (Beck 2000) take little notice of the techni-
cal environment in which development is performed. Models of development
generally focus on the customer and the development team but ignore the tech-
nical community. This community however, to an increasing degree develops
components, dictates technical standards, and drives technical development.

Development models need to include the technical environment in their
processes to adhere to the reality of global sharing. Taking advantage of the
technical environment in an ad-hoc fashion has the same type of problems
as ad-hoc development processes in general. Development models need to in-
clude steps that address technical communities outside the development team
and describe how the team should interact with such communities. In turn,
library communication tools can communicate such methodological develop-
ment through their implementations and they way users change their behavior
in relation to tools.

6.2 Understanding Valuable Adaptation

A question that remains open for investigation in relation to this work, is the
matter of what constitutes valuable adaptation in library communication. A
large part of this work has been directed towards the development and eval-
uation of individual adaptation in an industry setting (see Paper I, IV, and
Appendix B). Common sense tells us that individual adaptation islikely to
provide efficiency in communication by trimming the communication flow in
relation to users’ contexts. My research however, does not support individual
adaptation (see Paper I). Further studies are naturally required to determine
the value of individual adaptation. In addition to continuing experimenting
with individual adaptation, there is a need to determine how to address adap-
tation in library communication.

In order to determine what constitutes valuable adaptation, I propose a
study on the use profiles of a large and frequently used set of libraries such as the
Java SDK. Java SDK has been used in many projects across many application
domains and by studying how different projects use such a common set of
libraries it becomes possible to explore the value of adaptability. For instance, it

54

is possible to determine if adaptability is required (a) at all, (b) on an individual
level, (c) on an application-category level, (d) or if the solution is a combination
of the above for Java SDK. It also becomes possible to create categories of
projects based on their use profiles rather than on their application type. Such
a study would also provide design knowledge for adaptive communication tools.

If a study of use profiles shows that individual adaptation is required then
documentation needs to incorporate contextual data into the presentation and
content production phase to achieve optimal communication. This, in essence,
requires reasoning by the communication tools and access to personal data. On
the other hand, if adaptation is required on an application level, communication
tools can be developed on a global level and distributed throughout the library
community.

6.3 User-Driven Communication

This work also addresses global user-driven communication and just-in-time
production of content (see Paper III). User-driven documentation takes the
stance that documentation is incomplete in nature and that the communication
processes start when products are released. A central issue of the electronic,
networked medium is the increased possibilities of user-driven process. The
value is relevance in the production phase, through a global request-response
structure involving users reducing cost and unnecessary content and thereby
increasing efficiency and quality of the communication flow.

In a paper entitled “Nobody Reads Documentation”, Rettig (1991) points
out that learners want to get started quickly, rarely read software manuals
completely, are discouraged by large manuals, and are best motivated by self-
initiated exploration. An interpretation of these statements is that documen-
tation is complementary to products and that their purpose is not to be com-
plete but to support the products they describe. Rettig (1991) also points to a
perception of documentation as part of the product interface rather than a sep-
arate product. User-driven processes seem suitable for the readers of software
documentation.

User driven processes also provide the development process with feedback
by illustrating what is: (a) difficult to understand from the software product
and (b) not used. In both cases the user community are sending messages that
need to be incorporated into future development. Apart from this, user-driven
processes can avoid delivering large manuals before users actually have a need
for them. In this sense, user-driven processes have the potential to deliver
minimal but relevant documentation.

However, content production depends on the user community’s ability and
willingness to participate. Experiences from open-source development provide
many success stories but the process has not yet been tested as a common
development method. Open source has mostly been based on highly skilled

55

technical staff contributing in highly technical, global projects building tools
for everyday use. A completely different challenge remains for the open-source
method in relation to ordinary users with multiple goals. This is both a techni-
cal and a social issue and it remains to be seen whether or not easy enough tools
and processes can be developed to facilitate and enable global participation by
users in general.

6.4 Passive Reading

The thesis examines direct signalling inside applications as a means of achieving
passive reading in relation to bug handling. The term “passive reading” is
used here to denote reading that happens as users perform every day activities
without direct intent. Communication tools themselves discover and integrate
evolving material in the standard work environment. Passive reading is a highly
relevant aspect of the electronic, networked medium because it can improve
efficiency, quality cost, and frustration in communication. For user-related bug
handling, passive reading is a requirement. In many situations, passive reading
can be a valuable means of trimming large communication flows because users
find only what is relevant to the actions users take.

In essence, documentations and applications become reading agents that
handle part of the search and reading tasks involved in keeping up with large
and constantly evolving information webs. In Paper II, passive reading is
accomplished through an information distribution architecture that signals
knowledge inside applications. For more heterogeneous information sources,
agents would need to work independent of the information source and much
more elaborate reasoning mechanisms would be required. The design of passive
reading mechanisms is a highly relevant but also complex research topic.

In programming, passive reading becomes relevant for many different areas.
Component publication is one example in which development organizations
need to announce new components that have become available for particular
tasks. In many cases, programmers use other related components. These com-
ponents indicate which new components programmers are interested in.

6.5 Summary of Discussion

This thesis is wide in its nature and addresses several related issues that con-
cern the design of electronic, networked tools and processes in library commu-
nication. In this discussion, I address issues of particular concern to library
communication. The construction of software development methods that ad-
dress the evolving technical environment as well as the programming team and
the customer can help provide solid process support in library communication.
Discovering the value of adaptation in library communication is relevant to pro-
viding tools that support programming. Developing user-driven processes in

56

library communication is relevant if synchronization between developers’ work
effort and user needs is to be improved. Finally, exploring the possibilities
of passive reading can help users and developers communicate more efficiently
through direct signaling and intelligent documentation that integrates material
on its own initiative.

57

58

Chapter 7

Conclusion

Contemporary programming is a library-based activity in which collections
of reusable software-component libraries constitute the basis of programming.
This library-based programming rests on a foundation of thousands of rapidly
evolving components with many implicit dependencies controlled by several in-
dependent development organizations. These components are typically less well
tested or less formally defined than programming languages. As a result, much
communication among programmers worldwide is required to locate, learn, use,
and participate in the development of these libraries. The work presented in
this thesis addresses how the electronic, networked medium should be used to
support library-based programming.

A general conclusion of the work presented here is that potentially substan-
tial benefits can be gained from developing communication tools and processes
that use the electronic, networked media. Unfortunately, few studies have ad-
dressed the library-based programming activity and its requirements on com-
munication processes and tools. Although there are many communication tools,
few experimental evaluations of these tools have been performed and little is
therefore known about their usability. As a consequence, developing electronic
library communication requires a combined exploration of tool support and an
examination of the library-based programming activity.

On a number of specific points, this research results in unexpected con-
clusions. The first surprise relates to the value of individual adaptation (per-
sonalization) in library communication. A common-sense assumption is that
individual adaptation of content and presentation leads to improvements of ef-
ficiency, quality, cost, and frustration in communication. However, the research
presented here does not support this assumption. Though the electronic, net-
worked medium can provide individual adaptation the study did not shown that
it was found to be desirable (by users). More thorough evaluation is needed to
be conclusive, but the result is relevant nonetheless because it does not support
the often-assumed value of individual adaptation. Instead, the study supported

59

general features of the electronic, networked medium without relation to user
context.

Another surprising discovery relates to documentation approaches in open-
source communities. Open-source development is a property of the electronic,
networked media and is claimed to provide increased efficiency and robust-
ness in software development. It seems natural that open-source approaches to
documentation should work equally well. Open-source approaches to library
communication could provide dramatic improvements in quality and efficiency
in library communication and help remove costs and alleviate frustration. How-
ever, the research presented here shows that open-source documentation still is
relatively uncommon even in open-source projects (that often take a more re-
strictive approach to sharing of documentation than to sharing of source code).
If open-source documentation can provide these values is therefore uncertain.
However, the electronic, networked medium provides the necessary technical
architecture for open-source documentation and projects are starting up.

Moreover, the design of communication architectures for user-related bug
handling is also surprisingly non-user oriented. Unfortunately, contemporary
bug-handling systems expect users to search actively for bug knowledge by
browsing online databases. (The design for library developers has been di-
rectly applied to library users.) Instead, communication architectures designed
for users must adapt to the passive reading behaviour of users by signalling
the existence of knowledge inside the standard communication flow, for in-
stance inside reference documentation. Direct signalling leads to more efficient
distribution of knowledge among users worldwide, disseminating knowledge
without requiring active search. Passive reading is a highly relevant aspect of
the electronic, networked medium that needs to be further explored in library
communication.

Furthermore, electronic writing, surprisingly enough, is still directed to-
wards the hardcopy medium. Though commonly used on the web, few elec-
tronic concepts, such as collapsible lists, can be used directly in authoring.
To a large degree, any expression of the electronic, networked dimensions re-
quires programming skills. The development of web-languages such as HTML
and XML, which currently form the basis of electronic writing, provide little
support for the expression of electronic concepts on an authoring level.

More generally, the work presented in this thesis shows that library com-
munication is a community process where both library developers and library
users contribute to a joint development effort of their joint programming plat-
form. Because library-based programmers combine resources from independent
organizations in their work, adherence to such community thinking is imper-
ative. The design of communication tools and processes must adhere to this
fact. Currently, the baseline for electronic library communication is hypertext
documentation, which has added substantially to the area. The possibilities of
the new medium however, provide more than non-linear organization and doc-
ument cross-referencing. The work presented in this thesis contributes knowl-

60

edge of how we should use electronic, networked media to support library-based
programming.

61

62

Chapter 8

Summaries of the Papers

Included in this thesis are six papers that address the use of electronic, net-
worked media in library communication. On a more detailed level the papers
can be divide into two groups: one addressing global communication and user
contribution to the library communication process (Papers II and III) and one
discussion the design of electronic reference documentation (Papers I, IV, V,
and VI).

8.1 Paper I: Designing Electronic Library Ref-
erence Documentation

Accepted for publication March 2002, The Journal of Software and Systems.

Research question: How should electronic reference documentation be de-
signed?

This paper provides one loop in a design-evaluate-learn research process
for the development of electronic library reference documentation. It presents
an evaluation of electronic reference documentation in an industrial setting as
well as a brief presentation of the DJavadoc system (further discussed in Pa-
pers IV and V and in Appendix B). The evaluation is based on 2 experience
programmer using DJavdoc for a period of 4 months in real work after which
they where interviewed both with regards to DJavadoc and electronic reference
documentation in general. The result of the evaluation is a set of requirements
of for the future development of electronic reference documentation. A sur-
prising conclusion from the paper is that no support was found for individual
adaptation (personalization) with regards to the implemented adaptation in
DJavadoc. A stronger focus was placed on support the task of moving source
code from documentation to source files.

63

Relation to other papers: The paper adds an empirical evaluation to the
technical discussion of electronic reference documentation held by Papers IV,
V, and VI.

8.2 Paper II: Helping Users Live With Bugs

Submitted 2002.

Research question: How should user-related bug handling be designed?
This paper provides an architectural discussion of user-related, post-release

bug handing in contemporary software development, with focus on global bug-
related knowledge sharing among users. User-related bug handing is particu-
larly relevant for library communication because public beta releases of libraries
have become common practice. The paper is based on an analysis of bugs from
a user perspective and on a survey of contemporary user-related bug-handing
systems. The paper comes to the conclusion that contemporary bug-handing
systems provide an insufficient communication structure for user-related bug
handing because it is designed for active search for knowledge. As a result,
bug-related knowledge is collected by the user community but not efficiently
shared within the community. The paper suggests a solution to this problems
in which bug knowledge is directly presented in the standard work environment
by integrating bug signals directly in the graphical user interface (e.g. inside
library reference documentation). Being able to discover bug knowledge as
part of normal work routines is considered a requirement for user-related bug
handling.

Relation to other papers: The paper is related to Paper III as it addresses
the global aspects of library communication as well as user contribution in the
library communication process.

8.3 Paper III: Open-Source Documentation: in
search of user-driven, just-in-time writing

In Proceedings of SIGDOC 2001. October 21- 24, Santa Fe, NM.
Co-authored by Michael Priestley IBM Toronto Lab, Canada, email: mpriestl@ ca.

ibm. com

Research question: How should open-source documentation processes work?
This paper provides an architectural discussion of open-source development

in the documentation process, with focus on user-driven, just-in-time writing.
It is based on an analysis of the open-source development process (that still
relatively unknown scientifically) and a survey of contemporary open-source

64

documentation process. A surprising finding is that even open-source projects
shows evidence of a more closed approach to documentation than to source
code. There are few really open documentation projects in library communica-
tion today. The paper also provides a framework for the open-source documen-
tation process based on open-source development as it is characterized today
and discuss how such a writing process can provide user-driven, just-in-time
writing in general. Though the paper is general in nature, it is particularly rel-
evant for library communication where development speed is rapid and users
and developers are both technically competent.

Relation to other papers: The paper is related to Paper II in that it ad-
dresses global aspects of library communication and user contribution in the
writing process.

8.4 Paper IV: Writing for Adaptable Documen-
tation

In Proceedings of IPCC/SIGDOC 2000. September 24 - 27. Cambridge, Mas-
sachusetts.

Research question: How can adaptive authoring in reference documentation
be supported?

This paper provides a discussion of what constitutes an adaptive authoring
process and of what authoring support the web-language domain provide for the
expression of adaptive texts. It takes stance in the DJavadoc project (further
discussed in Papers I and V and Appendix B) and discusses what the authoring
process must add to the general adaptation mechanism of electronic text. From
a writing perspective, adaptive documentation is considered to consist of change
strategies (what to change), change mechanisms (how to change), and change
constraints (what not to change). The paper shows that adaptive writing, in the
web-language domain, provides little support for the expression of adaptation
and that programming skill is required to express adaptation in electronic text.

Relation to other papers: This paper describes the adaptive authoring pro-
cess in electronic reference documentation from the DJavadoc projects perspec-
tive and thereby add to the technical discussion held by this paper and Papers
V and VI.

8.5 Paper V: Dynamic Software Component Doc-
umentation

In proceedings of the Second Workshop on Learning Software Organizations.
June 20 2000. Oulu, Finland.
Co-authored by Henrik Eriksson, Department of Computer and Information Science,

65

Linköping University email: her@ ida. liu. se

Research question: How should electronic reference documentation be de-
signed?

This paper provides a discussion of the management of knowledge in soft-
ware development project though the redesign of documentation. It takes
stance in the DJavadoc system and a prototype Javadoc system developed
using Protégé and discusses how library knowledge can be captured through
documentation systems for a learning software organization. In the paper, the
redesign (adaptation) of documentation through view building and tailoring of
indices is suggested as a way of capturing knowledge about software develop-
ment projects that can be efficiently shared among programmers.

Relation to other papers: The address the knowledge capturing potential
of an adaptive documentation platform and thereby add to the technical dis-
cussion held by this paper and Papers IV and VI.

8.6 Paper VI: Intermediate Knowledge through
Conceptual Source-Code Organization

In Proceedings of the 10:th International Conference on Software Engineering
& Knowledge Engineering. June 18-20. San Francisco Bay CA USA.
Co-authored by Henrik Eriksson, Department of Computer and Information Science,

Linköping University email: her@ ida. liu. se

Research question: How should electronic reference documentation be de-
signed?

This paper addresses on the issue of multiple views in library documenta-
tion. Automated documentation generally generates one view on the relations
among component. However, from a documentation perspective, the paper ar-
gues that multiple views are needed to accurately describe components from
the different perspectives needed to match different information needs. In or-
der to produce several views, tool support that simplifies the organization of
components is required, in particular if users are considered potential view de-
velopers. The paper provides a prototype design of such a system and discusses
the relevant aspects of this system.

Relation to other papers: The paper represents the starting point of the
technical discussion held by this paper and Papers V and IV.

66

References

ADH&H, Adaptive hypertext & hypermedia web site. http://wwwis.win.
tue.nl/ah/.

ALPHADISC , IBM’s Alphaworks Discussion Forum http://www.alphaworks.
ibm.com/discussion.

Altmann E. M., Larkin J. H., and John B. E. (1995) Display Navigation by an
Expert Programmer: A Preliminary Model of Memory. In Proceedings
of the 1995 Conference on Human Factors in Computing Systems. pp.
3–10.

AP, Apache (open-source web server). http://www.apache.org.

Atkinson S. and Mili A. (1999) Software Libraries. In Encyclopaedia of Elec-
trical and Electronic Engineering. Ed. John Webster. John Wiley &
Sons.

AWT, Java abstract window toolkit (AWT) web site. http://java.sun.com/
products/jdk/awt/vel.

Barker M. (1997) From Document Design to Information Design. In Pro-
ceedings of the 15th Annual International Conference on Computer Doc-
umentation. October 19–22, 1997, Snowbird, UT USA. pp. 7–10.

Basili V. R. (1996) The Role of Experimentation in Software Engineering:
Past, Current, and Future. In Proceedings of the 18th International
Conference on Software Engineering. 25–30 March. Berlin, Germany.
pp. 442–449.

Basili V. R., Briand L. C., and Melo W. L. (1996) How Reuse Influences
Productivity in Object-Oriented Systems. Communications of the ACM.
vol. 39. no. 10. pp. 104–116.

Beck K. (2000) Extreme programming explained: embrace change. Addison-
Wesley.

67

Biggerstaff T. J., Mitbander B. G., Webster D. E. (1994) Program understand-
ing and the concept assignment problem. Communications of the ACM.
vol. 37 no. 5 pp. 72–83.

Boehm-Davis D. (1988) Software Comprehension. In Handbook of Human-
Computer Interaction. Helander M. ed. North-Holland.

Bolter D. J. (1991) Writing Spaces: The Computer, Hypertext and the History
of Writing. Lawrence Erlbaum Associates.

Brooks F. P. Jr. (1987) No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer. April. pp. 10–19.

Brooks R. E. (1980) Studying Programmer Behaviour Experimentally: The
Problem of Proper Methodology. Communications of the ACM. vol. 23
no. 4. pp. 207–213.

Brookshear J. G. (1994) Computer Science: An Overview. Benjamnin/Cummings.

Brown A. W. and Wallnau K. C. (1998) The Current State of CBSE. IEEE
Software. Septermber/October. pp. 37–46.

Bruce K. B. (1996) Progress in Programming Languages. ACM Computing
Surveys. vol. 28 no. 1 pp. 245–247.

Brusilovsky P. (1996) Methods and Techniques of Adaptive Hypermedia. User
Modeling and User-Adapted Interaction. no. 6. pp. 87–129, 1996.

Brusilovsky P. and Vassileva J. eds. (1996) Special Issue on: Adaptive Hy-
pertext and Hypermedia. User Modeling and User-Adapted Interaction
no.6.

Bush V. (1945) As We May Think. Atlantic Monthly, July, reprinted in
Interactions March 1996 pp. 35–46.

Campione M. and Walrath K. (1998) The Java Tutorial: Object-Oriented
programming for the Internet. Addison-Wesley (http://java.sun.com/
docs/books/tutorial/).

Carroll J. M. (1990) The Nurnberg Funnel. MIT Press.

Carroll J. M. ed. (1998) Minimalism Beyond the Nurnberg Funnel. MIT
Press.

Carver D. K. (1969) Introduction to FORTRAN II and FORTRAN IV pro-
gramming. New York.

68

Chassell R. J. and Stallman R. M. (1997) Texinfo: The GNU Documentation
Fomat. Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111–1307, USA (http://www.delorie.com/gnu/docs/
texinfo/texinfo_toc.html).

Davis A. M. (1994) Fifteen Principles of Software Engineering. IEEE Soft-
ware. November. pp. 94–101.

Deitel H., Deitel P. and Nieto T.R. (2000) Internet and World Wide Web:
How to program. Prentice Hall.

DiBona C., Ockman S., and Stone M. eds. (1999) Open Sources: Voices from
the Open Source Revolution. O’Reilly.

Dijkstra E. W. (1968) Goto statement considered harmful. Communication of
the ACM. vol. 11 no. 3 pp. 147–148.

Dillon A. (1994) Designing Usable Electronic Text: Ergonomic Aspects of
Human Information Usage. Taylor and Francis.

DJAVADOC, DJavadoc web site. http://ida.liu.se/~eribe/djavadoc.

DOM, document object mode standard at w3chttp://www.w3.org/DOM/.

ECMA, ECMA web site. http://www.ecma.ch/.

ECMASCRIPT, ECMAScript Language Specificationhttp://www.ecma.ch/
ecma1/STAND/ECMA-262.HTM.

Eriksson H., Puerta A., and Musen M.A. (1994) Generation of Knowledge-
Acquisition Tools from Domain Ontologies. International Journal of Hu-
man Computer Studies. vol. 41 pp. 425–453.

Feller J., and Fitzgerald B. (2000) A Framework Analysis of the Open Source
Software Development Paradigm. In Proceedings of the 21st International
Conference on Information Systems 2000, Brisbane pp. 10–13.

Feller J., Fitzgerald B., and van der Hoek, A. (2001) (W18) 1:st Workshop
on Open Source Software Engineering, position paper for the workshop.
In Proceedings of the 23rd International Conference on Software Engi-
neering, 2001 pp. 780–781.

Fischer B. (1998) Specification-Based Browsing of Software Components. In
Proceedings of the 13th IEEE Conference on Automated Software Engi-
neering, Honolulu, Hawaii.

Fix V., Wiedenbeck S., and Scholtz J. (1993) Mental Representations of Pro-
grams by Novices and Experts. In Proceedings of the 1993 Conference on
Human Factors in Computing Systems. pp. 74–79.

69

Flanagan D. (2001) JavaScript: The Definitive Guide, 4th Edition. O’Reilly.

Frakes W. B. and Fox C. J. (1995) Sixteen Questions about Software Reuse.
Communications of the ACM. vol 38. no. 6. pp. 75–87.

Frakes W. B. and Pole T. P. (1994) An Empirical Study of Representation
Methods for Reusable Software Components. IEEE Transaction on Soft-
ware Engineering. vol. 20. no. 8. pp 617–630.

Friendly L. (1995) The design of distributed hyperlinked programming docu-
mentation. In proceedings of the 1995 International Workshop on Hy-
permedia Design.

FUNNELWEB, FunnelWEB web site. http://www.ross.net/funnelweb/.

Gadamer H.-G. (1989) Truth and Method. 2d ed. New York: Crossroad
Publishing.

Glass R. L. (1994) The Software-Research Crisis. IEEE Software. November.
pp. 42–47.

Glass R. L. (1998) Reuse: What’s Wrong with This Picture. IEEE Software.
March/April. pp. 57–59.

GNUS, GNU Software (original free software initiative, origin of open-source).
http://www.gnu.org.

Gummesson E. (1991) Qualitative Methods in Management Research. SAGE
Publications.

Gunther C., Mitchell J., and Notkin D. (1996) Strategic Directions in Software
Engineering and Programming Languages. ACM Computing Surveys.
vol. 28 no. 4.

Hackos J.T. (1997) Online Documentation: The Next Generation. In pro-
ceedings of 1997 ACM Conference on Systems Documentation, Snowbird,
Utah, USA. pp. 99–104.

Helander M., Landauer T. K., and Prabhu P. eds. (1997) Handbook of Human-
Computer Interaction. Elsevier Science.

Houde S. and Hill C. (1997) What do Prototypes Prototype. In Handbook
of Human-Computer Interaction. Helander M., Landauer T. K., and
Prabhu P. (eds.) Elsevier Science.

IEEEPCS, IEEE Professional Communication Society. http://www.ieeepcs.
org/.

70

Jacobson I., Booch G., and Rumbaugh J. (1999) Unified Software Development
Process. Addison-Wesley.

Jacobson R. (1999) Information Design. MIT Press.

JAPACHE, Apache Java project web site. http://java.apache.org/.

JARS, Java Review Service web site. http://www.jars.com/.

JAVA, Java web site. http://java.sun.com.

JAVADIC, Java Discussion Forum http://developer.java.sun.com/developer/
community/.

JAVADOC, Sun Javadoc web site. http://java.sun.com/j2se/javadoc/
index.html.

JAVADOCMEM, FAQ note on Javadoc memory requirements http://java.
sun.com/j2se/javadoc/faq.html.

JAVADOCTAGS, Proposed Javadoc tagshttp://java.sun.com/j2se/javadoc/
proposed-tags.html.

JAVASCRIPT, Netscape Javascript Developer Central web site. http://
developer.netscape.com/tech/javascript/index.html.

JDBC, Java Database Connectivity web site. http://java.sun.com/products/
jdbc/, http://java.sun.com/docs/books/jdbc/.

Johnson A. L., and Johnson B. C. (1997) Literate programming Using Noweb.
Linux Journal. 42:64–69.

JRIM, Java remote method invocation (RMI) library web site. http://java.
sun.com/products/jdk/rmi/index.html.

JSDK1.4, Java Standard Development Kit version 1.4. http://java.sun.
com/j2se/1.4/.

JSPEECH, Java speech library web site. http://java.sun.com/products/
java-media/speech/.

JSPEXP, JSP Explorer (online test platform for Java Server Pages scripts).
http://www.mslinn.com/jspExplorer/.

JTV, Java TV library web site. http://java.sun.com/products/javatv/.

Kahn P. and Lenk K. (1998) Principles of typography for user interface design.
Interactions, pp. 15–29.

Kantorowitz E. and Sudarsky O. (1989) The Adaptable User Interface. Com-
munications of the ACM, No. 31 Vol. 11 1989.

71

Knuth D. E. (1984) Literate Programming. Computer Journal. vol. 27. May.
pp. 97–111.

Knuth D. E. (1991) Literate Programming. Center for the Study of Language
and Information, Leland Stanford Junior University.

Knuth D. E. and Silvio L. (1994) The CWeb System of Structured Documen-
tation. version 3.0. Addisson Wesley.

Kramer D. (1999) API Documentation for Source Code Comments: A Case
Study of Javadoc. In proceedings of the Seventeenth Annual Interna-
tional Conference of Computer Documentation (SIGDOC’99), New Or-
leans, September 12–14, 1999.

Krueger C. W. (1992) Software Reuse. ACM Computing Surveys. vol. 24.
no. 2. pp. 131–183.

Kvale S. (1996) Interviews: an introduction to qualitative research interview-
ing. Sage.

Kvale S. ed. (1989) Issues of Validation in Qualitative Research. Studentlit-
teratur.

Lewis J. E. and Weyers A. (1999) ActiveText: a Method for Creating Dynamic
and Interactive Texts. In proceedings of the 12th annual ACM Sympo-
sium on User Interface Software and Technology. November 7–10, 1999,
Asheville United States.

LINUXO, Linux.org (central source of Linux information). http://www.
linux.org.

LIT PROG OVERVIEW, Literate Programming Tools overview web page. http:
//www.desy.de/user/projects/LitProg/HTML.html.

Louden K. C. (1993) Programming Languages: Principles and Practise. PWS
Publishing Company.

Madien N. A., and Sutcliff A. G. (1993) People-Oriented Software Reuse: the
Very Thought. In Proceedings of the Second International Workshop on
Software Reuse. IEEE Computer Press. pp. 176–185.

McLellan S. G., Roesler A. W., Tempest J. T., and Spinuzzi C. I (1998)
Building More Usable APIs. IEEE Software. May/June. pp. 78–86.

MFC, Microsoft Foundation Classes, web site. http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/vcmfc98/vcmfchm.asp.

72

Michail A. and Notkin D. (1999) Assessing Software Libraries by Browsing
Similar Classes, Functions and Relationships. In Proceedings of 21st
International Conference on Software Engineering. Los Angeles, CA. pp.
463–472.

MICRODISC, Microsoft’s Developer Community web site. http://msdn.
microsoft.com/community/.

Mili A, Yacoub S., Addy E., and Mili H. (1999) Toward an Engineering Dis-
cipline of Software Reuse. IEEE Software. September/October. pp.
22–31.

Mili A., Mili R., and Mittermeir R. (1997) Storing and Retrieving Software
Components: A refinement Based System. IEEE Transaction on Software
Engineering. vol. 23. no. 7.

Mili A., Mili R., and Mittermeir R. (1998) A survey of Software Component
Storage and Retrieval. Annals of Software Engineering. vol. 5. pp.
349–414.

Mili H., Mili F., and Mili A. (1995) Reusing Software: Issues and Research
Directions. IEEE Transaction on Software Engineering. vol. 21. no. 6.
pp. 528–562.

MSDNWW, Microsoft Developers Network Web Workshop. http://msdn.
microsoft.com/workshop/entry.asp.

MYSQLAM, MySQL online annotated manual. http://www.mysql.com/doc/.

Nelson T. H. (1987) Literary Machines. South Bend.

Nelson T. H. (2001) Opinion about hypertext by one of the founding fathers,
viewed in October 2001 http://ted.hyperland.com/whatIdo/.

NETCRAFT, Netcraft Web Server Surveys, viewed June 2001.http://www.
netcraft.com/survey/.

Nielsen J. (1995) Multimedia and Hypertext: the Internet and Beyond. AP
Professional.

Norman D. A. (1990) The Design of Everyday Things. Basic Books.

Normark K., Andersen M., Christensen C., Kumar V., Staun-Pedersen S., and
Sørensen K. (2000) Elucidative Programming in Java. In Proceedings of
IPCC/SIGDOC 2000, September 24–27, Cambridge, Massachusetts.

Nourie D. (2001) JDC Registers Over Two Million Users. Online Article.
http://developer.java.sun.com/developer/technicalArticles/Interviews/
2milmikenoel/.

73

ODBC, Microsoft Open Database Connectivity web site http://www.microsoft.
com/data/odbc/default.htm.

OSIWS, Open Source Initiative (OSI) web site. http://www.opensource.
org.

Østerbye K. (1995) Literate Smalltalk Programming Using Hypertext. IEEE
Transaction on Software Engineering. vol. 12 no. 2 pp. 138–145.

Pemberton S. (1997) Programmers are Humans Too, 2. SIGCHI Bull. vol.
29. no. 3 pp. 64.

Perence B. (1999) The Open Source Definition. In Open Sources: Voices from
the Open Source Revolution. Eds. DiBona C., Ockman S., and Stone M.
O’Reilly.

Perkins (1999) Culture Clash and the Road to World Domination. IEEE Soft-
ware January/February 1999 pp. 80–84.

Pfleeger S.L. (1999) Albert Einstein and Empirical Software Engineering. IEEE
Computer. October. pp. 32–37.

PHPAM, PHP online annotated manual. http://www.php.net/manual/en/.

Potts C. (1993) Software-Engineering Research Revisited. IEEE Software,
September pp. 19–28.

Pressman R. S. (2000) Software Engineering: A Practitioner’s Approach.
McGraww-Hill

Prosise J. (1999) Programming Windows With MFC. Microsoft Press.

PROTEGE, Protege web site. http://protege.stanford.edu/index.shtml.

PYRD, Python reference documentation, viewed in November 2001 http:
//www.python.org/doc/current/modindex.html.

Ramsey N. (1994) Literate Programming Simplified. IEEE Software. Septermber.
pp. 97–105.

Raymond E. S. (1999a) The Cathedral & the Bazaar. O’Reilly. Sebastapol
CA, USA.

Raymond E. S. (1999b) A Brief History of Hackerdom. In Open Sources:
Voices from the Open Source Revolution, eds. DiBona C., Ockman S.,
and Stone M. O’Reilly.

Reiss S. P. (1996) Software tools and environments. ACM Computing Surveys,
vol.28 no.1 281–284.

74

Rettig M. (1991) Nobody Reads Documentation. Communications of the
ACM. vol. 34 no. 7 pp. 19–24.

RHP, Rational Home Page,http://www.rational.com.

Rosenfeld L. and Morville P. (1998) Information Architecture for the World
Wide Web. Sebastopol: O’Reilly.

Rosson M. B. (1996) Human Factors in Programming and Software Develop-
ment. ACM Computing Surveys vol.28 no.1 193–195.

RSE, Rational Suite Extensibility web site. http://www.rational.com/leadership/
initiatives/extensibility.jsp.

Russ M. L. and McGregor D. (2000) A Software Development Process for
Small Projects. IEEE Software September/October. pp. 96–101.

Rutledge L., van Ossenbruger J., Hardman L., and Bulterman D. (1997) A
Framework for Generating Adaptable Hypermedia Documents. Proceed-
ings of the Conference on Multimedia ’97 November 9–13, 1997, Seattle,
WA USA.

Sanders J. (1998) Linux, Open Source, and Software’s Future. IEEE Software
September/October 1998 pp 88–91.

SAVANNAH, GNU Savannah open-source licensed, web project platform, viewed
January 2002http://savannah.gnu.org/.

SAX, The Simple API for XML web sites. http://www.megginson.com/SAX/
http://www.saxproject.org/.

Schach S. R. (1997) Software Engineering with Java. Irwin.

SDK, Java Standard Development Kit. http://java.sun.com/j2se/.

SEWEB, IEEE Computer Society Software Engineering Web. http://www.
computer.org/SEweb/.

SF, SourceForge, online open-source project web site. http://sourceforge.
net.

Shull, F., Lanubile, F., and Basili V. R. (2000) Investigating reading techniques
for object-oriented framework learning. In IEEE Transactions on Software
Engineering, vol. 26. no. 11.

SIGCHI, ACM Special Interest Group on Human-Computer Interaction. http:
//www.acm.org/sigchi/.

SIGDOC, ACM Special Interest Group on Software Documentation. http:
//www.acm.org/sigdoc/.

75

SIGSOFT, ACM Special Interest Group on Software Engineering. http://
www.acm.org/sigsoft/.

Smart K. L. and Whiting (1994) Reassessing the Documentation Paradigm:
Writing for Print and Online. In proceedings of 1994 ACM Conference
on Systems Documentation, Banf, Canada pp. 6–9.

SODARR, SoDA from Rational Rose (automated documentation in Rational
Rose’s suite of products). http://www.rational.com/products/soda/
index.jsp.

Soloway E. and Ehrlich K. (1984) Empirical Studies of Programming Knowl-
edge. IEEE Transactions on Software Engineering. vol. 10. no. 5. pp.
595–609.

Sommerville I. (1989) Software Engineering. Bath Press.

Sotirovski D. (2001) Heuristics for Iterative Software Development. IEEE
Software May/June pp. 66–73.

SQEM, Squeek online editable manual (Squeek is a Smalltalk implementation).
http://squeak.cs.uiuc.edu/documentation/index.html.

Stallman R (1999) The GNU Operating System and the Free Software Move-
ment. In Open Sources: Voices from the Open Source Revolution, eds.
DiBona C., Ockman S., and Stone M. O’Reilly.

Stanchfield S. and Mauny I. (2001) Effective VisualAge(r) for Java. John
Wiley. (see also http://www-4.ibm.com/software/ad/vajava/).

Steele JR., G. L. (1990) Common LISP. Digital Press.

Szyperski C. (1999) Component Software: Beyond Object-Oriented Program-
ming. Addisson-Wesley.

Tichy W. F., Lukowicz P. Prechelt L., and Heinz E. A. (1995) Experimen-
tal Evaluation in Computer Science: A Quantitative Study. Journal of
Systems and Software. 28:9–18.

Tilley S. R., Müller H. A., Orgun M. A. (1992) Documenting Software Systems
with Views. In Proceedings of the 10th Annual International Conference
on Systems Documentation. pp. 211–219s.

Torvalds L. (1999) The Linux Edge. In Open Sources: Voices from the Open
Source Revolution, eds. DiBona C., Ockman S., and Stone M. O’Reilly.

UNIX, The Open Groups Unix.http://www.unix-systems.org/.

76

van Vilet H. (1993). Software Engineering Principles and Practice. John
Wiley.

VC, VisualCafé (development environment) http://www.visualcafe.com/.

Vixie P. (1999) Software Engineering. In Open Sources: Voices from the Open
Source Revolution, eds. DiBona C., Ockman S., and Stone M. O’Reilly.

W3C, World Wide Web consortium http://www.w3.org/.

White M. (1998) Designing Dynamic Hypertext. In proceedings of the 2nd
Workshop on Adaptive Hypertext and Hypermedia HYPERTEXT’98
(http://wwwis.win.tue.nl/ah98/), Pittsburgh, USA, June 20–24, 1998.

Willson (1999) Is the Open-source Community setting a Bad Example? IEEE
Software January/February 1999 pp. 23–25.

Wolfram S. (1996) The Mathematica Book. Wolfram Media, Cambridge Uni-
versity Press.

Wong Y. Y. (1996) Temporal typography: a proposal to enrich written ex-
pression. In Proceedings of the 1996 Conference on Human Factors and
Computing Systems. pp 408–409.

Woods S. and Yang Q. (1996) The program understanding problem: analy-
sis and a heuristic approach. In Proceedings of the 18th International
Conference on Software Engineering. pp. 6–15.

Yin R. K. (1994) Case Study Research: Design and Methods. Sage.

Zellweger P. T., Regli S. H., Mackinlay J. D., and Chang B.W. (2000) The
Impact of Fluid Documents on Reading and Browsing: An Observational
Study. In Proceedings of the 2000 Conference on Human Factors and
Computing Systems.

77

78

Paper I.
Designing Electronic
Library Reference
Documentation

Accepted for publication in Journal of Software and Systems, 2002

Abstract

Contemporary software development is based on global sharing of software component
libraries. As a result, programmers spend much time reading reference documenta-
tion rather than writing code, making library reference documentation a central pro-
gramming tool. Traditionally, reference documentation is designed for textbooks even
though it may be distributed online. However, the computer provides new dimensions
of change, evolution, and adaptation that can be utilized to support efficiency and
quality in software development. What is difficult to determine is how the electronic
text dimensions best can be utilized in library reference documentation.

This article presents a study of the design of electronic reference documentation
for software component libraries. Results are drawn from a study in an industrial
environment based on the use of an experimental electronic reference documentation
(called Dynamic Javadoc or DJavadoc) used in a real work situation for 4 months.
The results from interviews with programmers indicate that the electronic library
reference documentation does not require adaptation or evolution on an individual
level. More important ly, reference documentation should facilitate the transfer of
code from documentation to source files and also support the integration of multiple
documentation sources.

79

I.1 Introduction

Software-components libraries reused in programming are today shared on a global
scale on the Internet. In this article software component libraries are refereed to
simply as libraries. For a long time, programmers have shared software components
on a global scale. As an example, Fortran II which was released in 1958, enabled the
use of separately compiled subroutines (Carver, 1969). More generally, libraries are
externally built collections of abstract data types (ADTs). Bruce (1996) considers
ADTs to be perhaps the most important development of programming languages.
However, in “No Silver Bullet” Brooks (1987) points out that much of the complex-
ity of software comes from conformance to other software, such as external ADTs.
Today, global sharing is not just a possibility but a foundation of programming. The
library concept is highly integrated into languages such as Java (called application
programming interfaces or APIs in the Java world). The development of the Java
language core library, Java SDK, points to this fact, see Table I.1. Another example is
the open-source language, Python, which in Novemeber 2001 had 252 global modules
with over 2,200 functions (PYRD).

Table I.1: Development of the Java standard development kit (Java SDK) so
far.

SDK Version Packages Classes Ref. Doc. (Mbytes)
1.0 (1995) 3 70 3
1.1 (1997) 22 600 8
1.2 (1998) 59 1,800 80
1.3 (2000) 76 2,150 97
1.4 (2001) 135 2,700 131

Global sharing of libraries is essentially an act of software reuse. However, in this
article the term global sharing is used to place focus instead on the issue of communi-
cation among programmers that software reuse implies (since attempts to automate
component retrieval have not been successful [Mili et al., 1998]). Software reuse is
something the Software Engineering community assumes valuable but which has not
been substantially supported by empirical evidence. Basili et al. (1996) showed signif-
icant benefits from reuse in software development in terms of reduced defect density
and rework as well as increased productivity. Frakes and Fox (1995) however, showed
that programmers like reuse as a basis for programming. Glass (1998) on the other
hand argues that reuse is not so commonplace as one may think and that in reality
few components are reused in industry from collections such as the Java SDK. Yet,
reuse is definitively an issue considered relevant to software engineering. Mili et al.
(1999) for instance, state that software development cannot possibly become an engi-
neering discipline so long as it has not perfected a technology for developing products
from reusable assets in a routine manner on an industrial scale.

Libraries provide programmers with functionality and thereby remove part of the
coding activity involved in the development of software applications. However, li-
braries also increase the amount of information gathering and learning - reading -

80

Figure I.1: Software component libraries relieve programmers of development
tasks but, on the other hand, also require reading, understanding, and searching
of library documentation. In this sense, library-based development transforms
programming from a coding activity to an iterative reading-coding activity.

required by programmers. This comes from the problem of cognitive distance, that
is the intellectual effort required by programmers to use libraries in development. In
practice however, it has proven difficult to reduce the cognitive distance (Krueger,
1992). This issue can also be linked to Brooks (1987) refers to as the complexity of
conformance to other software. As a consequence, reference documentation becomes
a central tool in using libraries that facilitates the process of overcoming the cogni-
tive distance [Krueger, 1992] and the complexity of conformance to other software
[Brooks, 1987]. Programming is transformed from a coding activity to an iterative
reading and coding activity, illustrated by Figure I.1. Libraries must be located,
chosen, studied, and understood for use. Furthermore, libraries grow large and con-
tinuously evolve, see Table I.1. Having in-depth knowledge about thousands of classes
is not realistic and not even relevant when new classes are added on a regular ba-
sis. Developers must continuously update themselves and therefore the need to read
reference documentation exists throughout development projects.

Efficiency in reading is a relevant issue in the design of library reference docu-
mentation. The time it takes to collect knowledge, such as how to reuse a class,
and syntax, such as the signature of a method, from documentation is a cost in
software development. Rosson (1996) stated that programmers spend considerable

81

time communicating with others in their organization. Library-based programming
causes communication to expand outside the organization through reference docu-
mentation. Electronic text can overcome some fundamental limitation of the static
textbook to further support efficiency. For instance, electronic documentation has the
ability to adapt content in relation to context variables (e.g., a programmer’s devel-
opment project). Commonly, hyperlinks are the only sign of a medium that provides
additional dimensions such as time, interactivity, change, evolution, and the third
dimension. Potentially, electronic documentation can support programming further
by making use of these dimensions. The potential is visible in contemporary web
technology and in adaptive hypertext research area (Brusilovsky and Vassileva, 1996;
AH).

What is difficult is to tailor the general mechanisms of electronic documentation to
library-based programming (Berglund, 2000). The electronic medium requires new
authoring and design techniques in the field of technical communication (Hackos,
1997; Baker, 1997; Smart, 1994). This article presents a study aimed at uncover-
ing design knowledge for electronic reference documentation for software component
libraries. The study represents a design-evaluate-learn loop where an electronic doc-
umentation system, called Dynamic Javadoc (DJavadoc), has been evaluated in an
industrial setting by subjects having 4 months real-work experience using DJavadoc.
DJavadoc extends the standard Java library reference documentation (JR, see Sec-
tion I.2) by adding dimensions of individual adaptation and evolution. The interested
reader can test DJavadoc at http://www.ida.liu.se/~eribe/djavadoc/ using Mi-
crosoft Internet Explorer (version 4 or newer). Judging form the study, individual
adaptation of documentation is not highly relevant. Stronger focus should be placed
on documentation’s ability to help complete programming tasks, such as transferring
code between documentation and source files and to combine reference documentation
from multiple sources. This research is further discussed in Berglund (1999; 2000)
and Berglund and Eriksson (2000).

The article is organized according to the following: Section I.2 provides back-
ground information on library reference documentation and Java standard library
reference documentation (Javadoc). Section I.3 describes and motivates the study
presented in this paper. Section I.4 describes the DJavadoc systems, presenting its
features and discussing what can be learnt from evaluating these features. Section I.5
presents a study based on DJavadoc in an industrial setting. Results are presented
as general comments on electronic library reference documentation. Section I.6 de-
scribes work related to the study of electronic reference documentation for software
component libraries. Section I.7 provides a discussion of the future design of elec-
tronic documentation in the programming domain. Finally, Section I.8 summarizes
and concludes the article.

I.2 Background: Library Reference Documen-
tation

Library reference documentation is a software engineering tool that programmers use
to transfer knowledge and syntax from documentation to programs. The content
and typography of the documentation therefore become important to software de-

82

velopment. Ways to achieve reading support for library reference documentation,
particularly from a use-perspective, is an important software engineering issue. In
the literature on software engineering and programming tools, library reference doc-
umentation is often omitted or treated lightly (e.g., Reiss, 1996; van Vilet, 1993;
Sommerville, 1989; Brookshear, 1994; Schachs, 1997). This omission of a more in
depth discussion is particularly unfortunate since programming is increasingly be-
coming library-based (illustrated by the rapid growth of the Java SDK, see Table
I.1). An underlying reason for overlooking library reference documentation may be
that programming traditionally involved a limited set of programming-language con-
structs that could be learnt by programmers. Currently, however, programmers base
development on large collections of software component libraries.

The traditional library reference documentation is designed to be a component
catalogue that lists available components and present syntactical specifications. Most
software component libraries provide online reference documentation of this kind, see
for instance (AR; PR; JR). In general, library reference documentation provides:

• brief descriptions of components and component relations (that teach the use
of components)

• navigational indices (that help readers access information in the documentation,
often alphabetic in organization)

• syntactical specifications (that help programmers write syntactically correct
code)

Java reference documentation or Javadoc is a typical example that fit this de-
scription. The name comes from the Javadoc program that produces documentation
in batch from Java source files. Javadoc documentation consists of homogenous class
documents. (Note that in this article the term class denotes Java interfaces, classes,
exceptions, and errors.) Initially class information such as inheritance and subclasses
are presented. Following, a textual description of the class is provided. Later on sum-
mary tables present class members, such as constructors and methods. Further down
descriptions of the member summary entries are provided, which the reader reaches
by following hypertext links in the summary tables. Figure I.2 presents a screen shot
of a Javadoc class document. The interested reader should, however, visit the Java
web site for an online demonstration (JR; Javadoc; Kramer, 1999; Friendly, 1995)

Hyper linking is generally the only feature that separates online reference docu-
mentation from printed reference documentation. In many cases hyperlinks match
concepts in the programming domain, such as return values or parameters of sub-
routines. Javadoc use hyperlinks to illustrate relations among components. The
hypertext network becomes a direct mapping on Java component relations. Though
structures are relatively invisible in the documentation, programmers can understand
them by browsing the documentation.

I.3 Method

This article reports on a technical study with the aim of uncovering design criteria
for electronic reference documentation. It is based on two concepts: industry as lab-
oratory and iterative development, discussed below. The first loop in such a research

83

Figure I.2: Screenshot of the standard Java reference documentation. The class
documents are presented in the right frame. Further below method details are
provided (not visible in the screenshot).

84

process is presented in this article. The evaluation is based on semi-structured inter-
views (Kvale 1996). Semi-structured interview was chosen because this is the initial
loop in a research process and a wider perspective is considered (compared this to
more focused and controlled but also more limited method of evaluation, such as
experimentation based on predefined tasks). The strength of the study are that the
developed tool builds on an already existing and well established tool (Javadoc, see
Section I.2) and performs an evaluation in an industrial setting with expert program-
mers that have long real-work experience with the developed tool. The weakness of
the study is the relative small number of subjects and the uncontrolled semi structured
interview approach. As is the case with all studies, this study has to be supported
by future research.

I.3.1 Industry-as-laboratory

Laboratory studies have often failed to predict real-world usability. However, it is
the lack of the correct context rather than laboratory experimentation per se that is
responsible for this failure (Dillon 1994, Brooks 1980) Therefore, in Computer Sci-
ence in general and for human-related areas such as programming tools in particular,
research requires experimentation in real-work situations with experienced subjects.
This is often discussed in terms of performing research in the industry-as-laboratory
(Yin, 1994; Basili, 1996; Potts, 1993; Glass, 1994). At first glance the industry-as-
laboratory approach requires an evaluation of academic work in real-work situations.
Equally important however, is to acquire empirical problem definitions from industry.
Potts (1993) argues that what researchers think are major practical problems often
have little relevance to professionals, whereas neglected problems often turn out to
be important. Though Potts focuses more on empirical experimentation and analy-
sis than technology development, the same principles are likely to apply to technical
modelling. Industry-related problem definition also comes into focus in Davis’ (1994)
article on “Fifteen Principles of Software Engineering”. These principles are pro-
posed as (temporary) laws of physics for software engineering. Furthermore, Glass
(1994) advocates the use of evaluation in the engineering model of research (where
the value of models is also tested). Contrary to these indications, Tichy et al. (1995)
showed that research papers in Computer Science largely failed to provide empirical
evaluation.

I.3.2 Iterative Development

Basili (1996) states that the software-engineering discipline requires a cycle of model
building, experimentation, and learning to uncover or develop knowledge. To con-
duct an iterative development in which systems are created in a design-evaluate-learn
loops is currently part of many development methods (Sotirovski, 2001; Russ and
McGregor, 2000; Brooks, 1987; Jacobson et al., 1999; Beck 2000). Sotirovski (2001)
states that: “Practiced all along, often introduced by practitioners through the back
door, iterative development methods are lately receiving their overdue formal recog-
nition.” Furthermore, Brooks (1987) advocates a growing perspective on software
development rather than a building perspective.

85

I.4 The DJavadoc System

Electronic documentation can provide additional dimensions of functionality that sup-
port efficiency in the reading process. Adaptation and evolution are concepts brought
about by time and interactivity that the electronic medium provides. The tempo-
ral aspects of the information web are sometimes regarded as a drawback (changes
can be confusing) but can also be utilized as a means of efficiency. Adaptation and
evolution are examples of electronic media abilities that potentially can support ef-
ficiency. According to Brusilovsky (1996), adaptive systems model their users and
adapt various visible aspects of the system according to this model. Kantorowitz and
Sudarsky (1989), on the other hand, define adaptable systems as systems supporting
several different dialog modes. In this article, adaptation is defined as the process of
changing into better- suited forms in relation to context. When the context variable
is time, adaptation is synonymous with evolution.

Electronic text provides adaptation and evolution but not necessarily value for
software development processes. Domain knowledge and user preferences must be
combined to harness the raw expressiveness of the electronic media. Ultimately this
requires information design (Jacobson, 1999; Rosenfeld L. and Morville P., 1998)
based on domain knowledge established through empirical studies of programmer
behavior. The study presented in this article is such a study, based on an experimen-
tal documentation system called Dynamic Javadoc (DJavadoc). DJavadoc realizes
adaptation and evolution in the Java programming domain (http://www.ida.liu.
se/~eribe/djavadoc; Berglund, 2000; Berglund and Eriksson, 2000; Berglund, 1999).
In addition to the standard online Java library reference documentation (JR, see Sec-
tion I.2), DJavadoc provides:

• redesign of information content

• temporary manipulation of redesigned content

• evolving index in a bookmark fashion for individual fast-access browsing

The following subsections examine these features and discuss what design ques-
tions may be answered by evaluation.

I.4.1 Redesign

DJavadoc provides programmers with means to further specialize the design of the
reference documentation. Programmers can also easily redefine their settings at any
time to change their focus.

Value

Redesign is applied to reduce time-consuming, repetitive manual searching for well-
defined information types by removing what programmers consider excessive infor-
mation types. For instance, programmers may keep only a summary of the methods
in a class document. The redesign thereby allows for differences in design among
individuals and throughout use of the documentation.

86

Study Goal

By studying the use of redesign in DJavadoc the need for adaptation in program
documentation can be examined. For instance, programmers may change their set-
tings every now and then to adjust for changes in their information need. On the
other hand, different programmers may use different settings but not change their
individual settings over time. Finally, everyone may be content with the same set-
tings. Studying how programmers redesign reference documentation can uncover the
knowledge of what constitutes appropriate adaptation.

Implementation

Programmers change their setting by checking on or off elements in an information
model, see Figure I.3. Documents are changed in accordance with the new model by
removing sections matching the information type.

I.4.2 Temporary Manipulation

After having defined a setting for DJavadoc, programmers may still want to explore
removed information without changing the settings. These types of changes are tem-
porary and need not be remembered for subsequent visits to the same document.

Value

The manipulation provides the programmer with the ability to check small informa-
tion nodes without leaving the context of the current page. One example is that the
programmer expands a method to check the detailed description and then collapse the
description again (in this example method descriptions have been previously removed
in the setting). It also enables a more compact design with easy access to informa-
tion that is temporarily relevant. In essence, DJavadoc programmers continuously
manipulate the text while reading.

Study Goal

Performance issues of temporary manipulation are relevant to investigate because
deficiencies can disable the concept of manipulation in reading. Waiting for small
subsections to expand may not be acceptable even though the programmer accepts
a few sections to download new documents. Whether or not temporary changes are
relevant for subsequent visits to documents is also relevant to examine.

Implementation

Hyper-links for certain key-elements elements are used to initiate an expansion of
collapse by direct manipulation, see Figure I.4.

I.4.3 Evolving Index

Naturally, in relation to the thousands of classes available in the Java core libraries,
reader can benefit from focused indexes in the documentation to provide fast-access

87

Figure I.3: The reader controls the visibility of different information types
by checking elements on or off. As the reader browses the documentation,
documents are redesigned in accordance with the view.

88

to relevant documents. In DJavadoc this need is supported by the construction of a
individual navigation index.

Value

The idea behind the DJavadoc bookmarks is to reduce access time for particularly
relevant documents through an evolving index. The programmer is allowed to build
a representation of the most valuable documents in a special-purpose index. For
instance, the classes used in a project can be collected.

Study Goal

By examining the use of evolving indices, the need for individual evolution may
be discovered. A relevant question is whether or not programmers need project-
related evolution (that relate to their individual situation) or if more general evolution
principles suffice (e.g., relating to application types). If project-related evolution is
required the documentation must adapt on an individual level.

Implementation

The programmer creates a personal navigation index in a bookmarks fashion, see
Figure I.5.

I.4.4 Related Systems

Other systems also make use of the electronic presentation medium to further support
programming. The most relevant related systems in this category are Microsoft Devel-
opers Network Online Web Workshop (MSDN) and the Mathemathica Help Browser
(MM; Wolfram, 1996). Both these documentation systems have sections that can be
collapsed or expanded in the documentation. Both systems also remember temporary
changes as pages are revisited, treating these as definitions of future information needs
(contrary to DJavadoc). The Mathemathica Help Browser, furthermore, allows the
reader to execute statements directly in the documentation. Moreover, development
environments, such as Visual Café (VC) and JBuilder (JB), provide related features.
In Visual Cafe it is possible to browse the documentation directly from the source
code. The source code becomes an evolving index to the documentation.

Compared to these systems DJavadoc goes further in the aspects of adaptation
and evolution, to the point of being very open. DJavadoc is a research vehicle rather
than a product and the openness is aimed at the exploration of adaptation and
evolution rather than representing an optimal design.

I.5 Study

DJavadoc was studied in an industrial setting. The aim of the study was to find
general design criteria on electronic library reference documentation rather than to
evaluate the individual value of DJavadoc features. DJavadoc was, thus, used as an
example system for electronic documentation. This section presents the evaluation
and its results. Related studies are discussed in Section 5.

89

I.5.1 Subjects and Setting

Two programmers working at Ericsson Radio Systems in Linköping, Sweden, used
DJavadoc instead of Javadoc during 4 months of normal work. They used DJavadoc
documentation for Java core libraries version 1.2 which contains over 1,800 classes
(see Table I.1). The programmers then participated in a semi- structured interview
addressing both DJavadoc specifically and electronic reference documentation in gen-
eral. One of the programmers had 2-3 years of education before working 20 years
as a professional programmer (3 years with Java). The other programmer had 7
years of education before working 7 years as a professional programmer (2 years with
Java). During the study the programmers worked in the same project at the same
department. Both had extensive experience using Javadoc.

I.5.2 Results

The results of the study are present here as general comments on electronic reference
documentation.

Redesign

DJavadoc provides redesign by the definition of content visibility (see Section I.4.1).
The programmers both, independently, defined the same settings, which was different
from the default setting, and never changed their settings during the study period.
Their settings removed detailed descriptions of class members. The behavior of the
programmers indicates that adaptation is not needed on an individual level.

Temporary Manipulations

Apart form the setting, some sections of the documents can be temporarily manip-
ulated in DJavadoc, see Section I.4.2. The programmers generally appreciated the
temporary manipulation. In particular, they liked the ability to temporarily open
up more detailed descriptions of class members. This is not surprising since it is
consistent with expert reading behavior (Hackos, 1998; Carroll, 1998; Redish, 1989).

Generally, the type of manipulation used in DJavadoc (stretch text, [Nelson,
1987]) worked well and the graphical performance was sufficient even for relatively
small changes. For index sections, the collapse and expand functionality was less
appropriate due to the relatively long lists found in standard Java library reference
documentation (JR, see Section I.2). The programmer said that they had opened
more than one package list at a time but never more than two. Based on this, col-
lapse and expand works may work best for smaller sections and alternative graphical
solutions to the navigation issue is required.

In DJavadoc temporary manipulation is not remembered for subsequent visits to
particular document. This is, however, the case in some related systems, see Section
I.4.4. When questioned about this issue, the programmers felt that remembering
temporary changes were only interesting within short time frames. Consequentially,
a time-invariant electronic layout may suffice to support programming.

90

Evolution

DJavadoc provides an evolving index in the form of a bookmark list (see Section I.4.3).
The programmers had not used the bookmark list because initially the feature did
not excite them. Without using it, they reasoned that few very common documents
would be useful in such a list. However, they had no real use experience with the
feature.

Another evolution issue was brought to attention in the interview. The program-
mers stated that they wanted support for the addition of new sections to downloaded
documentation. These comments point out that programmer use libraries from differ-
ent source and/or use libraries that are added at different times. Javadoc currently
produces documentation that is internally cross-referenced, which allows program-
mers to browse relations among components, see Section I.2. Such cross-reference is,
however, not possible among documentation from multiple library providers. Conse-
quentially, the current production of documentation is in conflict with the design for
cross-reference browsing.

Task Integration

During the interview it became apparent that the programmers used the documen-
tation to copy code, both to increase programming speed and to ensure syntactical
correctness. Documentation should therefore support the task of transferring code
from the documentation to source files. Essentially, this points to the fact that doc-
umentation should be viewed as a programming tool rather than a text and that it
should actively support a number of related tasks. Moving code from the library
reference documentation to the source code is one such task.

Example Code

During the interview the issue of example code also surfaced frequently. Example
code is valuable both to explain code and to provide programming samples. The task
of moving code from documentation to source files was, once again, the reason for
using example code. The programmers wanted to copy and paste example code into
the source files to increase development speed.

Information Priority

When asked about what piece of information is most valuable in the Javadoc docu-
ments, the programmers conclude that information about methods is most valuable.
The current Javadoc layout, however, places methods at the end. Thus, simply reor-
ganizing Javadoc based on user information priority would improve the efficiency in
reading.

I.5.3 Study Summary

DJavadoc was studied in an industrial setting consisting of 2 programmers using the
system for 4 months. Based on the study, it seems that a time-invariant electronic
layout with temporary manipulation functionality suffice to support programming.
The use of electronic presentation techniques to hide descriptions and create focused

91

views works well. Furthermore, documentation should actively integrate tasks beyond
reading, in this case moving code from the documentation to the source files. Un-
fortunately the evolution aspects of the DJavadoc system (the individual index, see
Section I.4.3) had not been utilized in this study and could therefore not be evaluate
based on use experience. Evolution was, however, regarded as important but mainly
in relation to the integration of material from different library providers (rather than
evolving individual navigation indices).

Some weak points in the design of Javadoc tool were also discovered in the
study. The placing of method information does not reflect their importance (as being
the most commonly used information) and the production of documentation works
against the desire to integrate documentation from multiple sources.

I.6 Related Work

There is a relatively limited set of studies addressing reading behavior and reading
needs of programmer in relation to software component libraries (in particular with
regards to electronic reference documentation). One of the most relevant examples
is the Shull et al. (2000) study of reading techniques for object oriented frameworks
(similar to class libraries but more advanced and specialized). Among other things,
Shull et al. found that example-based learning was well suited for beginning learners.
Compared to the study presented in this article, the Shull et al. study is a larger and
more thorough but it is also based on student projects and therefore lacks the rele-
vance of an industry setting. Frakes and Pole (1994) produced a study on the subject
in relation to component retrieval. They compared four retrieval methods and found
no difference in search effectiveness from the different methods. Supporting several
methods were also found to be worth wile because no method found all components.
Information retrieval, which Farkes and Pole address, is also addressed by Maarek et
al. (1991) in a study on retrieval-based construction of software libraries. Maarek
et al. illustrates how software libraries can be constructed in relation to the needs
of a user through the means of information retrieval methods. On a more general
note, Hertzum and Pejtersen (2000) performed another relevant study on the subject
of information-seeking practices of engineers with a focus on the search for people
to complement documents. The use of people as information sources is relevant in
the design of electronic reference documentation. Compared to the work presented
here, these studies do not address the reading issue in the electronic medium such as
adaptation and evolution.

I.7 Discussion

The DJavadoc study presented in this article, based on real work experience in an
industrial setting, provides a foundation for further experimentation and development
of electric reference documentation. In this section, central issues uncovered by the
study are discussed.

92

I.7.1 Application-Type Adaptation

The study indicates that programmers do not require adaptation or evolution on an
individual level. The flexibility appreciated by the two long-term users had little to do
with a redesign of documentation in relation to their individual task. They both use
the same settings and never change them. Little reason to further focus on adaptation
based on the individual programmer’s situation has been found. However, the study
was based on a small number of developers (though they had extensive experience)
and cannot be considered conclusive on this issue.

Instead of focusing on the individual level, it is relevant to examine adaptation
at an application-type level. Applications fall into categories: such as web services,
database applications, and 3D games. Documentation could be designed to adapt
their content and presentation style to such categories.

I.7.2 Task Integration

To a large degree, the programmers in the study focused on their desire to transfer
syntax as well as knowledge from the documentation. The task they were interested
in essentially evolved around the task of creating source code from a pool of code re-
source. To further support this need, an area of investigation is the design of prepared
copy/paste strings on a class or method level for object- oriented languages. Devel-
opment environments, to some degree, handle this issue through code-completion
functionality but it can be further extended to provide even more support. Multiple
types of cope/paste strings could, for instance, be relevant.

I.7.3 Multiple Source

The study also revealed the need for integration of documentation from multiple
sources. An intermediate format is required in the process of generating documenta-
tion that allows for integration after release. Javadoc is currently produced in batch
and delivers static HTML pages that are difficult to integrate (in particular to keep
cross-referencing intact across multiple sources). Using more structured formats such
as XML could increase the ease of integration. Fundamentally, this need illustrates
the fact that user combines multiple source across library development organizations
and that documentation tools should adapt to such a reality. The development of
documentation tools should better support the integration of source from organi-
zationally independent development projects with varying degree of detail publicity
(e.g., open or closed source).

I.7.4 Using Code as Documentation

Apparent from the study is also the usefulness of code as documentation, for instance,
example code and syntactical specification. Often, tutorial material uses code snip-
pets of to illustrate what is described in the text. Code is an explanatory language
that can both explain relations and be used directly in programming. Furthermore,
programmers have a lot of training writing and reading code files. It is relevant to
call further attention to this relation between the code and the documentation. Test
code could, for instance, explain the proper use of components.

93

I.7.5 Communication vs. Documentation

Fundamentally, developers of reference documentation should stop thinking in terms
of documentation and start thinking more in terms of communication for library
reference documentation. The speed with which libraries change, grow, and multi-
ply makes documentation inherently unstable and commonly out-of-date. Writing
documentation before releasing libraries may, in fact, not be necessary in a global,
networked development environment. User-driven, just-in-time production of docu-
mentation becomes highly relevant; particularly since the user community commonly
is much larger than the development team (e.g. Java had 2 million registered Java
developers at the Java Developers Connection web site in May 2001 [Nourie 2001]).
This makes user involvement highly relevant to overcome a lack of resource, for in-
stance though open-open-source approaches to documentation creation. That this
is a feasible approach to writing can be seen from existing online annotated manu-
als where users today contribute to the writing process by providing comments, see
for instance the PHP annotated manual (PHPAM). For a more in-depth discussion
on open-source documentation, see Berglund and Priestley (2001). Another relevant
alternative is indexing of people rather than text; see Hertzum and Pejtersen (2000).

I.8 Summary and Conclusion

The article presents a study of design criteria on electronic reference documentation
for software component libraries. The study was performed in an industrial setting
and based on real work, long-time experience of an experimental electronic documen-
tation, called Dynamic Javadoc (DJavadoc). DJavadoc adds individual adaptation
and evolution to traditional online reference documentation in the Java programming
domain. By adding knowledge about the domain and about programmers’ tasks into
the electronic documentation, reading can become more efficient.

The study found indications pointing towards a design of electronic library refer-
ence documentation without adaptation on an individual level. Instead, documenta-
tion should focus on time-invariant focused views that can temporarily be manipu-
lated (to find more detailed sections). Furthermore, the need for evolution is mainly
focused on the integration of documentation from multiple sources. Moreover, to
support the task of transferring code from documentation to source files was found
relevant. Additionally, the study uncovered some weak points in the general Javadoc
tool design.

The development of electronic reference documentation that provide efficient read-
ing and coding support for programming purposes has become more relevant and will
perhaps become increasingly relevant in the global programming era. The electronic
medium provides useful functionality in this area. Studies like the one presented in
this article can discover the design knowledge needed to adequately use the electronic
medium in the programming domain. Automated documentation systems, such as
Javadoc, have shown that it is possible to automate large parts of the documen-
tation process for library reference documentation. This study help fine-tune that
automation to produce the right type of electronic documentation.

94

References

AH, Adaptive hypertext & hypermedia web site, http://wwwis.win.tue.nl/ah/

AR, Ada 95 reference manual, http://www.adahome.com/rm95/

Baker M. (1997) From Document Design to Information Design. In Proceedings
of the 15th Annual International Conference on Computer Documentation,
October 19–22, 1997, Snowbird, UT, pp. 7–10.

Basili V.R. (1996) The Role of Experimentation in Software Engineering: Past,
Current, and Future. In Proceedings of the 18th International Conference on
Software Engineering, 25–30 March, Berlin, Germany, pp. 442–449.

Beck K. (2000) Extreme programming explained: embrace change. Addison-Wesley.

Bell D., Morrey I., and Pugh J. (1987) Software Engineering A Programming Ap-
proach. Prentice Hall.

Berglund E. (1999) Use-Oriented Documentation in Software Development. Linköping
Studies in Science and Technology, Licentiate Thesis no. 790, School of En-
gineering at Linköping University ISBN: 91-7219-615-7. PDF version online,
http://www.ida.liu.se/~eribe/lic/berglund.pdf.

Berglund E. (2000) Writing for Adaptable Documentation. In Proceedings of IEEE
Professional Communication Society International Communication Conference
& ACM Special Interest Group on Documentation Conference, IPCC/SIGDOC´2000,
Cambridge, Massachusetts, September 24-27.

Berglund E. and Eriksson H. (2000) Dynamic Software Component Documentation
In Proceedings of the Second Workshop on Learning Software Organizations,
in conjunction with the Second International Conference on Product Focused
software Process Improvement, June 20 2000, Oulu, Finland.

Berglund E. and Priestley M. (2001) Open-Source Documentation: in search of user-
driven, just-in-time writing. In Proceedings of SIGDOC 2001, October 21-24,
2001 in Santa Fe, NM.

Brooks F.P. Jr. (1987) No Silver Bullet: Essence and Accidents of Software Engi-
neering. IEEE Computer, April, pp. 10–19.

Brooks R.E. (1980) Studying Programmer Behaviour Experimentally: The Problem
of Proper Methodology. Communications of the ACM, 23(4), pp. 207–213.

Brookshear J.G. (1994) Computer Science An Overview. Benjamnin/Cummings.

Bruce K.B. (1996) Progress in Programming Languages. ACM Computing Surveys,
28(1), pp. 245–247.

Brusilovsky P. and Vassileva J. Eds. (1996) Special Issue on: Adaptive Hypertext
and Hypermedia. In User Modeling and User-Adapted Interaction, 6.

Carroll J.M. Ed. (1998) Minimalism Beyond the Nurnberg Funnel. MIT Press.

Carver D.K. (1969) Introduction to FORTRAN II and FORTRAN IV programming.
New York.

Davis A.M. (1994) Fifteen Principles of Software Engineering IEEE Software, Novem-
ber, pp. 94–101.

95

Glass R. L. (1994) The Software-Research Crisis. IEEE Software. November. pp.
42–47

Glass R. L. (1998) Reuse: What’s Wrong with This Picture. IEEE Software. March/April.
pp. 57–59.

DJavadoc, Dynamic Javadoc home page, http://www.ida.liu.se/~eribe/djavadoc.

Frakes W. B. and Pole T. P. (1994) An Empirical Study of Representation Methods
for Reusable Software Components. IEEE Transaction on Software Engineer-
ing. vol. 20. no. 8. pp 617–630.

Friendly L. (1995) The design of distributed hyperlinked programming documentation.
In proceedings of the 1995 International Workshop on Hypermedia Design.

Hackos J.T. (1997) Online Documentation: The Next Generation. In proceedings of
1997 ACM Conference on Systems Documentation, Snowbird, Utah, USA. pp.
99–104

Hackos J.T. (1998) Choosing a minimalist approach for expert users. In Carroll J.M.
(Ed.), Beyond the Nurnberg Funnel. MIT Press.

Hertzum M. and Pejtersen A.M. (2000) The information-seeking practices of engi-
neers: searching for documents as well as people. Information Processing and
Management 36, pp. 761–778.

Jacobson R. (1999) Information Design. MIT Press.

Java SDK, Java Standard Development Kit, http://java.sun.com/j2se/.

Javadoc, Javadoc home page, http://java.sun.com/products/jdk/javadoc/.

JB, JBuilder, http://www.borland.com/jbuilder/.

JR, Standard Java reference documentation (for Java SDK 1.4), http://java.sun.
com/j2se/1.4/docs/api/index.html.

Kramer D. (1999) API Documentation for Source Code Comments: A Case Study of
Javadoc. In proceedings of the Seventeenth Annual International Conference
of Computer Documentation (SIGDOC’99), New Orleans, September 12–14,
1999.

Krueger C. W. (1992) Software Reuse. ACM Computing Surveys. vol. 24. no. 2.
pp. 131–183.

Kvale S. (1996) Interviews: an introduction to qualitative research interviewing.
Sage.

Maarek Y.S., Berry D.M., and Kaiser G.E. (1991) An Information Retrieval Ap-
proach For Automatically Constructing Software Libraries. IEEE Transactions
on Software Engineering 17(8) 800–813.

Mili A, Yacoub S., Addy E., and Mili H. (1999) Toward an Engineering Discipline
of Software Reuse. IEEE Software. September/October. pp. 22–31.

Mili A., Mili R., and Mittermeir R. (1998) A survey of Software Component Storage
and Retrieval. Annals of Software Engineering. vol. 5. pp. 349–414.

MM, Mathematica programming language, http://www.mathematica.com/.

96

MSDN, Microsoft developers network online web workshop, http://msdn.microsoft.
com/workshop/.

Nelson T. H. (1987) Literary Machines. South Bend.

Norman D. A. (1990) The Design of Everyday Things. Basic Books.

Nourie D. (2001) JDC Registers Over Two Million Users. Online Article. http://

developer.java.sun.com/developer/technicalArticles/Interviews/2milmikenoel/

PHPAM, PHP online annotated manual, http://www.php.net/manual/en/

Potts C. (1993) Software-Engineering Research Revisited. IEEE Software, Septem-
ber pp. 19–28.

PR, Python library reference, http://www.python.org/doc/current/lib/lib.html.

PYRD, Python reference documentation, viewed in November 2001, http://www.

python.org/doc/current/modindex.html.

Redish J.C. (1989) Reading to Learn to Do. IEEE Transaction on Professional
Communication 32(4) 289–293.

Reiss S. P. (1996) Software tools and environments. ACM Computing Surveys,
vol.28 no.1 281–284.

Rosenfeld L. and Morville P. (1998) Information Architecture for the World Wide
Web. Sebastopol: O’Reilly

Rosson M. B. (1996) Human Factors in Programming and Software Development.
ACM Computing Surveys vol.28 no.1 193–195

Russ M. L. and McGregor D. (2000) A Software Development Process for Small
Projects. IEEE Software September/October. pp. 96–101.

Schach S. R. (1997) Software Engineering with Java. Irwin.

Shull, F., Lanubile, F., and Basili V. R. (2000) Investigating reading techniques for
object-oriented framework learning. In IEEE Transactions on Software Engi-
neering, vol. 26. no. 11.

Smart K. L. and Whiting (1994) Reassessing the Documentation Paradigm: Writing
for Print and Online. In proceedings of 1994 ACM Conference on Systems
Documentation, Banf, Canada pp. 6–9.

Sommerville I. (1989) Software Engineering. Bath Press.

Sotirovski D. (2001) Heuristics for Iterative Software Development. IEEE Software
May/June pp. 66–73.

Tichy W. F., Lukowicz P. Prechelt L., and Heinz E. A. (1995) Experimental Eval-
uation in Computer Science: A Quantitative Study. Journal of Systems and
Software. 28:9–18.

VA, Visual Age for Java (development environment), http://www-4.ibm.com/software/
ad/vajava/.

van Vilet H. (1993). Software Engineering Principles and Practice. John Wiley.

VC, Visual Café (development environment), http://www.visualcafe.com/.

Wolfram S. (1996) The Mathematica Book. Wolfram Media, Cambridge University
Press.

Yin R. K. (1994) Case Study Research: Design and Methods. Sage.

97

Figure I.4: By direct manipulation, the programmer may temporarily collapse
and expand individual section of particular interest. Changes are not remem-
bered for subsequent visits to the same document.

98

Figure I.5: The DJavadoc Bookmarks represents an individual view of the
entire table of contents. Links to documents are saved to and removed from
the list by the programmer.

99

100

Paper II.
Helping Users Live with
Bugs

Submitted February, 2002.

Abstract

Bugs are everywhere: if there is one thing we have learnt over the years this is it.
Although, as developers, we try to minimize bugs we must also help users live with
the bugs that appear after releases. Today, online bug databases are commonly used
to communicate bug knowledge to users. Users from all around the world provide bug
reports and collect knowledge in a shared repository. However, online databases do
not effectively distribute knowledge to users. Users need a communication architec-
ture that actively distributes bug-related knowledge and presents it when relevant.

II.1 Bugs are Unexpected

The story of the moth stuck on the Mark II computer at Harvard University in 1947
is a well- known tale in software engineering. The engineers described it as the first
actual case of a bug being found (Kidwell 1998). This story uncovers a fundamental
problem with bugs: their unexpected nature. For users (and developers alike) bugs
are not supposed to exist and the Harvard engineers certainly did not expect a real
bug when troubleshooting the Mark II. Bugs are among the last things users suspect
when things go wrong. Moreover, bug symptoms are not always immediately visible
and users may therefore experience considerable costs both in time and money. Fur-
thermore, bugs are difficult to verify if suspected. To confirm bugs, users must devise
tests or gain access to the source code to inspect the implementation. Many users
are not even proficient enough to complete such tasks.

Internet has completely revolutionized bug handling in the sense that a global user
community can accumulate knowledge about bugs. In theory, every user can benefit
from the discoveries of other individuals and thereby avoid related costs and problems.

101

Ultimately, users struggle with the lack of knowledge rather than the actual bug. Once
bugs are discovered, users either continue to use systems or stop completely. (The
term system is used here in its broadest sense for such diverse systems as software
programs, desktop programs, software libraries, media streams and web sites). To
help users live with bugs, developers need to help users discover the knowledge which
is being accumulated in online databases by other users and developers worldwide.
A fundamental requirement in designing usable systems is that systems correspond
with users mental models and address the user tasks (Norman 1990, Shniederman
1998, Helander et al. 1997). Consequentially, bug handlings systems must take into
account how users act in relation to bugs, how users perceive bugs, and what users
need to accomplish in relation to bugs.

This article provides an analysis of post-release bug handling from a user perspec-
tive and pinpoints a fundamental flaw in contemporary design: the design for active
search. The article is based on a study of 35 contemporary bug-handling systems,
presented in detail in the sidebar: ”Contemporary Bug Handling”. Bug handling
starts with the issuing of bug reports and ends with the distribution of solutions to
users. Today users are involved in this process, mainly to provide bug reports. Bug
databases are also made available online for users. Unfortunately, online databases
do not communicate bug knowledge to users. This article explains why and what to
do if you are serious about helping your users live with bugs.

II.2 Sharing Bug Knowledge Worldwide

The first and most relevant step to help users live with bugs is to:

Effectively share knowledge throughout the user community.

When someone discovers knowledge about a bug, for instance the existence of a
bug or a bug workaround, everyone affected should also be given this knowledge and
be able to apply the knowledge at the right time and place. The entire worldwide
user community can benefit from the discoveries of individuals, illustrated by Figure
II.1C. For the majority of the users however, online bug databases serve only to collect
information, visualized by Figure II.1B. Most users are left oblivious to the collected
knowledge.

Bug handling systems have evolved from systems intended for internal processes
for system developers to systems aimed at both users and developers, illustrated by
Figure II.1. However the design has not yet been adapted to the requirements of
users. A fundamental difference between developers and users in relation to bugs is
that:

Users are passive readers that will not search for knowledge actively.

Many of them will never realize that their problems may be related to a known
bug reported by someone else and stored on a distant web site. Even though users
may learn that knowledge is available, expecting users to routinely scan bug databases

102

as a proactive measure is unrealistic. Not even highly mature computer users can be
expected to benefit from such solutions (because it takes to much time).

Consequently, to help users bug handling systems must:

Actively and efficiently distribute bug knowledge to affected users.

II.3 Bugs are Communication Deficiencies

The design of post-release bug handling rests on an assumption that bugs are er-
rors. In Webster’s Collegiate Dictionary a bug is defined as ”...an unexpected defect,
fault, flaw, or imperfection” (Webster). However, for users bugs represent elements
that cause them to fail at completing tasks they believe themselves able to perform.
Whether or not the bug is caused by an actual error is of less relevance. From a user
perspective:

(To users) bugs are communication deficiencies; gaps between the believed na-
ture of systems and the true nature.

Bugs appear when users have erroneous beliefs about systems caused by imple-
mentation errors and inconsistencies, poorly written and erroneous documentation, or
misunderstandings. Only informing users about these erroneous beliefs can handle all
possible situations. Building a new release of the software to solve the problem does
not help if users are not made aware of such releases. Not even automatic distribu-
tion of bug fixes will work, sometimes simply because the development organization
decides not to fix the bug.

II.4 Tasks, not Software, Fail

The design of post-release bug handling also rests on an assumption that software
fails as a result of bugs. For users, however, tasks fail and fixing the problem does
not necessarily translate into fixing the software. If a feature in a system is malfunc-
tioning, completing the task may simply require using another feature. Workarounds
can be just as good or even better than new software downloads.

To rout out all bugs and release defect-free systems is a software-engineering
dream. Methods to support the development of defect-free systems have been created.
One example is the Cleanroom software development method (Poore and Trammell
1996). Admirable as this dream is, in reality it can even be argued that the amount
of bugs have increased in recent year (not as a result of Cleanroom development,
of course). Today it is common practise to make wide-spread, public releases of
beta versions via Internet. Yesterday’s practice was beta testing by select groups of
testers. As a consequence, more users are using unstable software. Perhaps bugs
are an unavoidable property of the complexity of software; a property Brooks calls
essential (1987). Every single system seems likely to contain bugs and it just a matter

103

Figure II.1: Originally bug knowledge was collected (A). Today bug knowledge
is also often available via the web (B). However, the efficient distribution of
bug knowledge requires active distribution and timing (C).

104

of time before bugs surface unexpectedly somewhere. Fry claims that bugs are created
because human memory capacity is limited (1997).

Regardless of why bugs exist, users still have to live with them. In fact, eliminating
every possible bug may not be the ultimate goal for users of software systems, in
particular for non-critical systems. To a certain degree users may accept bugs as long
as the tasks they require can be completed in some form.

II.5 Designing for Passive Readers

Bug-handling systems aimed at supporting users must be designed for passive read-
ers. As such, users will assimilate knowledge only if presented when relevant. There-
fore, sending emails with bug reports does not work well even though user receives
knowledge passively. Users may be generally interested in bug metrics or extremely
critical bugs, but the relevance of individual bugs depends on the situation and must
be presented at the right time and place to be efficiently communicated (Suchman
1987). This distinction becomes important in particular, once the communications
flow grows beyond the first few bugs. Once individual bugs become relevant, users
they still do not need full knowledge, they need bug signals.

II.5.1 Bug signals

Singling the existence of accumulated knowledge from a global user community is the
first step in helping users live with bugs. Bugs signals, in short, provide:

• Awareness: a signal of the existence of the bug.

• Impact : a description of the how the bug affects the user. A documentation
bug may, for instance, only require the user to read additional documentation.

• Delay : an estimate of the time left before a solution to the bug exists. Solutions
may be workarounds.

• Hyperlink : a hyperlink that users can follow to full knowledge of the bug.

Signals should provide the knowledge needed to make course-of-action decisions.
Users must determine how to proceed, for instance study a workaround to complete
the task.

II.5.2 System Integration

Bug signals must also be presented at the right time and place to be effectively com-
municated. One way of achieving this requirement is direct integration of bug signals
into systems GUIs (overlaying GUIs with signals) and in this sense continuously up-
dating systems with bug-related knowledge. Consequently, normal work procedures
guide users in a passive search of online bug databases. The actions users take will
uncover knowledge relevant to them.

On first appearance, system integration of bug signals sounds like a job for an
intelligent agent that analyses user behavior and submits signals whenever a bug-
related action takes place. It also sounds like another annoying ”clip”. Bug signals

105

must avoid becoming obstacles to using systems efficiently. The signals should be non-
invasive to avoid disturbing users. Consequently signals cannot contain more than a
few words or one sentence of information. The use of underlining in the automatic
spell checker in MS Word is an example of a non-invasive signaling method. Figure
II.2 illustrates how to integrate bug signals into systems. Of course, for highly critical
and potentially dangerous bugs, intervening and disturbing the user or even disabling
the feature is motivated.

Figure II.2: Bug signals should be directly integrated into applications. Using
the application, the user will discover relevant bug knowledge.

106

II.6 Designing for Active Writers

Contrary to the lack of support for passive readers, the software community acknowl-
edges the user as an active writer. User beta testing is today a common approach
product testing. For systems whose target group is software developers the user group
is, moreover, highly technically competent and can verify bugs and provide software
solutions.

Still, users commonly must overcome unnecessary obstacles to reporting bugs.
Users must locate web sites and provide information about the malfunctioning com-
ponent. Before issuing the report, users are often requested to search the database
for similar reports to avoid multiple reports. In this sense, bug reporting is centred
on the development organization making it easy for system developers rather than
users.

The obstacles in the writing process are not equally critical to the problems of
passive readers. However, bug report obstacles stand in the way of users contributing
and should be minimized. Application integration for the active writer can remove
many obstacles by providing context- dependent interaction with the bug database.

II.7 Open-Bug Communication

In essence, this article is advocating an open communication channel, between users of
systems worldwide (on the topic of bugs). The system becomes a messaging system for
users rather than a knowledge collection mechanism for the development organization.
Finding a suitable implementation for such as design is a delicate process that requires
gate keeping to avoid unrelated or malicious use and a non-invasive graphical design
to integrate smoothly with users normal work routines. For systems such as software-
component libraries for programmers it is highly relevant to include this type of design
in development environments or reference documentation. For consumer products,
the design may be more far fetched. In general however, the design should address
the current problematic relation between users and online bug databases.

II.8 Effects on User Confidence

Why, you may ask yourself, should you draw attention to the bugs that are discovered
in your systems. One positive aspect is that an open approach will help users live
with bugs. However, users will also see all the bugs that never affect them while
working with the GUI.

In ”The Pocpcorn Report”, Faith Popcorn reports on consumer reactions to prob-
lem in relation to bottled water (1991). It is clears from that example that users can
excuse bugs, but that they will not be as forgiving towards irresponsible organiza-
tions that do not take care of their problems. Of course, users will be disappointed
when bug frequency surpasses a certain level. Within limits, however, users will react
positively to organizations that treat problem issues openly. In fact, a bug may also
represent an opportunity to show good quality customer service. Ask yourself this
question: ”do you remember companies that have no problems or companies that
take care of the few problems that arise swiftly and efficiently?”

107

Your first gut reaction may be that users are unforgiving and best left oblivious
of the inadequacies of the systems they use. However, reacting that way you are
also letting the limitations of one system reflect poorly on your entire organization.
Helping users live with bugs is a sound business choice for mature companies with a
focus on long term relationships.

II.9 Design Criteria on Bug Handling

In summary, to help users live with bugs you should implement the following design
criteria:

1. Bug knowledge should be self- distributing. As soon as bugs are detected, dis-
tribute the knowledge to your systems, illustrated by Figure II.1C.

2. Bug signals should surface inside systems. Integrate bug signals non-invasively
in your systems, overlaying the GUI with signals or as responses to user actions,
illustrated by Figure II.2. Let the signal act as a hyperlink to full knowledge.

3. Bug signals should help users make course-of-action decisions. Construct min-
imal signals that provide the knowledge needed to decide how to proceed (e.g.,
to ignore the function or to try a workaround).

4. Bug signals should include the nature of the bug and the bug handling process.
Design signals in relation to the user’s task and supply estimates of the delay
before solutions become available.

Bug handling is a relevant topic, in particular for users of beta products and early
releases but also users in general. Removing obstacles for bug handling increases the
speed with which problems and misunderstandings are solved. Helping users live with
bugs is good-quality consumer service and may even help promote your company as
a responsible, user-friendly organization.

References

Brooks F.P. Jr. (1987) No Silver Bullet: Essence and Accidents of Software Engi-
neering. IEEE Computer, vol. 20, no. 4. 1987, pp. 10–19.

Fry C., (1997) Programming on an Already Full Brain. Communications of the
ACM, vol. 40, no. 4. 1997, pp. 55–64.

Helander M., Landauer T. K., and Prabhu P. eds. (1997) Handbook of Human-
Computer Interaction. Elsevier Science.

Kidwell P.A. (1998) Stalking the elusive computer bug. IEEE Annals of the History
of Computing, vol. 20, no. 4. pp. 5 –9.

Norman D. A. (1990) The Design of Everyday Things. Basic Books.

Poore J.H. and Trammell C.J. (1996) Cleanroom Software Engineering: A Reader.
Blackwell Publishers.

Popcorn F. (1991) The Popcorn Report: Faith Popcorn on the Future of Your Com-
pany, Your World, Your Life. Doubleday: Bantam Doubleday Dell Publishing
Group Inc.

108

Suchman L.A. (1987) Plans and Situated Actions: The problem of human- machine
communication. Cambridge: Cambridge University Press.

Shniederman B. (1998) Designing the User Interface: Strategies for Effective Human-
Computer Interaction. 3:e edition. Addison-Wesley.

Webster’s Collegiate Dictionary (1994) 10th ed.

II.10 SIDEBAR:
Contemporary Bug Handling

Bug handling involves both users and developers in contemporary software develop-
ment. The scientific community has focused solely on debugging and development
method in relation to bugs. No work has been reported that treat bug handling as
a separate phenomenon. Therefore, I have examined over 35 commercial and open
source bug handling systems (see the Tigris web site for a listing of available bug
handling system, http://scarab.tigris.org/bug_trackers.html). Here I provide
an analysis of contemporary bug handling in relation to users. In general, bug- han-
dling systems are not designed for users but for development organizations and their
internal bug handling process.

II.10.1 Bug Handling Systems

The following categorization of bug handling systems describes the state of the art
today:

• Stand-alone bug-tracking systems: provide support for the process of reporting,
assigning, and tracking bugs and defects in general. These systems are devel-
oped as stand alone products that are not integrated in to a larger development
environment. Many systems have web interfaces to facilitate distributed bug
handling. Using a stand-alone bug-tracking system is particularly relevant for
distributed groups that use multiple platforms. Examples include: BugBase,
BugCentral, Bugzilla (used, for instance, in the Mozilla project, in the Apache
web-server project, and in the Red Hat linux project), Debian bug tracking
system, elementool, FogBUGZ, GTBug, TrackWise, and tTrack. A relevant
example is the Debian bug tracking system that uses email for the distribution
of bug knowledge and thereby enables passive distribution. However, bug mails
are sent on a regular basis rather then when relevant to particular users.

• Integrated stand-alone bug-tracking systems: provides stand-alone bug track-
ing but also provide limited integration with other work tools. Integration, in
these cases, constitutes accessibility from other tools or the use of a common
underlying information structure. However, these tools are not completely in-
tegrated into development environments. These types of bug-handling systems
are relevant particularly for groups that perform development within a spec-
ified framework. Examples include BugTalker, DevTrack, ClearQuest, Tigris,
Visual Intercept, and Whups.

• Online project management systems: provide stand-alone bug handling inte-
grated with general web-based project management systems. In these systems,

109

bug handling is integrated in online project management systems that are ac-
cessed via the web. The usefulness of these online development platforms de-
pends on the security they provide and the functionality of the management
site in general. Examples include Devx and Source Forge (28,000 projects with
over 270,000 registered members, October 2001). SourceForge provides limited
support for active distribution of general-bug metrics. However, SourceForge
does not support any system integration of bug-related knowledge.

Most organizations still communicate their bugs to users via web pages. Gen-
erally speaking, such solutions are covered by the other categories with regards to
functionality and content.

II.10.2 Bug Knowledge

The systems examined collect the following knowledge about bugs as part of their
bug-handling process:

• Bug state: describes different steps that bugs go through in the bug-handling
process (e.g. assigned, in verification, in testing, in implementation, and fixed).

• Bug result : refers to the outcome of the bug handling process (e.g. fixed, will
not fix, is not valid, duplicate report).

• Bug nature: represents the bug type (e.g. code errors, issues, design, cosmetic,
and misunderstandings).

• Bug ordering : represents priority among multiple bugs in the bug-handling
process (a number range is often used to define ordering).

For users, bug knowledge represents something different. First, users need to be
made aware of relevant bugs. Secondly, they need to make course- of-action decisions
concerning what to do next and how to accomplish tasks. For course-of-action, users
also need time estimates until a solution will be found or at least until more infor-
mation is available. Time estimates are needed for the user to determine whether or
not to wait for a solution. Unfortunately, the measurement of process time is miss-
ing from the knowledge collected in bug handling systems. Thirdly, users may need
more detailed knowledge to accomplish their task in spite of the bug, for instance the
contents of a workaround. Thus, for users, bug knowledge is:

• Bug awareness: the existence of the bug. Awareness also requires timing in
presentation, in particular when the number of bugs grows beyond the first few
reports. Expecting users to remember more than a few bug reports over time
is unrealistic.

• Bug impact : the type of impact the bug will have on tasks. Bugs may be
critical and thereby render it impossible to perform the desired task. On the
other hand, bugs may also be non- critical and only result in a minor flaw that
a user can live with. A documentation bug may only require the user to read
new documentation to understand how to complete a desired task.

• Bug delay : the time remaining before the bug has either been dealt with or at
least until more information will be available. Users need to know how long
they can expect to wait for a solution.

110

• Bug Knowledge: the full collected knowledge concerning the bug, collected
by users and developers worldwide. Generally this constitutes the content of
online databases today with exceptions for internal bug-handling data such as
information regarding who has been assigned to handle a bug. The knowledge
may also need to be expressed with the users intention in mind, focusing on
overcoming problems and completing task rather than on describing problems
and finding source code solutions.

II.10.3 Distribution Initiative

Generally speaking, the distribution initiative is in the hands of the user, who must
actively search bug databases. In some cases, users may subscribe to email services
that distribute bug knowledge on a regular basis. Email distribution, however, is
not really different from online databases apart from the fact that the user need not
continuously check for updates on their own.

Some of the systems integrate with other tools. Potentially these tools could inte-
grate bug knowledge into their GUIs. However, no example of direct bug-knowledge
integration exists. Users must still access the bug knowledge directly.

II.10.4 Contemporary Bug-Handling Model

In summary, the contemporary model of bug handling is focused on the development
organization. Many system do allow users to browse databases, illustrated by Figure
II.1B. Knowledge about bugs is only actively communicated to users in a few cases and
never directly integrated into systems. The vision presented in this article, illustrated
by Figure II.1C, is not represented by any of the systems.

Users need help to live with the bugs that appear after the release of systems.
Helping users live with bugs is not the same as handling bugs in the development
process. Even though the ultimate solution to bug handling with respect to users
is an open bug communication channel through systems, organizations can move
towards a bug handling process that supports users. The sidebar ”HOWTO: take the
first step” illustrates how.

II.11 SIDEBAR:
HOWTO: take the first step

The ultimate solution to helping users live with bugs (advocated in this article) re-
quires direct communication of bug signals, preferably though non-invasive integration
of bug signals in systems. However, this solution may be too costly or too time con-
suming to start off with, as it may require a complete work over of your systems. This
sidebar shows how you to take the first step towards the goal of providing efficient
distribution of bug- related knowledge to users.

II.11.1 Attitude Changes

• Realize that the vast majority of users are likely to have limited means of
discovering bugs on their own. In most cases, even users that have technical

111

skill and competence will behave like users in general, simply because they do
not have the time or interest to search actively.

• Recognize that bugs are unexpected and that users will search for bugs only
after having suffered problems trying to get things working. Few users will
suspect bugs at first and look for an error in their own understanding or use of
the system.

• Recognize that users suffer from a lack of knowledge rather than the actual
bug. Though bugs in critical systems can have disastrous effects, many bugs
can simply be avoided.

• Recognize that users do not have the time to search for bug knowledge and
need to be actively supported in finding what is relevant to them.

• Recognize that users initial need is for knowledge to help them discover bugs
and to determine their course-of-action.

II.11.2 Preparing your Bug Handling Process

• From your internal bug-handling process, collect information about delays in
the process (time estimates).

• Develop automatic download features in your systems that enable downloading
of bug knowledge from the web.

II.11.3 Providing Solutions Fast

• Tell users about bugs: this is the first solution.

• Focus on solutions that do not require changes to the system, that is, workarounds
or directions to alternative features. This will provide solutions faster.

• Include links to your bug database from within the system, typically under a
help menu. Make sure that identification of both the system and version are
included in the link.

• Consider including updates to the system GUI about the amount of reported
bugs even though you do not include overlaid bug signals.

II.11.4 Bottom Line

The fundamental issue to help users live with bugs is to distribute knowledge. Rather
than trying to develop bug free systems, focus on informing users and on dealing with
bugs swiftly.

112

Paper III.
Open-Source
Documentation: in search
of user-driven, just-in-time
writing

Co-authored by Michael Priestley IBM Toronto Lab, Canada, email: mpriestl@ca.

ibm.com

Published in the proceedings of SIGDOC 2001, October 21– 24, 2001, 2001 in Santa
Fe, NM

Abstract

Iterative development models allow developers to respond quickly to changing user
requirements, but place increasing demands on writers who must handle increas-
ing amounts of change with ever-decreasing resources. In the software development
world, one solution to this problem is open-source development: allowing the users
to set requirements and priorities by actually contributing to the development of
the software. This results in just-in-time software improvements that are explicitly
user-driven, since they are actually developed by users.

In this article we will discuss how the open source model can be extended to
the development of documentation. In many open-source projects, the role of writer
has remained unchanged: documentation development remains a specialized activity,
owned by a single writer or group of writers, who work as best they can with key
developers and frequently out-of-date specification documents. However, a potentially
more rewarding approach is to open the development of the documentation to the
same sort of community involvement that gives rise to the software: using forums

113

and mailing lists as the tools for developing documentation, driven by debate and
dialogue among the actual users and developers.

Just as open-source development blurs the line between user and developer, open-
source documentation will blur the line between reader and writer. Someone who is
a novice reader in one area may be an expert author in another. Two key activities
emerge for the technical writer in such a model: as gatekeeper and moderator for
FAQs and formal documentation, and as literate expert user of the system they are
documenting.

III.1 The Problem

Over the years, the software industry has accepted that changing requirements are
simply part of the software development process. An allowance for client require-
ments change, even an expectation of change, is at the foundation of most software
development methodologies. The Rational Unified Process (RUP) illustrates this,
and Extreme Programming (XP) exemplifies it. Taken to the extreme, as it often is
in open- source development, the functionality of the product may not be determined
until the day it is completed.

Continuous requirements change makes traditional methods of software documen-
tation difficult. Measured from the last change, production lead-time is effectively nil.
While some projects do incorporate documentation requirements into their produc-
tion schedule, in many cases writers simply have to make the best of an impossible
situation, and produce what documentation they can under the circumstances.

Writers cannot simply adhere to a pre-existing plan: they have to quickly assess
the relevance of each change and assign priorities to each affected area. Throwing
more writers at the problem is a solution with a rapidly diminishing return on in-
vestment: more writers typically require more coordination and planning, not less,
and this compounds the risks posed by a volatile information domain. The problem
cannot be solved with more planning or more reviewing. The writer simply has to
make the most of what resources are available, and aim to produce something useful
at the end of it.

Applying software development methods to the writing process may sound like
a plausible solution to the problem (Utt and Mathews 1999). However, the solution
falls short when documentation departments lack the resources and influence that
would allow them to negotiate changes after the manner of development departments.
While process, and especially integration of process (Priestley and Utt 2000), can help
writers track changes, it doesn’t help them find the resources or time to make changes.
Application of processes and integration of processes provide only half the answer:
they provide knowledge, but not the opportunity to apply it.

So the problem, finally, is that when we have the understanding, we have it too
late; and regardless of how well we plan or how hard we work, the best we can hope
for is an incomplete manual and help set that have a minimum of errors.

114

III.2 The solution

There are various ways to address this problem, innovations in how we write (in small
reusable units), how we process (using various singlesourcing technologies), and how
we ship to the customer (incrementally over the web, through a knowledge base, and
so on and so forth). These solutions are useful, and make the most of what resources
are available.

But a bolder solution is to simply accept that what we are shipping is incomplete,
that documentation is in fact inherently incomplete, and then move on to the larger
problem: how can we provide our customers with the answers to their questions?

Software documentation has been trending to the minimalist for quite some time.
As software becomes more usable, it often picks up document-like attributes (from
GUIs to embedded text to wizards), and becomes to some extent self-documenting,
lifting some of the burden of completeness from the documentation. There’s no need
to document the obvious: when the software is self-explanatory (would that it were
more often), the documentation can afford to be mute.

Unfortunately, as the same explanation will not serve all users, the same piece
of software may be self-explanatory for some and completely opaque to others. This
would seem to put the burden of completeness back onto documentation: even if a
feature is obvious for one user it isn’t for all, therefore document all features. While
this conclusion is valid enough when we consider documentation as a static, published
entity (something produced with the product for the product), the situation becomes
more complex when we think of documentation as a networked and evolving entity,
a larger world of information resources in which static documentation provides only
a starting point.

In other words, shipping incomplete documentation may be acceptable if the
information gaps can be filled in some other way, after the shipping date, as the
answers become needed. This is a step beyond print-on-demand, to write-on-demand.
Such user-driven, just-in-time production of content would also strengthen relevance
in content production and foster communities building on a global scale.

How would write-on-demand processes work? User-driven, just-in-time documen-
tation depends first on the availability of a community of users who can request and
receive documentation. You cannot provide the answers without the ability to hear
the questions. Users may be prepared to wait for an answer, if they know one is
forthcoming. Further, a user may be prepared to collaborate in the answer, providing
parts they do know if only to help speed up the writer’s research time. In fact, herein
lies the heart of our solution. The burden of completeness is derived from the fact
that different users require explanations of different features: obviousness is subjec-
tive. But this same fact in a networked world implies the opposite: for every user who
is confused by a feature, there is another user who understands it and can explain it.
The corollary of partial confusion is partial understanding. The users themselves can
fill in the holes. In fact, this is how mailing lists and discussion forums work. The role
of the writer, in a situation like this, is to be in effect a sort of super-user: someone
who is articulate and knowledgeable and regularly available to the community.

In software development, there is already a methodology that is based on such
processes: open source development. In recent years, the open- source approach
to software development has resulted in notable success stories: Linux (Linux.org),
Mozilla or Netscape (Mozilla), and the Apache web server (over 50% of the market)

115

(Apache, Netcraft) are all large, global products in fast moving technical areas. Open-
source development, in its purest form, is an ecological process with a focus on user-
driven just-in-time production of content. The community develops what it needs
when it needs it bad enough. Software grows from the needs, desires, and work
of the community. Given the success of open-source development as a response to
these problems in software development, it may be worth considering how the same
methodologies can be applied to software documentation.

III.2.1 Open-source documentation and technical writing

In this paper we will discuss open-source documentation as a user-driven, just-in-time
documentation process that delivers the documentation users want when they want
it. In a sense, open-source development of documentation is practiced continuously
today. Evolving content in mailing lists and FAQs are both the result and fodder
for ongoing discussions that help develop a community’s understanding of software
products. Mailing lists and FAQs represent technical debate in user communities,
which both answer questions about products and also discuss future development of
products.

This paper addresses how technical debate can be turned into formal support
for software products. We present an open-source documentation method focusing
on debate and dialogue as the engines of content creation. Content extraction and
debate moderation are also regarded as means for directing and transforming the tacit
knowledge of the group into the explicit support for a technology. We will also address
contemporary technical writing techniques in relation to the vision of open-source
documentation, and discuss the changes that open- source documentation processes
may bring about for the writing profession.

III.2.2 Organization

The paper is organized as follows. Section 3 analyses and describes open source
development from the experiences of open-source software development. It also de-
scribes why open source development results in just-in-time, user-driven production
of content. Section 4 provides a framework for open-source documentation projects
and discusses how to achieve documentation through user contributions. Section 5
examines writing techniques in search for open-source processes. Section 6 discusses
the state of the profession on open-source documentation projects. Finally, Section 7
summarizes the paper and discusses whether open-source documentation would work.

III.3 Open-Source Development

Open-source projects have received a fair bit of attention in recent years, with success-
ful projects such as the Linux (Linux.org) operating system, the Apache web server
(Apache), the Mozilla web browser (Mozilla), and the Perl and Python programming
languages (Perl, Python). According to the open-source initiative (OSI), a non-profit
corporation dedicated to managing and promoting an open-source definition:

116

The basic idea behind open source is very simple. When programmers can read,
redistribute, and modify the source code for a piece of software, the software
evolves. People improve it, people adapt it, people fix bugs. And this can
happen at a speed that, if one is used to the slow pace of conventional software
development, seems astonishing.

– Open Source Initiatie web site (OSI)

Many open-source projects are developed as freeware but this is not a necessity
of open-source projects. Though open source has its roots in freeware initiatives such
as the GNU projects (GNU Software) of which the Emacs editor (GNU Emacs) is
the most famous application (Stallman 1999), open source does not necessarily mean
non-profit.

Teaching new users about freedom became more difficult in 1998, when a part
of the community decided to stop using the term ”free software” and say ”open-
source software” instead.

”Free software” and ”Open Source” describe the same category of software,
more or less, but say different things about the software, and about values.
The GNU Project continues to use the term ”free software,” to express the
idea that freedom, not just technology, is important.

– Stallman 1999

The OSI definition of open-source does not exclude sales of open-source products,
in fact it specifically mentions sales. It is the control over the source code that is key
to the open-source certification that OSI provides (OSI2).

The OSI certificate protects the source code’s ability to move freely though differ-
ent development projects. This gives the potential for a critical-mass effect, in which
the efforts of many globally distributed independent groups with different goals jointly
develop software that is more powerful than anything they could have developed in-
dividually. In a sense, the software becomes a completely independent entity, which
can grow and evolve in directions its original developers never envisioned. According
to Bruce Perens, who wrote the original draft of the OSI definition for the Debian
open-source project (Debian), the definition is a bill of rights for the computer user.
Certain rights are required in software licenses for that software to be certified as
Open Source (Perence 1999). Essentially the right to:

• Make copies of the program, and distribute those copies

• Have access to the software’s source code, a necessary preliminary before you
can change it

• Make improvements to the program

117

While this bill of rights adequately defines when software is open source (and
amenable to open-source development), it does not really describe the nature of open
source development. For instance, the famous open-source projects such as Linux,
Mozilla and Apache have had large and organizationally independent groups con-
tributing to the same development. How such groups can cooperate, and how a
community with a range of involvement from individuals to companies can organize
itself, are aspects that are not covered by the OSI definition.

Open source is often described as massive parallel development (Feller and Fitzger-
ald 2000, Raymond 1999a, Raymond 1999b, Sanders 1998). Furthermore, open source
is often connected with individuals working together in a highly decentralized orga-
nization. The primary technological drivers for open source software include the
need for more robust code, faster development cycles, higher standards of quality,
reliability and stability, and more open standards/platforms (Feller and Fitzgerald
2000). Robustness is also one of the established benefits of open source (Willson
1999, Perkins 1999). Perkins writes that it is, in fact, the decentralized organization
that helps the open-source community to consistently produce powerful, robust, use-
ful software solutions (Perkins 1999). From a research perspective, open-source is a
new but relevant area of investigation. The 1:a workshop on open-source-software
engineering was held at the international conference on software engineering (ICSE)
2001, which hopefully will result in more research on the subject (Feller et al. 2001).
One of the few in-depth analysis of open–source can be found in Feller and Fitzger-
ald’s framework analysis of open source software development (Feller and Fitzgerald
2000). Furthermore, the book Open Sources: Voices from the Open-Source Revolution
provide articles written by key figures in the early days of open source (DiBona et al.
1999).

The nature of open-source development still remains somewhat uncharted terri-
tory but is typically (among other characteristics) robust, public, just-in-time, user-
driven, global, community-oriented, critical-mass dependent, non-directional in its
growth, developed from the bottom up, and change-prone. We will elaborate on two
aspects of open-source development: user-driven and just-in-time. The strength of
these aspects is the focus they naturally put on relevance and priority. What gets
built is what the users want when they want it bad enough.

III.3.1 User-driven

In many cases, open-source development is driven by demand for the product in the
programming community itself (Vixie 1999). Users develop the systems they need or
want themselves. As such, open-source development can be viewed as an ecological
process, in which independent users jointly grow their desired systems. In this its
purest form, open-source users are open-source developers. This approach makes the
most sense for projects that are relevant to large groups of people, because small
groups cannot generate the hours to develop a major system. The basis for open-
source development is massive parallel development. [27, 5] Also, open-source projects
can be utterly decentralized where no authority dictates what who shall work on and
how. Still tremendous organization and cooperation emerges. [Perkins 1999]

Of course, to grow substantially from the efforts of a user-community an open-
source project must generate a critical mass of developers that contribute. This is
what successful projects, such as Linux and Apache, have done. Also, the critical mass

118

of users must be competent enough to understand and contribute on a highly detailed
level – for instance system administrators – and as a result their needs will shine
through in the software they produces. Which explains why, in the past, opens source
projects mostly have been focused on operating and networking software, utilities,
development tools, and infrastructure components (Feller and Fitzgerald 2000).

Of course, for products such as Linux the majority of users will, if the projects
is successful, eventually be users in the traditional sense that do not add to the
functionality of the code or even have the ability or intent to contribute. However,
the open communication channels used in open-source communication (mailing list
and web sites) still broadcast information and discussions to the world. Development
is open also to those not directly involved and they may participate to lobby for
functionality they need.

III.3.2 Just-In-Time

Open-source development can be considered just-in-time development because the
users develop what they want when they want it bad enough. Of course, skeptics
may argue that open-source development is mostly technically driven (and support
technical desires rather than user needs) because people with technical skill define
requirements by implementing them. However, in many open-source projects where
the users are in fact technical people (for example, Perl and Apache) these distinctions
become meaningless: technical desires are, in fact, the user needs.

Open-source projects are defined by very short release cycles (Feller and Fitzgerald
2000). According to Eric S. Raymond, one of the smart things Linus Torvalds did was
to create an extremely short release cycle. Linus succeeded in getting solid feedback
and responding to it in only 24 hours, something thought utterly bizarre at the time
(Raymond 1999c). In this sense, Linus was also sensitive to requests in a just-in-
time fashion and provided his community with rapid responses to their interest in
the Linux project. So even when users are not implementing features themselves, the
short cycle times and community involvement that typify open-source projects still
provide just-in-time development.

III.4 An Open-Source Documentation Frame-
work

Just as open-source development requires a framework through which a community
can cooperatively develop code, open-source documentation requires a framework
that captures the relevant qualities of open-source development (just-in-time and user-
driven development) while accommodating the special requirements of documentation
development.

The first step is simply to allow people to contribute, as Jones pointed out in a
short article on open source and digital libraries (Jones 2001). Writing cannot be
restricted to a privileged few: people outside the organization must be allowed to
contribute. This is actually easier to consider for documentation, given that docu-
mentation is less dangerous in its possible effects (a badly written document won’t
erase your hard-drive - at least not directly - in the way software can).

119

The goal of the framework is to turn technical debate, currently taking place
in mailing lists and discussion forums, into formal support for software products.
In this section we define an open-source framework which is in subsequent sections
matched with contemporary forums for technical debate and current technical writing
techniques.

Open-source documentation should perhaps not be seen as text created through
an open-source development model but rather as drawing from an accumulated pool
of resources, which include both captured competence (text, multimedia) and living
(persons) competence. An open-source framework can encourage the creation of
these resources, from which a documentation build (by analogy to code builds) can
create tutorials, standard documents, books, online reference manuals, and so forth
as necessary for a particular project or delivery context.

III.4.1 Premises

There are a number of premises that must be met to even start considering open
source documentation:

Electronic Documentation

An absolute requirement for open-source documentation is the electronic format.
Open source projects must be editable on a global scale and it therefore becomes
practically impossible to use print. However, this does not mean that the layout
should exclude printable versions of the documentation because users will still want
to print documentation. Hard-copy versions may, of course, be constructed from
documentation builds.

Web-Site Driven

Since documentation source needs to be accessible to a global community of users,
web sites are the logical organization and access mechanism. The easiest way to get
started is to run your web site on a SourceForge server (either on the international
SourceForge server at www.sourceforge.com or on your own downloaded copy of
it[SF]). This provides a good starting point for managing your source via the web.

Open-source documentation License

Letting go of control requires the definition of a license over ownership of the open-
source documentation and the ability to freely use the documentation source in doc-
umentation builds. The documentation source must be free to become part of many
different projects. This includes allowing others to make documentation builds from
the documentation source and even create new products from that pool. Without
an open-source documentation license, there is less incentive for diverse groups to
contribute to the effort, and little chance of achieving the necessary critical mass
of contributors. Explicit open-source documentation licenses are also needed because
the copyright applies to work regardless of medium and without copyright notice. For
a discussion on copyright see the Stanford Copyright and Fair Use web site (SCFU).

120

Open-source documentation license do exist today, among which GNU Free Doc-
umentation License (GNUFDL) and the Open Content License (OCL) are the most
commonly used for open source projects. These licenses allow distributions of verba-
tim copies and derived work under certain conditions. For instance, the GNU Free
Documentation License allows distribution as long as the distributed copy also use
the same license.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does.

– GNU Free Documentation License (GNUFDL)

Documentation Splits

Along with the open-source documentation license comes an acceptance of the possi-
bility of branching projects. This allows fundamental disagreements in a community
to be resolved through splitting the community and creating a new version that is
maintained in parallel with the original.

First Prototype

The open-source documentation project must start with a small first prototype that
jump-starts the process and makes it believable that the project will result in some-
thing valuable and worthwhile. This first prototype, and the first documentation
build, are, in practice, the sales pitch for the project. The prototype must not be
complete but rather make it believable that a relevant result can be produced. Sub-
sequent documentation builds do not have to match the vision of the first prototype:
its purpose is to provide a departure point, not an end-point for development.

III.4.2 On-Going Support

Once the project gets started there are a number of aspects that need special attention
to keep the project running smoothly:

User Control

As in all projects, the quality of the content needs to be regulated. Control is a social
issue in open source development, in which the community regulates itself (Jones
2001). Typically the community grants certain serious and dedicated users special
rights that allow them to review contributions and disallow illegal or inappropriate
submissions. Naturally the writing staff will be among such power users but people
outside the organization must also be allowed to regulate content.

121

Social Structure

User control requires the construction of a social structure for the members of the
community. Assignment of power-user status can be based on engagement, seniority
and peer ranking. Many open source systems, such as Source Forge, use peer rank-
ing. The Source Forge ranking system measures teamwork/attitude, coding ability,
design/architectural ability, follow-through/reliability, and leadership/management.
Social ranking has other advantages as well. For instance, social ranking acts as
recognition of contribution and as rewards. Furthermore, social ranking organizes
users in relation to their capacity and therefore also organizes users into resources.
Social structures also support the feeling of a community.

In a documentation project, coding could simply be replaced with writing as a
ranked competency. However, in a mixed project (where the documentation is being
developed alongside a particular piece of software), it would be worthwhile to define
separate measurements for writing and for information design/architecture, to allow
meaningful rankings of good developers who are poor writers and vice versa.

III.4.3 Goals

Building Documentation

The focus of the open-source documentation project should be to build documen-
tation of more traditional style, such as user guides and how- to documents. The
documentation source should not be regarded as documentation in itself. There is
a risk in open-source documentation that web-based information repositories similar
to article collections replace documentation. Such repositories are likely to spread
information around and make reading difficult by requiring the reader to perform
extensive search and content extraction.

Short Release Cycles

Documentation should have short release cycles to accommodate the flow of require-
ments and implementations, such as questions and answers. Short cycles are not just
good service, it is a necessity for the continuous accumulation of content. Short re-
lease cycles is another requirement for user-driven process because large development
resources are required. Such a design will require the constant build of documentation
from the documentation source perhaps even every 24 hours. In this sense, letting go
of control is essential because the task of gate keeping a large documentation source
within 24 hours requires manpower and trust. A power-user social structure helps
appoint trustworthy users that can change with little or no intervention.

Live Communication Forums

An aspect of documentation creation that differs from code creation is that live,
people-to-people communication can become an integral part of the process. Chats
with power-users, people who are particularly knowledgeable, can be held and recorded
as part of the actual documentation-source. Web-cams can also be utilized to provide
live feedback that can also be collected and stored. Such live content transmissions
also help build the sense of a community.

122

Automatic Correctness Verification

In open source software projects, a compiler is often used to verify that only syntac-
tically correct programming is added to the common resource pool. Code that does
not pass compilation is not accepted. Beyond compilation, verification is provided
through the massive parallel development inherent in open source. Similarly, open
source documentation projects could have a number of automatic checks on content,
including DTD validation for XML or SGML source, HTMLTidy reports for HTML
and XHTML, spellchecks, linkchecks, and so forth.

Writing by Moderating

The technical writing staff responsible for the open source project should take care of
moving content around, improving language, correcting errors, identifying gaps, and
so forth rather than concentrating solely on writing the content. This staff must also
write the first documentation prototype.

Discussion through Annotation

Discussion forums and mailing lists are typically organized chronologically and by
subject (”threads”). Documentation, however, needs to be based on topics or tasks,
organized into FAQ documents. The transformation from chronological and thread-
based organization to more architected FAQs, and the rechunking from threads to
topics and tasks, is a core concern of the documentation project.

Traditionally this has been done by hand, through either cut and paste or more
complete rewriting. A more dynamic solution might be add metadata to the threads,
allowing for more intelligent searching of archived discussions. However, this approach
only allows for search-based exploration of relevant topics, and requires constant
updating of the metadata. A more integrated solution would be to directly annotate
the text in each message, calling out explicitly what part of it is a query and what
part is an answer. Query lists can, naturally, be generated from the source for users
talented enough to answer them for the writing staff. Answers that have already
been provided by the community can be assessed according to the ranked skill of the
author, and edited if necessary by posting the edited answer to the end of the thread.

Discussion through annotation naturally adds user comments and discussion to
a topic framework, unlike thread-based discussion, which require transformation. In
this sense, annotation speeds up content-extraction process and thereby shortens the
release cycles for documentation builds.

Multiple Views

A big part of documentation is navigation and as the documentation source grows
the navigation problem grows. Navigation is also personal or task dependent and
it is therefore difficult to generate a general but effective index. Multiple indices,
however, can exist and this may well be one of the larger sections of an open source
documentation project. By allowing the construction of navigational links across
documentation based on user design the navigation infrastructure can evolve and
grow with time.

123

III.4.4 Technical Questions

There are a number of technical issues that need to be addressed by the open source
documentation framework:

Documentation Format

The web infrastructure and the openness make the technical issue difficult. The
need for a web-site driven project, the formats usable become somewhat limited. For
annotation systems (i.e., direct additions to the documentation source) the system
must work directly in the browser. This requirement makes XML a highly relevant
documentation format because the basic web infrastructure supports XML. However,
automatic spell correction needs to be present as well which may make things a bit
more difficult today. For longer comments, individuals can be free to use whatever
word processor they like to construct their answers as long as they can convert to the
project format.

Documentation Layout and Author Reliability

The layout of a documentation system that includes questions and answers from the
user community needs to show the reliability of content. At least, the system should
clearly indicate that the source is open for contribution from a worldwide community
allowing participation from, in principle, anyone with web access. The annotated
manual for the PHP open source project does this in two ways: by calling the manual
annotated and by displaying annotations from users in differently styled sections of
the text (PHPAM). Readers need to be made aware of who the writer is and their
degree of competence.

III.4.5 Lifecycle

Initially, a documentation prototype provides the starting point for contributions
from an open-source documentation community. As the project progresses, more and
more of the content may be derived directly from the community, following a process
of content creation and documentation builds can be summarized by the following
lifecycle:

1. A user asks a question, either about existing content or by requesting informa-
tion. The question is added to the source as a comment or as a new question.

2. Another user (may be a member of the writing staff) finds the question in some
build from the source, perhaps a query listing or as part of a documentation
build. The user answers the question and the answer is added to the source.

3. Other users provide answers, confirms answers or, adds comments and reposts
to the source as an annotation.

4. Another user with editorial skills reworks the answer to and reposts.

5. The answer is automatically picked up in the next FAQ build, although ranked
fairly low since it has only been asked once. The build may also validate that
the FAQ has been correctly authored as a task, has no spelling errors, etc.

124

6. Another user with information architecture skills adds a reference to the task
to pull it into the appropriate place in the overall task flow, and to include it in
the appropriate indexes and tables of contents for whichever delivery contexts
are appropriate.

7. Someone reads the documentation, has a problem with it, and asks a new
question.

8. Repeat until software and documentation are perfect or obsolete, whichever
comes first.

Alongside this process, documentation builds are continuously created from the
source with layout visualizing the credibility of the different pieces. As a question-
answer cycle matures the content become more and more integrated in the docu-
mentation by shifting style and location in the builds. Peers rate contributors that
increase the status of such users. Automatic rating systems can be built in to the dis-
cussion format by measuring the addition of agreement, refinement, or disagreement
to answers. For highly rated users, the technical staff investigates whether or not to
grant user more privileges to cut corners in the gate keeping process.

III.4.6 Summary of Framework

The open-source documentation presented in this section focus on the creation of a
user community that builds documentation by debating topics in a documentation
source. From the source, documentation is built by extraction (automated if possible).
The layout visualizes the credibility of content in style and position. As content
mature through the community process, its visibility in subsequent documentation
build releases increase.

Compared to traditional writing, open-source documentation focus on the user-
driven, just-in-time aspects of content creation and the natural focus they put on
relevance and priority.

III.5 Open Writing techniques

Open-source documentation also requires writing techniques that support the process
of user-driven, just-in-time construction of documentation through an open-source
model. In this section we discuss what current writing techniques offer in this respect.

III.5.1 Writing Reusable Units

Many online documentation projects currently use topic-oriented writing and infor-
mation typing as ways to produce disciplined reusable information. Combined with
task-oriented minimalism (Carroll 1998), these techniques can result in highly fo-
cussed, reusable, and user- focussed documentation. The question is how much of
these techniques can be made accessible to a wide community, and can how consis-
tency and accuracy be maintained, outside of the standard edit-publish-review cycle?

While various architectures define a variety of sizes and types of information,
at minimum an information-typing architecture defines the size of a topic (a single

125

reusable ”chunk” that describes a single idea, task, or thing) and three informa-
tion types: concept, task, and reference. Multiple topics can be combined into task
flows, organized by index or table of contents, and aggregated into books or websites
(Priestley 2001).

Topic-oriented writing can seem quite alien to an accomplished technical writer
more familiar with books, and there is often a significant learning curve associated
with the change in writing goals and style. However, different as they are from a
manual, they are in fact quite a natural fit for derivation from FAQs. Different types
of question conform quite naturally to information types: how-do-I questions have
tasks as answers, what-is-a or how-does-it-work questions have concepts or reference
topics as answers. In addition, with the exception of extraordinarily long or vague
questions, most FAQs are going to be naturally chunked at about the right size for a
topic.

So is the fit between newsgroup source and topic-oriented, reusable content as easy
as the normal gathering process that gives us FAQs? Nearly. Typing and chunking
are the two main goals of an information typing architecture, but a website or book
constructed out of topics needs coherence in its style and structure to look more than
merely accidental, and to be predictable enough to be useful and usable.

III.5.2 Editors and Architects

The task of enforcing structural and stylistic guidelines can be in part taken up by
the social structure: appointed or elected editors (users or contributors with highly
rated writing and information architecture skills) can be reviewers and approvers of
candidate topics. For example, in the case of topics harvested directly from marked-
up newsgroup posts (as described in section 4.3.5), an editor could be required to
forward the (edited, annotated) answer back to the group before it was considered
a candidate for harvesting. Otherwise, contributors with editorial approval could
perform the harvesting themselves, and impose a certain level of consistency as they
went.

The two proposed skill measurements - writing and information architecture -
point to two separate roles: the topic-level editor, who pays more attention to style
and low-level content issues, and the collection-level editor, who defines the task flows
and tables of contents that organize the topics into useful collections.

These two roles, and their responsibilities in a more structured development pro-
cess, have been described in detail in (Priestley and Utt 2000).

III.5.3 Enforcing Structure with Markup

Structural guidelines can also be enforced by the use of a specialized markup lan-
guage, whose DTDs or schemas prescribe particular structures for particular kinds of
information. There are several possibilities for enforcing such structures:

HTML or XHTML

HTML is a very general standard, and as a result it does not usefully constrain
the information you write in it: two equally valid topics (according to the HTML
standard) can be as different as any two pages on the web. This is still better than

126

complete chaos, however, and tools such as HTMLTidy make it easy to eliminate
tagging errors. XHTML is somewhat better, and has the two advantages of being
customizable (you can choose which modules you require) and, as part of the XML
universe, addressable with XSLT and XPath, which makes it easy to transform and
reuse.

DocBook

DocBook is a more specific standard than HTML, and out of the box it is focussed on
book authoring. While DocBook provides better validation than HTML or XHTML,
and has a good set of output transforms and tools, it is not particular topic-oriented.
However, parts of it are highly structured, and could be used for specific domains
(such as messages) as-is.

Customized DocBook

Generally speaking, if you want to use DocBook, you will need to customize it. This
is a well-documented process, with the warning that if you want to add your own
tags (not just choose a subset of the DocBook ones) you’ll need to write your own
transforms and tools.

DITA

The Darwin Information Typing Architecture is a topic-oriented information typing
architecture for writing and publishing technical documentation. Out of the box, it is
oriented towards creating information-typed topics (concepts, tasks, and reference),
and is quite restrictive in its structures (especially for tasks). However, it is a new
and still-evolving architecture, and there are a limited number of transforms available
(PDF via FO and HTML are available outputs at the time this paper was written).

Specialized DITA

The good news is that you can create specialized topic types (such as EJB API
descriptions, configuration file formats, cooperative tasks, etc.) quickly and easily.
Generally speaking, the more closely you tailor your topic’s structures and tags to
your domain (the particular kind of software you are documenting, for example) the
easier it will be to learn (because it matches what the writers are trying to create)
and the more it can enforce structural consistency. The more tightly you scope your
domain, the more exactly you can define your content rules, and the more precisely
you can control consistency, before an editor even gets involved.

III.5.4 Massive Parallel Writing

Topic-oriented chunks written by users, refined by editors and architects, and con-
fined by markup languages can help get contributions right from the start. Users can
acquire the writing skills to a certain degree and the ones that learn the most also get
the highest ranking and the social structure thereby help produce quality documen-
tation. At some point, however, technique, editors, architects, and markup may not
be enough. This is where one of the fundamental points of open-source development

127

kicks in – massive parallel writing. When writers can read, redistribute, and modify
the documentation source, the documentation evolves and become robust. People
improve it, people adapt it, people fix bugs (see Section 3). If writing technique fails,
open-source documentation will rely on the sheer size of a committed user community.

III.6 Contemporary Open-Source Documenta-
tion

Though genuinely open-source documentation cannot always be found even among
open-source software projects, there are some documentation projects and commu-
nication media that contain the user-driven, just-in-time production aspects we are
searching for. Discussion forums, mailing lists, online annotated manuals, online
editable manuals, and open-source documentation projects can be considered user-
driven and just-in-time, but they do not necessarily conform to other aspects of our
framework.

For instance, even when documentation uses an electronic format and is web
accessible, it is rarely accompanied by an open-source documentation license. Docu-
mentation for open-source software projects often remains proprietary, and resistant
to external contributions.

The Linux Documentation Project, as an example, explicitly prohibits open use
of the documentation source without written permission:

Any translation or derivative work of Linux Installation and Getting Started
must be approved by the author in writing before distribution. ...

These restrictions are here to protect us as authors, not to restrict you as
learners and educators.

– Linux Documentation Project Copying License (LinuxDPDPCL)

While many open-source projects do have a more relaxed approach to copyright
and some use clearly open licenses, in reality few members of open-source software
projects participate in the development of documentation and the writing staff is a
relatively limited group of people. The most open-source documentation projects
can be found in the online annotated and editable manuals, for instance the PHP
annotated manual (PHPAM), the MySQL commented manual (MySQL), and the
Squeek editable manual (SM). These systems allow users to comment on, or in the
case of Squeek, directly edit, the documentation. The licensing policy is, however,
unclear or closed in these examples, and there is no explicit social structure to aid in
assessing contributors’ credibility.

Discussion forums and mailing lists provide a high degree of user control, flexibil-
ity, and openness to contributions. The members of the community easily participate.
User control over content is built in to the submission structure. Release cycles can
be very short as answers to questions are posted often within hours. Splits are not
uncommon into different strands of continued discussion. Unfortunately, discussion

128

forums and mailing are lists have difficulty supporting the task of building docu-
mentation. Extraction of material into documentation is seldom performed, making
discussions concerning topics difficult to track. Search engines do exist for such pur-
poses, but require a common terminology across submissions and support only active
search (not passive browsing).

To find really good examples of open-source documentation we have to look at
more general projects. A well known example from the software world is Slashdot
(www.slashdot.org), which has been around since 1997 and where the majority of
the work is done by the people who e-mail stories to the site (Slashdot). Slashdot
puts a strong focus on documentation development through moderated discussion,
but an explicit open-source documentation policy is still lacking and there is little
focus on building documentation.

Even more developed open-source documentation projects can be found outside
the software world. The Nupedia (Nupedia) and Wikipedia (Wikipedia), globally
written encyclopaedias, are examples of projects that develop information using the
GNU Free Documentation License and that provide a social structure for writers and
editors. In many ways these projects can be viewed as being open-source documen-
tation projects.

In conclusion, many open-source documentation projects today are not really
open, even in open source software projects. What is lacking is largely an open-
source documentation license policy, explicit social structures and documentation
builds. To a certain degree human resources are also lacking: for instance, open
source software projects have not really focused their resources on documentation.
The strongest existing examples are general in nature and are not concerned with
producing documentation for specific software systems or development projects.

III.7 Would It Work

In this paper we have discussed open-source development as a production model that
results in user-driven, just-in-time content. We have provided a framework for open-
source documentation projects that illustrates what aspects of development need to
be taken into account. Furthermore, we have examined open writing techniques and
the current state of the profession in real open-source documentation projects.

Open-source documentation may well be an attractive method for user-driven,
just-in-time production of documentation, in particular seeing as much of the pro-
duction is performed free of charge. However, that does not mean it will work.
The fact that most of the software needed for handling open-source documentation
projects already exists for open-source software development is advantageous. How-
ever, documentation has its own problems that do not exist in the software realm.
For instance, changing the documentation does not change the functionality of the
software, and incorrect content is not as easily caught by compilers and test cases.
Greater care and more review may be required for open- source documentation com-
pared to open-source software.

It is also important to remember that the completeness of the open-source doc-
umentation project may not be the ultimate goal. Documentation should provide
answers to user questions and does not need to totally describe the system. Let’s put
it another way: the absence of description in an open-source documentation project

129

may in itself be a source of knowledge. If users do not request documentation for a
particular feature, it may be because the answer is made obvious by the design of
the interface, or the feature may simply not be used (assuming that users faithfully
report their needs). In the latter case, the hole in the documentation may soon have a
matching hole in the software! Using an open-source documentation process provides
a way to measure areas of use and kinds of interaction, and may therefore be valuable
to the development process. As much as users are involved in the documentation pro-
cess by providing discussion content, asking questions and answering them, they are
also providing requirements for tomorrow. What users question and provide answers
for can demonstrate what parts of the software they use.

What will become of the writing staff in an open-source documentation project?
The writing staff should be dedicated members of the open- source projects. Given
that a large enough user community exists, the writing staff would service the writ-
ing community with their expert knowledge about the system and help developers
articulate themselves. Gate-keeping the production of content becomes a vital task.
Furthermore, the writing staff should create documentation by extracting content
that passes though mailing lists and discussion forums: FAQs, development doc-
umentation and technical manuals. Such content extraction would serve both the
documentation and the development process. If fewer users contributed, the writing
staff would need to increase their original content production.

Success ultimately depends on the open-source documentation project’s ability to
accumulate enough users that can and will contribute to the process. Open-source
software has shown that it is possible to generate even large applications from the
efforts of users. Projects such as Nupedia have also shown that this fact translates
to open source documentation. However, smaller projects may have difficulties pro-
ducing enough user contribution. On the other hand, let us not forget that users
definitely can provide questions even when they can’t provide answers. In this sense,
open-source documentation provide much needed relevance and priority assessments
to the documentation process.

References

Apache (open-source web server) http://www.apache.org

Carroll J.M. Ed. (1998) Minimalism Beyond the Nurnberg Funnel. MIT Press.

Debian (open-source Linux) http://www.debian.org

DiBona C., Ockman S., and Stone M. Eds. (1999) Open Sources: Voices from the
Open Source Revolution. O’Reilly.

Feller J., and Fitzgerald B. (2000) A Framework Analysis of the Open Source Soft-
ware Development Paradigm. In Proceedings of the 21st International Confer-
ence on Information Systems 2000, Brisbane pp. 10–13

Feller J., Fitzgerald B., and van der Hoek, A. (2001) (W18) 1:st Workshop on Open
Source Software Engineering, position paper for the workshop. In Proceedings
of the 23rd International Conference on Software Engineering, 2001 pp. 780–
781

GNU Emacs (open-source extensible editor) http://www.gnu.org/software/emacs/

130

GNUFDL, GNU Free Documentation License http://www.gnu.org/copyleft/fdl.

html

GNU Software (original free software initiative, origin of open-source) http://www.
gnu.org

Jones P. (2001) Open(sourcing) the Doors: for Contributor-Run Digital Libraries
Communications of the ACM vol. 44. no. 5 pp. 45–46.

LinuxDPCL, Linux Documentation Project copying license, viewed August 2001.
http://www.linuxdoc.org/LDP-COPYRIGHT.html

Linux.org (central source of Linux information) http://www.linux.org

Mozilla open-source web browser (development project for Netscape 6, based on the
original Netscape source code) http://www.mozilla.org

MySQL annotated manual (online annotated manual) http://www.mysql.com/doc/

Netcraft Web Server Surveys, viewed June 2001 http://www.netcraft.com/survey/

Nupedia open-source encyclopedia http://www.nupedia.com/

OCL, Open Content License http://www.opencontent.org

OSI, Open Source Initiative http://www.opensource.org

OSI2, Open Source Initiative definition of open-source http://www.opensource.

org/docs/definition.html

Perence B. (1999) The Open Source Definition. In Open Sources: Voices from the
Open Source Revolution. Eds. DiBona C., Ockman S., and Stone M. O’Reilly.

Perkins (1999) Culture Clash and the Road to World Domination. IEEE Software
January/February 1999 pp. 80–84.

Perl open source programming language http://www.perl.org

PHPAM, PHP online annotated manual. http://www.php.net/manual/en/

Priestley, M. (2001) DITA XML: A Reuse by Reference Architecture for Technical
Documentation. In Proceedingso of ACM SIGDOC 2001

Priestley, M., and Utt, M. H. (2000) A unified process for software and documenta-
tion development Conference Proceedings, IEEE/ACM IPCC/SIGDOC 2000

Python (open source programming language) http://www.python.org

Raymond E. S. (1999a) The Cathedral & the Bazaar. O’Reilly. Sebastapol CA,
USA.

Raymond E. S. (1999b) A Brief History of Hackerdom. In Open Sources: Voices
from the Open Source Revolution, eds. DiBona C., Ockman S., and Stone M.
O’Reilly.

Raymond E. S. (1999c) Linux and Open-Source Success (interview) IEEE Software.
January/February. pp. 85–89.

Sanders J. (1998) Linux, Open Source, and Software’s Future. IEEE Software
September/October. pp 88–91.

SCFU, Stanford Copyright and Fair Use web site http://fairuse.stanford.edu

131

Slashdot (open software e-zine) viewed August 2001 http://slashdot.org/about.

shtml

SF, SourceForge, online open-source project web site. http://sourceforge.net

Stallman R (1999) The GNU Operating System and the Free Software Movement.
In Open Sources: Voices from the Open Source Revolution, eds. DiBona C.,
Ockman S., and Stone M. O’Reilly.

SM, Squeek manual online editable manual http://squeak.cs.uiuc.edu/documentation/
index.html

Utt, M.H., and Mathews, R. (1999) Developing a User Information Architecture for
Rational’s ClearCase Product Family Documentation Set. Conference Proceed-
ings, ACM SIGDOC 1999, pages 86-92.

Vixie P. (1999) Software Engineering. In Open Sources: Voices from the Open
Source Revolution, eds. DiBona C., Ockman S., and Stone M. O’Reilly.

Wikipedia open-source encyclopedia http://www.wikipedia.com

Willson (1999) Is the Open-source Community setting a Bad Example? IEEE Soft-
ware January/February 1999 pp. 23– 25.

132

Paper IV.
Writing for Adaptable
Documentation

Published in the proceedings of IPCC/SIGDOC 2000, September 24–27, Cambridge,
Massachusetts

Abstract

The rapid development of reusable software components results in an information-
overload problem in the development process. Software developers must read large
amounts of documentation. Adaptive documentation is one way to address this prob-
lem and support efficient reading. However, in our view, adaptive documentation
requires a writing process that delivers the pedagogical strategies for adaptivity. In
this paper, we take stance in a project on adaptive software reference documentation
and discuss the requirements on writing. We also discuss writing trends and Web
languages in relation to adaptivity. We conclude that describing change in documen-
tation is not supported on an authoring level but rather on a programming level.

IV.1 Introduction

Reuse-driven software development results in large amounts of software components.
An example is the Java Standard Development Kit (Java SDK). In the current version
of this core Java class library there are about 2,100 classes and the reference docu-
mentation is 97 Mbytes in size. It can be argued that the Web has contributed to such
growth by facilitating worldwide collaboration and sharing of program components.

Although growing worldwide libraries of reusable software components support
the development of software, they can also create new problems. One such problem
is the information-overload problem, that is the difficulty of keeping up-to-date in a
fast-moving area. Learning which components to use and how to use them becomes a
central part of software development. Consequently, software documentation becomes
an important tool in software development, comparable with source-code editors. The

133

ability with which the documentation provides efficiency and quality in reading affects
the cost and quality of software.

One way to address the information-overload problem is to provide adaptable
documentation, documentation that changes its content and presentation to better
suit the reader. Adaptivity in text has been addressed in the research community, see
for instance (Brusilovsky and Vassileva 1996, Beaumont and Brusilovsky 1995, Bra
and Calvi 1998, AH&H). Research on adaptive documentation has generally focused
on the modeling of the reader and tracking of reader behavior.

The topic of this paper is the implications of adaptable documentation on the
writing process. Baker (1997) argues that interactive information products require
new authoring and design techniques. Hackos (1997) points out that information
written for paper cannot simply be transferred into online form. We take stance in
the Dynamic Javadoc (DJavadoc) research project (Berglund 1999, DJavadoc) and
discuss requirements on the writing process to achieve adaptivity in documentation.
DJavadoc is an adaptable version of the Java class library reference documentation
(Kramer 1999). In DJavadoc readers can constantly tailor the documentation to
better suit their changing needs. During the development of DJavadoc some forms of
adaptation were omitted because the information needed was neither present in the
Javadoc documentation nor supported by the Java documentation structure.

The first two sections, provide background on adaptivity and software reference
documentation. Continuing, Section IV.4 describes the adaptable documentation of
the DJavadoc research project. The design for adaptivity in DJavadoc is described.
In Section IV.6, the writing process in relation to adaptivity is discussed in relation
to the DJavadoc project. Finally, in Section IV.7, we elaborate on current writing
trends and Web authoring languages in relation to adaptivity and in Section IV.8 the
paper is concluded.

IV.2 Adaptable Documentation

According to Brusilovsky (1996), adaptive hypermedia systems model their users and
adapt various visible aspects of the system according to this model. Kantorowitz
and Sudarsky (1989) defined an adaptable user interface as an interface supporting a
number of different dialog modes that can be switched among at any time (they also
required smooth and natural switching and easy to learn dialogues). Here adaptable
documentation is defined as documentation that has the ability to change its content
and presentation to better suited forms with regard to internal or external variables.
Examples of such variables include models of the reader, models of groups of readers,
models of the information, and browsing history.

One of the advantages of electronic text is the possibility to change it dynamically.
The computer provides a general mechanism for change that seamlessly integrates in-
teraction, internal state, time, and so on into the documentation. The computer as
a presentation system provides a technological foundation for adaptivity. However,
adaptivity is not necessarily a quality of the electronic presentation system. Adap-
tivity is change in accordance with pedagogical strategies and ultimately a question
of information design (Jacobson 1999)

From a writing perspective, adaptive documentation can be viewed as consisting
of change strategies, change mechanisms, and change constraints (in addition to the

134

body of text the documentation contains). Change strategies capture the pedagogical
strategies used to guide the change into suitable forms. It is relevant to speak both
of evolution and temporal change in this context. Change mechanisms describe how
the change should take form, for instance to alternate between more detailed and
briefer versions of the same text (see also Figure IV.1). Change constraints regulate
the change process and describe in what situations change may not be applied. An
example may be to disallow temporal removal of information types.

Figure IV.1: Different change mechanisms have different properties. Collapse,
for instance, uses less screen space where as gray-out provide information about
the size of the missing content.

IV.3 Current State of Software Reference Doc-
umentation

IV.3.1 In General

Software reference documentation is still most commonly provided as system-oriented
books, online books, or hypertext systems that do not change or evolve. Online
reference documentation is available for most languages (see for instance AR, PR,
JR). Software documentation has also been addressed in the research community
(Knuth 1992, de Olivera Braga et al. 1998, Soloway et al. 1988). The focus has been
on the generation of software documentation and the understanding of programs. Our
work focuses on software documentation as part of the programming environment and
the adaptation of documentation to increase efficiency in reading.

IV.3.2 Javadoc

A widely-used item of software reference documentation is the online Java reference
documentation, generated from the source code by the Javadoc tool (Kramer 1999,

135

JD, Javadoc). In this paper, Javadoc is discussed in more detail because DJavadoc
is an extension to Javadoc.

The Javadoc documentation is a system-oriented hypertext documentation list-
ing available software components at class level along with a series of navigational
indices. Hyperlinks are used to cross-reference among class documents via parame-
ters, types, return values, written comments, and so on. In our view, Javadoc has
become somewhat of a model for online software reference documentation. Javadoc,
however, delivers static text that does not change or evolve.

Javadoc can also be viewed as a source-code browser, providing the reader with
what is assumed to be a correctly typeset and relevant extract of Java source-code files
(including written comments). In this sense, Javadoc is perhaps more of a program-
ming tool than a strict text. Actually it is, in our view, one of the most commonly
used Java programming tools.

IV.3.3 Adaptable Software Reference Documentation

There are examples of adaptable software reference documentation. Two such ex-
amples are the Microsoft Developers Network Online Web Workshop (MSDN) and
the Mathemathica Help Browser (Wolfram 1996). Both these documentation sys-
tems have sections that can be collapsed or expanded in the documentation. Both
systems also remember whether or not a section was collapsed or expanded last time
the reader visited a document. The change strategy seems to be that old changes also
reflect future needs. Our personal experience as frequent users of the MSDN Online
Web Workshop is the opposite, but this is an empirical question that we have not
investigated further.

Development environments, such as Visual Café (VC), may also provide adap-
tation. In Visual Cafe it is possible to browse the documentation directly from the
source code. The source code becomes a use-oriented and evolving index to the doc-
umentation (see the Section IV.6.5).

IV.4 DJavadoc: an Example of Adaptive Doc-
umentation

DJavadoc is a product of a research project focused on adaptivity as a means of
providing use-oriented documentation in the Java domain. This section provides
a description of the DJavadoc documentation. However, since hard copy does not
adequately reflect change, the interested reader should visit the DJavadoc web site
at http://www.ida.liu.se/~eribe/djavadoc/ (only for Microsoft Internet Explorer
in the current version).

IV.4.1 What is DJavadoc

Dynamic Javadoc (DJavadoc) (Berglund 1999, DJavadoc) is an alternative to the
official reference documentation of software components developed in the Java pro-
gramming language, known as Javadoc (Kramer 1999, also described in Section IV.3).
The DJavadoc documentation provides the reader with means to create more focused

136

views by locally and temporarily removing more information from Javadoc docu-
ments. The reader can collapse and expand sections and thereby increase the degree
of visibility of relevant information. The system is implemented using dynamic HTML
(DHTML); that is, script-based manipulation of HTML pages in web-browsers.

Generalizing, DJavadoc is an adaptable documentation based on structural and
pedagogical knowledge and change mechanisms. The system allows for local redesign
of style and structure. DJavadoc makes Javadoc documentation adaptable by provid-
ing a prepared flexibility. The reader is allowed to redefine assumptions made about
the appropriate level of detail and organization of the information found in DJavadoc.

IV.4.2 Change Strategy, Mechanisms, and Constraints

In DJavadoc, the goal is to reduce time-consuming, repetitive manual searching for
well-defined information types. Javadoc documentation can be viewed as documenta-
tion supporting multiple information needs, for instance understanding a component
in general or looking up syntactical specifications. Depending on the purpose of
the reader different parts of the documentation are relevant. To a certain degree,
DJavadoc allows the reader to match style and content with reading purpose and
thereby supports experts’ reading behavior (Hackos 1998).

The change strategy in DJavadoc is focused on moving relevant information up
into the visible space of the browser by temporarily removing excessive information.
Readers should also be in control of the change process. For heterogeneous informa-
tion sources and for inexperienced readers such a strategy may not be appropriate.

The documentation also evolves by allowing readers to create and edit a bookmark
index (see Section IV.5). The index represents an extract of the navigational indices
in the documentation. In this way the documentation assimilates knowledge over
time. Other sources of evolution could be project indices created by groups of people,
code indices based on readers source code, and history indices built from tracked
reading behavior.

A collapse and expand change mechanism is used in DJavadoc, in principle stretch-
text functionality. Color coding and more specifically graying-out have also been
considered in the DJavadoc project (Berglund 1999). The documentation does not
pose any particular constraints other than what is implicit in the information model
and the change mechanism.

IV.5 Detailed Description of DJavadoc

In DJavadoc, the reader interacts with the information model, thereby developing
views of the documentation. Figures IV.2A and IV.2B show how the reader controls
the visibility of different information types by checking elements on or off. As the
reader browses the documentation, documents are redesigned in accordance with the
view. By direct manipulation the reader may also collapse or expand individual
sections but these changes are not stored.

DJavadoc also allows the reader to keep a bookmark list of relevant documents,
shown in Figure IV.3. This adapted index is an extract of the entire alphabetic index
that evolves during reading (as the reader saves or removes entries). Since there are
2,100 documents in the current version of the Java Standard Development Kit (core

137

Figure IV.2: DJavadoc allows the reader to redesign the view of the class
documents. Elements that are checked off in the Settings model (the left pane)
will be collapsed in the class document (the right pane) as the reader browses
the documentation.

138

class library for Java application developers), more focused indices are needed. The
bookmark index provided in DJavadoc exemplifies the type of focused indices we
envision.

IV.6 Requirements on Writing

In this section we take stance in the DJavadoc project and discuss the writing re-
quirements of adaptable software reference documentation.

IV.6.1 Explicit Information Model

The predominant requirement DJavadoc places on the documentation is an explicit
information model as a basis for change. The text is marked with information types
used to distinguish units in the text, regardless of the static typography of the text.
This approach is similar to SGML and XML languages where DSSSL (DSSSL) and
XSL (XSL) transformation specifications are used to transform text into different
views. The reader can be seen to manipulate the transformation specifications as
part of reading.

However, in DJavadoc the information model is also used as a basis for interac-
tion. The terms used in the model are presented as labels for interaction devices.
The usability of the adaptable documentation is therefore dependent on how well the
information model corresponds to readers’ mental models of the documentation (Nor-
man 1988) and also on the complexity. Since the reader interacts directly with the
transformation process, the model must be carefully constructed to suit the reader’s
needs and terminology. Task analysis is required to arrive at an appropriate model.

From our ongoing user-evaluation of DJavadoc, we have indications that a much
more restricted model than the current model would suffice for many purposes.
DJavadoc testers most commonly express that they like the settings in Figure 2B
(left pane) from which they may expand the remaining sections.

IV.6.2 Connections Across Documents

A form of adaptation we would have liked to work with in DJavadoc is application-
type views of the entire documentation, such as database-application views. Explicit
connections cutting across documents are present in Javadoc as hyperlinks. These
connections are based on the input and output parameters of methods and reflect
one step of the dependencies that exist among software components. However, to
determine which of these connections are relevant for different application profiles
is currently very difficult. This would have required a grouping that cut across the
basic organization of the documentation (see Figure IV.4). Essentially, multiple cat-
egorization of components on a detailed level is required.

IV.6.3 Categories

In an early prototype version of DJavadoc we experimented with category-based
filtering for methods. (Java software components are classes that have methods. It
is not uncommon for a class to contain 40-100 methods.) Specifically we wanted

139

Figure IV.3: DJavadoc allows the reader redesign the view of the class docu-
ments. Elements that are checked off in the Settings model (the left pane) will
be collapsed in the class document (the right pane) as the reader browses the
documentation.

140

Figure IV.4: For a particular situation, the relevant view of the information is
a subset of several Javadoc documents. To present such views in an adaptable
documentation, multiple categorizations of components is needed.

to filter on terms such as basic methods, advanced methods, event-related methods,
runt-time methods, and so on. It seems likely that readers would often want to
find the basic methods, similar to the illustration in Figure IV.4. The programming
language provides very limited support for automated categorization of this kind.
The writing process would have to complement the language with these categories,
which to some degree is already being done in tutorials (see for instance the Java
Tutorial, [Campione and Walrath 1998]).

IV.6.4 Change Mechanism

The ways in which it is illustrative to manipulate documentation depend on many
factors. The purpose of the change is one such factor. In DJavadoc, the purpose is
to move relevant information up into the visible space of the browser. This effect was
achieved by collapsing excessive information. An alternative mechanism could be to
reorganize the information. Collapsing the document provides a shorter document,
which is more easily scanned. However, information is removed from the page and
therefore made invisible to the reader. This brings us to a second factor, i.e. the effect
of the change mechanism (illustrated in Figure IV.1). In our experience working with
DJavadoc, collapse and expand are suitable for smaller changes but become somewhat
disorienting when large parts of the visible space of the browser are affected. DJavadoc
would benefit from a combination of change mechanisms. Furthermore, removing
information may not always be acceptable, for instance in medical records. The
tradition of the change mechanism in the reader’s environment also affects the choice.
Color-coding, for instance, is often used in program editors and the DJavadoc reader
may therefore respond well to such a change mechanism.

In our view, change mechanisms should be selected with care because they will
affect the reading process. Determining what mechanisms are useful requires typo-
graphical knowledge, domain knowledge, and pedagogical knowledge.

141

IV.6.5 Evolution

The DJavadoc Bookmarks (see Section IV.4 and Figure IV.3) represent an evolving
index of relevant classes to and from which the reader can continuously save or remove
entries. DJavadoc is currently a one-user system but it is relevant to consider group-
based bookmarks lists for project groups or even for communities of users. Evolving
group indices could support dissemination of knowledge among developers. However,
the quality of the index will depend on the evolution strategy. One solution is to
treat all readers equally and base evolution on statistics by tracking reading behavior.
However, different roles in development teams may indicate that the reading behavior
of different readers should be treated differently. Another solution is to recommend
that one person is responsible for the evolution. Evolution should, then, perhaps not
be derived from reading behavior but rather set by user input. In the end, these
questions come down to domain knowledge, pedagogical knowledge, and knowledge
about the individuals in a group. It seems unlikely that the computer will be able to
determine these issues. Therefore it is important that writers can easily express, for
instance, which hyperlinks to include in an evolving index.

IV.7 Discussion

IV.7.1 Writing Trends

Currently, hypertext and task-oriented writing are two central concepts in technical
writing. Hypertext provides a basis for structuring adaptable documentation into a
web of possible pathways. Task-related writing also provides a structural basis in the
connection between task and information. However, these concepts do not directly
address change and allow the author to express change in a straightforward manner.
Change implies time, interaction, multiple forms, alternative forms, and so on, which
are not directly part of a task-based or hypertext-based perspective on writing.

IV.7.2 Expressing Change

Standard generalized markup language (SGML), extensible markup language (XML),
and hypertext markup language (HTML) and related languages, in our view, repre-
sent an advanced text technology base that allow developers to express text-related
structure and style on a high level (XMLCP, W3C). These world-wide-web consor-
tium (W3C) languages are also particularly relevant at present since they form the
backbone of authoring for the Web. Dynamics of web pages are currently imple-
mented by connecting event handlers on document objects to functions expressed in
scripting languages such as JavaScript. Transformation from document structure to
multiple forms is possible using the extensible stylesheet language (XSL) for XML
and the document style semantics and specification language (DSSSL) for SGML.
The XML and XSL combination is particularly relevant because XML-related lan-
guages are becoming part of the general Web technology infrastructure. However
XSL and DSSSL are fundamentally programming languages that programmers can
use to define mechanisms for conditional transformation.

Currently the only language related to change in the W3C proposals is the syn-
chronized multimedia integration language (SMIL). SMIL allows an author to express

142

temporal behavior of a presentation, the layout of the presentation on the screen,
and to associate hyperlinks with media objects (W3C). The beginning, duration, and
position of media elements can be expressed. Change strategies, mechanisms, and
constraints can therefore be implicitly expressed in time sequences and hyperlinks.

In the research community frameworks for adaptive documentation have been ad-
dressed. De Bra and Calvi (1998) proposed a generic adaptive hypermedia system
that allows you to enter conditional statements for the presentation of the text. Rut-
ledge et al (1997) proposed another framework for generating adaptable hypermedia
based on DSSSL. The Exemplar system provides a rule-based object-oriented frame-
work for dynamic hypertext generation (White 1998). Common to these systems is
that they use programming mechanisms to express change and addition.

To our mind, these technologies are suitable for programming but not for au-
thoring. Authoring requires concepts that incorporate change semantics and enable
writers to specify change without having to construct the change procedures. Let us
use the collapsible list as an example of an authoring concept with change seman-
tics (a list with collapsible subsections). Using DHTML, a programmer can create
a collapsible list. An event handler of a list-entry must be connected to a function,
which conditionally manipulates certain style properties. However, authors should
not have to work with event handlers, function calls, and object access. Instead the
collapsible list should be a list type just like an intext list and a displayed list (termi-
nology from Dupré 1995). The collapsible list should incorporate collapse and expand
functionality on a semantic level.

IV.8 Conclusion

From the DJavadoc project, it has become clear that adaptivity requires a writing
process preparing for adaptively. The documentation must contain information about
how to adapt. Information designers therefore need tools that encapsulate change
semantics and provide clear concepts for adaptivity.

In our view, Web technology (as most text technologies) is not yet advanced
enough to express change strategies, mechanisms, and constraints at an appropriate
level. Too much programming is required. Authors of dynamic content must handle
control statements, conditional statements, function calls, event mechanisms, and so
on. Essentially the Web currently delivers a general-purpose programming machinery
for change but no change concepts. Functionality is spread in the community as cut-
and-paste scripts. We envision a development Web language that allows authors to
describe change on a higher level. The semantics of change could be included in the
technological Web infrastructure.

References

AH&H, Adaptive Hypertext & Hypermedia, web Site – http://wwwis.win.tue.nl/

ah/

AR, Ada 95 Reference Manual – http://www.adahome.com/rm95/

Beaumont I. and Brusilovsky P. (1995) Adaptive educational hypermedia: From ideas
to real systems. In H. Maurer (Eds.), Proceedings of ED-MEDIA’95 - World

143

conference on educational multimedia and hypermedia, Graz, Austria, June
17–21. Charlottesville, AACE. pp. 93–98.

Barker M. (1997) From Document Design to Information Design. Proceedings of
the 15th annual international conference on Computer documentation October
19 - 22, Snowbird, UT USA.

Berglund E. (1999) Use-Oriented Documentation in Software Development. Linköping
Studies in Science and Technology, Licentiate Thesis no. 790, School of En-
gineering at Linköping University ISBN: 91-7219-615-7. PDF version online:
http://www.ida.liu.se/~eribe/lic/berglund.pdf

Brusilovsky P. and Vassileva J. (Eds.) (1996) Special Issue on: Adaptive Hypertext
and Hypermedia. User Modeling and User-Adapted Interaction No. 6.

Brusilovsky P. (1996) Methods and Techniques of Adaptive Hypermedia. User Mod-
eling and User-Adapted Interaction No. 6 pp. 87-129.

Carroll J.M. (Ed.) (1998) Minimalism Beyond the Nurnberg Funnel MIT Press.

Campione M. and Walrath K. (1998). The Java Tutorial: Object-oriented program-
ming for the Internet. Addison-Wesley. (Also available as http://java.sun.

com/docs/books/tutorial/)

De Bra P. and Calvi L. (1998) Proceedings of the 2nd Workshop on Adaptive Hy-
pertext and Hypermedia HYPERTEXT’98 http://wwwis.win.tue.nl/ah98/.
Pittsburgh, USA, June 20–24.

de Olivera Braga C., von Staa A., and do Prado Leite J.C.S. (1998) Documentu:
A Flexible Architecture for Documentation Production Based on a Reverse-
engineering Strategy. Journal of Software Maintenance: Research and Practice,
vol. 10 279(303).

DJavadoc, DJavadoc Home Page – http://www.ida.liu.se/~eribe/djavadoc

Dypré L. (1995) BUGS in Writing: A guide To Debugging Your Prose. Addison-
Wesley.

Hackos J.T. (1997) Online Documentation: The Next Generation. Proceedings of
the 15th annual international conference on Computer documentation October
19 - 22, Snowbird, UT USA.

Jacobson R. (Ed.) (1999) Information Design. MIT Press.

Javadoc, Javadoc Home Page – http://java.sun.com/products/jdk/javadoc/

JD, Java documentation – http://java.sun.com/docs/

JR, Java Reference – http://java.sun.com/products/jdk/1.2/docs/api/index.

html

Kantorowitz E. and Sudarsky O. (1989) The Adaptable User Interface. Communi-
cations of the ACM, no. 31 vol. 11.

Knuth D.E. (1992) Literate Programming. Center for the Study of Language and
Information, Leland Stanford Junior University.

Kramer D. (1999) API Documentation for Source Code Comments: A Case Study
of Javadoc. In Proceedings of the Seventeenth Anual International Conference
of Computer Documentation (SIGDOC’99), New Orleans, September 12-14.

144

Lewis J.E. and Weyers A. (1999) ActiveText: a Method for Creating Dynamic and
Interactive Texts. Proceedings of the 12th annual ACM symposium on User
interface software and technology November 7–10, Asheville United States.

MSDN, Microsoft Developers Network Online Web Workshop –http://msdn.microsoft.
com/workshop/

Norman D.A. (1988) The Design of Everyday Things. Basic Books.

PR, Python Library Reference – http://www.python.org/doc/current/lib/lib.

html

Rutledge L., van Ossenbruger J., Hardman L., and Bulterman D. (1997) A Frame-
work for Generating Adaptable Hypermedia Documents. Proceedings of the
Conference on Multimedia ’97 November 9–13, Seattle, WA USA.

Soloway E., Pinto J., Letovsky S., Littman D., and Lampert R. (1988) Designing
Documentation to Compensate for Delocalized Plans. Communications of the
ACM vol. 31, no. 11, 1259(1267).

VC, Visual Café – http://www.symantec.com/domain/cafe/vc4java.html

W3C, World-Wide-Web Consortium, web site – http://www.w3.org

White M. (1998) Designing Dynamic Hypertext. Proceedings of the 2nd Workshop
on Adaptive Hypertext and Hypermedia HYPERTEXT’98 (http://wwwis.
win.tue.nl/ah98/), Pittsburgh, USA, June 20–24.

Wolfram S. (1996) The Mathematica Book. Wolfram Media/Cambridge University
Press.

XMLCP, The XML Cover Pages – http://www.oasis-open.org/cover/sgml-xml.

html

145

146

Paper V.
Dynamic Software
Component Documentation

Co-authored by Henrik Eriksson, Department of Computer and Information Science,
Linköping University email: her@ida.liu.se

Published in the proceedings of the Second Workshop on Learning Software Orga-
nizations, June 20 2000, Oulu, Finland

Abstract

Software development is based on the reuse therefore requires detailed knowledge
of a vast number of software components and their context. Typically, developers
acquire this knowledge by reading reference documentation. However, software doc-
umentation is generally provided as static text and does not facilitate project-related
evolution. Thus, documentation cannot be an active tool in the knowledge manage-
ment of software development projects. In this paper we discuss the role of software
documentation in learning software organizations by presenting and discussing two
dynamic software-documentation projects aimed at use-oriented change, evolution,
and adaptation of documentation. The systems enable redesign of document layout
and content to a varying degree of generality. The first system, DJavadoc, is based
on Dynamic HTML (DHTML) and the second system, which is currently under de-
velopment, uses the knowledge-acquisition tool Protégé as a platform.

V.1 Introduction

The Web is an important tool for software developers. In fact, the Web has already
changed the way software developers work. Today, it is possible to collaborate and
to share program components with other software developers worldwide. Communi-
cation technologies accelerate the rate of progress and enable software developers to
make new products available immediately.

147

Although there are many advantages of the improved communication technolo-
gies, they can create new problems for programmers. One such problem is the dif-
ficulty of keeping up-to-date in fast-moving areas. The current rate of technical
progress in the area of software development tools such as programming languages,
application-programmer interfaces (API), and component libraries, makes it difficult
for professional programmers to keep up.

Therefore, information search and information retrieval are becoming increasingly
important for programmers. To avoid redundant work, it is important to be up-to-
date with the dynamic software libraries available both within the organization and
globally. The increased availability of these resources has changed significantly the
way programmers develop software. However, software development methods and
techniques have not yet fully incorporated these new practices. This indexing problem
is a major obstacle to the reuse of library components.

Reference documentation is becoming a backbone of the software-development
process. There is a strong dependency between the knowledge found in documentation
and the programs that developers write. By tailoring the documentation, the software
projects can take advantage of focused views of the vast reusable libraries that their
products rely upon (thereby facilitate organizational memory and learning). Today,
this knowledge is not captured. Instead, it remains in the heads of the developers.
Consequently, there is a need to further develop documentation systems into tools
that collect and distribute such knowledge.

Furthermore, it is sometimes too restrictive to consider knowledge and learning in
a single organization. Today, corporations and other organizations develop a signifi-
cant amount of software in open projects (i.e., the status and the intermediate results
of an ongoing project are available publicly). Such projects often involve a commu-
nity of users, third-party developers, and international standardization organizations.
Furthermore, the projects typically rely on common tools and widely-accepted frame-
works. In this environment, software documentation plays an even more important
role as the communication medium.

V.2 Background

V.2.1 Technology Changes

The current rate of technical progress in the area of software-development tools such
as programming languages, APIs, and component libraries, makes it difficult for pro-
fessional programmers to keep up. Communication technology, such as the Internet
and the Web, has accelerated the rate of progress, and has enabled software developers
to make new products available immediately.

Web technology has already improved collaboration and spurred an increased
sharing of program components. Even though developers reused code before the
Web, the amount of available components and the rate with which new components
are introduced has increased. We believe that this component sharing is only the
first step in a series of changes. The increased collaboration provided by the Web
will change the way programmers work. Two major factors that contribute to this
change:

1. The architecture of the target systems is changing in that the systems become

148

more and more distributed. Application programmers add functions to on-
line services rather than create complete traditional programs. Furthermore,
developers migrate conventional applications to Web services.

2. The Web will serve as a platform and programming environment for software
engineers. On-line information and discussion groups for programmers have ex-
isted for some time. Future programmers will take advantage of more advanced
on-line services for supporting their work, for example on-line documentation
with advanced navigation support and on-line development tools.

The improved communication and the emerging program-component sharing tak-
ing place today are certainly promising. However, this process has also created infor-
mation problems for software developers that must be addressed before it is possible
to use the full potential of the Web in software engineering.

V.2.2 Knowledge and Learning Changes

Traditionally, programmers have developed software by applying the knowledge and
skills they acquired on different types of courses (or, sometimes, learned by them-
selves). Today, professional software developers already get a large proportion of
their information through the Web. In the future, the amount of information de-
velopers get from the Web will increase. For the advanced Java programmer, for
instance, it is necessary to use the Web as an encyclopedia and to get information
about technical news and changes (Campione and Walrath 1998) (because the Web
is the primary media for distributing Java information). This approach is a new way
of developing software.

Previously, programmers worked with a relatively well-defined body of knowledge
found in textbooks. Today’s programmers often have to acquire even the basic in-
formation from multiple sources (e.g., about APIs, and standards). Furthermore, for
fast moving technology areas such as the Web, textbooks are often, in our experience,
incomplete and out of date. Although the information resources available on line have
the potential of improving the programming efficiency (e.g., because reuse eliminates
redundant work), there are also limitations of this approach. For instance, it becom-
ing increasingly important to search for information about predefined components in
preexisting program libraries.

V.3 Documentation of Software Components

There are important questions that emerge from the problem of communication
among programmers. One such question is how to approach sharing and reuse of
program components, such as classes in object-oriented programming. Creating li-
braries of components and reusing them in other development projects have proven
difficult. There are two major obstacles to reuse of such library components:

1. The indexing problem. That is, the problem of structuring a component library
so that it is possible to find and retrieve components. In large class libraries,
the task of finding the right class is a serious practical problem.

149

2. The adaptation problem. That is, the problem of understanding and configuring
a component so that it is possible to use it in a given context. As the reusable
components grow larger and more complex, it is difficult to understand the
functionality of them.

As the size and complexity of the component libraries increase, the indexing
problem becomes significant. A major challenge for Java programmers is to deal
effectively with the libraries available and to take full advantage of them. For example,
the Java Development Kit (JDK) version 1.3 contains over 2,100 classes in its class
library. The size of the documentation in HTML format is about 97MB. It is almost
impossible for an individual programmer to have detailed knowledge about every
class. However, such detailed knowledge not required normally. What is important
is to be able to find your way around the body of classes.

V.4 The DJavadoc Approach

In general, online reference documentation cannot be adapted to particular situa-
tions. Knowledge about the readers context (e.g., interests and current tasks) cannot
be inserted into the documentation to improve the match between a programming
situation and the documentation. The documentation has no ability to assimilate
project-related knowledge to serve as a memory that relates a project and its source
code to the documentation.

The Dynamic Javadoc (DJavadoc) project 1 is a research agenda in this direc-
tion (Berglund 1999). DJavadoc adds client-side real-time redesign to the standard
Java reference documentation2 and is currently undergoing user evaluation. The Java
reference documentation is essentially a source-code browser, providing navigational
indices and typeset views of the source-code files. Assumptions about the degree of
relevance of different parts of the information and about the organization of the infor-
mation are represented in the documentation. DJavadoc enables the reader to alter
the views the browser provides as part of the reading process, thus making the doc-
umentation dynamic. The system is implemented using dynamic HTML (DHTML),
which basically is script-based manipulation of HTML pages in web-browsers.

From a knowledge management perspective, the ability to create indices views is
of particular interest in DJavadoc. The Javadoc table of contents can be collapsed
into a smaller subset of relevant hyperlinks. With the current number of classes in
JDK, it becomes obvious that the readers need more focused class lists to easily locate
relevant classes. By constructing a separate table of contents, readers save references
to classes in a bookmark fashion (see Figure V.1).

The DJavadoc bookmark is an example of information filtering on a navigational
level. However, it requires much activity on the part of the reader. Examples of other
possible (but not currently implemented) indices of the same type include:

• Project index. The joint use of Java classes in a project group working on a
common task could be assembled into a project index. (This approach is useful
for single-person projects as well.)

1DJavadoc is available on-line at http://www.ida.liu.se/~eribe/djavadoc/
2Commonly known as the Javadoc, from the program Javadoc that generates the HTML

reference documentation from the source code files.

150

Figure V.1: In a bookmark fashion, classes are saved in and removed from a
bookmark index by the reader.

151

• Use-based index. Describes how the JDK classes are used on a more general
level. For example, such an index can be constructed by statistically analyzing
a large number of Java source files. Another alternative is to analyze all Java
source code on the Sun’s Java Web-site, perhaps providing a use-based index
of sample code. A third statistical source could be online-tutorials such as the
Java Online Tutorial3.

• History index. By tracking the readers’ browsing behavior, a history index
could be designed to present the most frequently and most recently accessed
classes.

• Code index. This index draws its entries from parsed source files. The context
in which the programmer is currently working provides a relevant filtering basis.

• Application index. This index points to groups of components that are useful
for particular applications profiles (e.g., client-server applications and database
applications).

Figure V.2 illustrates how the reader can redesign Java class documents in DJavadoc
by checking on or off sections in a document model (representing the information
structure in the Java class documents), thus creating a default view of the docu-
ments. This default view is then used by the system to collapse or expand different
sections in the documents as the reader browses the documentation. Without chang-
ing the default settings, the reader may also locally collapse and expand individual
sections.

DJavadoc makes Javadoc documentation adaptable and sensitive to knowledge
about the users needs. In essence, the reader is allowed to redefine assumptions
made about the appropriate level of detail and organization of the information found
in DJavadoc. In a sense, the DJavadoc reader is populating a project ontology by
saving bookmarks and by checking on or off sections of the default view. However,
the redesign is restricted to a predefined dynamics in the system. A more general
redesign mechanism is required to fully support knowledge management and organi-
zational learning across projects and among readers. For this purpose, the DJavadoc
project leads on to the Protégé Javadoc project which focuses on project ontologies
for documentation and knowledge-engineering solutions to evolving and adaptable
documentation.

V.5 The Protégé Javadoc Approach

Knowledge-acquisition tools, especially tools for ontology management, can be useful
for creating and browsing documentation (Eriksson 1992). We have experimented
with the use of the knowledge-acquisition tool Protégé4 (Grosso et al. 1999) for
managing Javadoc-generated documentation. Our goal was to study the feasibility
of using this type of tool for software documentation. We used Protégé to define an
ontology for the Java object system. This ontology contains classes for Java concepts,
such as class, constructor, method, and so on. We then developed a doclet that
transforms the structure of the doclet API to a representation format that Protégé

3The Java Tutorial http://java.sun.com/docs/books/tutorial/
4Protégé is available at http://smi.stanford.edu/projects/protege/.

152

Figure V.2: DJavadoc allows the reader redesign the view of the class docu-
ments.

153

can read. It is possible to use this doclet together with the Javadoc program to
produce instances of the Java ontology in Protégé.

Because Protégé is a meta-level tool, we can use it to create custom-tailored
layouts for class documentation. Figure V.3 shows the custom-tailored layout we
use for the class documentation. The left-hand side of the window contains a class
browser for the Java classes. It is possible to use this tree browser to navigate among
the classes. The right-hand side of the window shows the documentation for the
selected class (in this case JButton). The class from contains fields for the class
name, class modifiers, fields, methods, and textual documentation.

One of the major advantages of using the Protégé approach over standard Javadoc
and DJavadoc is the flexibility that the meta-tool provides as a rapid application de-
velopment environment. In Protégé, it is possible to modify the layout of the class
form by changing the form definition. Furthermore, it is possible to add new types of
information to the documentation, such as new items in the class form. In essence, the
entire documentation content and layout can be redefined. Examples of items that
could be interesting from an organizational perspective are author, manager, project,
and version. Because addition of information fields is straightforward, software de-
velopers can create project-specific versions of the documentation tool (Gennari and
Ackerman 1999).

The use of Protégé for Java documentation illustrates that it is possible to take ad-
vantage of knowledge-acquisition tools for software documentation purposes (Eriksson
1992). This prototype is an early proof of concept, but a thorough implementation is
required to perform user studies. In particular, the addition of custom-tailored user-
interface components (plug-ins) to Protégé could improve significantly the usability
of the tool. Although the current prototype is rather crude, it was possible to develop
it with relatively little effort.

V.6 Related Work

Reference documentation for programming languages and software component li-
braries are most commonly presented in the form of online component catalogues.
Online component catalogues are available for languages such as Ada5, Python6,
Java7 A widely-used component catalogue is the online Java API reference docu-
mentation, generated from the source code by the Javadoc tool8(Kramer 1999). The
Javadoc documentation lists available components at class level and provides a series
of navigational indices. Hyperlinks are used to cross-reference among class documents
via parameters, types, return values, and so on. In our view, the Java API reference
documentation has become somewhat of a model for online reference documentation.
Javadoc, however, still delivers static text that does not change or evolve.

The Microsoft Developers Network (MSDN) Online Web Workshop9 and the
Mathemathica Help Browser (Wolfram 1996) are examples of reference documentation
that allow some form of change are. Both these documentation systems remember

5Ada 95 Reference Manual http://www.adahome.com/rm95/.
6Python Library Reference http://www.python.org/doc/current/lib/lib.html.
7Java Reference http://java.sun.com/products/jdk/1.2/docs/api/index.html.
8Java documentation http://java.sun.com/docs/.
9MSDN Online Web Workshop http://msdn.microsoft.com/workshop/.

154

Figure V.3: Protégé-generated tool for Java documentation. This prototype
shows the Java class hierarchy (left) and the documentation for the JButton
class (right)

155

whether or not a section was collapsed or expanded last time the reader visited a
document. DJavadoc intentionally does not remember which individual sections were
collapsed or expanded last time a document was visited because we do not believe
that the interests a reader had previously represent their current interest (instead a
default setting is used). On the contrary, it is our experience as frequent users of the
MSDN Online Web Workshop, that the memory more often requires the reader to
change settings. However, this is an empirical question that we have not investigated
further.

Development environments, such as Visual Age10, Visual Cafe11, and JBuilder12,
often provide project management of source code. In some cases, for instance in
Visual Cafe, the reference documentation is also included and it is possible to browse
the documentation directly from the source code. This is definitively a step in the
right direction, in which the source code becomes a use-oriented and evolving index
to the documentation (an example of a code index, see section 4).

Software documentation has been addressed in the research community (Knuth
1984, Kramer 1999, de Olivera Braga et al. 1998, Soloway et al. 1998). The focus
has been on the generation of software documentation whereas our work focuses on
management of software documentation as part of the programming environment.

V.7 Conclusion

Documentation of program components, such as classes, is an important aspect of
the memory of a software organization. Dynamic reading environments for documen-
tation allow software developers to access and understand the documentation rapidly
(as illustrated by the DJavadoc project). Furthermore, knowledge-acquisition tools
can assist in the authoring of the documentation and in documentation browsing and
understanding. We believe that the use of Protégé for software documentation is a
viable approach because it provides flexibility and because it works well together with
the Javadoc approach. In our continued efforts, we are developing a more sophisti-
cated Protégé implementation of Javadoc than the current, rather limited, prototype.

An interesting extension to documentation systems such as DJavadoc is to sup-
port communication among developers (i.e., the documentation readers). For ex-
ample, each class-documentation page could have a common annotation area where
developers could enter notes about their use of this component, including problems
and solutions found. Today, this type of information is difficult to browse and find
because it is spread over numerous message forums and discussion groups. Because of
the trend towards software development in open projects, we believe that it is impor-
tant to support communication within communities in addition to intra-organization
communication.

10Visual Age http://www-4.ibm.com/software/ad/vajava.
11Visual Cafe http://www.symantec.com/domain/cafe/vc4java.html.
12JBuilder http://www.borland.com/jbuilder/.

156

References

Berglund. E. (1999) Use-Oriented Documentation in Software Development. Licen-
cate thesis no. 790, Dept. of Computer and Information Science, Linköping
University, Linköping, Sweden. (DJavadoc is available on-line at http://www.

ida.liu.se/~eribe/djavadoc/)

Campione M. and Walrath K. (1998) The Java Tutorial: Object-oriented program-
ming for the Internet. Addison-Wesley.

de Olivera Braga C., von Staa A., and do Prado Leite J.C.S. (1998) Documentu:
A Felxible Architecture for Documenetation Production Based on a Reverse-
engineering Strategy. Journal of Software Maintenance: Research and Practice,
vol. 10 279(303).

Eriksson H. (1992) A survey of knowledge acquisition techniques and tools and
their relationship to software engineering. Journal of Systems and Software.
19(1):97–107.

Gennari J.H. and Ackerman M. (1999) Extra-Technical Information for Method Li-
braries. In Proceedings of the Twelfth Workshop on Knowledge Acquisition,
Modeling, and Management, Banff, Canada, October 16-21.

Grosso W.E., Eriksson H., Fergerson R.W., Gennari J.H., Tu S.W., and Musen
M.A. (1999) Knowledge modelling at the millennium (The design and evolu-
tion of Protégé-2000). In Proceedings of the Twelfth Workshop on Knowledge
Acquisition, Modeling, and Management, Banff, Canada, October 16-21.

Knuth D.E. (1984) Literate Programming. Computer Journal. vol. 27. May. pp.
97–111.

Kramer D. (1999) API Documentation for Source Code Comments: A Case Study
of Javadoc. In Proceedings of the Seventeenth Anual International Conference
of Computer Documentation (SIGDOC’99), New Orleans, September 12-14.

Soloway E., Pinto J., Letovsky S., Littman D., and Lampert R. (1988) Designing
Documentation to Compensate for Delocalized Plans. Communications of the
ACM vol. 31, nr. 11, 1259(1267).

Wolfram S. (1996) The Mathematica Book. Wolfram Media/Cambridge University
Press.

157

158

Paper VI.
Intermediate Knowledge
trough Conceptual
Source-Code Organization

Co-authored by Henrik Eriksson, Department of Computer and Information Science,
Linköping University email: her@ida.liu.se

Published in the proceedings of the 10:th International Conference on Software En-
gineering & Knowledge Engineering, June 18-20 1998, San Francisco Bay CA USA,
pp 112–115

Abstract

Program understanding is difficult. When performing maintenance programmers
must understand relations between conceptual models (for instance requirement spec-
ifications) and source code. They have to acquire intermediate knowledge. However,
intermediate knowledge cannot always be intuitively acquired by comparing concep-
tual models and source code.

This paper discusses a new tool-supported approach to documenting intermedi-
ate knowledge in terms of concepts regardless of the source- code structure, concep-
tual source-code organization (CSCO). Programmers can use CSCO to navigate the
source code in search of relevant source-code segments, and to acquire a source-code
overview.

VI.1 Introduction

Design should preferably result in a natural mapping between conceptual models of
programs and the source code. We characterize the knowledge about this mapping
as intermediate knowledge. By reviewing the source code it should, for instance,

159

be apparent what source-code segments implement which parts of the requirement
specification. Since program understanding is difficult (Woods and Yang 1996, von
Mayrhauser and Vans 1994), a natural mapping would help programmers with the
task of changing or adding to exsisting source code (i.e., performing maintenance).

However, software-engineering issues other than design affect source- code struc-
ture, for instance reuse. As a result the source code deviates from the conceptual
models. Consequently intermediate knowledge cannot be intuitively acquired by com-
paring conceptual models and source code.

To address this problem, we have experimented with intermediate knowledge
though conceptual source-code organization (CSCO); a new tool-supported approach
for documenting intermediate knowledge. CSCO provides intermediate knowledge by
organizing source code in terms of concepts regardless of source-code structure. Our
experiments resulted in a prototype environment, named PROTERCIS, developed
using meta-tools originating from the knowledge-engineering community (Eriksson
1992, Eriksson and Musen 1993).

Although we have not yet evaluated the prototype formally, our experiments using
PROTERCIS to organize a medium-sized program give some indications of the value
of CSCO. PROTERCIS can provide source-code navigation and overview though a
set of conceptual paths into the source code, enable rapid identification of relevant
source-code segments in maintenance situations, visualize groups of segments work-
ing together to implement concepts regardless of source-code structure, and preserve
intermediate knowledge over time as information understandable by computers.

VI.2 Intermediate Knowledge

In the context of this paper, intermediate knowledge represents the mapping be-
tween conceptual models of programs and the programs themselves. The intermedi-
ate knowledge identifies the connection between concepts and source-code segments,
and the interaction schemata among segments. Let us consider an example: In a
distributed game program of Football, Player objects, a Coach object, a Bank object
and an Owner object implement the notion of a team.

Intermediate knowledge is not always intuitive, which is illustrated in Figure VI.1.
A concept (FigureVI.1A) can be implemented by a group of source-code segments
interacting with one another (FigureVI.1B). In practice there are several reasons why
conceptual models and source code deviate which are not related to poor design.
For instance, when building from a software-reuse platform syntactical formalisms
are inherited, such as event structures and interaction schemata. In our example,
we want to reuse AI- planning objects for our Players. The AI-Planning objects
coordinate themselves via a central AI-Management object, which in turn formulates
strategies from a Knowledge-Base object. A Knowledge- Composer object collecting
information from Sensor objects updates the Knowledge-Base object.

Apparently, our reuse platform does not fit our application. We use it only be-
cause it implements AI-techniques we want to avoid learning in detail. Furthermore,
programming languages are syntactically limited in their ability to express abstract
structures such as objects residing on more than one computer. In our Football
example, our team might be a distributed system with Player objects residing on
different computers. To interact we have to introduce streams, remote procedure

160

Figure VI.1: A concept and its group of implementing source-code segments,
with a flow of interaction.

calls, and so on. Moreover, engineering constructs enforce structural elements for
engineering reasons only. Engineering constructs can for instance be design patterns
(Gamma et al. 1995).In our example, we want to be able to exchange the underlying
motivations of a Player object without reimplementing the Player. Therefore we en-
capsulate the notion of motivation in a Motivation object, which in turn is produced
by a Motivation-Factory object. Thus, changing the Motivation-Factory object is
equivalent to changing the motivation of the player. However, the Motivation- Fac-
tory object does not represent something in the conceptual model; it exists only to
introduce source-code flexibility.

VI.3 Conceptual Source-Code Organization

Our approach to overcoming non-intuitive source code is to provide intermediate
knowledge using CSCO. CSCO has two components, conceptual models and source
code segments. We view conceptual models as general, imprecise descriptions of pro-
grams, see FigureVI.2. Conceptual models represent different views of the program:
one view could be the requirements of the program, another all segments accessing
synchronized memory.

By attaching groups of source-code segments to our conceptual models we formu-
late a CSCO, see FigureVI.3. The segments can be viewed as indexed pieces of source
code, intended to be small enough for straightforward analysis by programmers.

The intermediate knowledge is the structure, represented by the lines in FigureVI.3.
This structure forms paths into the source code based on concepts. Applying con-
ceptual organization, developers can organize the source-code segments according to
concepts regardless of the source-code structure.

How does the architecture address the problems discussed in Section VI.2? Well,

161

CSCO enables mapping between source code and concepts regardless of code struc-
ture. In FigureVI.3 we see that Team and Referee in part use the same source-code
segments, for example a segment used to save data in a Result object. Furthermore,
it is possible to design several conceptual models, representing different views of the
source code. In FigureVI.4 we see a technical view of our Result object, which is
a synchronized data object. We model the access to the Result object for later use
because we may have to change the synchronization schema.

Figure VI.2: A conceptual model, representing a program.

Figure VI.3: The conceptual source-code organization based on concepts and
segments.

162

Figure VI.4: Another conceptual mode representing another view of the source
code, binding the same segments as the model in Figure VI.3.

VI.4 Prototype

Our experiments resulted in a prototype development environment supporting CSCO.
The prototype, named PROTERCIS, was designed using Protégé, which is a suite of
meta tools developed at the Section on Medical Informatics at Stanford University
(Musen 1989, 1997). We used Protégé to generate PROTERCIS automatically from
declarative specifications (Eriksson et al. 1994, Puerta et al. 1992).

In PROTERCIS, developers act as experts and register their intermediate knowl-
edge. They formulate CSCO using hierarchical conceptual models and express source-
code segments at method level.

To examine PROTERCIS informally we used the source code of ERICS (Berglund
and Eriksson 1998), a system implemented in Java which took four person-months
to implement. ERCIS is a distributed system that inherits the syntactical formalism
from the Java core platform.

Figure VI.5 shows a concept in the conceptual model. The front panel is a concept
which has a group of concept children represented by the diamonds in the graph. The
parent of this concept is seen in the background.

Figure VI.6 shows a segment. The front panel is a segment editor showing a
segment and its code editor. The second panel is a concept that contains a list of
implementing segments.

On the basis of a general, imprecise understanding of ERCIS, we use PROTERCIS
to locate groups of source-code segments working together. PROTERCIS promotes
source-code overview by visualizing groups of segments working together, regardless of
their location in the source code. PROTERCIS also preserves intermediate knowledge
over time (unlike in our heads) and stores the intermediate knowledge together with
the source code.

163

Figure VI.5: A hierarchical conceptual model in PROTERCIS. The panel at
the front contains concepts of ERCIS.

164

Figure VI.6: A source-code segment in PROTERCIS. The panel at the front
contains the code of a method, which is part of the information about a concept
in ERCIS.

165

VI.5 Related Work

Related to our work there are other efforts to overcome non- intuitively in source
code. One example is discussed by Soloway et al. (Soloway et al. 1988) who address
delocalized programming plans (plans executed by source code segments scattered
across the source code) by designing documentation to make them explicit. Another
example is LaSSIE, a knowledge-based software-information system that contains
architectural and conceptual information (Devanbu et al. 1991). SeeSys is another
system that visualizes statistics associated with code (Baker and Eick 1994). One of
the most used development environments for large software projects is Rational Rose,
which is based on the 4+1 views of the system (Kruchten 1995).

Unlike these systems, CSCO separates the conceptual models and the program
model. We view the source code as an incomplete and non- intuitive basis for defining
conceptual models.

VI.6 Discussion

PROTERCIS can be used to express intermediate knowledge, describing relations
between conceptual models and source code. An interesting extension to PROTER-
CIS would be to organize document segments in the same manner. In addition to
addressing documentation overview and navigation, this approach would link source-
code segments to segments of documents. Such cross-reference is rare (Musen 1989).
Another extension of PROTERCIS would be to express graphically the interaction
schemata and dependencies among source-code segments.

Protégé, a suite of meta-tools, automatically generates PROTERCIS. Develop-
ment environments such as PROTERCIS pose special requirements on meta tools.
For instance to enable compilation, meta tools must either produce source code from
their database or store intermediate knowledge using the commenting features of
most programming languages. Meta tools must also be able to communicate with
other programs, such as compilers, and editors. Moreover, meta tools must enable
cooperative work for large projects, which introduces new demands on security and
restrictions.

PROTERCIS exemplifies how knowledge acquisition can be useful in software
engineering. Another interesting challenge of using knowledge acquisition in soft-
ware engineering is the design of tools where the knowledge of domain experts and
programming-language experts become the components we use to build software. Yet
another challenge is to monitor project progress. If we can acquire knowledge on de-
sign and implementation progress, we can use it to modify software-project plans
during execution.

VI.7 Summary and Conclusion

In this paper, we have discussed why intermediate-knowledge is not always intuitively
expressed in source code. We present a new approch to addressing this problem,
CSCO, which is the primary contribution of this work. It is our belief that CSCO
can overcome non-intuitivity. We also present a prototype environment, PROTER-

166

CIS, which can be used to organize the source code according to conceptual models.
Our experiments using PROTERCIS to conceptually organize a middle-sized pro-
gram indicate that CSCO can increase source-code overview and enable source code
navigation, store intermediate knowledge together with the source code as structural
information understandable by computers, and preserve intermediate knowledge over
time by recording the programmers’ expertise.

References

Baker M. J. and Eick S. G. (1994) Visualizing Software Systems. In Proceedings
of the 16th International Conference on Software Engineering. Sorrento, Italy.
pp. 59–67.

Berglund E. and Eriksson H., (1998) Distributed Interactive Simulation for Group-
Distance Exercises on the Web. In Proceedings of the 1998 International Con-
ference on Web-Based Modeling & Simulation, San Diego USA, January 11–14.
pp. 91–95.

Devanbu P., Brachman R. J., Selfridge P. G., and Ballard B. W. (1991) LaSSIE: A
Knowledge Based Software Information System. Communications of the ACM.
vol. 34. no. 5. pp. 34–49.

Eriksson H. (1992) Meta-tool Support for Custom-Tailored Domain- Oriented Knowl-
edge Acquisition. Knowledge Acquisition. vol. 4. no. 4. pp. 445–476.

Eriksson H. and Musen A. M. (1993) Conceptual models for automatic generation
of knowledge-acquisition tools. The Knowledge Engineering Review. vol. 8 no.
1. pp. 27–47.

Eriksson H., Puerta A. R., and Musen A. M. (1994) Generation of Knowledge-
Acquisition Tools from Domain Ontologies. International Journal of Human
Computer Studies. vol. 41 pp. 425–453.

Gamma E., Richard H., Johnson R., and Vlissides J. (1995) Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Welsley.

Kruchten P. (1995) The ”4+1” View Model of Software Architecture. IEEE Software,
vol. 12 no. 6. pp. 42–50.

Musen A. M. (1989) Automated Generation of Model-Based Knowledge-Acquisition
Tools. Morgan-Kaufman. San Mateo, CA, USA.

Musen A. M. (1997) Domain Ontologies in Software Engineering: Use of Protégé
with the EON Architecture. Jacksonville, Florida.

Puerta A. R., Egar J., Tu S., and Musen A. M. (1992) A Multiple Method Knowledge-
Acquisition Shell for the Automatic Generation of Knowledge-Acquisition Tools.
Knowledge Acquisition. vol. 4. no. 2. pp. 171–196.

Soloway E., Piont J., Letovsky S., Litman D., and Lampert R. (1988) Designing
Documentation to Compensate for Delocalized Plans. Communications of the
ACM. vol. 31. no. 11. pp. 1259–1267.

von Mayrhauser A. and Vans A. M. (1994) Comprehension Processes During Large
Scale Maintenance. In Proceedings of the 16th International Conference on
Software Engineering. pp. 39–48.

167

Woods S. and Yang Q. (1996) The program Understanding Problem: Analysis and
a Heuristic Approach. In Proceedings of the 18th International Conference on
Software Engineering. pp. 6–15. Berlin, Germany.

168

Appendix A

Javadoc

In this appendix, I present the Javadoc system and Dynamic HTML, which have been
the underlying technologies in the DJavdoc system, presented in Appendix B. (The
appendix is mainly constructed from extracts of my Licentiate Thesis no. 790 entitled
”Use-Oriented Documentation in Software Development” published in November 1999
by the School of Engineering at Linköping University ISBN: 91-7219-615-7)

For more detailed descriptions of Javadoc, Doclets and the Standard Doclet see
(Kramer 1999, Friendly 1995, Campione and Walrath 1998, JAVA). For more detailed
description of DHTML see (W3C, Deitel et al. 2000).

A.1 Javadoc

Javadoc is a Java program that generates documentation from Java source code which
includes tagged comments extracted by the Javadoc program, see Figure A.1. The
Javadoc Team has defined a set of tags that will be recognized and also a list of
reserved tag-names that may become used in future implementations. Javadoc can
generate library reference documentation for any combination of Java classes.

Figure A.2 provides a screenshot of a Javadoc class document from Java SDK 1.2.
For more detailed examples, visit Sun’s Javadoc web site (JAVADOC).

The purpose of Javadoc and the library reference documentation is to support
programming by providing an interface to the library source code. Programmers use
library reference documentation to learn and use library source code. They could read
the source code directly but it is time-consuming and may require complex analysis.
The aim of the library reference documentation is to portray the functionality of
the library, correctly and efficiently. The library reference documentation presents
information deemed particularly important to programming.

Principally all Java code (provided by Sun Microsystems or third-party providers)
is today presented in the form of Javadoc-generated documentation. Alongside more
descriptive texts, Javadoc-generated documentation is the standard way of illustrating
the available functionality on code level. For early releases of class libraries, Javadoc
library reference documentation may be the only available documentation.

169

/**
* Draws as much of the specified image as is currently available
* with its northwest corner at the specified coordinate (x, y).
* This method will return immediately in all cases, even if the
* entire image has not yet been scaled, dithered and converted
* for the current output device.
* If the current output representation is not yet complete then
* the method will return false and the indicated {@link ImageObserver}
* object will be notified as the conversion process progresses.
*
* @param img the image to be drawn
* @param x the x-coordinate of the northwest corner of the
* destination rectangle in pixels
* @param y the y-coordinate of the northwest corner of the
* destination rectangle in pixels
* @param observer the image observer to be notified as more of the
* image is converted. May be <code>null</code>
* @return <code>true</code> if the image is completely
* loaded and was painted successfully;
* <code>false</code> otherwise.
* @see Image
* @see ImageObserver
* @since JDK1.0
*/
public abstract boolean drawImage(Image img, int x, int y,

ImageObserver observer) {
...
...
...

}

Figure A.1: An example of how comments are written into the source code
using @-tags (for instance, @param) to structure the tags.

170

Figure A.2: Screen shot of the Javadoc 1.2 style class document.

171

The library reference documentation is a typeset view of the source code. Some
parts have been removed, others have been relocated, and the text is typeset differ-
ently from the source code. Comments are generally added to the source code and
these are presented in the documentation. In a sense, these comments describe parts
of the source code that are of particular relevance.

The removals, relocations, and typesetting in the library reference documentation
create a view of the source code. The design of the library reference documentation
reflects assumptions about what programmers need to know. For instance, the choice
is made only to present the signature of class members (name, parameters, and so
on) but not the entire source. Also, members are summarized alphabetically, though
inherited members are summarized separately in much shorter format.

A.2 Doclets

Javadoc is actually not one program but a structure of systems, illustrated by Figure
A.3. The Java SDK 1.2 release introduced the Doclet library that exposes the doc-
umentation classes used by Javadoc. The Doclet library represents a development
platform for Javadoc documentation. Printing is not part of the Doclet library, only
the means to access information from the Javadoc program and the Doclet library
can therefore be viewed as an abstract data type for Javadoc.

The Javadoc program uses a Doclet program to define the Java library reference
documentation content and typography. By providing a Doclet class as an argument
to the Javadoc program, the printing of the library reference documentation can be
changed. For instance, a new Doclet could print only the names of classes in an
index. In Figure A.3, the Doclet is given control by the Javadoc program and uses
the Doclet library to access the information structure. The Doclet is intended to
deliver an output of some sort (Kramer 1999) but can do anything within range of
the Java programming language (e.g., surf the Web for Java classes that extend the
classes in the Javadoc session).

A.3 Standard Doclet

The Standard Doclet is the Doclet used to generate the official hypertext-based
Javadoc library reference documentation developed by the Javadoc Team at Sun Mi-
crosystems. In combination with the Doclet library, the Standard Doclet is delivered
as the default Doclet class used by Javadoc to control output of the Javadoc batch
programs. The produced library reference documentation focuses on class documents
that contain listings and descriptions of the inheritance, fields, methods, construc-
tors, and inner classes; basically a signature of the class. HTML links are used to
represent relations among class documents. Return-value classes, parameter classes,
and inheritance classes are linked from the class document.

A.3.1 Class Documents

The class documents are the core of the library reference documentation that the
Standard Doclet generates. Figure A.2 shows a sample class document from the

172

Figure A.3: The structure of systems that are used in a Javadoc session to
deliver library reference documentation.

173

Standard Doclet of Java SDK 1.2. The purpose of the class document is to describe
the class and its relations to other classes. As the primary knowledge source, the
class document maps directly to the source code and presents the external signature
of the classes but not the underlying implementation (i.e., the body of class methods).
Hypertext is used to link from the class documents either to related class documents
or to other parts of the document. There is a general hyperlink section at the top
(and also at the bottom) of the class document (see Figure A.4). After the header,
a general description of the particular class is provided, containing both technical
information, for instance inheritance, and a general written description of the class
(see Figure A.5). The next item in the class document is summaries of the class
members. Inner classes, fields, constructors, and methods are summarized separately
and ordered alphabetically (see Figure A.6). The summary contains information
about the member’s type, parameters, return values, and name (if they apply for the
particular member type). Finally, the detailed descriptions of the class members are
provided (see Figure A.7).

A.3.2 Table of Contents

The table of contents is the navigational device for the Standard Doclet library ref-
erence documentation (see the two right frames in Figure A.2). From the table of
contents programmers find their way among the classes using hyperlinks. The under-
lying package structure of Java classes is the basic indexing model for the Standard
Doclet. The packages and classes are listed alphabetically; packages in the upper
frame and classes in the lower frame. However, classes are grouped into types (i.e.,
interface, class, exception, and error) before being ordered. The class list also con-
tains information about the package the classes belongs to. Clicking on a package
brings a new class list to the class frame. Clicking on a class loads the referenced class
document into the class-document frame. Finally, there is also a document containing
all classes ordered alphabetically.

A.3.3 Other Documents

The Standard Doclet also generates a few supplementary documents. Besides the
class documents and the table of contents the Standard Doclet generates some sup-
plementary documents that can be reached from the header and footer hyperlinks.
I do not describe them in detail because they have not been part of the DJavadoc
project. These documents mainly provide additional navigational views of the library
reference documentation.

A.3.4 DHTML

DJavadoc is implemented using a mixture of Java and Dynamic HMTL (DHTML).
DHTML is a term grouping client-side technologies used to create dynamics in HTML.
DHTML is used to create Web pages that react to interaction and display different
material in different contexts. Being more of a dynamic content and typography
technology, DHTML cannot be viewed primarily as dynamic hypermedia. The general
purpose of DHTML is not to define hyperlinks that can relate to different sources
depending upon the context, even though this is possible. Instead DHTML is used to

174

Figure A.4: The header (and also footer) in the Standard Doclet contains
additional hyperlinks. Some documents can only be reached via this navigation-
bar. However, the header also pushes contents of the class documents down
below the visible space in the browser.

Figure A.5: The general class description is provided after the header in the
class document. Both a description written by the developer and information
derived from the source code (e.g., super classes and sub classes) are presented.

175

Figure A.6: The class members are presented in a summary, which may con-
tain name, types, parameters, return-values and a brief description. If a more
detailed description was provided with the source code, it is presented further
down in the class document.

176

Figure A.7: The description of class members is provided separately from the
summary description, see Figure A.6. It contains comments on the source code
written by developers. The member descriptions can be reached via hyperlinks
in the summary.

177

create graphically appealing and living pages that look good and feel professional. A
popular example of DHTML is the roll-over effect that illustrates what hyperlink the
programmer is about to activate. The collapsible list is another frequent example.
The core DHTML technology is the scripting language used to introduce algorithmic
behavior into the HTML-page. JavaScript was the first and is probably still the most
used scripting language (JAVASCRIPT). The proposed international ECMAScript
standard is currently an accepted standard of the major browsers, Netscape Navigator
and Microsoft Internet Explorer (ECMA, ECMASTANDARD).

For DHTML purposes, the scripting language is used to manipulate functionality
available in the browser, rather than to serve as a separate programming language.
The more advanced browsers have an elaborate list of events that are fired when the
user interacts or when the browser has performed certain steps. Scripts written in the
Web page can be set as handlers of these events which will then be activated if the
event is triggered. Scripting languages generally access functionality available in the
browsers to manipulate or change the appearance of the Web page. The document
object model (DOM) defined by the world wide web consortium (W3C) opens up the
object structure of the Web page so that individual elements can be accessed and
manipulated. DOM is a central component in DHTML that the major browsers do
or will implement.

DHTML has not followed the tradition of HTML development, in which new and
more complex tags have been developed as part of the markup language. During the
evolution of HTML several new tags have appeared. The transition from a simple
markup language to a typography-centered language has been driven by the intro-
duction of new tags defining more complex typographical functionality. However,
even though some DHTML applications have the potential of becoming tags (e.g.,
collapsible lists and roll-over images), no new tags have been introduced. Instead
Web design is becoming more complex, involving several different technologies and
taking the form of a programming language rather than a single markup language.

178

Appendix B

Dynamic Javadoc
(DJavadoc)

DJavadoc has been a research vehicle in this research but is also a practical result
of this work and is publicly available at http://www.ida.liu.se/~eribe/djavadoc.
DJavadoc is also a system developed from a tradition of electronic reference docu-
mentation systems that provide different valuable features for contemporary reference
documentation. This history is described in section rel.history in the thesis. (The
appendix is mainly constructed from extracts of my Licentiate Thesis no. 790 enti-
tled ”Use-Oriented Documentation in Software Development” published in November
1999 by the School of Engineering at Linköping University ISBN: 91-7219-615-7)

The goal of the Dynamic Javadoc (DJavadoc) project is to find new ways of pre-
senting and organizing the library reference documentation that will facilitate use-
oriented reading: a task that includes navigation, information access, acquisition of
detail syntax and semantic knowledge, knowledge of structures enforced on program-
mers by libraries, knowledge about the distinctions among components with regard
to their possible and recommended use, and so on. Automated support is particularly
interesting because automated reading tools scale better for rapidly evolving infor-
mation sources. In addition, automatically generated documentation will not deviate
from the source code.

More specifically, the DJavadoc project examines individual adaptation though
real-time redesign (view creation) by taking advantage of an explicit underlying infor-
mation structure. The official Javadoc output (see section A) delivers class documents
that contain an underlying, implicit information model. The information model is
illustrated by the typography of the documents in which, for instance, bold style is
used to emphasize method names. In an adaptive environment, excessive information
can be made less visible by changing the typography, for instance, by turning the color
of uninteresting texts into something not quite distinguishable from the background
and thereby graying-out parts of the document. Similarly, excessive information can
be removed. As a result the visibility of the remaining information increases.

The purpose of the DJavadoc system is to provide a research vehicle through

179

which I can discover requirements of electronic library reference documentation. It
is also a product, an alternative Java reference documentation that provides another
type of support. In this appendix, I describe the DJavadoc system.

DJavadoc provides programmers with the means to individually adapt Java li-
brary reference documentation during work with and thereby construct more use-
oriented designs. The Standard Doclet provides a view of Java source code. In
DJavadoc I augment the Standard Doclet with the ability to temporarily remove in-
formation and thereby further specialize the view of the source code. This extended
functionality is applied to reduce time-consuming, repetitive manual searching for
well-defined information types.

In DJavadoc, the programmer controls the visibility of information types. The
Standard Doclet, in essence, provides information for multiple needs, for instance
the need of understanding a class or the need to look up names for coding purposes.
DJavadoc, however, provides control over the visibility of information types (both
on a group level and an individual level). The programmer can collapse and expand
information, thus increasing the degree of visibility of relevant information. By re-
moving certain parts of the information the programmer moves other parts up into
the visible space of the browser. Also, by removing surrounding texts the programmer
makes elements of greater importance more visible.

The information model used in DJavadoc is the explicit version of the implicit
information model existing in the Standard Doclet. The static typography of the
Standard Doclet exposes the model and I use it to define the information model that
conceptually groups pieces of information into information types. The model is fairly
straightforward, mapping directly to the structure of Java source code.

B.1 DJavadoc Interaction Principles

The main ideas behind the interaction principles in DJavadoc are efficiency and to
follow Web conventions. Interaction is a complex domain with several important
criteria. The work presented here does not concern interaction in particular, but it
is important since the DJavadoc reference document is intended for real use. The
concern for interaction principles in the DJavadoc project is that efficient interaction
should be achieved and that Web tradition should be maintained. I have also aimed
to be consistent and simple. For instance, I use Java naming conventions as visual
queues for signals of particular interaction to avoid clouding the documentation with
more labels or icons. It is important to bear in mind that the documentation is
intended to be used by professionals, both in programming and Web conventions (the
Standard Doclet is Web-based).

• Blue, underlined – represents text that can be clicked, either to follow a hyper-
link or to perform a DJavadoc-specific action. Web tradition states that blue,
underlined text is active, even though the Web is full of exceptions. Browsers
generally display hyperlinks as blue, underlined text if the particular Web page
does not state otherwise. It is also common that blue, underlined texts rep-
resent calls to scripts. I have chosen to follow this tradition for interaction
through text: blue, underlined texts have functionality. For instance, class
members can be collapsed and expanded by clicking the blue, underlined name
of the class member. If no description is available, the name is colored black.

180

• Class names – signal additional interaction (but only in the class documents and
the table of contents). Java programmers recognize class names by convention
and on their placing in the library reference documentation. Classes can be
saved to a bookmark list by clicking the left-hand mouse button or pressing the
alt-key and clicking. Removing classes or packages from the bookmark list is
achieved in the same way. The fact that the class is being saved or removed is
illustrated by a short-time change in background (see Figure B.1).

Figure B.1: When saving classes to the DJavadoc Bookarks the background of
the class name changes for a short while to signal that the action was registered.

B.2 DJavadoc Features

B.2.1 General Redesign

In DJavadoc it is possible to perform real-time redesign of class documents by defining
a default setting for the visibility of document elements. Pieces of information can be
temporarily removed from documents, thereby both removing excessive information
and increasing the visibility of the remaining information. In principle I have taken
the existing information model, made it explicit, and created an interaction device
with which the programmer can control the visibility of information types. The
model is represented in the interaction device contained in the table of contents (see
Figure B.2.) The class document is divided into two parts: a class description part
and a member part. The class description contains a full inheritance tree, known sub-
classes, the declaration of the class (its name, super class and implemented interfaces),
and a written description. The member types are inner classes, fields, methods,
and constructors. The document provides a description part for each member and
a section for inherited members of that type. Both the description and inherited
members can be collapsed (however only fields and methods are inherited). The
header and footer may also be collapsed, primarily to lift more of the class document
into the visible space of the browser.

Figure B.3 shows the difference between the fully expanded document and a class
document redesigned to exclude the class description. Notice that the Settings model

181

Figure B.2: In DJavadoc the table of contents has a Settings-map with which
the default expand and collapse behavior of the class document can be defined.
The reader checks off information types deemed uninteresting.

182

Figure B.3: As the settings are changed the class document alters the visibility
of its elements. By checking off uninteresting information types the reader both
makes important information more visible and remove excessive information.

183

Figure B.4: Programmers may find a setting interesting in which only the
methods are presented without displaying their descriptions. This example
represents a compact, efficient typography of the document for programmers
who are familiar with the particular classes.

184

also collapses itself. Checking off an element in the settings will lead to the collapse
of all instances of that element in the document and the setting will be enforced on
new documents loaded into the browser. As an example, checking off everything but
the methods and the inherited methods is an relevant efficient setting, see Figure B.4.

B.2.2 Temporary Manipulation

In addition to the default setting, the programmer may also change the visibility
of key elements by direct manipulation to expose individual parts of particular in-
terest. The default setting defines which types of document elements programmers
consider important. However, programmers might still want to explore the under-
lying information without having to change the default. It might also be the case
that only individual document elements might be of interest. Therefore it is pos-
sible in DJavadoc to open up certain key-elements in the documentation by direct
manipulation.

In DJavadoc it is possible to collapse and expand the description of class members
by clicking on the name of the member (if such a description exists). It is also
possible to collapse and expand the whole class description by clicking on the class
name. (However, the default setting of the elements inside the description will not
be changed.) Figure B.5 shows how an individual element is expanded.

B.2.3 Bookmarks

The table of contents can also be collapsed into a smaller subset of interesting hyper-
links in a so-called DJavadoc bookmarks list. With over 1,800 classes in Java SDK
1.2 it becomes obvious that the programmer needs more focused class lists to easily
locate relevant classes. In DJavadoc this is achieved by constructing a separate table
of contents in which programmers save classes in a bookmark fashion.

Figure B.6. shows an example DJavadoc bookmark. Classes and even whole
packages can also be easily removed. The idea behind the DJavadoc bookmarks list
is that the programmers should actively update it to keep the content relevant. The
programmer’s interest in classes changes both during a project and between projects.
Filling the bookmarks classes of relevance is a good initial way of collecting potential
classes for future programming. However, if the bookmark list grows large, it becomes
less useful. Therefore programmers should continually revise their bookmark list.

B.2.4 Copy/Paste Support

As a result of the study presented in Paper I the DJavadoc project includes a
copy/paste support design. Programmers need to transfer code from documenta-
tion to source code and explicitly the documentation therefore should support this
task. In DJavadoc, two copy/paste strings are provided that can be copied manually
or by a single mouse click. The first string represents the minimal syntax that can
be reused by programmers. The second string also contains information about what
programmers must add. Figure B.7. shows this design.

The idea of the copy/paste strings is to provide efficient support for copying class
member syntax. The use of hyperlinks unfortunately makes copying more difficult
since the mouse pointer keeps turning into the hand symbol from which it is not

185

Figure B.5: While reading the class document, the programmer can use the dy-
namic typography features to expand or collapse individual elements regardless
of the default setting. In this example, the programmer has expanded a partic-
ular method description. The programmer actively chooses which information
should be visible in the browser.

186

Figure B.6: DJavadoc has a My-map that represents a personal view of the
entire table of contents. In a bookmark fashion, classes are saved in and re-
moved from the My-map by the programmer. To keep the content relevant,
the programmer should update the My-map.

187

Figure B.7: By providing multiple strings designed for copy/pasting by direct
manipulation DJavadoc address the need to transfer code from documentation
to source files.

possible to copy text. Furthermore, the signatures used in the Javadoc documentation
cannot be directly used in code and therefore I provide additional copy strings. What
constitutes suitable copy/paste string design is an empirical question that needs to
be evaluated.

B.2.5 Gray-out of Deprecated Methods

As another result of the study presented in Paper jss the DJavadoc project includes a
graying-out of deprecated methods. Deprecated methods are methods that no longer
are recommended and that may not be supported in future Java releases. In order to
filter out deprecated methods, I have added a filter to the settings described in section
B.2.1. If a programmer decides to filter out deprecated methods they are displayed
in a color not quite distinguishable from the background and in this sense disappear.
Figure B.8 shows the use of gray-out filtering of deprecated methods.

Applying gray-out filtering is an alternative approach to the collapse and expands
mechanism used previously in DJavadoc. It provides knowledge about the material
which has been removed in terms of size and location but still removes the content of
the text from the documentation.

B.3 DJavadoc Performance and Technical Data

DJavadoc was developed and tested on a 200 MHz PC. In most cases the redesign
of the documents did not result in any notable time delay. However, for larger rear-
rangements, such as collapsing all the class-member descriptions in one of the larger
Java SDK classes, some delay is experienced. However, this is without performance
optimizations. To give an example, I solved the performance problem of the table of
contents, see section B.5.4.

DJavadoc does not add to the Javadoc generation time and memory requirements.
Javadoc 1.2 requires 120 MB of memory to generate the Java SDK 1.2 documentation

188

Figure B.8: Deprecated methods, methods that are may not be supported by
future releases, can be grayed-out in DJavadoc and thereby disappear visually
while still providing information about the size and location of missing content.

189

(55 packages), which takes 8 minutes on an Ultra Enterprise with 512 MB of memory
(JAVADOCMEM). Javadoc keeps the Doclet library information structure in memory
and the memory requirements are therefore very large. Time is a factor of the sheer
size of the Java SDK 1.2. The extensions made in DJavadoc have a minimal effect
on the time or memory requirements of Javadoc.

The extensions made in DJavadoc are principally rearrangements and additions
to the Standard Doclet and the inclusion of DHTML scripting. The total amount
of work that has gone into the DJavadoc project’s implementation phase is about
7 man-months (spent understanding, adding changes and rearranging the Standard
Doclet, and designing DHTML scripts). The amount of code that has been added
totals some 2,500 lines of code in Java and in Javascript. Of course, to a great extent,
the implementation work has been a matter of understanding the Standard Doclet,
which is a complex program of over 11,000 lines of code.

B.4 Example Working Scenario for DJavadoc

Let us consider a sample scenario describing how a programmer might use the dynamic
functionality of DJavadoc. A working example can put the usefulness of DJavadoc
into perspective. DJavadoc may be interesting but I also hope to show its practical
importance. In our example the programmer is using the library reference documen-
tation as a syntactical index that provides coding specification. The programmer
knows which classes to use and what those classes are designed for.

The programmer has defined the setting in the Settings-map shown in Figure B.9.
The methods are kept expanded but with collapsed descriptions. The programmer
uses this setting to learn method names, return values, and parameters both as a
means of discovering methods of interest and to remember the exact syntax. During
browsing among class documents, the documentation is transformed from the fully
expanded view to the chosen default setting.

The programmer has an ongoing project and therefore starts browsing from the
My-map, containing the personal DJavadoc Bookmarks. During previous browsing
the programmer has collected a list of class documents of interest (see Figure B.10).
DJavadoc bookmarks represent personal views of the table of contents. Our program-
mer uses the bookmarks to access certain documents that are used in the current
programming project. The bookmarks consist of small fragments of several packages
since application programming generally involves classes of different characters.

While reading, the programmer makes temporary manipulations to display the
inner workings of elements of interest (see Figure B.11). In the default setting the
programmer may only define the visibility of information types, not instances. The
collapsed descriptions represent a type that is not of interest to our programmer.
However, specific individual descriptions are relevant during coding and therefore our
programmer expands a few descriptions while reading (by clicking on the method
names). For instance, the descriptions may reveal how parameters are interpreted.

The programmer saves new classes to the bookmark list. During browsing the
programmer comes upon new, potentially useful classes. By left-clicking the pro-
grammer saves new bookmarks that are added to the list according to the package
structure. For now, our programmer saves without giving what he saves much con-
sideration because later the programmer removes classes that in retrospect were not

190

Figure B.9: The programmer chooses a default setting which only presents
methods without description but with the inherited methods. The document
is altered according to the new setting, as is each new class document the
programmer loads into the browser.

191

Figure B.10: Previously the programmer has created a My-map containing
classes of interest. For instance, the programmer might use the classes in a
programming project. Another plausible reason is that programmer often uses
the classes.

192

Figure B.11: Whilst reading, the programmer finds it relevant to open up the
description of certain methods. Perhaps the programmer needs to be reminded
about the meaning of a return value.

193

so relevant.
After a while, the programmer changes the default setting to include constructors.

The programmer is well aware of the missing components in the documentation. At
some point the programmer realizes that constructors are missing from the documen-
tation and changes the default. The constructor description is left collapsed just like
the description of methods.

B.5 Preceding Prototype Generations

Leading up to the DJavadoc project, time was spent designing mock-up prototypes
that where informally tested. These are described here.

B.5.1 Conceptual Source-Code Organization

The DJavadoc project has its origin in a project on acquisition and visualization of
intermediate knowledge in code level programming though conceptual source-code
organization, see Paper VI. In this project I used Protégé, a tool for generation of
knowledge-acquisition tools (Eriksson et al. 1994, PROTEGE) to develop a proto-
type tool for conceptual grouping of source elements of Java programs. The idea
was to enable swift documentation of a program’s conceptual relations as seen by
programmers.

B.5.2 Pop-up Information Hiding (first DHTML)

Pop-up frames were used in the first Javadoc-related DHTML generation that started
the DJavadoc project. In the first generation I experimented with Javadoc documents
by applying DHTML technology. The goal was to determine what could be done using
these new technologies for dynamic display and manipulation of HTML elements. In
the pop-up generation I used Netscape 4 and the DHTML-support that was available
for that browser. The basis of the pop-up was to use tool-tip-like pop-up sections to
present information in the Javadoc class documents. The table of contents was also
developed in much the same way as the final DJavadoc. During this generation it
became apparent that Internet Explorer 4 provided more DHTML support.

B.5.3 Conceptual Filtering

Information filtering based on conceptual grouping of class members was the topic
of the second DHTML generation. I continued experimenting with the Javadoc class
documents, now with the full DHTML-capacity of Internet Explorer 4. The DHTML
support enabled smooth manipulation of HTML elements in real time, which I ex-
perienced as an important step forward in technology for the DJavadoc ideas. The
aim here was to differentiate class members using filters based on conceptual mem-
ber types (e.g., basic methods and event-related methods). I enabled this both by
graying out methods (i.e., changing the color to something not quite distinguishable
from the background) or by collapsing them. Descriptions could also be collapsed or
expanded. The table of contents was principally the same as in the final DJavadoc
version. Figure B.12 shows the resulting mockup from this generation.

194

Figure B.12: The second DJavadoc generation used much the same dynamic
typography as the final version. The main idea in this generation was to differ-
entiate class members conceptually, which I still consider a rewarding approach.

195

Although a strong idea, conceptual grouping of class members scales less well than
the final DJavadoc project since it requires some form of expertise. The conceptual
filtering of class members requires conceptual knowledge. An expert would have to
define what categories were relevant and record which members were contained in
what category for the whole of Java SDK. Thus, conceptual filtering scales less well
than the final DJavadoc version. Gathering the knowledge would require expertise,
time, and knowledge-acquisitions tools. The final DJavadoc version illustrates the
same dynamic typography features in the computer-reading environment with much
less work. However, I still believe that conceptual filtering of class members is a good
way to reduce the overhead of reading library reference documentation.

B.5.4 Scaling the Final Implementation

When I scaled the final implementation to Java SDK 1.2 size I ran into performance
problems with the table of contents. The DJavadoc table of contents is not a very
large HTML-file. For Java SDK 1.2 it requires 300 Kbytes. However, it is very
compact in the sense that over 75 percent of the file consists of HTML tags. In
effect, the table of contents represents a tree structure of more than 1,800 entries
that Internet Explorer must traverse in most of the scripts I have designed. This, of
course, slowed down DJavadoc, which would affect the project. Even though the lag
time was in the vicinity of normal hyperlink-access time, I felt that the performance
had to be improved. Also, for larger class libraries, for instance future versions of
Java SDK, the problem would perhaps grow.

Storing chunks of HTML in comments as unparsed text and extracting them
on demand solved this problem. The table of contents consists of a nested list of
packages and classes. Only a few class lists would be open at the same time and still
they were responsible for the bulk of the HTML elements. By placing the class lists
in HTML COMMENT objects I were able to reduce each class list to one HTML
element in the parser’s perspective. On demand I could then lift the class list out of
the COMMENT and paste it into the package list, which activates the rebuilding of
the tree. Consequently, good performance was restored.

B.6 DJavadoc Future Work

B.6.1 DOM and XML Compliance

A natural step for DJavadoc, as well as for Javadoc, is to move towards an XML
base format to avoid using a Javadoc specific data format and allow for more general
redesign based on style sheet specification. There has been talk about an XML
Doclet for a long time in the Javadoc Team at Sun Microsystems but so far nothing
has happened. For DJavadoc, it is also equally important to redesign the Microsoft
Internet Explorer specific DHTML support to the document object model (DOM)
implementation to adhere to open standards. DOM compliance would make DJavadoc
general to many web browsers. At the time DJavadoc was developed neither XML
nor DOM was integrated into the standard Web infrastructure but today both are
commonly accepted technologies in major web browsers such as Microsoft Internet
Explorer and Netscape Navigator.

196

B.6.2 Server Javadoc (SJavadoc)

Javadoc is a batch program that generates documentation for distribution to program-
mers. The problem with this design is that programmers download documentation
from many different source which all have been produced in separate batch runs. As
a consequence, Java programmers have little ability to integrate their different library
documentation sources, making it not only more difficult to work with the documen-
tation but also to see relations among interrelated libraries. Instead Javadoc should
be based on the distribution of Doclet files and local generation of documentation
from a programmer’s documentation sources. Each time a programmer downloads a
new documentation source, SJavadoc would generate the necessary addition to the
Javadoc documentation viewed locally with the web browser.

B.6.3 Improving the Class Documents

A simple but efficient means for improving Javadoc is to change the layout of the class
documents. In the DJavadoc project, I did not address the layout to provide docu-
mentation similar to what the one the Standard Doclet delivers. In my view, however,
more use-oriented layout can be achieved. For instance, by placing the method sum-
mary on top because this is the most commonly used information by programmers
(currently found at the bottom below the description, fields, and constructors). An-
other example is to place get and set methods (a Java naming convention) together.
Yet another example is to use nested methods list for methods with the same name
but different parameters.

Altering the contents of the class document is another way of developing effective
reference documentation. Currently the class document delivers only the signature
of the class members (i.e., return value, name, parameters and so on). However, in
many cases the body of the class members holds relevant information. Particularly
if the written comments are sparse or if the class is complicated, programmers might
need to analyze the source code. Altering the contents of the class documents will, of
course, affect the amount of knowledge that can be derived from the library reference
documentation.

The conceptual-filtering direction, see section B.5.3, should be further developed
as a way of reducing the information. During the conceptual-filtering generation of
DJavadoc, I examined the possibilities of grouping methods on the basis of their
conceptual character (e.g., event-related methods, basic methods, methods used pri-
marily by another class in a component structure). In the DJavadoc project the
conceptual-filtering approach was abandoned because it could not be easily auto-
mated. In a sense it could be resolved with a new Javadoc tag requiring retagging of
all Java classes. Javadoc has already declared a number of new tags that I find highly
relevant (JAVADOCTAGS). In my experience, several method lists are filled with re-
dundant methods of little or no relevance from a use perspective. These seldom-used
methods are currently presented as equals to other methods. In fact, the methods are
presented as more important than inherited methods that may well be more central
to the use of the class.

197

B.6.4 Indices

The DJavadoc bookmark in section B.2.3 is one example of several applications of
interest for information filtering on a navigational level. However, it requires much
activity on the part of the programmer. There is a need for several indices such as
the DJavadoc bookmark based on alternative sources.

Another useful type is application indices that point to a group of classes useful for
particular applications profiles. For different types of applications (e.g, client-server
applications and database applications) different parts of Java SDK, for instance, are
relevant. The groups are perhaps primarily located in one or a few packages but
the package structure does not cover all relevant applications. For instance, certain
widgets are used more frequently in database applications than others and therefore
some widgets should be part of the database application index but not all (compare
tables and canvases). Proficient Java programmers could design application indices.

History indices is another example. By tracking the programmer’s browsing be-
havior a history index could be designed to present the most frequently and most
recently accessed classes. To avoid replication of the common browser backward and
forward lists, the history index should perhaps not rely only on the most recently
accessed class documents. A useful heuristic would have to be empirically discovered
in relation to the Java domain to balance frequency and degree of recentness.

A context index that draws its entries from parsed source files is a third relevant
example. The context in which the programmer is currently working provides relevant
information for a filtration effort. Ultimately, by coupling the editor and the library
reference documentation the context information could be exchanged automatically.
As a first step, a context index could parse source files specified by the programmer
(thus removing the tool-synchronization step). The context could be determined by
detecting all classes and class members in use. However, the context index requires
access to the files and therefore comes into conflict with general Web-security policy.
This problem can be overcome both by server-client and client solutions. Ideally, I
would like to see a strict client solution but a solution including a local server would
also work.

A use-based index would describe how the Java SDK classes are used. By statisti-
cally analyzing large numbers of Java files a usage-based filter could be implemented.
For instance all Java files available on the Internet could be analyzed, both Java and
class files. Another alternative is to analyze all Java files on the Sun Java web site
(JAVA). A third statistical source could be online-tutorials such as the Java Online
Tutorial (Campione and Walrath 1998) to determine which classes and class members
are relevant. A fourth example is an index based on votes from Java programmers
all over the world. Furthermore, non-statistical methods could be used. Developers
of the Java language could, for instance, design use-based tables-of-content (as could
any Java programmer).

Project indices could also prove valuable. In fact, the process of defining a project
index could be used as a project-standardization process. The classes that the group
decides to use could be assembled into the index to provide active information for
coding conventions. Furthermore, the joint browsing history of the projects members
could be used as a basis for a project index, which could then be used to disseminate
knowledge about classes of interest among group members.

For many of the indices discussed here, class members could also be included. If

198

a small but relevant set of classes can be realized, it could also be relevant to track
class members, particularly methods, and enter them into the indices. In some cases
it could be relevant to order methods under the class which they were referenced from
(not always the implementing class, for instance for inherited methods).

B.7 DJavadoc Summary

DJavadoc adds individual adaptation and evolution to Javadoc to enable user-controlled
views of the Java library reference documentation In DJavadoc the programmer can
redesign in real-time the library reference documentation. As a result, views of the
library source code that are more in line with different programmers’ needs can be
created (and recreated as the needs change). DJavadoc also support directly pro-
grammer need to transfer source code from documentation to source files.

199

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation

System Based on Partial Evaluation, 1977,

ISBN 91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verifica-

tion of Time Margins in Digital Designs, 1977,

ISBN 91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av processbe-

skrivningar i naturligt språk, 1977, ISBN 91-

7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP

Compiler and its Implications for Ideal Hard-

ware, 1978, ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Que-

ries in a Meta-Database System 1978, ISBN 91-

7372-232-4.

No 51 Erland Jungert: Synthesizing Database Struc-

tures from a User Oriented Data Model, 1980,

ISBN 91-7372-387-8.

No 54 Sture Hägglund: Contributions to the Deve-

lopment of Methods and Tools for Interactive

Design of Applications Software, 1980, ISBN

91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement

in a Well-Structured Pattern Matcher through

Partial Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Hu-

man-Computer Interface in Commercial Sys-

tems, 1981, ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-

stract Prolog Machine and its Application to

Partial Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Tech-

niques and Tools for Expert Systems, 1981,

ISBN 91-7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiabili-

ty in large Software Systems, 1982, ISBN 91-

7372-527-7.

No 94 Hans Lunell: Code Generator Writing Sys-

tems, 1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum

Weight Triangulation, 1983, ISBN91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Pro-

gramming Environment based on Incremental

Compilation,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning

Systems. An Experimental Operations Plan-

ning System for Turning, 1984, ISBN 91-7372-

805-5.

No 155 Christos Levcopoulos: Heuristics for Mini-

mum Decompositions of Polygons, 1987, ISBN

91-7870-133-3.

No 165 James W. Goodwin: A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-

7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Auto-

mated Synthesis of VLSI Systems, 1987, ISBN

91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for

Design of Distributed Systems, 1988, ISBN 91-

7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued

Logic of Quantified Belief, 1988, ISBN 91-7870-

374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for

an Object Oriented Knowledge Base, 1989,

ISBN 91-7870-485-5.

No 214 Tony Larsson: A Formal Hardware Descrip-

tion and Verification Method, 1989, ISBN 91-

7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical

Foundations of Truth Maintenance, 1989, ISBN

91-7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design

Support and Discourse Management in User

Interface Management Systems, 1991, ISBN 91-

7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for

Knowledge Acquisition, 1991, ISBN 91-7870-

746-3.

No 252 Peter Eklund: An Epistemic Approach to Inter-

active Design in Multiple Inheritance Hierar-

chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic

Formalism with Explicit Defaults, 1991, ISBN

91-7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic

Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-

Cognitive and Computational Aspects, 1992,

ISBN 91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Ab-

stract Machines: Contributions to a Methodolo-

gy for the Implementation of Logic Programs,

1992, ISBN 91-7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of

Tense-bound Object References, 1992, ISBN 91-

7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI

Data Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn

Clause Logic with External Polymorphic Func-

tions, 1992, ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge

Management Systems with an Active Expert

Methodology, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complex-

ity of Reasoning about Plans, 1992, ISBN 91-

7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural

Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic

Slicing with Applications to Debugging and

Testing, 1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using

Classification and Defaults, 1993, ISBN 91-

7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Nat-

ural Language Interfaces - An Empirical Ap-

proach, 1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in

Physical Environments: Compositional Mod-

elling and Framework for Verification, 1994,

ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision

Support and Learning. A Study of Discrete-

Event Manufacturing Simulation at Asea/ABB

1968-1993, 1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode

Switching Physical Systems, 1995, ISBN 91-

7871-516-4.

No 383 Andreas Kågedal: Exploiting Groundness in

Logic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Descrip-

tion, Identification and Recovery from Prob-

lematic Control Situations, 1995, ISBN 91-7871-

603-9.

No 413 Mikael Pettersson: Compiling Natural Seman-

tics, 1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement

by Testability Analysis and Transformations,

1996, ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,

ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Indu-

strial Training from an Organisational Learn-

ing Perspective - Development and Evaluation

of the SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Al-

gorithms and Complexity, 1996, ISBN 91-7871-

704-3.

No 437 Johan Boye: Directional Types in Logic Pro-

gramming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:

Participatory Design in Practice, 1996, ISBN 91-

7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-

scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-

tional Database Technology for Finite Element

Analysis Applications, 1996, ISBN 91-7871-827-

9.

No 459 Olof Johansson: Development Environments

for Complex Product Models, 1996, ISBN 91-

7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions

in Unification-Based Formalisms,1997, ISBN

91-7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Pro-

gramming: A Multi-Level View of Query An-

swering, 1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrn-

ing - En studie av hur ekonomiska styrsystem

utformas och används efter företagsförvärv,

1997, ISBN 91-7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Re-

quirements-Driven Impact Analysis in Object-

Oriented Software Evolution, 1997, ISBN 91-

7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The

Cooperative Perspective on Knowledge-Based

Decision Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management

Systems for Monitoring and Control, 1997,

ISBN 91-7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri

Nets in a CLP framework, 1997, ISBN 91-7219-

011-6.

No 498 Thomas Drakengren: Algorithms and Com-

plexity for Temporal and Spatial Formalisms,

1997, ISBN 91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of

Heterogeneous Real-Time Systems, 1997, ISBN

91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for

Data-Parallel Programming Langugaes from

Two-Level Semantics Specifications, 1997,

ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av

kommunikationsmmönster i satellitkontor och

flexibla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a

Parallel Data Server for Telecom Applications,

1998, ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault

Prevention - An Empirical Study in Software

Engineering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for

Prioritizing Software Requirements, 1998, ISBN

91-7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for

Lazy Functional Languages, 1998, ISBN 91-

7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level

Synthesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -

From Discrete to Continuous, 1999, ISBN 91-

7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based

on Collaborative Dialogue with a Learning

Companion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On

geographical dispersion in organisations, 1999,

ISBN 91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and

Evaluation of a Distributed Mediator System

for Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating

Inhibitory Mechanisms in Mental Image Re-

interpretation - Towards Cooperative Human-

Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of De-

sign Knowledge - An Assessment of Com-

menting Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Nar-

ratives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organiza-

tional Aspects of Requirements Engineering

Methods - A practice-oriented approach, 1999,

ISBN 91-7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class

Overload Management in Real-Time Database

Systems, 1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in

the Design of Information Systems and

Services in the Public Sector: A Methods

Approach, 1999, ISBN 91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective

on the Analysis of Impacts of Information

Technology: From Case Studies in Health-Care

towards General Models and Theories, 1999,

ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in

Computer-Supported Taskforce Training,

1999, ISBN 91-7219-547-9.

No 607 Magnus Merkel: Understanding and

enhancing translation by parallel text

processing, 1999, ISBN 91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to

sensory data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive

Systems: A Generic Layered Architecture

Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i

praktiken - En studie av logiker i fyra projekt,

1999, ISBN 91-7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive

Simulation, and Visualization of Object-

Oriented Models in Scientific Computing,

2000, ISBN 91-7219-709-9.

No 637 Esa Falkenroth: Database Technology for

Control and Simulation, 2000, ISBN 91-7219-

766-8.

No 639 Per-Arne Persson: Bringing Power and

Knowledge Together: Information Systems

Design for Autonomy and Control in

Command Work, 2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level

Design for Testability Methodology, 2000, ISBN

91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution

Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal

Action Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information

Provision - Managing Mandatory and Discre-

tionary Use of Information Technology, 2001,

ISBN-91-7373-126-9.

No 724 Paul Scerri: Designing Agents for Systems with

Adjustable Autonomy, 2001, ISBN 91 7373 207

9.

No 725 Tim Heyer: Semantic Inspection of Software

Artifacts: From Theory to Practice, 2001, ISBN 91

7373 208 7.

No 726 Pär Carlshamre: A Usability on Requirements

Engineering - From Methodology to Product De-

velopment, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Manage-

ment to Task Management in Electronic Mail,

2002, ISBN 91 7373 258 3.

No 745 Johan Åberg: An Approach to Intelligent Help

for Web Information Systems, 2002, ISBN 91-

7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-

work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for

Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-

ted Inter-organisational Collaboration - A Case

Study in the Swedish Public Sector, 2002, ISBN

91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for

Non-Profit Organisations - Extended Participa-

tory Design of an Information System for Trade

Union Shop Stewards, 2002, ISBN 91-7373-

318-0.

No 765 Stefan Holmlid: Adapting users: Towards a

theory of use quality, 2002, ISBN 91-7373-397-0.

No 758 Erik Berglund: Library Communication

Among Programmers Worldwide, 2002,

ISBN 91-7373-349-0.

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering

- att skapa samstämmighet mellan information-

ssystemarkitektur och verksamhet, 1998. ISBN-

9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och använd-

barhet - en studie av datorstödd metodbaserad

systemutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om

anveckling med kalkylprogram, 1999. ISBN-

91-7219-606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos

informationssystem och affärsprocesser, 2000.

ISBN 91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriteri-

er för processbestämning vid verksamhetsana-

lys, 2001, ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssys-

tem i företag och nätverk, 2002, ISBN 91-7373-

278-8.

