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Abstract

The Nobel Prize for Physics 1920 was awarded to C.-E. Guillaume for his discovery
of properties of nickel steels. He had previously observed that certain iron-nickel
alloys exhibit the Invar effect i.e. an extremely low thermal expansion coefficient
over a wide range of temperature. The decades since then have seen the observa-
tion of similar phenomena in other iron-based materials such as iron-platinum and
iron-palladium. Moreover, there has been a great deal of theoretical work on the
mechanism behind the Invar anomaly in the above-mentioned systems. However,
despite many years of intensive research, a widely accepted microscopic theory of
the effects is still lacking.
The present thesis aims at providing an insight into the physical nature of the
thermal expansion of ferromagnetic random face-centered cubic iron-nickel, iron-
platinum and iron-palladium bulk solids.
First, the thermal expansion coefficient is modeled as a function of temperature.
The theory relies on the disordered local moment (DLM) formalism. However,
contrary to all the previous models, the mapping between equilibrium states and
partially disordered local moment (PDLM) states involves the probability that an
iron-iron nearest-neighbour pair shows anti-parallel local magnetic moments, and
the average lattice constant of the system at a finite temperature is calculated
by minimization of an energy. The approach is applied to iron-nickel alloys. The
model qualitatively reproduces several experimentally observed properties of disor-
dered fcc iron-nickel solids. This includes Guillaume’s famous plot of the thermal
expansion coefficient at room temperature as a function of concentration.
Second, for the purpose of studying the origin of the anomalous expansion, the
anomalous and normal contributions to the thermal expansion coefficient are de-
fined, then evaluated for iron-nickel alloys. The results support the idea that the
peculiar behaviour of the expansivity, α, originates solely from the anomalous con-
tribution, αa.
Subsequently, the anomalous contribution is modeled for iron-nickel systems. In
formulating the model, the following observation is taken into account; the average
lattice spacing of an Fe100−xNix alloy at temperature T in a partially disordered
local moment state is strongly negatively correlated with the probability that a
nearest-neighbour pair has each of its two sites occupied by an iron atom and
exhibits anti-ferromagnetically aligned magnetic moments (XFFAP). The quantity
αa(x, T ) is estimated for several couples of values of the parameters x and T .
Model results are found to agree qualitatively and quantitatively well with data
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obtained from the definition of αa. Thus, the model can successfully explain the
basic process leading to the anomalous thermal expansion. It is consistent with the
theory that the coefficient αa is controlled by the temperature derivative of XFFAP.
Finally, the anomalous contribution to the thermal expansion coefficient of Fe72Pt28
and Fe66Pd34 solids is modeled as that of Fe65Ni35. A good agreement between
the model results and experimental data for the expansivity as a function of tem-
perature is noted. In conclusion, the Invar effects in disordered fcc iron-nickel,
iron-platinum and iron-palladium alloys may have a common origin.
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Chapter 1

Background

1.1 Experiments

Figure 1.1. The linear thermal expansion coefficient of a non-magnetic fcc Cu element
as a function of temperature, according to calculations [1] and experiments [2]. Black
lines: direct interpolation between experimental data points.

The linear thermal expansion coefficient of a face-centered cubic (fcc) solid in
metastable or stable equilibrium at temperature T and pressure P is given by
α(T, P ) = 1/a(T, P )(∂a/∂T )P (T, P ) where a(T, P ) denotes the average lattice
constant. For numerous fcc metals (Cu, Fe20Ni80,. . . ) under ambient pressure,
the coefficient α increases with rising temperature and is of the order of 10−5 K−1

for room temperature. A piece of metal exhibiting a constant thermal expansion
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2 Background

Figure 1.2. The linear thermal expansion coefficient of a disordered fcc Fe100−xNix alloy
at room temperature as a function of concentration in percent, according to experiments
[4].

coefficient of 10−5 K−1 which is initially 10 m long increases its length by 1 mm
if the temperature is raised by 10 K. Fig. 1.1 depicts the linear thermal expansion
coefficient of an fcc Cu solid as a function of temperature, according to calculations
[1] and experiments [2].
Around 1897, Guillaume measured the thermal expansion coefficient of an fcc
Fe100−xNix alloy at ambient conditions for various Ni concentrations [3]. He dis-
covered that certain alloys display an extremely low thermal expansivity. For
example, as seen in Fig. 1.2, the expansivity of an Fe65Ni35 solid is much smaller
than 10−5 K−1 [4]. Later on, further investigations were carried out [5, 6, 7].
Fig. 1.3 displays some results obtained by Matsui et al.. It can be observed that
the Invar effect takes place below the Curie temperature. This indicates that the
anomaly is of magnetic origin.
Following the publication of Guillaume’s original paper, a vast amount of exper-
imental data concerning ferromagnetic disordered fcc Fe-Ni alloys was collected
[8, 9]. It revealed the existence of other anomalous physical properties such as
a downward deviation of the average lattice spacing from the value predicted by
Vegard’s law, a departure of the saturation magnetic moment from the Slater-
Pauling curve, an unusual temperature dependence of the magnetization and the
pressure-induced Invar effect (see Fig. 1.4) [10].
The Invar effect was found in other systems such as Fe-Pt and Fe-Pd [8, 9]. Fig. 1.3
displays the linear thermal expansion coefficient of ferromagnetic disordered fcc
Fe65Ni35, Fe72Pt28 and Fe68Pd32 systems as a function of temperature, according
to experiments [7, 11, 12]. Clearly, the expansivities are extremely low in a wide
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Figure 1.3. The linear thermal expansion coefficient of a ferromagnetic disordered
fcc Fe65Ni35, Fe72Pt28 and Fe68Pd32 alloy as a function of temperature, according to
experiments [7, 11, 12]. The value of the Curie temperature of each system is denoted as
Tc.

interval of temperature.

1.2 Theoretical Studies

There has been a great deal of theoretical work on the origin of the Invar effect in
Fe65Ni35 alloys. Obviously, a negative contribution to the thermal expansion co-
efficient compensates at some temperature the positive contribution coming from
the anharmonicity of the ionic interaction energy [7]. Moreover, there appears to
be an almost universal consensus that the negative contribution is related to the
magnetic properties of the alloys in question. On the issue of which magnetic mod-
els are appropriate, however, opinions differ. One strand in the literature favours
the localized electron picture (Heisenberg model) in which each atom has its own
permanent and temperature independent magnetic moment. A second approach
is based on the itinerant electron picture (Stoner model). A few models are pre-
sented below.
In 1963, R. J. Weiss proposed the so-called 2γ-state model [13], where the iron
atoms in the alloy at finite temperature can occupy two states with different mag-
netic moments and different volumes (one ferromagnetic high-volume state and
one anti-ferromagnetic low-volume state). He also assumed that the energy differ-
ence between the two states to be a function of the Ni concentration. He chose
it so that the atomic ground state in Fe65Ni35 is ferromagnetic with high-volume,
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Figure 1.4. The relative volume of an Fe55Ni45 alloy for several temperatures and
pressures, according to experiments [10]. Note that the system exhibits a very small
thermal expansion coefficient between 291 and 500 K and for P =7.7 GPa

ˆ

α(T, P ) =
0.2 10−5 K−1

˜

. However, it shows no anomalies for P =0.4 GPa.

and the increase of population of the low-volume state with rising temperature
leads to the Invar effect. Even though the model provides an explanation for the
anomalous expansion of Fe65Ni35, the concept of “anti-ferromagnetic atomic state”
is ill-defined. Moreover, this approach appears to be incompatible with the results
of Mössbauer and neutron experiments [14, 15].
The latent anti-ferromagnetism model assumes that the exchange interaction en-
ergy of the Fe-Fe nearest-neighbour pairs is anti-ferromagnetic [16, 17]. Within
this theory, the main magnetic properties (magnetization, Curie temperature, . . . )
can be reproduced accurately using a nearest-neighbour Ising model [18]. The cor-
responding ground-state spin structure involves anti-ferromagnetically aligned Fe
moments [19]. It should be noted that experiments support the idea that the
ground state is collinear ferrimagnetic with a few percent of local magnetic mo-
ments that are oriented anti-parallel to the magnetization [20]. There were a few
attempts to evaluate the magnetic part of the thermal expansion coefficient as a
function of temperature within the latent anti-ferromagnetism model [21]. In spite
of a certain success, they do not give complete satisfaction because experimental
results for the pressure derivative of the Curie temperature were used as input
data.
Within the class of local moments models, there has been some recent empha-
sis that the ground state magnetic structure of Fe65Ni35 is non-collinear and this
property gives rise to the anomalous thermal expansion of the system [22]. How-
ever, the thermal expansion coefficient as a function of temperature has not been
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calculated. Furthermore, experiments undertaken to detect such non-collinearity
do not seem to find it [23].
It seems that an important step towards a quantitative prediction of the thermal
expansion has been made a few years ago; the Debye-Grüneisen model [1] has
been employed to estimate the non-magnetic lattice contribution to the thermal
expansion coefficient as a function of temperature, and the partially disordered
local moment formalism has been chosen for the evaluation of the anomalous con-
tribution [24]. The PDLM model can be used to calculate by means of ab initio

methods total energies of Fe65Ni35 in collinear magnetic states, given the fraction
of Fe atoms whose spins are “up”, xFU, and the fraction of Ni atoms whose spins
are “up”, xNU. A PDLM state for xFU = xNU = 1 is fully magnetized, whereas
a PDLM state for xFU = xNU = 0.5 is completely disordered. Though the results
of Crisan et al. [24] are in good agreement with experimental data, the physical
origin of the Invar phenomenon remains elusive.
Later on, Khmelevskyi et al. applied the PDLM formalism to study the thermal
expansion in Fe-Pt alloys [25]. The analysis of their results linked the Invar effect
to a gradual weakening of the Fe local moments caused by the changes in the
electronic structure due to temperature induced magnetic disorder.

1.3 Conclusion

In conclusion, certain ferromagnetic disordered fcc Fe-Ni, Fe-Pt and Fe-Pd alloys
exhibit an anomalous thermal expansion coefficient. Apparently, recent progress
in the development of computational methods for thermal expansion coefficients
has been achieved. However, there is still no general consensus on the precise
mechanism behind the Invar effect in Fe65Ni35. Furthermore, it is unclear whether
the anomalies in Fe65Ni35, Fe72Pt28 and Fe68Pd32 have a common origin.
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Chapter 2

Calculation of Thermal

Expansion Coefficients

Chapter 2 presents a new model based on the DLM formalism for the thermal ex-
pansion coefficient of a ferromagnetic random face-centered cubic Fe100−xNix alloy
in metastable or stable equilibrium at temperature T as a function of temperature
and concentration. The theory is directly applicable to ferromagnetic random fcc
Fe100−xPtx and Fe100−xPdx systems.

2.1 Modelling the Thermal Expansion Coefficient

In the present work, the linear thermal expansion coefficient of a ferromagnetic
random fcc Fe100−xNix alloy in metastable or stable equilibrium at temperature
T is modeled as:

α(x, T ) =
1

a(x, T )

(

∂a

∂T

)

x

(x, T ), (2.1)

where a(x, T ) denotes a
(

x, T ; xFU(x, T ), xNU(x, T )
)

, the equilibrium configura-
tionally averaged lattice constant of the system at T in the partially disordered
local moment (PDLM) state characterized by the pair

(

xFU (x, T ), xNU (x, T )
)

.
xFU (x, T ) represents the probability that an iron spin is up and xNU (x, T ) gives
the probability that a nickel spin is up. The pair

(

xFU (x, T ), xNU (x, T )
)

is chosen
so that the system in the PDLM state exhibits similar magnetic characteristics to
those of the alloy in equilibrium at T ; the magnetic properties include the magne-
tization, M(x, T ), the probability that an iron-iron nearest-neighbour pair shows
anti-parallel local magnetic moments, xFFAP(x, T ), the probability that an iron-
nickel first-neighbour pair exhibits anti-parallel moments, xFNAP(x, T ), and the
probability that a nickel-nickel nearest-neighbour pair displays anti-ferromagnetically
aligned moments, xNNAP(x, T ). In practice, α(x, T ) is approximated as:

7



8 Calculation of Thermal Expansion Coefficients

α(x, T ) ≈ 1/a(x, T )
[

a
(

x, T + δT ; xFU(x, T + δT ), xNU(x, T + δT )
)

− · · ·

· · · − a
(

x, T − δT ; xFU(x, T − δT ), xNU(x, T − δT )
)

]

/2δT.

(2.2)

The general procedure for the determination of the average lattice spacing a(x, T )
is briefly described below. (See Sections 2.3, 2.4, 2.5 and 2.6 for the details of the
calculations.)

1. Certain magnetic properties of the system in equilibrium at temperature T
are computed: M(x, T ), xFFAP(x, T ), xFNAP(x, T ) and xNNAP(x, T ).

2. The characteristics xFU(x, T ) and xNU(x, T ) of the PDLM state that repro-
duces the values of M(x, T ), xFFAP(x, T ), xFNAP(x, T ) and xNNAP(x, T ) are
derived.

3. The configurationally averaged free energy of the system at temperature T
in the PDLM state for the pair

(

xFU (x, T ), xNU (x, T )
)

is estimated as a
function of the lattice spacing.

4. The average lattice constant a(x, T ) is obtained by minimization of the av-
erage free energy with respect to the lattice parameter.

It is worth emphasizing here that the model differs from all the previous mod-
els based on the DLM formalism [24, 25] in that the present mapping between
equilibrium states and PDLM states involves the probability that an iron-iron
nearest-neighbour pair shows anti-parallel moments, and the average lattice con-
stant a(x, T ) is calculated by minimization of an energy.

2.2 Modelling the Anomalous Contribution

For the purpose of investigating the origin of the anomalous thermal expansion,
the expansion coefficient is written as the sum of two contributions:

α(x, T ) = αn(x, T ) + αa(x, T ), (2.3)

where

αn(x, T ) = lim
δT→0

1/a(x, T )
[

a
(

x, T + δT ; xFU(x, T + δT ), xNU(x, T + δT )
)

− · · ·

· · · − a
(

x, T ; xFU(x, T + δT ), xNU(x, T + δT )
)

]

/δT,

(2.4)
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and

αa(x, T ) = lim
δT→0

1/a(x, T )
[

a
(

x, T ; xFU(x, T + δT ), xNU(x, T + δT )
)

− · · ·

· · · − a
(

x, T ; xFU(x, T ), xNU(x, T )
)

]

/δT. (2.5)

αn(x, T ) and αa(x, T ) are referred to as the normal contribution and the anoma-
lous contribution. By “normal”, it is meant a thermal expansion coefficient which
depends on temperature similarly to that of a non-magnetic fcc Cu (see Fig. 1.1).
According to Eq. 2.4, αn(x, T ) is expressed using the difference of two lattice con-
stants evaluated for the same magnetic structure. However, Eq. 2.5 shows that
αa(x, T ) is related to the difference of two lattice spacings estimated for the same
temperature.
It should be mentioned that Eqs. 2.4 and 2.5 have been suggested for the first time
by the author.

2.3 Calculating Magnetic Properties

To carry out point 1 of the procedure, a mean-field Ising model of the Müller-Hesse
type is employed [26]. According to the adopted model, the spin at the iron sites
is allowed to take only two values, SF(x) and −SF(x). A similar requirement is
formulated for the spin at the nickel sites using the analogous quantity SN(x).
The average spin at an iron site with n like nearest-neighbours

(

< Si >F,n

)

and

the average spin at a nickel site with n unlike first-neighbours
(

< Si >N,n

)

for
all possible values of n between 0 and 12 constitute the central quantities. They
verify the set of equations:

< Si >F,n(x, T ) = SF(x) tanh SF(x)
(

nJFF(x)< Si >F(x, T ) + · · ·
· · · + (12 − n)JFN(x)< Si >N(x, T )

)

/kBT, (2.6)

< Si >N,n(x, T ) = SN(x) tanh SN(x)
(

nJFN(x)< Si >F(x, T ) + · · ·
· · · + (12 − n)JNN(x)< Si >N(x, T )

)

/kBT, (2.7)

where the average spin at an iron site and the average spin at a nickel site are also
given by:

< Si >F(x, T ) =

12
∑

n=0

p(x, n) < Si >F,n(x, T ), (2.8)

< Si >N(x, T ) =

12
∑

n=0

p(x, n) < Si >N,n(x, T ), (2.9)
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and the probability that an iron site is surrounded by n like first-neighbours in
the random alloy is related to the concentration:

p(x, n) =

12
∑

n=0

Cn
12 (1 − x)n x12−n. (2.10)

Once the quantities < Si >F,n(x, T ) and < Si >N,n(x, T ) are known for all possible
values of n between 0 and 12, it is straightforward to determine the magnetic
properties of interest such as the average spin:

< Si > (x, T ) = (1 − x)< Si >F(x, T ) + < Si >N(x, T ). (2.11)

The probability that an iron-iron nearest-neighbour pair shows anti-parallel local
magnetic moments is of great importance in this work. It is given by:

xFFAP(x, T ) = 2

∑12
n=1 p(x, n) xFU,n(x, T )

∑12
n=1 p(x, n)

∑12
n=1 p(x, n)

(

1 − xFU,n(x, T )
)

∑12
n=1 p(x, n)

,

(2.12)
where the probability that an iron site exhibits n like nearest-neighbours and a
spin up verifies:

xFU,n(x, T ) =
< Si >F,n(x, T ) + SF(x)

2 SF(x)
. (2.13)

When combined with Eq. 2.13, Eq. 2.12 yields that if the magnetic phase of the
system at temperature T is ferromagnetic then xFFAP(x, T ) = 0, whereas if it is
completely disordered then xFFAP(x, T ) = 1/2.
Obviously, the input parameters of the Ising model for Fe100−xNix need to be
specified. The magnitude of the spin at an iron site

(

SF(x)
)

and the magnitude of

the spin at a nickel site
(

SN(x)
)

are derived from first-principles calculations for
the ferromagnetic system. For example in the case of Fe65Ni35, computations give
1.31 µB for SF(x) and 0.31 µB for SN(x). The exchange constants JFF(x) (between
a nearest-neighbour iron-iron pair) and JFN(x) (between a nearest-neighbour iron-
nickel pair) are tuned in such a way that the predicted saturation magnetization
and the Curie temperature agree well with experimentally measured properties
[9]. Moreover, the exchange constant JNN(x) (between a nearest-neighbour nickel-
nickel pair) is set to the value of JNN obtained at x=1, 40.55 meV. These exchange
constants are the only experimentally determined parameters in the model.
Table 2.1 displays the values of JFF, JFN and JNN for x=30, 35, 45, 55, 80 and
compares some calculated magnetic quantities to experimental observations [9].
Results of the temperature dependence of the fraction of iron-iron nearest-neighbour
pairs that are anti-parallel in Fe100−xNix are shown in Fig. 2.1 for several concen-
trations. Some interesting consequences of the model are pointed out. Contrary to
that of nickel-rich alloys (Fe45Ni55, Fe20Ni80), the magnetic structure of iron-rich
materials (Fe70Ni30, Fe65Ni35, Fe55Ni45) at very low temperature shows a signifi-
cant fraction of local magnetic moments which are anti-ferromagnetically aligned
with the magnetization. Another effect reported here is that for a fixed concen-
tration, xFFAP increases with rising temperature below Tc(x) but fully saturates
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x 30 35 45 55 80
JFF(x) (meV) -1.77 -1 -0.8 -0.8 -0.5
JFN(x) (meV) 14 17 21 23 21.5
JNN(x) (meV) 40.55 40.55 40.55 40.55 40.55
|(M(x) − Mexp(x))/Mexp(x)| 1 % 8 % 3.5 % 2 % 1.5 %
|(Tc(x) − Tc,exp(x))/Tc,exp(x)| 4 % 2 % 1 % 1 % 0.2 %

Table 2.1. The chosen exchange constants along with the absolute values of the relative
deviations of predicted magnetic quantities from experimental observations for x=30, 35,
45, 55, 80 [9].

Figure 2.1. The probability that an iron-iron nearest-neighbour pair shows anti-parallel
local magnetic moments in a random fcc Fe100−xNix as a function of temperature, for
several concentrations in percent, according to a mean-field Ising model.

above Tc(x). The relevance of the latter comment will be established in Section 3.3,
while discussing the origin of the Invar effect in Fe-Ni alloys.

2.4 Mapping between Equilibrium States and PDLM

States

The second step of the approach presented in Section 2.1 deals with the evaluation
of the probability that an iron spin is up, xFU(x, T ), and the probability that a
nickel spin is up, xNU(x, T ), for the partially disordered local moment state ex-
hibiting the same magnetic properties < Si > (x, T ), xFFAP(x, T ), xFNAP(x, T )
and xNNAP(x, T ) as the random alloy. That is, xFU(x, T ) and xNU(x, T ) are solu-
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tions to the set of equations:

xFFAP(x, T ) = 2xFU(x, T )
[

1 − xFU(x, T )
]

, (2.14)

xFNAP(x, T ) = xFU(x, T ) − 2xFU(x, T )xNU(x, T ) + xNU(x, T ), (2.15)

xNNAP(x, T ) = 2xNU(x, T )
[

1 − xNU(x, T )
]

, (2.16)

< Si > (x, T ) = (1 − x)SF(x)
[

2xFU(x, T )− 1
]

+ xSN(x)
[

2xNU(x, T )− 1
]

. (2.17)

2.5 Determining Average Total Energies

The configurationally averaged total energy of a random fcc Fe100−xNix in the
PDLM state for the pair

(

xFU, xNU

)

=
(

xFU(x, T ), xNU(x, T )
)

is estimated as a
function of the average lattice constant. Then, a Morse function [1] is fitted to the
energy curve using a least-squares procedure. The parameters of the fit give the
equilibrium average lattice constant for the values of xFU and xNU in question,
a(x; xFU, xNU). They also give the bulk modulus, B(x; xFU, xNU), and the low-
temperature Grüneisen constant, γLT (x; xFU, xNU). B and γLT can be expressed
in terms of volume derivatives of the total energy:

B = V
∂2E

∂V 2 , (2.18)

and

γLT = −1 − V

2

∂3E/∂V 3

∂2E/∂V 2 , (2.19)

where the volume per atom, V , is related to the lattice constant by:

V =
a3

4
. (2.20)

The first-principles total energy computations are performed within the frame-
work of the exact muffin-tin orbitals (EMTO) theory using the full charge density
(FCD) technique [27]. The problem of substitutional chemical disorder is treated
within the coherent potential approximation (CPA) [28]. The integration over the
irreducible part of the Brillouin zone is done over approximately 500 k-points dis-
tributed according to the Monkhorst-Pack scheme [29]. This is sufficient to ensure
that the calculated lattice constants, bulk moduli and Grüneisen constants are
converged with respect to the number of k-points within 5 mÅ, 100 kbar, and 0.1
respectively.
Fig. 2.2 displays the average total energy per atom of Fe65Ni35 as a function of
the average lattice constant, for (xFU, xNU)=(0.5, 0.5), (0.9, 1). Figs. 2.3, 2.4
and 2.5 depict some predicted equilibrium average lattice spacings, bulk moduli
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Figure 2.2. The average total energy per atom (relative to a reference energy) of a
random fcc Fe65Ni35 in a PDLM state as a function of the average lattice constant, for
(xFU, xNU)=(0.5, 0.5), (0.9, 1), according to ab initio calculations performed by means
of the EMTO method.

and Grüneisen constants plotted against the fraction of iron-iron nearest-neighbour
pairs that are anti-parallel, xFFAP. Surprisingly, the lattice constant for a fixed
concentration is strongly negatively correlated with xFFAP. This tendency of re-
duction of the lattice constant as xFFAP is increased plays a central role in the
existence of the Invar effect (see Section 3.3 for further details). Finally, note
that all the bulk moduli are found to be between 1.5 and 1.9 Mbar, and all the
Grüneisen constants lie between 1.5 and 1.8.

2.6 Calculating Average Lattice Constants

It is well known that thermal expansion of crystals requires the presence of an-
harmonic terms in the ionic interaction energy; a purely harmonic energy will not
give rise to a temperature-dependent equilibrium volume. In the case of “weak”
anharmonicity, its effect can be estimated via perturbation theory. It turns out
that the lowest order terms determining the thermal expansion coefficient are given
correctly by the quasi-harmonic approximation in which the vibrational free en-
ergy is calculated according to the harmonic approximation but the normal-mode
frequencies are allowed to depend on the volume of the crystal [30]. Moruzzi et

al. employed a quasi-harmonic Debye-Grüneisen model for the estimation of lin-
ear thermal expansion coefficients of non-magnetic elemental metals [1]. In this
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Figure 2.3. The equilibrium average lattice constant of a random fcc Fe100−xNix in a
PDLM state versus the probability that an iron-iron nearest-neighbour pair shows anti-
parallel local magnetic moments, xFFAP. Diamonds show results of ab initio calculations
carried out by means of the EMTO method for different pairs (xFU, xNU).

approach, the free energy F (T, V ) is given by:

F (T, V ) = E(V ) +
9

8
kBΘD(V ) − kBTD

(

ΘD(V )

T

)

+ 3kBT ln
(

1 − e−ΘD(V )/T
)

,

(2.21)
where E(V ) denotes the total energy obtained from electronic structure calcula-
tions, kB represents the Boltzmann constant. D is the Debye function which is
defined as:

D(y) =
3

y2

y
∫

0

dx
x3

ex − 1
. (2.22)

The Debye temperature ΘD(V ) is approximated as:

ΘD(V ) = 41.63

(

(3V0/4π)1/3B0

M

)1/2(

V0

V

)γ0

, (2.23)

where V0, B0 and γ0 are the volume in a.u.3, bulk modulus in kbar and Grüneisen
constant derived from the total energy E as a function of V . Besides, M is the
atomic weight.
Returning to the main point of this section, the average lattice constant
a(x, T ; xFU, xNU) of Fe100−xNix is approximated as the lattice constant corre-
sponding to the volume which minimizes a free energy. The free energy in ques-
tion is given by Eqs. 2.21 and 2.23, and configurational averaging enters only
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Figure 2.4. The equilibrium bulk modulus of a random fcc Fe100−xNix in a PDLM state
versus the probability that an iron-iron nearest-neighbour pair displays anti-parallel local
magnetic moments, according to EMTO computations.

through the average total energy and the three parameters calculated in Sec-
tion 2.5. Though uncontrolled, approximations of the same type have been made
in previous studies [31, 32, 33]. Some of them lay predicted thermal expansion
coefficients in qualitative agreement with experimental data.
Fig. 2.6 depicts the calculated mean lattice parameter of Fe65Ni35 for various pairs
(xFU, xNU). It also displays the predicted lattice constant of the system at temper-
ature T , a

(

x, T ; xFU(x, T ), xNU(x, T )
)

, for several temperatures below 800 K. A
useful way to think of the general procedure presented in Section 2.1 is illustrated
by the figure. Imagine that the magnetic configuration were fixed. Then the ma-
terial would show only “normal” thermal expansion. Let us call the corresponding
thermal expansion curve a(x, T ; xFU, xNU); the curve for x=35, xFU = 0.90, and
xNU = 1 is the uppermost dashed curve in Fig. 2.6. In reality, however, raising the
temperature causes the material to demagnetize, and the values of xFFAP, xFNAP

and xNNAP change accordingly. One may say that the system “hops” from the
curve a(x, T ; xFU, xNU) to the curve a(x, T ; x′

FU, x′
NU), resulting in a lattice spac-

ing given by the curve a
(

x, T ; xFU(x, T ), xNU(x, T )
)

. This is shown as the solid
line in Fig. 2.6. In the case depicted, each hop is to a curve lower than the last,
cancelling the upward trend of each individual curve: this is the essence of the
Invar effect.
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Figure 2.5. The equilibrium Grüneisen constant of a random fcc Fe100−xNix in a PDLM
state versus the probability that an iron-iron nearest-neighbour pair exhibits anti-parallel
local magnetic moments, according to EMTO computations.

2.7 Evaluating Thermal Expansion Coefficients

The thermal expansivity α(x, T ) can be obtained from Eq. 2.2. Figs. 2.7 and 2.8
show that the model outlined in Section 2.1 qualitatively reproduces several well
known properties of disordered fcc Fe-Ni alloys. This includes Guillaume’s famous
plot of the thermal expansion coefficient at room temperature as a function of con-
centration [4] and Matsui’s plot of the thermal expansion coefficient of Fe65Ni35
as a function of temperature [7]. As far as the author knows, the present model is
the only theory relying on a first-principles approach that reproduces qualitatively
the thermal expansion coefficient of the ferromagnetic Fe-Ni alloys as a function
of temperature and concentration.
To facilitate the identification of the origin of the iron-nickel alloys anomalous
expansion, physicists traditionally divide the coefficient α(x, T ) into two contri-
butions (see for example Ref. [7]), a “normal” term coming exclusively from the
anharmonicity of the ionic interaction energy and an “anomalous” term. In this
study, the expansion coefficient is also written as the sum of two contributions
αn(x, T ) and αa(x, T ). Both terms have been evaluated at room temperature for
different Ni atomic concentrations from Eqs. 2.4 and 2.5. As observed in Fig. 2.9,
αa can be hold responsible for the anomalous behaviour of α as a function of x. In
addition, Fig. 2.10 clearly shows that the peculiar T -dependence of α for x = 35
originates from αa. Thus, a thorough study of the anomalous expansion coefficient
αa seems relevant.
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Figure 2.6. Calculated average lattice constants of a random fcc Fe65Ni35 at several
temperatures. The circles indicate the lattice constants calculated assuming the mag-
netic configuration to be fixed. From top to bottom, (xFU, xNU)=(0.90, 1), (0.89, 1),
(0.84, 1), (0.79, 0.97), (0.71, 0.89), (0.57, 0.64), (0.5, 0.5). The crosses show the lattice
constants according to the model. The dotted line and the solid line are obtained by
linear interpolation between circles and crosses respectively.

2.8 Conclusion

The thermal expansion coefficient of a ferromagnetic random face-centered cubic
iron-nickel alloy has been modeled. The theory relies on the DLM formalism.
The procedure for the determination of the average lattice spacing a(x, T ) has
been described. It consists of four steps: (i) Certain magnetic properties of the
system in equilibrium at temperature T are computed. (ii) The characteristics
xFU(x, T ) and xNU(x, T ) of the PDLM state that reproduces the values of M(x, T ),
xFFAP(x, T ), xFNAP(x, T ) and xNNAP(x, T ) are derived. (iii) The configurationally
averaged free energy of the system at temperature T in the PDLM state for the
pair

(

xFU (x, T ), xNU (x, T )
)

is estimated as a function of the lattice spacing. (iv)
The average lattice constant a(x, T ) is obtained by minimization of the average
free energy with respect to the lattice parameter. It is worth emphasizing here
that the model differs from all the previous models based on the DLM formalism.
Several interesting results have emerged from the calculations. For instance, the
probability that an iron-iron nearest-neighbour pair exhibits anti-parallel moments
increases with rising temperature below the Curie temperature, but is constant
above the critical temperature. Furthermore, the use of first-principles techniques
has revealed that the predicted equilibrium average lattice constant for a PDLM
state is strongly negatively correlated with xFFAP. It has also been shown that
the model results are in good agreement with experimental data for several well
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known properties of the ferromagnetic disordered face-centered cubic iron-nickel
alloys. As far as the author knows, the present model is the only theory relying
on a first-principles approach that reproduces qualitatively the thermal expansion
coefficient of these materials as a function of temperature and concentration.
For the purpose of studying the origin of the anomalous expansion, the anomalous
and normal contributions to the coefficient have been defined, then evaluated. The
results support the idea that the peculiar behaviour of the expansivity originates
solely from the anomalous contribution. Consequently, an in-depth analysis of the
last mentioned term has been suggested.
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Figure 2.7. The linear thermal expansion coefficient of a disordered fcc Fe100−xNix
at room temperature as a function of concentration in percent, according to the model
(diamonds) and experiments [4] (orange line).

Figure 2.8. The linear thermal expansion coefficient of a ferromagnetic disordered fcc
Fe65Ni35 bulk solid as a function of temperature, according to the model (diamonds) and
experiments [7] (orange line).
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Figure 2.9. Linear thermal expansion coefficients of a random fcc Fe100−xNix at room
temperature as a function of concentration in percent, according to the model. The total
expansion coefficient (black circles) can be written as the sum of a normal contribution
(blue circles) and an anomalous contribution (orange circles).

Figure 2.10. Linear thermal expansion coefficients of a random fcc Fe65Ni35 as a func-
tion of temperature, according to the model. The normal contribution (blue circles) and
anomalous contribution (orange circles) sum up to give the total expansion coefficient
(black circles).



Chapter 3

Origin of the Invar Effect in

Iron-Nickel Alloys

In Chapter 2, the linear thermal expansion coefficient of a ferromagnetic random
fcc Fe100−xNix alloy at temperature T has been estimated for different concentra-
tions and temperatures. Moreover, its expansivity, α, has been divided into two
contributions, the so-called normal term, αn, and the so-called anomalous term,
αa. Both contributions have been evaluated. The results support the idea that
only αa contribute to the unusual temperature and concentration dependence of
α. Thus, an exhaustive study of the anomalous contribution has been proposed.
An investigation of the intrinsic cause of the concentration and temperature de-
pendence of the anomalous term αa is carried out in this chapter.

3.1 Existence of Negative Correlations

As can be seen in Eq. 2.5, the coefficient αa(x, T ) is related to the difference be-
tween two lattice constants evaluated for the same temperatures but two magnetic
structures which can be different. This suggests an examination of the equilibrium
average lattice spacing of a random fcc Fe100−xNix alloy at temperature T in a
PDLM state as a function of (xFU, xNU).
Figs. 3.1 and 3.2 depict the average lattice parameter plotted against XFFAP, for
various concentrations, temperatures and pairs (xFU, xNU). XFFAP denotes the
probability that a nearest-neighbour pair has each of its two sites occupied by an
iron atom and exhibits anti-ferromagnetically aligned magnetic moments. It is
explicitly given by:

XFFAP = (1 − x/100)
2
2xFU(1 − xFU). (3.1)

According to the figures, the average lattice constant of a given alloy at a fixed
temperature is strongly negatively correlated with XFFAP. This is true at least for
x = 35, 55, 80 at T = 0.01 K and for x = 35 at T = 100, 800 K. That is, a strong

21
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Figure 3.1. The calculated average lattice constant of a random fcc Fe100−xNix in a
PDLM state at temperature T = 0.01 K versus XFFAP, for various concentrations and
pairs (xFU, xNU). a1 indicates the slope of the correlation line for each of the following
concentrations x =35, 55, 80.

negative correlation between the average lattice parameter and the probability that
a nearest-neighbour pair has each of its two sites occupied by an iron atom and
shows anti-parallel moments is likewise observed in the ab initio data presented in
Fig. 3.3. It is also remarkable that the slopes of the correlation lines differ only a
little from each other. This will be taken advantage of in modelling αa.

3.2 Origin of Negative Correlations

The mechanism behind the tendency of the average lattice parameter of a random
fcc Fe100−xNix to be reduced as XFFAP is increased, is investigated in this section.
Within the proposed model, the Hamiltonian H of Fe100−xNix has the following
form:

H =
∑

〈ij〉

Eij , (3.2)

where Eij(dij , ei, ej) is the interaction energy between site i and site j, dij is an
intersite distance and ei is a unit vector oriented in the direction of the moment at
site i. The sum runs over all pairs of nearest neighbours. For each of these pairs,
the interaction energy is expressed as:

Eij(dij , ei, ej) = ELJ
ij (dij) − Jij(dij) ei · ej , (3.3)
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Figure 3.2. The calculated average lattice spacing of a random fcc Fe65Ni35 in a PDLM
state at temperature T versus XFFAP, for several temperatures and pairs (xFU, xNU).
The slope of the correlation line for a given temperature is denoted as a1.

where ELJ
ij (dij) is the chemical (nonmagnetic) part of the interaction energy and

Jij(dij) is an exchange interaction energy between the moments at sites i and j.
The former is taken to be of the Lennard-Jones type:

ELJ
ij (dij) = −E0

ij

{

2

(

d0
ij

dij

)6

−
(

d0
ij

dij

)12}

. (3.4)

d0
ij and E0

ij are two parameters which characterize ELJ
ij . The atoms are placed at

the ideal lattice sites, with the static atomic displacements not taken into account.
As a consequence, all the nearest-neighbour bonds are of identical length. The
input functions Jij ’s and the input constants d0

ij ’s and E0
ij ’s depend only on the

chemical types of the atoms. JFF denotes the exchange interaction energy between
two iron sites. JFN represents the exchange energy for an iron-nickel pair. JNN

is the same for a nickel-nickel pair. d0
FF , d0

FN , d0
NN , E0

FF , E0
FN and E0

NN are
defined in an analogous way.
The model is applied to the calculation of the equilibrium average lattice spacing
a(x; xFU, xNU) of the random fcc alloy in a PDLM state with the fraction of iron
spins that are up, xFU, and the fraction of nickel spins that are up, xNU. The
average lattice parameter can be expressed as:

a(x; xFU, xNU) =
√

2d(x; xFU, xNU), (3.5)

where d(x; xFU, xNU) is the average nearest-neighbour bond length. Assuming
that neither JFN nor JNN vary with the first-neighbour spacing, d(x; xFU, xNU) is
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Figure 3.3. The predicted equilibrium average lattice constant of a random fcc
Fe100−xNix in a PDLM state versus XFFAP, for several pairs (xFU, xNU) and concentra-
tions, according to EMTO computations. The slope of the correlation line for a chosen
concentration is written as a1. This figure is a replot of the data displayed in Fig. 2.3.

found to be a solution to the following equation:

(

∂ELJ
AV

∂d

)

x

(x, d) −
(

∂JFF

∂d

)

x

(x, d)

[(

1 − x

100

)2

− 2XFFAP

]

= 0, (3.6)

where the weighted average of the chemical energy is given by:

ELJ
AV = (1 − x/100)2ELJ

FF + 2x(1 − x/100)ELJ
FN + (x/100)

2
ELJ

NN . (3.7)

Combined with Eq. 3.5, Eq. 3.6 establishes a relation between a(x; xFU, xNU) and
XFFAP. The latter equation is presented below for two different values of XFFAP.
In the case of the ferromagnetic state

(

(xFU, xNU) = (1, 1)
)

, d(x; xFU, xNU) must
solve:

(

∂ELJ
AV

∂d

)

x

(x, d) −
(

∂JFF

∂d

)

x

(x, d)

(

1 − x

100

)2

= 0. (3.8)

However, if the magnetic structure is completely disordered
(

(xFU, xNU) = (0.5, 0.5)
)

,
d(x; xFU, xNU) is given by:

(

∂ELJ
AV

∂d

)

x

(x, d) = 0. (3.9)

The sum of (∂ELJ
AV/∂d)x(x, d) and −(∂JFF/∂d)x(x, d)

[

(1 − x/100)2 − 2XFFAP

]

is
evaluated for various distances, concentrations and values of XFFAP. The calcula-
tions are performed for E0

FF = E0
FN = E0

NN = 11 mRy, d0
FF = d0

FN = d0
NN = 2.512
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Å. In addition, (∂JFF/∂d)x(x, d) is chosen to be constant between 2.5 and 2.56
Å, for x =35, 80. It is equal to 10 mRy/Å, the value of the derivative of JFF in
Ref. [34] estimated for d = 2.544 Å.
The predicted equilibrium average lattice parameter of Fe65Ni35 and Fe20Ni80 is
plotted against XFFAP for several pairs (xFU, xNU) in Fig. 3.4. In agreement with
ab initio data, the model results exhibit a strong negative correlation between
the lattice spacing and the probability that a nearest-neighbour pair has each of
its two sites occupied by an iron atom and shows anti-parallel moments for both
concentrations. Furthermore, the slopes of the correlation lines displayed in the
figure are all of the same order of magnitude.
A useful way to think about the above model applied to Fe100−xNix for x = 35 is
shown in Fig. 3.5. If the PDLM state is such that

[

(1 − x/100)2−2XFFAP

]

cancels
out, then the equilibrium average lattice spacing is given by the intersection point
of the curve of (∂ELJ

AV/∂d)x with the x-axis; the curve is the left-most curve in
Fig. 3.5. Because (∂JFF/∂d)x(x, d) is strictly positive between 2.5 and 2.56 Å, rais-

ing
[

(1 − x/100)
2−2XFFAP

]

causes the value of the sum of (∂ELJ
AV/∂d)x(x, d) and

−(∂JFF/∂d)x(x, d)
[

(1−x/100)2− 2XFFAP

]

to decrease in that interval. One may
say that the system “hops” from a curve to a curve lower than the last, resulting in
a shift of the lattice spacing towards a bigger value. This explains the downward
trend of the equilibrium average lattice parameter as XFFAP is increased.
The data reported in this section are consistent with the idea that the slope of
the correlation line between the equilibrium average lattice constant of a random
fcc Fe100−xNix in a PDLM state and the probability XFFAP is governed by the
derivative of the mean exchange energy between iron-iron first-neighbour pairs
with respect to the mean nearest-neighbour bond length.

3.3 Origin of the Invar Effect

The present thesis aims at providing an insight into the physical nature of the ther-
mal expansion of ferromagnetic fully-disordered fcc Fe-Ni alloys. To achieve such
a goal, the normal contribution and the anomalous contribution to the thermal
expansion coefficient of a ferromagnetic random fcc Fe100−xNix have been defined
and evaluated for several concentrations. (See Chapter 2.) The obtained results
support the theory that the peculiar behaviour of the expansivity originates solely
from the anomalous contribution.
For the purpose of understanding in a qualitative manner the basic process leading
to a concentration and temperature dependence of αa of Fe100−xNix, it is sufficient
to consider the model below. The formulation of the model is governed by two
facts. First, the equilibrium average lattice constant of the system at temperature
T in a PDLM state is strongly negatively correlated with XFFAP. This suggests
the following derivation. If the spacing were a linear function of XFFAP:

a(x, T ; xFU, xNU) = a1(x, T )XFFAP + a0(x, T ), (3.10)
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Figure 3.4. The calculated equilibrium average lattice constant of a random fcc
Fe100−xNix in a PDLM state versus XFFAP, for several pairs (xFU, xNU) and concen-
trations, according to the model (circles) and ab initio computations (diamonds).

then αa(x, T ) as defined by Eq. 2.5 would be given by:

αa(x, T ) =
a1(x, T )

a(x, T )

(

∂XFFAP

∂T

)

x

(x, T ). (3.11)

Second, previous data support the idea that the slope a1 and the average lattice
constant a appearing in the left-most fraction on the right-hand side of the equality
sign in Eq. 3.11 show a small relative variation in the domain of study (30 ≤ x ≤ 80,
0 K < T < 1000 K). Here, the anomalous thermal expansion coefficient is modeled
as:

αa(x, T ) =
a1(x0)

aFM(x0)

(

∂XFFAP

∂T

)

x

(x, T ), (3.12)

where a1(x0) and aFM(x0) are two first-principles results obtained by means of
the EMTO method for x0 = 35. a1(x0) corresponds to the slope of the correlation
line shown in Fig. 3.3, whereas aFM(x0) denotes the spacing a(x0; xFU, xNU) for
(xFU, xNU) = (1, 1). By inserting the expression of XFFAP in terms of xFFAP,
Eq. 3.12 becomes:

αa(x, T ) =
a1(x0)

aFM(x0)

(

1 − x

100

)2
(

∂xFFAP

∂T

)

x

(x, T ). (3.13)

It is worth discussing the origin of some specific features of the thermal expansion
in ferromagnetic random fcc Fe-Ni alloys with the help of Fig. 2.1 and Eq. 3.13.
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Figure 3.5. The sum of (∂ELJ

AV/∂d)
x
(x, d) and −(∂JFF/∂d)

x
(x, d)

ˆ

(1 − x/100)2 −
2XFFAP

˜

for random fcc Fe65Ni35 in a PDLM state with the probability that an iron
spin is up, xFU, and the probability that a nickel spin is up, xNU as a function of the av-
erage nearest-neighbour bond length, for various values of XFFAP, according to the model.
The reader is reminded that XFFAP = (1 − x/100)2xFFAP where xFFAP = 2xFU(1−xFU).
The intersection points of the curves with the x-axis give the corresponding equilibrium
lattice constants.

The first two effects analyzed here deal with Fe65Ni35. According to Fig. 2.10,
αa(x, T ) is negative below the Curie temperature. However, it cancels out above a
temperature close to Tc(x). These phenomena can be understood in the framework
of the present model. Eq. 3.12 predicts that αa(x, T ) is negative below the critical
temperature because the two terms a1 and (∂xFFAP/∂T )x(x, T ) have opposite
signs. The same equation predicts that αa(x, T ) is zero above Tc(x), due to the fact
xFFAP is constant in this range. There are more intriguing effects. For example,
as observed in Fig. 2.9, αa(x, T ) evaluated at T = 300 K is smaller for Fe65Ni35
than for Fe20Ni80. This is consistent with the model; the quantities (1 − x/100)

2

and (∂xFFAP/∂T )x(x, T ) are bigger in the Fe-rich alloy.
In practice, αa(x, T ) is approximated as:

αa(x, T ) ≈ a1(x0)

aFM(x0)

XFFAP(x, T + δT ) − XFFAP(x, T − δT )

2δT
, (3.14)

where δT = 50 K. Figs. 3.6 and 3.7 compare the anomalous contribution to
the thermal expansion coefficient of Fe100−xNix at temperature T calculated via
Eq. 3.14 to that given by Eq. 2.5, for various (x, T ) pairs. As observed in Figs. 3.6
and 3.7, the model results agree qualitatively and quantitatively well with the rest
of the data. Therefore, it is concluded that Eq. 3.12 combined with the input data
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Figure 3.6. Anomalous contributions to the linear thermal expansion coefficient of a
random fcc Fe100−xNix at room temperature as a function of concentration in percent.
The black circles and the orange circles show the values calculated via Eq. 3.14 and
Eq. 2.5 respectively.

taken from Figs. 2.1 and 3.3 can successfully explain the basic mechanism behind
the anomalous thermal expansion in ferromagnetic random fcc Fe-Ni alloys. It ap-
pears that the coefficient αa is controlled by the derivative of XFFAP with respect
to temperature.

3.4 Conclusion

This chapter has been devoted to investigating the intrinsic cause of the concen-
tration and temperature dependence of the anomalous contribution to the thermal
expansion coefficient in ferromagnetic random fcc iron-nickel alloys. The process
has involved several steps.
First of all, the equilibrium average lattice constant of Fe100−xNix at temperature
T in a PDLM state has been estimated and plotted against XFFAP, for various
pairs (xFU, xNU). It is strongly negatively correlated with XFFAP. That is, a
strong negative correlation between the equilibrium average lattice parameter and
XFFAP has likewise been observed in ab initio data. In addition, the slopes of all
the regression lines differ only a little from each other.
Second, the mechanism behind the tendency of the spacing to be reduced as XFFAP

is increased, has been analyzed. A model system based on a Hamiltonian written
as the sum of Lennard-Jones energies and a classical Heisenberg Hamiltonian has
been introduced. The equilibrium average lattice parameter is a solution to an
equation involving XFFAP. In agreement with ab initio data, the model results
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Figure 3.7. Anomalous contributions to the linear thermal expansion coefficient of a
random fcc Fe65Ni35 as a function of temperature. The black circles and the orange
circles show the values calculated via Eq. 3.14 and Eq. 2.5 respectively.

exhibit a strong negative correlation. The data are consistent with the idea that
the slope of the correlation line between the equilibrium average lattice constant of
a random fcc Fe100−xNix in a PDLM state and the probability XFFAP is governed
by the derivative of the mean exchange energy between iron-iron first-neighbour
pairs with respect to the mean nearest-neighbour bond length.
Finally, the anomalous contribution to the thermal expansion coefficient has been
modeled. The formulation of the theory relies on previously described effects. The
theoretical results agree qualitatively and quantitatively well with the correspond-
ing data obtained in Chapter 2. The model can successfully explain the basic
mechanism behind the anomalous thermal expansion in ferromagnetic random fcc
Fe-Ni alloys. It has appeared that the coefficient αa is controlled by the tempera-
ture derivative of the probability XFFAP.
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Chapter 4

The Invar Effect in

Iron-Platinum and

Iron-Palladium Alloys

Chapter 3 has been devoted to understanding in a qualitative manner the basic
process leading to the concentration and temperature dependence of the anoma-
lous contribution to the thermal expansion coefficient in ferromagnetic random
fcc iron-nickel alloys. The anomalous contribution to the expansivity has been
modeled as αa = a1(x0)/aFM(x0)(∂XFFAP/∂T )x. αa(x, T ) has been calculated
for various concentrations and temperatures; a1(x0) and aFM(x0) have been esti-
mated by means of first-principles methods, whereas XFFAP(x, T ) is the result of
a mean-field Ising model. It has been concluded that αa in ferromagnetic random
fcc iron-nickel systems seems to be governed by the derivative of XFFAP with re-
spect to temperature.
As mentioned in Chapter 1, besides ferromagnetic disordered fcc Fe-Ni materi-
als, there are other fcc Fe-based alloys exhibiting a spontaneous magnetization, a
chemical short-range order and an anomalous thermal expansion coefficient below
a certain temperature. Naturally, the question arises whether it is possible that
the Invar effects in Fe65Ni35, Fe72Pt28 and Fe68Pd32 have a common origin.
In this chapter, a step towards the formulation of a sensible answer to the above
question is taken.

4.1 Calculating Magnetic Properties

As a starting point, the probability that an Fe-Fe nearest-neighbour pair shows
anti-parallel moments (xFFAP) is evaluated as a function of temperature for ferro-
magnetic random fcc Fe72Pt28 and Fe66Pd34 alloys. To carry out the calculations,
the method described in Section 2.3 is adopted. The chosen values for the input
parameters of the mean-field Ising model are reported in Table 4.1 for Fe72Pt28

31
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SFe (µB) 1.42
SPt (µB) 0.16
JFeFe (meV) 1.2
JFePt (meV) 16
JPtPt (meV) 0
|(M − Mexp)/Mexp| 2 %
|(Tc − Tc,exp)/Tc,exp| 0.25 %

Table 4.1. The chosen values for the input parameters of the mean-field Ising model for a
ferromagnetic random fcc Fe72Pt28, along with the absolute value of the relative deviation
of the calculated saturation magnetization and the Curie temperature from experimental
results [9]. Note that the magnitude of the spin at the iron sites SFe and the platinum
sites SPt are derived from first-principles calculations for the fully magnetized system.
JFeFe, JFePt and JPtPt represent the exchange constants between the nearest-neighbour
iron-iron pairs, iron-platinum and platinum-platinum pairs.

and Table 4.2 for Fe66Pd34.
Fig. 4.1 shows the model results of xFFAP as a function of temperature for Fe72Pt28,
Fe66Pd34 and Fe65Ni35. It reveals striking similarities between the three curves.
For example, for each of the three systems, xFFAP increases with rising temperature
below Tc and cancels out above the magnetic ordering temperature. In addition,
it exhibits a strong dependence on temperature in a wide interval.

4.2 Existence of Negative Correlations

It is interesting to study the correlation between the equilibrium average lattice
constant of a random fcc Fe72Pt28 in a PDLM state and the probability that a
first-neighbour pair has each of its two sites occupied by Fe atoms and shows
anti-ferromagnetically aligned magnetic moments. It is also of interest to carry
out a similar analysis for a random fcc Fe66Pd34. The methods employed for the
calculations are described in Section 2.5. Fig. 4.2 depicts some predicted spacings
plotted against XFFAP. Once more, common features can be observed in the three

SFe (µB) 1.45
SPd (µB) 0.15
JFeFe (meV) 1.2
JFePd (meV) 35.1
JPdPd (meV) 0
|(M − Mexp)/Mexp| 3 %
|(Tc − Tc,exp)/Tc,exp| 0.5 %

Table 4.2. The same as in Table 4.1 but for a ferromagnetic random fcc Fe66Pt34. SPd,
JFePd and JPdPd are the analogous quantities to SPt, JFePt and JPtPt. The experimental
data are taken from Ref. [9].
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Figure 4.1. The probability that an Fe-Fe nearest-neighbour pair shows anti-parallel
moments in ferromagnetic random fcc Fe72Pt28, Fe66Pd34 and Fe65Ni35 alloys as a func-
tion of temperature, according to a mean-field Ising model.

systems. First, the average lattice parameter is strongly negatively correlated with
XFFAP. Second, the slope of the corresponding correlation line is in the order of
0.1 Å.

4.3 Origin of the Invar Effect

It has been shown in Sections 4.1 and 4.2 that some physical properties of ferro-
magnetic random fcc Fe72Pt28 and Fe66Pd34 solids are qualitatively identical to
those of a ferromagnetic random fcc Fe65Ni35. This is consistent with the idea
that the Invar effect has the same underlying mechanism in the three systems. To
test the validity of this theory, the anomalous contribution to the thermal expan-
sion coefficient of each of the two following materials, Fe100−xPtx for x = 28 and
Fe100−xPdx for x=34, is modeled as that of Fe65Ni35:

αa(x, T ) =
a1(x)

aFM(x)

(

∂XFFAP

∂T

)

x

(x, T ), (4.1)

where a1(x) and aFM(x) are estimated by means of first-principles methods. a1(x)
denotes the slope of the correlation line shown in Fig. 4.2, whereas aFM(x) repre-
sents the equilibrium average lattice constant for the fully magnetized state. In
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Figure 4.2. The predicted equilibrium average lattice constant of random fcc Fe72Pt28
and Fe66Pd34 systems in a PDLM state versus XFFAP, for several pairs (xFU, xNU),
according to EMTO computations. The slope of the correlation line for each of the
systems is denoted by a1.

practice, αa(x, T ) is approximated as:

αa(x, T ) ≈ a1(x)

aFM(x)

XFFAP(x, T + δT ) − XFFAP(x, T − δT )

2δT
, (4.2)

where δT = 50 K. Fig. 4.3 displays the anomalous term αa as a function of tem-
perature for the three alloys, according to the model. As expected, αa is negative
below the Curie temperature and cancels out above Tc; this is true for the Fe-Pt
alloy as well as the others.
An estimate of the thermal expansion coefficient of an Fe72Pt28 at temperature
T is given by the sum of the normal term αn(x, T ) evaluated for a random fcc
Fe65Ni35 alloy from the definition written in Section 2.2 and the anomalous term
αa(x, T ) calculated via Eq. 4.2 for an Fe72Pt28 alloy. The thermal expansivity of
an Fe66Pd34 at temperature T can be obtained in an analogous way. Calculated
results are reported in Figs. 4.4 and 4.5. A good qualitative agreement between
the model results and the experimental data [11, 12] is noticed. Thus, it is con-
cluded that the Invar effects in disordered fcc Fe72Pt28, Fe68Pd32 and Fe65Ni35
may originate from the same mechanism.
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Figure 4.3. The calculated anomalous contribution to the linear thermal expansion
coefficient of ferromagnetic random fcc Fe72Pt28, Fe65Ni35 and Fe66Pd34 alloys as a func-
tion of temperature. The contribution for Fe65Ni35 is calculated via Eq. 3.14. The
contribution for the other systems is evaluated via Eq. 4.2.

4.4 Conclusion

In a recent paper, the origin of the Invar effect in disordered fcc Fe-Pt alloys was
examined by applying the DLM formalism [25]. The mechanism behind the Invar
phenomenon was attributed to the weakening of the local Fe moments due to ef-
fects of thermally induced magnetic disorder.
In the present work, the DLM theory has been utilized to explain why disordered
fcc Fe-Pt and Fe-Pd alloys exhibit an extremely low thermal expansion coefficient
in a large temperature interval. It has been shown that some physical properties
of ferromagnetic random fcc Fe72Pt28 and Fe66Pd34 are qualitatively identical to
those of a ferromagnetic random fcc Fe65Ni35. These findings are consistent with
the idea that the Invar effect has the same underlying mechanism in the three
systems. To test the validity of this theory, the anomalous contribution to the
thermal expansion coefficient of the Fe-Pt and Fe-Pd systems has been modeled as
that of the Fe-Ni alloy. For all the bulk solids considered here, a good qualitative
agreement between the model results and experimental data for the expansivity as
a function of temperature has been observed. As a result, it has been concluded
that the Invar effects in disordered fcc Fe72Pt28, Fe68Pd32 and Fe65Ni35 may have
a common origin.
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Figure 4.4. The linear thermal expansion coefficient of ferromagnetic disordered fcc
Fe72Pt28 alloys. Results obtained by adding αa for a random fcc Fe72Pt28 calculated
via Eq. 4.2 to αn for a random fcc Fe65Ni35 evaluated from the definition written in
Section 2.2 are shown by diamonds. Experimental results are indicated by the orange
line [11].

Figure 4.5. The linear thermal expansion coefficient of a ferromagnetic disordered
fcc Fe-Pd alloys. Results obtained by adding αa for a random fcc Fe66Pd34 calculated
via Eq. 4.2 to αn for a random fcc Fe65Ni35 evaluated from the definition written in
Section 2.2 are shown by diamonds. Experimental results for an Fe68Pd32 are indicated
by the orange line [12].



Chapter 5

Summary of Papers

5.1 Paper I: The Local Environment Effects in an

FCC Fe50Ni50 Alloy

Paper I deals with the local environment effects on physical properties of a face-
centered cubic Fe50Ni50 alloy. The site-projected density of states, the magnetic
moment and the effective exchange parameter for an iron site in the system in a
collinear magnetic state are calculated by means of ab initio methods [35, 36, 37].
This is done for various states and different sites exhibiting different numbers of like
nearest-neighbours. As observed in Fig. 5.1, there exists a substantial dependence
of the magnitude of the magnetic moment on the local chemical environment for
the average lattice constant (a) of 3.45 Å. In addition, the effective exchange
parameter seems to be negatively correlated with the number of iron atoms in the
first coordination shell of the atom. Furthermore, upon close inspection of Fig. 5.2,
one notes that the highest peak in the spin-up density of states has a tendency to
shift towards the Fermi energy as the number of iron first-neighbours increases for
a =3.49, 3.72 Å.

37
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Figure 5.1. (a) The local magnetic moment and (b) the effective exchange parameter
for an Fe site in an fcc Fe50Ni50 alloy in a collinear magnetic state plotted against the
average lattice constant, for various sites. The legends indicate the numbers of Fe and
Ni atoms in the first coordination shell of Fe atoms.

5.2 Paper II: Static Ionic Displacements in an

FCC Fe50Ni50 Alloy

Paper II is concerned with the static ionic displacements in a face-centered cubic
Fe50Ni50 alloy in a ferromagnetic state. The relaxed ionic positions are calculated
by means of the Projected Augmented Wave method (PAW) [38] as implemented
in the Vienna Ab Initio Package (VASP) [39]. Results are displayed in Fig. 5.3.
According to the calculations, the effect of the structural relaxation on the mean
iron-iron nearest-neighbour bond length is relatively small. However, it is found
that the distance between the iron-iron first-neighbour pairs shows a large dis-
persion compared with the change of the average distance due to the static dis-
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Figure 5.2. The site-projected density of states (DOS) for an Fe site in an fcc Fe50Ni50
alloy in a collinear magnetic state as a function of the energy, for various sites and
average lattice spacings. a = 3.72 Å corresponds to a high-spin ferromagnetic state (a)
and a = 3.49 Å corresponds to a state in a vicinity of the first spin flip transition (b).
The legends indicate the numbers of Fe and Ni atoms in the first coordination shell of
Fe atoms.

placements. Analogous calculations are carried out for iron-nickel and nickel-nickel
pairs. Analogous conclusions are drawn.
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Figure 5.3. Nearest-neighbour bond lengths in a ferromagnetic fcc Fe50Ni50 alloy. The-
oretical results are shown by vertical solid lines, filled diamonds and an horizontal dashed
line. Experimental results from Ref. [40] are shown by open circles and an horizontal
dot-dashed line.

5.3 Paper III: Magnetic Structures in the Fe-Rich

FCC Fe-Ni Alloys

Paper III investigates the total energy of face-centered cubic iron and iron-nickel
alloys as a function of the average lattice constant for various magnetic states.
The ab initio total energy calculations are carried out within the density func-
tional theory (DFT) using two complementary techniques, one based on the Exact
Muffin-Tin Orbital (EMTO) theory within the coherent potential approximation
(CPA) and another one based on the Projector Augmented-Wave (PAW) method.
Results for fcc Fe are displayed in Fig. 5.4, whereas results for fcc Fe64Ni36 and
Fe65Ni35 are shown in Figs. 5.5 and 5.6. As observed in Fig. 5.4 and 5.5, the ground
state is ferromagnetic for a “small” average lattice constant but non-magnetic for
a “large” average lattice parameter. In between, there is an interval where the
total energy of several magnetic states lies in a narrow energy range. The region
shifts off the equilibrium volume towards lower volumes with increasing Ni con-
centration. The ferromagnetic state is stable for most of the compositions. The
partial disordered local moment state does not compete with other configurations,
so earlier works which emphasize the importance of the PDLM and DLM states
for Invar alloys [43] are not supported by the present study. The most important
competing magnetic states are the spin spiral state and the ferrimagnetic spin-flip
state. The latter occurs as the first transition from the ferromagnetic high-spin
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state at large volumes upon decreasing of the volume. Though its precise location
with respect to the equilibrium volume in Invar alloys depends on the approxi-
mation to the exchange-correlation functional used, it is shown that it is quite
possible that the ground state magnetic structure of the alloys is affected by the
spin flipped states. The sites with flipped spins can serve as nucleation centers for
the formation of the noncollinear magnetic order in the system.

Figure 5.4. The total energy of an fcc Fe as a function of the lattice parameter, for dif-
ferent magnetic states, according to EMTO calculations performed within the generalized
gradient approximation using the parameterization of Perdew, Burke and Ernzerhof [41].
Shown are results for the nonmagnetic (open circles, solid line) and ferromagnetic states
(open squares, solid line), 1k (diamonds) and double layer (X, solid line) AFM states,
as well as for the spin spiral state (filled circles, dashed line). The latter corresponds to
the planar spin spiral with the wave vector q along the Γ-X direction in the Brillouin
zone which minimize the total energy for the spin spiral. The dependence of the wave
vector q and magnetic moment for the spin-spiral state on the lattice parameter is shown
in the inset in the figure. Also shown are the total energies for the partial disordered
local moment states (dotted lines) with a relative fraction of the spin-down component
10 (triangles up), 20 (triangles left), 30 (triangles down), 40 (triangles right), and 50%
(stars).
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Figure 5.5. The total energy of an fcc Fe64Ni36 alloy as a function of the average lattice
parameter, for different magnetic states, according to EMTO calculations.

Figure 5.6. The total energy of an fcc Fe65Ni35 alloy as a function of the average
lattice parameter, for the spin flipped (SF, triangles) and ferromagnetic (FM, circles,
dashed line) states, according to the PAW calculations carried out within the generalized
gradient approximation using the parameterization of Perdew and Wang [42].
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5.4 Paper IV: Local Magnetovolume Effects in an

FCC Fe65Ni35 Alloy

A systematic ab initio study of static ionic displacements in a face-centered cu-
bic Fe65Ni35 alloy is carried out. Results can be seen in Figs. 5.7, 5.8, 5.9, 5.10
and 5.11. Theoretical results for the magnitudes of the average Fe-Fe, Fe-Ni,
and Ni-Ni 〈110〉 bond vectors agree well with experimental measurements [44].
In addition, it is observed that in collinear ferrimagnetic states, iron-iron nearest
neighbour pairs with anti-parallel local magnetic moments are shorter on average
than those with parallel moments. Furthermore, considering different states (fer-
romagnetic, non-magnetic and collinear ferrimagnetic states) for the same average
lattice spacing, it is shown that the magnetic structure strongly influences some
local geometrical properties of the alloy. For example, a transition from a ferro-
magnetic state to a collinear ferrimagnetic state induces a significant contraction
of the volume associated with an iron site where the moment flips. A model sys-
tem based on a Hamiltonian written as the sum of Lennard-Jones energies and
a classical Heisenberg Hamiltonian is introduced. It yields structural properties
which are qualitatively similar to those obtained ab initio. It is found that some
of the phenomena can be classified as magnetovolume effects.

Figure 5.7. The magnitudes of the average Fe-Fe, Fe-Ni and Ni-Ni 〈110〉 bond vectors
(relative to the mean distance between first neighbors) in fcc Fe-Ni alloys. Triangles:
ab initio results for an Fe65Ni35 alloy in the lowest energy ferromagnetic state. Crosses:
experimental results for an Fe63Ni37 alloy at 60 K [44].
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Figure 5.8. Characteristics of the distributions of Fe-Fe, Fe-Ni, and Ni-Ni nearest
neighbour bond lengths in an fcc Fe65Ni35 alloy in various states, according to ab initio

calculations. (a): data for the lowest energy ferromagnetic state. (b): data for the lowest
energy non-magnetic state.

Figure 5.9. The average Fe-Fe nearest neighbour bond lengths in a collinear ferri-
magnetic fcc Fe65Ni35 alloy as functions of the average lattice constant, according to ab

initio calculations. The Fe-Fe pairs are distinguished on the relative orientation of their
moments: parallel (triangles up) or antiparallel (triangles down).



5.5 Paper V: Origin of the Invar Effect in Fe-Ni Alloys 45

Figure 5.10. The average local volume of an Fe atom coordinated with n like nearest-
neighbours as a function of n, according to first-principles calculations. Crosses, triangles
up and triangles down: results for the non-magnetic, ferromagnetic and collinear ferri-
magnetic state with a = 3.583 Å.

5.5 Paper V: Origin of the Invar Effect in Fe-Ni

Alloys

Certain alloys of iron and nickel (so-called “Invar” alloys) exhibit almost no ther-
mal expansion over a wide range of temperature. It is clear that this is the result
of an anomalous contraction upon heating which counteracts the normal thermal
expansion arising from the anharmonicity of lattice vibrations. This anomalous
contraction seems to be related to the alloys’ magnetic properties, since the effect
vanishes at a temperature close to the Curie temperature. However, despite many
years of intensive research, a widely accepted microscopic theory of the Invar effect
in face-centered cubic Fe-Ni alloys is still lacking. Here a simple theory of the Invar
effect in these alloys is presented. It is based on Ising magnetism, ab initio total
energy calculations, and the Debye-Grüneisen model. It is shown that this theory
accurately reproduces several well known properties of these materials, including
Guillaume’s famous plot of the thermal expansion coefficient as a function of the
concentration of nickel (see Fig. 5.12). The present approach supports the idea
that the average lattice constant is governed by a few parameters, including the
fraction of iron-iron nearest-neighbour pairs.
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Figure 5.11. The average local volume of an iron atom in a fcc Fe65Ni35 in (a) non-
magnetic, (b) ferromagnetic, and (c) collinear ferrimagnetic states, versus the number of
iron atoms in the first coordination shell. Green circles: model results. Blue crosses: ab

initio results.

Figure 5.12. The linear thermal expansion coefficient of a disordered fcc Fe100−xNix
at room temperature as a function of concentration in percent, according to the model
(diamonds) and experiments [4] (orange line).
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