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Linköpings universitet, SE-581 83 Linköping, Sweden
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Hey...
What did you hear me say?
You know the difference it makes
What did you hear me say?
Yes, I said it’s fine before
But I don’t think so no more
I said it’s fine before

I’ve changed my mind
I take it back
Erase and rewind
’Cause I’ve been changing my mind
Erase and rewind
’Cause I’ve been changing my mind
I’ve changed my mind

The Cardigans





Abstract

Correct certificate revocation practices are essential to each public-key in-
frastructure. While there exist a number of protocols to achieve revocation
in PKI systems, there has been very little work on the theory behind it:
Which different types of revocation can be identified? What is the intended
effect of a specific revocation type to the knowledge base of each entity?

As a first step towards a methodology for the development of reliable
models, we present a graph-based formalism for specification and reason-
ing about the distribution and revocation of public keys and certificates.
The model is an abstract generalization of existing PKIs and distributed
in nature; each entity can issue certificates for public keys that they have
confidence in, and distribute or revoke these to and from other entities.

Each entity has its own public-key base and can derive new knowledge
by combining this knowledge with certificates signed with known keys.
Each statement that is deduced or quoted within the system derives its
support from original knowledge formed outside the system. When such
original knowledge is removed, all statements that depended upon it are
removed as well. Cyclic support is avoided through the use of support
sets.

We define different revocation reasons and show how they can be mod-
elled as specific actions. Revocation by removal, by inactivation, and by
negation are all included. By policy, negative statements are the strongest,
and positive are the weakest. Collisions are avoided by removing the
weaker statement and, when necessary, its support.

Graph transformation rules are the chosen formalism. Rules are either
interactive changes that can be applied by entities, or automatically ap-
plied deductions that keep the system sound and complete after the appli-
cation of an interactive rule.

We show that the proposed model is sound and complete with respect
to our definition of a valid state.
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Chapter 1

Introduction

In this thesis we present a conceptual graph-based model to better un-
derstand the semantics of certificate revocation. The model describes the
knowledge of all entities in a system simultaneously, and is distributed in
nature. In other words, we allow every entity to issue, distribute and re-
voke its own certificates to and from others.

Our main purpose is to understand and clarify the concept of revoca-
tion in the context of a public-key infrastructure.

1.1 Public-Key Technology

Companies and organizations in today’s world rely heavily on informa-
tion systems to conduct their business. Crucial to these actors are security
aspects that give confidence and legal validity to their transactions, for ex-
ample:

• identity verification — establishing confidence in the identity of other
parties;

• confidentiality of information — hiding sensitive information from
all but the authorized parties;

• integrity of digital files — establishing confidence that information
has not been tampered with;

• non-repudiation of contractual agreements — binding parties to their
signature on a contract;
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• time-stamping of transactions — knowing when a transaction took
place.

A public-key infrastructure, or PKI, can supply all of these services to an
information system through the use of public-key cryptography.

For more detailed information on public-key cryptography and PKI,
see for example Handbook of Applied Cryptography [MvOV97] or Understand-
ing PKI: Concepts, Standards, and Deployment Considerations [AL02].

1.1.1 Public-Key Cryptography

If Alice and Bob want to exchange secret information using classical sym-
metrical (or secret-key) cryptography, they each need a copy of a mutual
secret key. If Bob also wants to exchange information with Carol, he needs
to share another key with her, and so on. However, in public-key crypto-
graphy, there is no need for separate key pairs for each pair of collabora-
tors.

In public-key cryptography, the key that encrypts a piece of informa-
tion is not the same key that can decrypt it. Instead of sharing secret keys
with their collaborators, each user has their own public-key pair. Such a
key pair consists of one private key and one public key, created together by
the use of a specific mathematical formula. The private key is kept secret by
its owner, but the public key can be distributed to any user. The security of
public-key cryptography rests on the mathematical difficulty in calculating
one of the keys in a pair, given the other key. Examples of such intractable
problems are factoring large integers, computing square roots in large in-
teger fields or finding the discrete logarithm of elements of a cyclic group.
This way only the person who has generated a key pair knows the private
key — as long as it is kept secret, of course.

Information that is encrypted with an entity’s public key can only be
decrypted using the corresponding private key. Anyone who knows the
public key of Bob can encrypt data for him, but only Bob — who knows
the private key — can decrypt it. In other words, Alice and Carol can both
use Bob’s public key to send him information, but neither one can decrypt
what the other has sent.

Assume that Bob has a key pair, B.K and B.k (we use a capital K to
denote the public key and a lowercase k to denote the private key). If Alice
wants to share some secret information S with Bob, she encrypts S using
Bob’s public key B.K, and transmits the encrypted data to Bob. When Bob
receives it, he applies the decryption algorithm with his private key B.k,
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which produces S 1. Since Bob is the only one with access to B.k, he is
the only one who can decrypt the message. This is how confidentiality is
achieved in public-key cryptography.

Digital Certificates

In order for the scheme described above to work, Alice must be convinced
that B.K is in fact Bob’s key and not the key of some adversary Eve (if
it were, Eve would be the one who could decrypt S instead!). This can
be achieved through the use of digital signatures. When the decryption al-
gorithm is applied to an unencrypted data piece using the private key, a
digital signature is produced. By appending this signature to a message,
anyone with knowledge of the corresponding public key can apply the
encryption algorithm to the signature and check if the result equals the
message that was signed.

One way to use signatures is to have a TTP (trusted third party) vouch-
ing for the authenticity of B.K. Assume that Alice has a properly verified
copy of the TTP’s public key, perhaps coded into Alice’s hardware, or re-
ceived through certified mail. The TTP can append a digital signature to a
copy ofB.K, vouching for its authenticity. This signed statement is what is
known as a digital certificate. Since Alice trusts the TTP, verifying the signa-
ture on the certificate will give her confidence in the authenticity of B.K,
as well as in the integrity of the information — if the signature can be veri-
fied, Alice will know that no one has tampered with the information since
the signature was made.

Figure 1.1 shows the structure of a version 3 X.509 certificate, the most
widely-used type of certificate. Most of the field names should be self-
explanatory. The signature field indicates the algorithm used in the digital
signature. The validity field specifies a time frame when the certificate
is to be considered valid, unless it has been revoked. Possible extensions
include authority and subject key identifier, key usage (i.e. what the key is
to be used for, e.g. signatures, non-repudiation, key agreement etc), policy
constraints, and more.

1In reality, encrypting and decrypting large amounts of data with public-key cryptog-
raphy is computationally very slow. Therefore, actual encryption protocols use a combi-
nation of public-key and symmetric cryptography. In the context of this thesis, we are not
concerned with that level of detail about the encryption particulars, so we will model the
process as if it used public-key encryption only.
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Version Serial
Number

Signature Issuer Validity Subject
Subject
Public
Key Info

Issuer
Unique ID

Subject
Unique ID Extensions

Digital
Signature

Signed by authorized CA (issuer)

Figure 1.1. The structure of an X.509 version 3 certificate [AL02]

1.1.2 Identity

The concept of identity is inherently linked to digital certificates, because
most certificate types bind a key to an entity’s identity. However, capturing
the identity of an entity in a way that is globally unique and meaningful to
others is not a trivial task.

The X.509 standard [X50900] is based on the X.500 Distinguished Name
(DN) structure [X50004]. The aim of the X.500 model is to assign every en-
tity a global, unique identity, based on a hierarchical structure (e.g. country-
company-unit-given name). The effect of an X.509 certificate is a binding
between such a Distinguished Name and a public key. In practice, since
there is no worldwide X.500 directory, deployers of X.509 PKIs often set up
local (e.g. company-wide) X.500 directories.

The opponents of X.509-based PKIs argue that the creation of a world-
wide directory is unlikely, and that a DN may be relevant in some contexts
but not in others. For example, when the government employee Bob wants
to contact Alice Smith in another department, the DN structure is obvious
and well-known to him, but when Alice’s old friend Carol wants to do the
same, she has no idea which of all the possible Alice Smiths in that depart-
ment to choose. Carol can obtain certificates for all possible Alice Smiths,
but unless she can understand the DN structure they are of no use to her.

An alternative view of identity is to use local names. Each user then
creates a local namespace with their own preferred nicknames of other en-
tities, and issue certificates for these entities. The local name is the pair of a
public key and this nickname (an arbitrary identifier) — thus, the identity
of a user is represented by the public key(s) it controls. This is the view
adopted by SPKI/SDSI. Ellison [CE96] presents different protocols to use
for key exchange between entities, depending on the relationship between
them. The most complex scenario is when the old friends Alice and Bob
meet on the Internet and want to establish a secure channel — the key ex-
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change is susceptible to a man-in-the-middle attack. By exchanging ques-
tions and answers about common experiences, Alice and Bob can decrease
the probability of a successful attack, since it is unlikely that someone could
guess all the answers to these questions.

1.1.3 PKI

A PKI is a digital infrastructure that provides security services based on
public-key cryptography to an information system. At the core of this in-
frastructure is the concept of a digital certificate: a data structure binding
an entity’s name with a public key, digitally signed by a (trusted) party 2.

Centralized PKIs

Typical business-oriented PKIs are centered around a certification authority,
or CA. The CA is a trusted authority that creates certificates for the users’
public keys. The public key of the CA itself is distributed in a secure, out-
of-band procedure to the users, so that they are able to verify the signature
on the certificates. In large PKI systems, there may be a hierarchy of CAs,
each responsible for certifying a subset of the users. Certificates are typ-
ically stored in a certificate repository, like a phone book where users can
retrieve the certificates of others.

Public keys can not be used indefinitely. As cryptography and crypt-
analysis advance, and computers become more powerful, key lengths may
need to be adjusted. It is also common to limit the amount of data pro-
tected by a single key. Therefore, certificates typically expire at a certain
point in time, marked on the certificate. After this time the certified key is
not accepted for use. However, expired certificates must still be accessible
to decrypt data or to verify signatures that were made before the key ex-
pired. This key history management is a service provided by most PKIs. A
time-stamping service supplies a trusted, common reference time source and
adds signed time stamps to documents whenever necessary.

It is also necessary to include a revocation mechanism in the PKI. Keys
may be compromised, or simply not be needed any more, and the CA must
be able to revoke certificates for such keys, rendering them unusable even

2Numerous certificate formats exist for different PKI systems, e.g. X.509, SPKI/SDSI,
PGP etc. These formats define various extensions and attributes as part of the certificate.
In this context, we only care about the binding that is made between a user and a key, and
the signature on this binding. Therefore our certificates are abstracted to include only these
bare necessities.
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though they have not yet reached expiration. The most common mech-
anisms for spreading revocation information are certificate revocation lists
(CRLs), certificate revocation trees (CRTs), and the online certificate status pro-
tocol (OCSP). CRLs are periodically issued lists of revoked certificates, and
have many variants such as redirect CRLs, indirect CRLs, delta CRLs etc.
Every time a certificate is used, the most recent CRL is checked to see that
it has not been revoked. CRTs are also issued periodically, but are based
on the hash tree, a data structure that is more efficient than a CRL. OCSP,
on the other hand, is a real-time protocol where users request certificate
status information online. A responder server gives signed responses to
these requests. Given that the responder has access to fresh revocation in-
formation, the latency of this protocol is lower than that of the periodically
issued mechanisms, but signing each request slows down performance and
enables denial-of-service attacks.

The most important centralized PKI models are based on X.509 [X50900],
an ISO/ITU-T standard specifying the formats of general certificates and
CRLs. The IETF (Internet Engineering Task Force) working group respon-
sible for X.509 certificates is known as PKIX [PKIX05]. The PKIX work
specifies a PKI structure for the Internet, based on X.509 certificates, but
including many other parts, e.g. protocols for certificate management, cer-
tificate policy framework, time-stamping protocols etc.

The ISO Technical Committee 68 has done work on standardizing a PKI
for the financial industry, also based on X.509 certificates.

Decentralized PKIs

A PKI does not have to be based on a single, central CA or a CA hierarchy.
An alternative is to let all users act as certificate authorities in a decentral-
ized PKI. In this scenario users issue and disseminate certificates directly
to one another, either on-line or through some out-of-band procedure. De-
centralized PKI models are mostly used in user clusters based on mutual
acquaintances.

One of the most well-known frameworks is OpenPGP [OpenPGP05],
an IETF standard based on the older PGP (Pretty Good Privacy) model.
OpenPGP certificates bind a public key to a person, identified by a UserID.
The UserID is chosen by the keyholder and consists of a common name and
an email address. Since email addresses are based on DNS (Domain Name
System) which provides globally unique identifiers, the name space is truly
global. OpenPGP is a popular framework within the Internet community.

In OpenPGP certificates are issued freely by users, so when Bob looks
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for Alice’s public key he may have a number of certificates for it, each
signed by a different user. The problem for Bob is to judge whether or
not he can trust these signers. To this end, OpenPGP incorporates a Web
of Trust, a fault tolerance mechanism to help users make acceptance deci-
sions. Bob has certain friends and acquaintances within the system, whom
he trusts to different degrees. If a sufficient number of these known users
attest the validity of Alice’s key (e.g. three totally trusted users, or six mar-
ginally trusted users), Bob will accept Alice’s key.

Revocation of an OpenPGP certificate is typically done by its owner, i.e.
the holder of the public key pair, or a user whom the owner has designated
as a revoker. The revocation is communicated to other users by posting the
information on a keyserver 3. This procedure is called key revocation. It is
also possible for signers of a certificate to revoke their signatures if they no
longer believe in the binding, in a procedure called signature revocation.

SPKI/SDSI [EFL+99, CE04] is a decentralized PKI with its roots in the
research community. It has a local naming scheme, and supports two types
of certificates: one for defining local names and — unlike the other PKI
models described here — one for bestowing authorization on a user. With
authorization certificates user can delegate authorizations to others, with
or without a grant option (a right to delegate further). The authorization
must be accepted by the reference monitor for the resource. For Alice to
prove that she is authorized access, she must prove that there is a chain of
local names from one of the entries in the ACL (access control list) for the
resource, to a key that she possesses.

Revocation in SPKI/SDSI is handled by CRLs. Each certificate can only
be revoked by a specific key, given in the original certificate. The model
only allows one CRL at a time, signed by a given key. If there is a valid
CRL signed by the revocation key of certificate ci, that does not include ci,
then ci is concluded to be valid.

SPKI/SDSI has not reached widespread usage, but the model has gen-
erated a fair amount of research [CE96, TA98, JRH00, CEE+01, HvdM03].

Note that a decentralized PKI can have either a local or a global name
space. Decentralization in this context only refers to the fact that all users
can issue certificates.

3One of the reasons for a revocation is that the private key could have been lost, keeping
the key owner from decrypting messages to them, and what is worse: keeping them from
signing a revocation certificate. To preclude this situation, revocation certificates should be
created at key generation time, and stored offline until needed.
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1.2 Motivation

Consider figure 1.2, a simple graph that is a first introduction to our formal-
ism (more attributes will later be added to the graph elements, but they are
not necessary here). The circular nodes represent the entities A, B, C, and
D, and the boxes on the edges between them represent a digital certificate
for B’s public key B.K, signed with A’s private key A.k. The certificate is
passed from A to B, from B to C, and then on to D.

The reason that B can pass the certificate on to C is that they have first
received it from A. Since A is the originator, every copy of the certificate
must be connected to A by a path of certificates. If A were to take back
the information from B — because it is no longer valid for some reason —
the information to C should also be removed. Following this, the certifi-
cate between C and D must also be removed. This is a basic example of
revocation.

A A.k | B.K B A.k | B.K C A.k | B.K D

Figure 1.2. Entities spreading information

Now consider figure 1.3. In this graph, C receives a copy of the cer-
tificate directly from A, in addition to the one they get from B. If A were
to revoke B’s copy of the certificate, and hence the edge between B and
C was removed, C still has the information directly from A and can there-
fore still tell D about it. In this case, the edge from C to D should not be
removed.

A.k | B.K

A A.k | B.K B A.k | B.K C A.k | B.K D

Figure 1.3. Receiving information from several sources

The Merriam-Webster dictionary explains the act of revoking as ”to an-
nul by recalling or taking back”. Thus, revocation of a certificate could be
the act of a user who recalls a certificate previously passed to another user.
Somehow, the revocation must cascade in the system to make sure that no
information is derived from obsolete certificates.
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This description of revocation seems simple enough at first glance. How-
ever, even in such a specific environment as a PKI — where all the infor-
mation passed consists of certificates, each on the same form — one has to
be very careful when defining what is being revoked. Is it the key itself?
Is it the binding between the user and the key? Similarly, there can be a
number of reasons why a revocation should take place. The key may have
compromised, or the owner may simply not need the key any longer.

The simplest way to revoke a certificate is to remove it from the system,
but that is not the only way to annul the information it represents.

Expiration, or time-out, of a public key is one way to remove a valid
key from the system. Thus, we regard it as a form of revocation.

A stronger way to revoke a certificate is to issue its inverse; if there was
previously a certificate binding B and their public key B.K, the inverse
would be a certificate stating that B.K is not B’s public key. Note that
this annulment will be time-persistent in the sense that any subsequent
certificates on the same form as the first (positive) one, will have to deal
with the presence of the negative certificate.

Entities can use the information in a certificate to deduce new infor-
mation. For example, if Alice receives a certificate that Bob has signed
for Carol’s key C.K, and Alice knows Bob’s public key, she can verify the
signature on the certificate and deduce knowledge about C.K. When a cer-
tificate is revoked, the information obtained using the revoked key should
be removed as well. The extent of the subsequent removals depends on
the reason for the revocation. If the key has expired (but was valid at one
time), information derived from the previous knowledge of the key may
still be valid, but no additional information should be derived using the
obsolete key. If the key has been compromised (and therefore may not have
been valid in the past) then other certificates derived using this knowledge
should be recursively revoked.

We consider any kind of annulment of information — whether by re-
moval, expiration or by issuing the inverse — to be a form of revocation,
and investigate the results of all these actions.

Our aim is to understand the meaning of revocation in the context of
a decentralized public-key infrastructure — not to find an efficient imple-
mentation for it, but to investigate the implications of a revocation and how
these implications depend on the reasons for the revocation. While revo-
cation is our main focus and concern, certificate distribution must also be
modelled. The reason for this is twofold: in part to show the structure of
chains that revocation must act upon, in part to show what actions entities
are allowed to perform on revoked certificates of different types.
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1.2.1 Cycles

Unlike hierarchical models with a CA that distributes every certificate, in a
decentralized PKI care must be taken to avoid cycles in certification paths.
Consider figure 1.4, a graph describing the spreading of a certificate for
B.K, signed with A.k. The edge from A to A marked with a double box
represents their outside public-key knowledge of B.K. In other words, A
has established confidence in B.K through some secure out-of-band pro-
cedure. The other edge from A to A represents A’s knowledge of their
own keypair (k,K). A uses this private key and signs a certificate for B.K,
which is distributed toC, who in turn quotes it to other entities. A’s public-
key knowledge must be in place before the certificate can be created or
quoted, and it can be viewed as the root of the paths for quotations of this
particular certificate.

B.K
+

k | K
+

A A.k | B.K
+

D A.k | B.K
+

A.k | B.K
+

C A.k | B.K
+

E

Figure 1.4. A cycle example

From C’s point of view, there are two incoming edges with the certifi-
cate, and one outgoing edge with a quotation of it. However, from a global
point of view, it is only the edge from A that connects C to A’s outside
knowledge, which supports all the other certificates. Now assume that
A removes the edge between themselves and C. C’s link to A’s outside
knowledge has been severed, but C is unaware of this — they still have an
incoming edge from E, and as far as C can tell, this supplies support for
their outgoing edge. Globally, we can see that there is a cycle involving C,
D and E, but in the step-by-step procedure of a revocation only one node
at a time is considered. We need a way to capture these types of patterns
and deal with cycles when certificates are revoked.

Paths also form through deductions, as shown in figure 1.5. In the fig-
ure, an entity A receives a certificate signed by B for C.K. Since A has
public-key knowledge of B.K, they can verify the signature and deduce
public-key knowledge of C.K. This knowledge depends on B’s certificate
for C.K, so that if A loses that support, the deduction should be removed.
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B.k | C.K
+

A C.K
+

B.K
+

Figure 1.5. Path forming through deduction

If A has spread their knowledge to others by signing a certificate for C.K
and a cycle has formed, this must also be detected.

1.3 Our Approach

Many researchers use graphs to illustrate and concretize their ideas. We
consider graphs themselves to be a powerful tool for modelling and rea-
soning about systems, and we have chosen to take advantage of their ex-
pressive and intuitive properties. Our formalism of choice is a graph and
graph transformation rules. The information state of an abstract PKI is
captured in a graph which includes all the entities, and the certificates they
have passed to each other. The graph transformation rules define allowed
adjustments — additions and revocations — to the knowledge and infor-
mation, as well as deductions adding new knowledge.

The system we have modelled is not a translation of any existing frame-
work or paradigm (such as X.509 or PGP). Instead, the purpose of the
model is to define a decentralized system for certificate distribution and
revocation under the given assumptions that users act with local knowledge
only. There is no central authority with a complete overview, nor is it pos-
sible for any entity to take global actions. With the model in place, we in-
vestigate what revocation means in this context, and how the assumption
of localness has affected the effect of the revocation mechanisms.

No specific assumptions are made on the way distribution or revoca-
tion are implemented. In particular, we do not deal with CRLs, which are
a specific implementation chosen to represent specific information. Our
model is not affected by alternative choices on the distribution of the infor-
mation about revoked certificates (e.g. broadcasting).

We assume that there is a secure out-of-band method for entities to es-
tablish confidence in keys. Keys may be shared via some physical channel,
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e.g. in a letter or via a phone call, or they may be distributed electroni-
cally but verified offline, e.g. by comparing the hash value of the key to the
so-called fingerprint of the key, which may be distributed out-of-band.

Our view of identity is that an entity is a collection of public keys. For
simplicity we assume a global name space, i.e., a user is known by the same
name to every other user.

To handle the cycle problem one can either prohibit cycles to form or
handle them at revocation time, making sure that cycles are not considered
as support. As we want to allow ”free speech” in our system — entities
should be able to spread information freely — we have opted for the latter
approach. Our solution is to include support sets below every certificate.
A support set is a representation of the acyclic paths that connect that cer-
tificate to an outside knowledge. This makes it possible to see when a
certificate is disconnected from all its supporting paths.

1.4 Outline

In this chapter, we have already presented the background and motiva-
tion for this research. The following chapter will present related work. In
chapter 3 we will give an introduction to the theory of graphs and graph
transformations. This material is largely an overview based on general
graph theory, but the definition of the graph morphism and the matching
condition have been adapted to suit our purposes. Chapter 4 presents our
terminology and gives some definitions, notably the definition of a valid
state and the localness assumptions. The C-graph model with graph trans-
formation rules for modelling the distribution and revocation of public-key
knowledge and certificates is presented in chapter 5. This chapter consti-
tutes the main part of the work. We give flowcharts that describe how
the revocations propagate through the system in chapter 6, where we also
analyze the soundness and completeness of the rules with respect to our
valid state definitions. Here, the reader can also find a demonstration of
parallel and sequential independence within and between the rule layers,
respectively. Chapter 7 decribes how some aspects of the model evolved
over time, as well as gives suggestions for extending the model. Finally, a
discussion and conclusions are given in chapters 8 and 9.
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Related Work

In this chapter we will present previous work that is related to our research.
The work has been divided into three categories: first we present other for-
malisms for modelling and reasoning about public-key certificates; next
some work that has been done on cycle detection; and finally related pa-
pers on the topic of revocation.

2.1 Formalisms

Numerous models for the reasoning about public-key certificates have been
proposed. Many of these researchers use graphs to visualize their ideas,
and make them easier to grasp for the reader. When it comes to the formal
treatment of rules and reasoning, however, most previous work in this area
has used other formalisms, based on logic, calculus or language.

2.1.1 Logic-Based Formalisms

Maurer [UM96] was one of the first to model a PKI using both keys and
trust. Alice needs to know Bob’s public key, as well as to trust him, in
order to believe the statements that he makes. Every statement made by
an entity in the system is about keys or trust. Trust is given in levels; a
higher level of trust in a user implies the possibility of longer chains of
derived statements starting from that user. In the second part of the paper
Maurer refines the concept of trust to a probabilistic model, where users
can state a trust confidence parameter between 0 and 1 in other users. In
Maurer’s model, each user’s view (including all belief and trust the user
has, and all recommendations made to them) is modelled separately from
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the others. It is therefore difficult to get a global view of the system, and to
maintain dependencies between different users’ statements.

Stubblebine and Wright [SGS95, SW96] describe a logic for analyzing
cryptographic protocols that supports the specification of freshness con-
straints on protocols. Assuming that information about revoked keys can-
not be immediately distributed to all parties of a system, they instead focus
on policies for decisions based on information that may be revoked. Simple
examples of such policies are believe if recent and believe until revoked. The
authors’ model allows reasoning about revocation of keys, jurisdictions,
and generally, of arbitrary beliefs. Users are assumed to communicate hon-
estly.

Li et al. [LFG99, NL00] present a logic-based knowledge representa-
tion for distributed authorization and delegation. The logic allows more
general statements than simple beliefs about public keys and trust, and
it lets users reason about other users’ beliefs. The authors concern them-
selves with the problem of non-monotonicity and use overriding policies
to determine which statements take precedence. It seems difficult to com-
pletely remove statements and their consequences from the system, how-
ever, something that might be desirable from a revocation perspective.

Liu et al. [LOC01] use a typed modal logic to specify and reason about
trust in PKIs. Trust and belief in public keys are both included in the for-
malism. A certification relation and a trust relation are used to specify
which entities are allowed to certify other entities’ keys, and which users
they trust, respectively. The former is static, while the latter may change
dynamically. In order to accept a statement, a user must find a path to that
statement starting with a trusted certificate. If no such path can be found,
the statement is not accepted. Revocation is enforced by an overriding pol-
icy — users that wish to revoke a certificate add it to their CRL, which
overrides previous information.

Halpern and van der Meyden [HvdM03] make a logical reconstruction
of SPKI/SDSI, including revocation and expiration of certificates. CRLs
are modelled as a signed set of certificates, and expiration is achieved
through validity intervals. The model is monotonic due to the fact that
in SPKI/SDSI, a certificate is ignored unless it can be shown not to be re-
voked. Halpern and van der Meyden argue that non-monotonic logic is not
required “if one takes the SPKI perspective that revocation is not a change
of mind but a revalidation”. The proof for the validity of a certificate is the
fact that it is not present in any valid CRL.
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2.1.2 Calculus-Based Formalisms

Kohlas and Maurer [KM99] propose a calculus for deriving conclusions
from a given user’s view, which consists of evidence and inference rules
that are valid in that user’s world. Statements can be beliefs or recommen-
dations about public keys or trust, commitments to statements and transfer
of rights (delegation). There are no negative statements or other possibili-
ties for revocation.

2.1.3 Language-Based Formalisms

Gunter and Jim [GJ00] define the programming language QCM, used to de-
fine a general PKI with support for revocation and delegation. The authors
note that “part of the confusion regarding revocation and PKIs stems from
treating revocation data specially [. . . ] data used for revocation should be
treated dually to other sorts of information”; in their model, revocation is
handled by negative statements and an overriding policy. QCM does not
require a specific distribution mechanism, but separates the implementa-
tion from the specification of revocation. The authors remark that “a PKI
must unambiguously specify how revocation should be interpreted”.

2.1.4 Graph-Based Formalisms

The work of Capkun et al. [CBH03] is the most closely related to ours. The
authors describe a “self-organizing public-key management system”, that
lets users of a mobile network “create, store, distribute and revoke their
public keys without the help of any trusted authority”. Public keys and
certificates are described as a directed graph G, where the nodes represent
public keys and the edges represent certificates: an edge from node Ku to
nodeKv represents a certificate signed with the public key of u, bindingKv

to an entity. Upon creation of a certificate, the signer and the subject both
know about it and later spread information about the certificate to other
entities.

Entities are not represented in G, but store their own knowledge in two
graphs each: the updated and the nonupdated certificate repositories (Gu

and GN
u , respectively). These repositories are partial views of the system

graph G, so that Gu (of user u) has an edge between nodes Kv and Kw if
u knows about v’s certificate for Kw. The non-updated repository is added
to periodically when users exchange subgraphs with their physical neigh-
bors, but ones already in the graph are not updated at this time. Thus, it
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may contain recently expired certificates. The updated certificate repos-
itory contains only valid certificates — users register with certain certifi-
cates’ issuers to be notified when these certificates are revoked or updated.

To verify the key of another user v, u creates the union of Gu and Gv

(first requesting Gv from v), and then attempts to find a path from Ku to
Kv. Failing this, u creates the union of Gu and GN

u , and again attempts to
find a path. If a path is found, the certificates from GN

u that were used are
checked for validity.

Revocation takes place if a user believes that a certificate they issued
has lost its validity, or if they believe that their own public key has been
compromised. To revoke a certificate, a user can choose between explicit
and implicit revocation. With explicit revocation, the user sends a revoca-
tion statement to other users who have requested to be informed about it.
Implicit revocation takes place automatically when the validity period of
a certificate is over, unless the certificate is renewed. To revoke their own
public key, the user notifies the users who have signed certificates for that
key, and these users then proceed with explicit revocation of those certifi-
cates.

Capkun et al. note some attacks where malicious users issue false cer-
tificates, perhaps to impersonate other users.

The results of the paper consist of simulations of the algorithms de-
scribed, along with performance analyses. The authors also analyze the
problems of minimizing the sizes of repositories and key usage.

2.1.5 Other Models

The models mentioned in the preceding sections have all been used to
model certificate distribution and/or revocation, much in the same way
that we need for our purposes. There has also been some work in this field
that uses graphs in a formal way, but that is further away from our basic
problem formulation:

Wright et al. [WLM00, WLM01] present a decentralized model. They
define depender graphs — rooted, directed, acyclic graphs where every node
except the root and its dependants have k parents. The nodes are users in
a PKI, and there is an edge from A to B if B is a depender of A, i.e. if A has
agreed to forward revocation information to B about a specific certificate.
Each certificate has its own graph. Graph properties are used to analyze
the system, and the depender graph is shown to have k-redundancy — the
system guarantees revocation notification to all on-line participants even
when k − 1 participants are unavailable. The model is localized, i.e. no
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global view of the graph is maintained.

Buldas et al. [BLL00, BLL02] introduce authenticated search trees to model
undeniable attesters — this is a primitive that is used for long-term certifi-
cate management supporting key authenticity attestation and non-repudiation.
Tree properties are used to analyze the complexity of the model.

2.2 Cycles

A few papers have been published, where cycles and paths are mentioned
in relation to public-key certificates and revocation.

Aura [TA98] defines delegation networks, which are directed bipartite
graphs used to pass authorizations between users. Although the autho-
rizations are transferred in certificates, the usage of keys and signatures
has been abstracted away. Graph searching algorithms are used to find
support for authorizations.

Aura explicitly allows cycles in a delegation network, i.e. a key can
delegate authorizations to itself, either directly or indirectly. The reason
to allow cycles is to avoid complexity in the definitions. Revocation is not
discussed in any detail.

PKIX/X.509 [HFPS02, CDH+05] includes a procedure for certification
path validation, a process which establishes a path between the certificate at
hand and a certificate signed by the trust anchor, e.g. the top CA. The PKI
is represented as a graph with entities as nodes and certificates as edges —
note that an edge from node A to node B represents a certificate signed by
A for B’s public key, not information passed between them. To validate a
path, the process must ascertain that the first certificate was issued by the
trust anchor, that the subject of a certificate in the path is the issuer of the
subsequent one, and that all certificates in the path are valid. There may
also be policies in place that specify which possible paths are accepted and
which are not. Housley et al. note that “the trusted anchor information is
trusted because it was delivered to the path processing procedure by some
trustworthy out-of-band procedure”.

The X.509 specification [X50900] does not allow certificates to repeat in
a certification path. Cooper et al. [CDH+05] discuss loops (cycles) forming
in paths, and note that in bridged PKI environments, different certificates
for the same entity may be involved in a loop. Although this would be
compliant with the X.509 specification, it is an undesirable situation. The
authors therefore recommend disallowing pairs of public keys and subject
names from being repeated in a path.
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2.3 Revocations

The notion of revocation is hard to grasp, and various meanings can be
given to the concept. Some previous work has examined different types
of revocation, where the desired results typically depend on the reason for
the revocation.

Cooper [DC98] divides revocation reasons into benign and malicious
types, and notes that different revocation practices are needed for the two
types. Particularly, when on-line renewal of certificates is allowed in a sys-
tem, and a certificate is revoked for a malicious reason (e.g. because of key
compromise), there is a risk of attackers impersonating the real key owner.
All certificates created through on-line renewal of the revoked certificate
must also be revoked to avoid the attack.

Fox and LaMacchia [FL98] note that “revocation of public key certifi-
cates is controversial in every aspect: methodology, mechanics, and even
meaning”. They discuss different reasons why a public key certificate might
need to be revoked. The meaning of a revocation could be to no longer trust
the key because it has been compromised, to no longer trust the binding be-
tween key and subject because it is no longer valid, or to no longer trust
the relationship between the issuer and the certificate because the issuer no
longer vouches for the binding. The authors note that different revocation
mechanisms are necessary for the different reasons.

Rivest [RLR98] suggests that CRLs do not constitute a good revocation
mechanism, and proposes instead that the signer using a key should sup-
ply the necessary evidence of its validity, instead of the other way around.
Short-term certificates are proposed as good evidence for recent validity.
McDaniel and Rubin [MR99] give a response to Rivest, where they note
that CRLs are useful in tightly coupled environments, and propose a mech-
anism for revocation on demand, where CRLs are issued and distributed
at predetermined intervals.

Khurana and Gligor [KG00] discuss revocation of access privileges that
have been distributed as attribute certificates within a PKI. Privileges can
be shared via delegation certificates, thus forming delegation chains. When
several types of certificates are used in a system (e.g. attribute, identity
and delegation certificates), the dependencies between the types must be
considered at revocation. The authors propose selective revocation, where
attribute certificates of users whose identity certificate has been revoked
are selectively revoked as well. They also note that transitive revocation is
necessary to revoke delegation chains.

Li et al. [LF01] argue that revocation is complex and confusing due to
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three reasons: revocation makes certification non-monotonic with respect
to time; the user interface and the internal mechanisms of a PKI are often
confused; revocation is viewed as a way of providing security, instead of a
method of controlling risks. To make revocation less confusing, the authors
give seven recommendations for how a PKI should handle and present
revocation information.

The PKIX/X.509 certificate and CRL specification [HFPS02] defines nine
reason codes for revocation of a public-key certificate, but does not sug-
gest different revocation practices for different codes — the only revoca-
tion method is when the CA adds an entry to the CRL. The reason codes
are defined as non-critical extensions:

(1) keyCompromise

(2) cACompromise

(3) affiliationChanged

(4) superseded

(5) cessationOfOperation

(6) certificateHold

(7) removeFromCRL

(8) privilegeWithdrawn

(9) aACompromise

The OpenPGP specification [CDFT05] also defines reason codes:

(1) No reason specified

(2) Key is superseded

(3) Key material has been compromised

(4) Key is retired and no longer used

(5) User ID information is no longer valid

The last of these items is used for signature revocation, i.e. when the
signer of a certificate revokes their signature. The others are used for key
revocation — when the owner of a key revokes it.

The specification notes that revocations should be interpreted differ-
ently, according to the reason code given:
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If a key has been revoked because of a compromise, all sig-
natures created by that key are suspect. However, if it was
merely superseded or retired, old signatures are still valid. If
the revoked signature is the self-signature for certifying a User
ID, a revocation denotes that that user name is no longer in use.
[. . . ]

Note that any signature may be revoked, including a cer-
tification on some other person’s key. There are many good
reasons for revoking a certification signature, such as the case
where the keyholder leaves the employ of a business with an
email address. A revoked certification is no longer a part of
validity calculations. [CDFT05]

Hagström et al. [HJPPW01] define and classify different types of revo-
cation schemes for an ownership-based access control system using the di-
mensions resilience, propagation and dominance — each dimension is binary,
so the combination of all possibilities results in eight types. Permissions
can be delegated with or without a grant option, thus forming delegation
chains. Revocation is done either by removal or by issuing negative per-
missions; both propagate in the delegation chains but in different ways
depending on the chosen revocation scheme.

Resilience describes the difference between revocation via removal and
revocation via negative permissions. The delete action is local in time — no
trace remains of the previous revocation, thus it is not resilient. A negative
permission, on the other hand, remains in the system, and will overrule
new positive permissions given even after the revocation had occurred.

Propagation describes how a revocation spreads via delegation chains.
A local revocation is intended only for the direct recipient of a permission,
whereas a global revocation reaches all other users in turn authorized by
the direct recipient.

Dominance describes how a revocation deals with conflicts that arise
when the subject losing a permission through revocation still has permis-
sions from other grantors. If the other grantors have received their permis-
sions from the revoker, they can be dominated in a strong revocation. In a
weak revocation, only permissions that come directly from the revoker are
removed.
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Graph Concepts

In this chapter we review basic concepts of graphs and graph transforma-
tions. We use the single-pushout (SPO)1 approach to graph transforma-
tions; details are given by Löwe and by Ehrig et al. [ML93, EHK+97].
Rudolf and Taentzer [RT99] offer a more accessible account of the the-
ory. An alternative to SPO is the classical double-pushout (DPO) approach
[CMR+96], but is has been shown that the SPO approach is a generaliza-
tion of DPO and that important results from DPO research can be extended
into SPO frameworks [ML93].

3.1 Graphs and Graph Morphisms

A graph describes a relation where pairs of vertices (nodes) are connected
by directed edges — each edge has a source and a target node. In an at-
tributed graph, nodes and edges have attributes from the predefined sets
V-ATT and E-ATT, where each attribute is a tuple of values from fixed al-
phabets. More formally:

Definition 1 (Attributed Graph). An attributed graph G over the attribute
sets (V-ATT,E-ATT) is a six-tuple G = (V,E, s, t, v-att, e-att) where V and E
are finite sets of vertices and of edges and s, t : E → V assign source and target
nodes, respectively, to each edge. The functions v-att : V → V-ATT and e-att :
E → E-ATT assign attributes to vertices and edges, respectively.

1The name single-pushout comes from category theory, which is used for the analysis
and formal treatment of graph transformations (figure 3.1 is in fact a pushout diagram in
the category of graphs and graph morphisms). We will not delve into category theory, but
it is useful to know that it is the foundation of graph transformation theory.
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A subgraph S of G (denoted S ⊆ G) is a graph that consists of subsets
of the vertices and edges of G, connected and attributed identically to the
corresponding elements in G.

As is common, we denote the domain of a function f — i.e. the ele-
ments for which f is defined — with dom(f).

A morphism between two graphs over the same set of attributes consists
of four functions that preserve the structure of the graphs:

Definition 2 (Graph Morphism). A graph morphism f : G1 → G2 between the
attributed graphs G1 = (V1, E1, s1, t1, v-att1, e-att1) and G2 = (V2, E2, s2, t2,
v-att2, e-att2), both over the attribute sets (V-ATT,E-ATT), consists of four func-
tions:

f =























fV : V1 → V2

fE : E1 → E2

fv-att : V-ATT → V-ATT

fe-att : E-ATT → E-ATT such that:

(1) ∀ e ∈ dom(fE) : fV (s1(e)) = s2(fE(e))

(2) ∀ e ∈ dom(fE) : fV (t1(e)) = t2(fE(e))

The two characteristics of fV and fE imply that a morphism must be
compatible with the structure of the graphs G1 and G2. In other words, if
fE maps the edge e to the edge e′, then fV must be defined for the source
and target nodes of e, and map them into the source and target nodes of e′,
respectively.

Definition 2 is less complex than the corresponding definitions given in
related work, e.g. by Ehrig et al. [EHK+97, EPT04]. The attributes needed
for our purposes are simpler than the general case considered by other
researchers — we only need constants and variables as attribute values,
not evaluation of terms. Therefore, we chose to do without signatures,
categories and algebras.

A partial graph morphism g : G1 ⇀ G2 is a graph morphism from some
subgraph of G1 to G2. The subgraph is the domain of g, dom(g). When a
graph morphism g : G1 → G2 is total, dom(g) = G1.

3.2 Graph Transformation Rules

Graph transformation rules (also called productions) can be used to construct
and modify graphs. Put simply, a rule consists of two graphs, describing
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the state of a host graph before and after the desired operation. The objects
in the graphs are abstract variables that are instantiated when the rule is
applied to a concrete graph. More formally:

Definition 3 (Graph Transformation Rule). A graph transformation rule is
an injective partial graph morphism r : L ⇀ R, where L and R are graphs called
the left-hand side and the right-hand side of the rule.

L describes the state of a graph before the rule is applied, and R de-
scribes the desired state afterwards. Only objects and attributes that are
relevant to the rule are included in L. Elements of L that are not present
in R are deleted by r; elements that are present in both L and R are kept.
Since r may be undefined for some elements of L (i.e. those that are deleted
by the rule), r is a partial morphism. It is injective because we require each
object in L to have its own image in R.

3.2.1 Matches and Derivations

L
r

−−−−→ R

m





y





y

m∗

G −−−−→
r∗

H

Figure 3.1. A rule r : L ⇀ R, applied to the host graph G, resulting in H

The application of a rule is called a derivation. Figure 3.1 describes the
application of r : L ⇀ R in a host graph G. The application requires an
occurrence of L inG— a total morphismm : L→ G, called match morphism
(m(L) ⊆ G). This match morphism is total because all conditions imposed
by the rule must be satisfied, i.e. all elements of L must have an image in
G. The mapping m∗ : R → H is a related morphism called the co-match of
the derivation. H , the derived graph, is obtained by replacing the occurrence
of L in G by R through the co-production r∗ : G→ H .

The actual transformation of the host graph G is performed in two
steps: the match of L in G (m(L)) is found, and the elements of
m(L \ dom(r)) (the elements of the match for which r is not defined) are
removed from G. Next, the elements of R \ r(L) (the elements that have
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no preimage under r) are added to the host graph, resulting in H . The ele-
ments that are preserved by r form the application context, which is used to
connect the new elements to the host graph. Edges that are left dangling
after the transformation (without either a source or a target node, or both)
are deleted.

Graph transformation rules can also manipulate the attributes of edges
and nodes, by using expressions for the right-hand side attributes. These
expressions are evaluated with respect to the variable instantiation of the
match morphism.

The match morphism m need not be injective; different objects in L
may be mapped onto the same object in G. Conflicts may arise when m is
non-injective, for example when two objects in L are mapped to the same
object in G, and one of these objects is deleted by the rule r while the other
is preserved. In these cases deletion takes precedence. For this reason, the
co-match m∗ : R → H is a partial morphism, since elements of R that are
deleted because of conflict do not have an image in H .

When there are no matches of L into G, r is not applicable. There may
also be several possible matches of L into G — in this case, one of the
matches must be chosen, either at random or interactively. In our system,
certain rules are intended to be called by a user or an administrator specify-
ing a single match (interactive rules), and others are intended to be applied
automatically (deductive rules). The deductive rules are matched at ran-
dom into the host graph.

The Matching Condition

We need a matching condition on the application of graph transformation
rules to make sure that rules and matches work together as intended:

Condition 1 (Matching Condition). Given the pair of a production and a match
(r : L→ R, m : L→ G) of a derivation, the following must hold:

(1) ∀ av ∈ {v-attL(v) | v ∈ dom(rV )} :

rv-att(av) = av, or

mv-att(av) = av

(2) ∀ ae ∈ {e-attL(e) | e ∈ dom(rE)} :

re-att(ae) = ae, or

me-att(ae) = ae
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The requirements describe the same condition for nodes and edges, re-
spectively: if an item (node or edge) is not removed by a rule r : L → R,
then in a derivation with the match morphism m : L → G, each attribute
value of that item must be preserved by either r or m (or both).

X
+

⇀ X

-

Figure 3.2. A rule r : L → R that preserves the name and changes the state of a
node

To see why, consider nodes that have two attributes: a name (shown
inside the node) and a state (shown to the upper right of the node). Con-
sider a rule r : L → R that changes the value of the state attribute of a
single such node n from + to −, but keeps the name attribute unchanged
(as shown in figure 3.2). The value of the name attribute is unimportant in
the rule, so it is given in the form of a variable. To keep the name attribute
intact, the name of n is the same variable in L and R — i.e. the attribute
is preserved by r. Since it is given as a variable in L, the match morphism
can change the value of the name attribute — from an unspecified value
in L to a specific value in G. In this case, r preserves the attribute but m
changes it.

Now consider the state attribute. In L, the state of n is +, and in R, the
state is −. In order for the rule to work as intended, m must preserve the
value of the attribute — i.e., the node that n is matched to via the matching
morphism must have a state that has the value +. Otherwise, the rule could
be applied to a node where the state has another value, which is not what
it is intended for.

In other words: if the value of an attribute is given as a variable in L, r
must preserve the value; if the value of an attribute is given as a constant
in L, m must preserve the value.

Example

To illustrate how a matching is done, we will give an example of a rule and
its matching into a host graph.
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C A.k | B.K D ⇀ C D

Figure 3.3. Example rule — removing a certificate

In figure 3.3, the left-hand side contains the entities C and D (rep-
resented by circular nodes), and a certificate where A vouches for B.K,
passed from C to D (represented by a box on the edge between them).
When this rule is applied to a specific graph, C, D, A.k and B.K must all
be instantiated to nodes and edges present in that graph, thus matching the
left-hand side. The effect of the rule is to remove the edge (cf rule 19), and
this rule is to be called interactively by a user, the entity which instantiates
C in the host graph.

C A.k | B.K D

r
⇀ C D

m ↓ ↓ m
∗

P P.k | Q.K R P.k | Q.K S

⇀

r
∗

P P.k | Q.K R S

Q.K Q P.k | Q.K T Q.K Q P.k | Q.K T

Figure 3.4. Matching a rule in a host graph

Figure 3.4 illustrates the matching and the effect of this rule when it is
applied in a host graph (on the lower left). The matching is shown with
dotted arcs. In this case, the user R calls the rule, and specifies that A.k,
B.K, and D should be matched into P.k, Q.K, and S, respectively. C is
automatically matched into R because they applied the rule. The effect of
the rule in the host graph is to remove the specified edge between R and
S, just as the effect of r is to remove the specified edge between C and D.
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Note that no other elements in the host graph are affected, and that there
are two other places in the host graph where this rule could also have been
matched (remember thatm need not be injective, so C andA could both be
mapped into P if desired).

3.2.2 Negative Application Conditions

The left-hand side of the rule in figure 3.3 specifies necessary conditions for
the rule to be applicable — in other words, the left-hand side is an appli-
cation condition. To make rules more expressive, they can also be equipped
with negative application conditions (NACs) which specify elements that must
not be present for the rule to apply.

A NAC for a rule r : L ⇀ R is a set of constraints. These constraints
are total injective morphisms ci : L → Ni. Ni represents a forbidden struc-
ture by identifying a subgraph that must not be present in G for r to be
applicable. Matches for r that include the elements of L−Ni are not valid.

Definition 4 (Constraint Satisfaction). A match m : L→ G for a rule
r : L → R satisfies the constraint ci : L → Ni if there is no total morphism
di : Ni → G such that di ◦ ci = m.

In other words, if the matching m cannot be extended to include Ni,
the constraint ci is satisfied and the matching is valid. We require di to
be injective in order to prevent elements of L to be mapped into the same
element as one from Ni when they are not explicitly marked with the same
variable name.

When a NAC consists of several constraints, all these constraints must
be satisfied — i.e. none of the forbidden structures must be present — for
the NAC to be satisfied.

In some frameworks, each constraint is drawn as a separate graph and
presented together with the corresponding rule r [AGG05]. In our dia-
grams, we include the constraints in the left-hand side of a rule. We denote
the rule r : L ⇀ R with NAC c : L→ N by representing the left-hand side
with N , with its L-part drawn solid, and the N − L-part drawn dotted.
In other words, the parts that must not be present for the rule to apply are
drawn dotted. In the case when a NAC consists of several constraints, each
constraint is enclosed with a dotted circle, for clarity. Within a constraint
that consists of several elements, all elements must be present for the con-
straint to be violated, i.e., if one of the elements within the circle is missing,
then the constraint is satisfied.
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When a node or an edge of a NAC is marked with an attribute, it in-
dicates a specific attribute value which is forbidden by the NAC. The con-
straint is satisfied unless the element can be matched with that particular
attribute value. In other words, we can prevent a specific matching to take
place. When the attribute of a node or an edge bears no importance in a
constraint, the attribute is not included.

We extend the definition of a graph transformation rule to include NACs.

Example

Figure 3.5 shows a rule with a single-constraint NAC (cf rule 7). The in-
terpretation of the left-hand side is that C, D, E, A.k and B.K must be
matched into the host graph, and that there must not be a match for a cer-
tificate (A.k,B.K) being passed from D to E. Note that E may receive
other certificates from D, and that D may spread that certificate to other
entities; the constraint only forbids the specific edge with source node D,
target node E and attributes (A.k,B.K). If these conditions are satisfied,
the rule can be applied and the certificate will be added between D and
E. The reason for a NAC such as this one is to prevent duplicates in the
graph.

C A.k | B.K D A.k | B.K E ⇀ C A.k | B.K D A.k | B.K E

Figure 3.5. A Negative Application Condition

For an example of a multi-constraint NAC, see rule 14, where each con-
straint is enclosed with a dotted circle. All three constraints of the rule
must be satisfied for the rule to apply.

3.2.3 Rule Expressions

Rule expressions are a high-level construct, used to control the application
of graph transformation rules. For our purposes we only need expressions
of the form asLongAsPossible r end. This expression applies the rule r
until there are no more ways to match the left side of r into the host graph.
Bottoni et al. [BKPPT05] give more details on rule expressions.
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3.2.4 Properties of Graph Transformations

The underlying theory of the SPO approach ensures some desirable prop-
erties of graph transformations [RT99]:

(1) Completeness — all effects specified in the rule are actually performed
in the concrete derivation.

(2) Minimality — nothing more than what is specified in the rule is done
(with the well-defined exception of the implicit removal of dangling
arcs and conflicting objects).

(3) Localness — only the fraction of the host graph covered by the match
(including potentially dangling arcs) is affected by the transforma-
tion.

3.3 Conflicting Rules

In a system with many graph transformation rules, it is possible that rules
conflict with each other in unexpected ways. For example, applying rule A
followed by rule B to a graph G might give a different result compared to
applying first rule B, then rule A. This may happen in the case where rule
A changes an attribute that appears in the left-hand side of ruleB. Another
possibility is that rule A removes an application condition for rule B, with
the result that rule B is applicable before, but not after, rule A.

To help prevent and analyze potential conflicts we introduce the no-
tions of layers and of independence. The concept of independence between
rules can be considered from two different points of view: parallel and
sequential independence.

3.3.1 Rule Layers

To avoid rule conflicts and ensure the predictability of a model, a set of
rules can be ordered in layers L1, L2 . . . Ln, which provide a control flow
mechanism (see figure 3.6 for an example layering). The layers keep the
rules separated — instead of matching the rules at random all at once,
only rules in one layer at a time are matched. Within the layers, rules are
matched at random. The layers are applied in order and as long as possi-
ble: first apply rules of layer L1 as long as possible, then rules of layer L2

etc. It is necessary to prove that the rules within each layer may be applied
in any order with a deterministic outcome, and that the rules of subsequent
layers do not affect the applicability of previous layers.
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Begin derivation sequence

As long as possible
r1 r5 r8
r12 r15

Layer 1

As long as possible
r2 r3 r7
r11 r13

Layer 2

As long as possible
r4 r6 r9
r10 r14

Layer 3

End derivation sequence

Figure 3.6. Ordering rules in layers

Layered graph grammars were introduced by Rekers and Schürr [RS97].
Our layers are an adapted version of theirs; we do not base the ordering on
object labels, but rather on rule functionality.

3.3.2 Parallel Independence

Two alternative derivations that may occur in any order with the same
result are called parallel independent. The following definition (with adapted
notation) is given by Ehrig et al. [EHK+97]:

Definition 5 (Parallel Independence). Let r1 : L1 → R1 with NAC N1 and
r2 : L2 → R2 with NAC N2 be two rules that may both be applied in a graph G.

Let d1 be the derivation of r1 via the match m1 (we write d1 = (G
r1,m1

⇒ H1)), and

let d2 be the derivation of r2 via the match m2 (denoted d2 = (G
r2,m2

⇒ H2)). Then
we say that d2 is weakly parallel independent of d1 ifm′

2 = r∗1 ◦m2 : L2 → H1
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is a match for r2 that satisfiesN2. We say that d1 and d2 are parallel independent
if they are mutually weakly parallel independent.

To form m′
2, two steps are taken. First the matching m2 : L2 → G is

applied, giving the elements of L2 an image in G. Next, the co-production
r∗1 : G → H1 is applied, thus bringing into action the mechanism of r1.
If the so constructed m′ is a match for r2 that satisfies N2 it is now possi-
ble to apply r2 — in other words, the application of r1 did not affect the
applicability of r2.

The following requirements ensure parallel independence between two
derivations [EHK+97]:

(1) neither derivation deletes an object that is necessary for matching the
other, and

(2) neither derivation establishes a context that is forbidden by a NAC
of the other.

Note that the definition focuses on parallel independence between deriva-
tions, i.e. specific instances of rule applications. We are in fact interested in
parallel independence between the rules themselves, which means that all
possible derivations of two rules must be parallel independent. When this
is the case, we say that we have true parallelism between the rules.

In our system, we will be concerned with parallel independence within
each layer. Since the rules of a layer are matched at random, the outcome
could possibly be non-deterministic. If the rules in a layer are all paral-
lel independent of each other, it will not matter in which order they are
matched, and the outcome will be the same in all cases.

3.3.3 Sequential Independence

While parallel independence is considered between alternative derivations,
sequential independence deals with consecutive derivations. When a deriva-
tion d′2 does not rely on another derivation d1 to be applied before it, we
say that d′2 is weakly sequentially independent of d1. In other words, d′2 is
not causally dependent on d1, so it does not matter whether d1 takes place
before or after d′2. The stronger notion of (non-weak) sequential indepen-
dence is not needed in this work. This definition (with adapted notation)
is given by Ehrig et al. [EHK+97]:

Definition 6 (Weak Sequential Independence). Let r1 : L1 → R1 with
NAC N1 and r2 : L2 → R2 with NAC N2 be two rules that may both be
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applied in a graph G. Let d1 be the derivation of r1 via the match m1 (d1 =

(G
r1,m1

⇒ H1)), and let d′2 be the subsequent derivation of r2 via the match m′
2

(d′2 = (H1

r2,m′

2⇒ X)). Then we say that d′2 is weakly sequentially independent
of d1 if m2 = (r∗1)

−1 ◦m′
2 : L2 → G is a match for r2 that satisfies N2.

To construct m2, first the matching m′
2 : L2 → H1 is applied, giving

the elements of L2 an image in H1 (note that since m′
2 is a match for r2, it

would be possible in this situation to apply d′2). Next, the inverse of the
co-production r∗1 : G→ H1 “undoes” the action of the derivation d1, going
back to G. If the resulting m2 is a match for r2 that satisifies N2, it is now
possible to apply d′2 — i.e. the fact that d1 has been undone does not affect
the applicability of d′2. In other words, it does not matter whether or not d1

has been applied before d′2.
The following requirements ensure that the derivation d′2 is weakly se-

quentially independent of d1 [EHK+97]:

(1) the overlapping of the right-hand side of d1 and the left-hand side of
d′2 does not contain elements which are generated by d1, and

(2) no context that is forbidden by a NAC of d′2 is destroyed by d1.

The first requirement guarantees that d′2 does not rely on d1 to generate
elements, and the second makes sure that d′2 does not rely on d1 to destroy
elements; in other words, d′2 does not rely on d1 in any way.

In our system, the rules in precedent levels must be weakly sequentially
independent of rules in subsequent layers. In other words, if the layers L1

– Lk−1 have been passed through — i.e. rules in these layers no longer
apply — rules in layer Lk should not make those rules apply again. If they
did, the system would not be stable (cf definition 16) after one pass of the
layers.
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Terminology

After the preceding chapters which presented the background theory about
PKI and graph transformations, we are now ready to present the terminol-
ogy of our system, as well as to define some concepts and properties that
pertain to it.

A model simplifies reality in order to show a structure. In this case,
we are concerned with a view of the world that consists of entities (users),
their knowledge of keys, and the certificates they pass between each other.
The certificates themselves contain specific information about entities’ keys
that the entities sign for each other. In the model, entities act by adding,
modifying and removing knowledge, and by distributing, modifying and
revoking certificates to and from each other. Although our focus is revoca-
tion, we must also include distribution in order to model the structures of
certificate chains that the revocation should act upon, as well as the actions
that are allowed on revoked certificates.

4.1 Entities

The agents in our system are called entities. Each entity has an attribute:

• Name: the identifier of the entity, shown in figure 4.1 as V and W .

4.2 Statements

We define the different types of statements in the system — keypair know-
ledge, public-key knowledge, and certificates (the term statement is used to en-
compass all three). Knowledge represents key information that an entity
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has access to, whereas a certificate is a signed statement about keys passed
between entities.

• Keypair Knowledge: An entity’s knowledge of their own keypair, i.e. a
pair of private and public keys generated by the owner.

• Public-Key Knowledge: An entity’s knowledge of the public key of an-
other entity1.

• Certificate: a signed statement, passed between two entities, binding
a public key to an entity.

4.2.1 Certificate Attributes

Every certificate has a set of attributes associated with it. To keep the
graphs as clutter-free as possible — and because our model is purely an
abstraction — we have kept the number of attributes to a minimum. For
reference, we show a comparison of the X.509 v3 certificate structure and
our certificate model in figure 4.1 (for details on the graphical representa-
tion, see section 5.1).

Version Serial
Number

Signature Issuer Validity Subject
Subject
Public
Key Info

Issuer
Unique ID

Subject
Unique ID Extensions

Digital
Signature

V X.ki | Y.Kj | t1 | t2

{XX . . . V }

+
W

Signed by authorized CA (issuer)

Figure 4.1. Comparison of X.509 version 3 certificate and our model

1Public-key knowledge can also be deduced knowledge about an entity’s own public
key, based on what other entities have told them.
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The following attributes are used both in our model and in X.509:

• Signer: the identifier of the entity that owns the signing key, repre-
sented in figure 4.1 as X . In X.509, this entity is known as the “is-
suer”.

• Signing key: the identifier of the private key used to sign a certifi-
cate, represented in figure 4.1 as ki. We may also refer to this as the
private key of the certificate, and denote private keys by lowercase
letters, with an index to distinguish between multiple private keys of
a signer. In X.509, the signing key can be identified by the extension
“authority key identifier”; when not present, the signer is assumed
to have only one signing key.

• Subject: the identifier of the entity being associated with the subject
key, represented in figure 4.1 as Y . X.509 uses the same term.

• Subject key: the public key that is bound to the subject, along with
its identifier, represented in figure 4.1 as Kj . We may also refer to
this key as the public key of a certificate. Public keys are denoted
by uppercase letters, with an index to distinguish between multiple
keys of a subject. X.509 calls this the “subject public key info”, and
also uses the extension “subject key identifier” for multiple keys of a
subject.

We also use some attributes which are not modelled in X.509: the recipi-
ent, distributor, support set, state, subject time, and signing time of a certificate.
The first three of these are needed to keep explicit track of the paths on
which certificates travel in the system; the fourth designates whether a cer-
tificate supports or denies a binding, or whether it has expired; the two
last describe the time knowledge about a key was added to the graph (or
modified), and the time that a certificate was signed, respectively.

• Recipient: the identifier of the entity receiving a certificate, repre-
sented in figure 4.1 as W .

• Distributor: the identifier of the entity passing/sending a certificate
to the recipient, represented in figure 4.1 as V .

• Support set: a set of paths describing how information about the cer-
tificate has travelled in the system. The support set is placed below
the certificate box. In figure 4.1, the support set contains one path,
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beginning with the substring XX and ending with V . The formal
definition of the support set can be found in section 4.3.1.

• State: a certificate is either positive, inactive, or negative — a positive
certificate asserts the validity of the binding within it, whereas a neg-
ative certificate denies it. Inactive certificates are those where the
public key has expired. The state is marked with a sign from the
set {+, 0, 0∗,−}, and is placed at the upper right corner of the certifi-
cate box. The + denotes a positive certificate, the 0 denotes an inac-
tive certificate, and the − denotes a negative certificate. The asterisk
on the 0 is used to mark the inactive knowledge for a specific key
that has the earliest inactivation time, out of the inactive knowledge
for that key held by a given entity. This is necessary because when
considering certificates signed with keys that have since become in-
active, they should be accepted if they were signed before the earliest
known inactivation time.

• Subject time: when knowledge about a key is added, inactivated, or
negated, it is marked with the current time. As information about
the key is spread via certificates, the time stamp stays the same. The
main reason this field is necessary is to keep track of when a key was
inactivated.

• Signing time: the time that a certificate was signed. X.509 uses the
validity field to specify a time interval when a certificate is to be con-
sidered valid unless revoked — if an X.509 certificate is valid from
the time of signing, the start of the validity period would be the same
as our signing time. In our system, it is used as a comparison value
to the subject time, when a key has been inactivated.

Two fields of the X.509 structure are implied in our model: the signature
(algorithm) and the digital signature. The signature algorithm is assumed to
be standardized in the system; the signature itself is assumed to have been
created by signing the public key information with the signing key (using
the algorithm).

When comparing a certificate σ to another certificate ρ, we say that σ is
on the same form as ρ if both certificates have the same signer, signing key,
subject and subject key. We say that σ is for the same binding as ρ if both
certificates have the same subject and subject key.
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4.2.2 Knowledge Attributes

Knowledge boxes also have a number of attributes, most of which are iden-
tical to those of certificates: subject, subject key, recipient/distributor (these
are equal for knowledge boxes, and will also be referred to as the holder of
the knowledge), support set, state, and subject time. Keypair knowledge
has a private key as well, and no subject (since it is equal to the recipient
and distributor). Public-key knowledge has a type attribute:

• Type: public-key knowledge is either of the types O or I , depending
on whether it was created outside or inside the system. TypeO know-
ledge represents those knowledge statements where the validity of
the binding has been established by the distributor/recipient outside
the system (in a secure, out-of-band procedure). Type I knowledge
has been deduced from other knowledge and certificates.

The reason for keeping track of the type property is making sure that
for each statement, there exists an entity that has verified the authenticity
of the binding outside the system. To this end, we require that every type
I knowledge be supported by at least one chain of other statements with
either a type O public-key knowledge or a keypair knowledge at its root.

Type I knowledge boxes are drawn with single lines, while double
boxes indicate type O. The terms type I knowledge and deduced knowledge
may be used interchangeably, as may type O knowledge and outside know-
ledge.

Positive
+

Negative
−

Inactive
0

Create knowledge

Negate

Inactivate Negate

Remove

Remove

Remove

Figure 4.2. The states and transitions of knowledge
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A UML diagram that shows possible state transitions for knowledge is
shown in figure 4.2. For keypair and type O public-key knowledge, the
transitions are induced by interactive participation by the holder of the
knowledge. For type I knowledge, transitions will occur automatically,
based on changes in the root knowledge for the supporting path. Note that
once the knowledge leaves the positive or inactive state, there is way to
make it positive again. This is a policy decision.

The transitions for certificates are naturally similar to those of know-
ledge, since they are based on knowledge held by an entity. When that
knowledge changes its state, the state of depending certificates will change
as well.

4.3 Support

The concept of support for knowledge and certificates is fundamental in
our model. In order to know which statements are considered valid and
allowed to remain in the system at any given time, we must keep track of
the paths of certificates and deduced knowledge. At the root of each path,
there must be keypair knowledge, or an outside public-key knowledge —
the knowledge of an entity that has verified the binding of the subject and
the subject key in a secure way. If this is the case, all the certificates and
deduced knowledge in the paths that emanate from the root knowledge
are considered valid. More formally:

Axiom 1 (Supported Knowledge). Keypair knowledge and type O public-key
knowledge where the subject is an entity in the system is supported.

In other words, keypair knowledge and outside public-key knowledge
for existing entities is always considered to be supported. Certificates and
type I public-key knowledge inherit their support via paths of quotations
and deductions:

Definition 7 (Support for Certificates). A certificate π, signed by A with A.ki,
subject B, subject key B.Kj , subject time stamp tb, certificate time stamp ta,
distributor C, and state s is supported if and only if:

(1) If C 6= A:

(a) C is the recipient of a certificate ρ on the same form as π, and

(b) ρ has the state s and identical time stamps to those of π, and

(c) ρ is supported.
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(2) If C = A 6= B:

(a) A has keypair knowledge σ of the keypair (ki,Ki), which is either pos-
itive, or inactive with a time stamp t < ta, and

(b) A has supported public-key knowledge ρ ofB.Kj with state s and time
stamp tb.

(3) If C = A = B:

(a) A has keypair knowledge σ of the keypair (ki,Ki), which is either pos-
itive, or inactive with a time stamp t < ta, and

(b) A has keypair knowledge of the keypair (kj ,Kj) with state s and time
stamp tb.

σ π

A.ki | B.Kj | tb | ta
s

C A.ki | B.Kj | tb | ta
s

Figure 4.3. Support for π, case 1

σ

ki | Ki | t
+/0

π

A A.ki | B.Kj | tb | ta
s

B.Kj | tb
s

ρ

Figure 4.4. Support for π, case 2

The requirements of definition 7 are described in figures 4.3, 4.4, and
4.5 with the same notation as in the definition. The certificate π inherits
its support from the statement σ, which may be either outside knowledge,
deduced knowledge or another certificate.
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σ

ki | Ki | t
+/0

π

A A.ki | A.Kj | tb | ta
s

kj | Kj | tb
s

ρ

Figure 4.5. Support for π, case 3

Definition 8 (Support for Deduced Knowledge). A deduced knowledge ρwith
holder A, subject C and subject key C.K is supported if and only if A is the
recipient of a certificate φ that:

(1) certifies the same binding as ρ, and

(2) is signed with B.k at time tb, and

(3) has the same state s as ρ, and if either

(4) (a) A has positive, supported knowledge µ stating that they recognize
B.K as B’s public key, or

(b) A has inactive, supported knowledge µ with a time stamp t > tb sta-
ting that they recognize B.K as B’s public key, and no inactive, sup-
ported knowledge for the same binding as µwith an earlier time stamp.

φ ρ

B.k | C.K | tc | tb
s

A C.K | tc
s

B.K | t
+/0∗

µ

Figure 4.6. The deduced knowledge ρ is supported if φ and µ are supported

The requirements of definition 8 are described in figure 4.6. Two sup-
porting statements for ρ are required: an incoming certificate φ that sup-
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plies the information about a binding, as well as the knowledge µ, which
gives A the means to verify the signature in φ. The knowledge µ may be
either a deduced knowledge or an outside knowledge, as long as it is sup-
ported.

To summarize, support paths can consist of both quoted certificates and
deduced knowledge.

4.3.1 Support Sets

In order to keep track of the support of statements in the system, every
knowledge and certificate has a support set. The support set consists of all
acyclic paths that connect the given statement to a type O knowledge, or a
keypair knowledge. This is a way to control which knowledge is the root
of other statements in a path.

Definition 9 (Valid Path). A path is a string over the set of entity names. A
valid path of a given statement σ is a path representing an acyclic supported —
as defined in definitions 7 and 8 — chain of statements from a type O knowledge
or a keypair knowledge via quoted certificates and deductions to σ.

The reason we need to keep track of valid paths is the cycle problem de-
scribed in section 1.2.1. Only acyclic paths should be considered as support
for a given statement.

Definition 10 (Support Set). A support set is a set of paths. The support set of
a given statement σ is valid if it contains only valid paths of σ; it is complete if
it contains all valid paths of σ.

Paths are denoted by lower-case Greek letters, and for support sets we
use upper-case Greek letters. As a shorthand, concatenation of a support
set and a user name represents the operation of concatenating all paths in
the set with the user name. If the support set Π = {π1 . . . πi}, then ΠA =
{π1A, π2A, . . . , πiA}.

Figure 4.7 shows a small graph with support sets below the statements
(time stamps are omitted for clarity). Root knowledge (type O public-key
knowledge, or keypair knowledge) always carries the name of the holder
as the only path of the support set, as they are always the very beginning
of a path. Subsequent quotations and deductions concatenate the distribu-
tor’s name to the existing support set, provided that no cycle was formed
in the latest step. Cycles can be detected by comparing the support sets of
an incoming edge E and outgoing edges that are already in place: if there
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B.K

{A}

+
A A.k | B.K

{AA}

+

A.k | B.K

{AA}

+
B A.k | B.K

{AAB}

+
C A.k | B.K

{AABC,AAC}

+
D

Figure 4.7. Support sets

is no path in the support sets of outgoing edges that is a prefix of one of
the paths in the support set of E, then no cycle has formed. When two or
more paths meet — as when C receives two certificates on the same form
in figure 4.7 — they all become part of the support set.

4.4 Collisions

Since we allow positive statements as well as inactive and negative state-
ments in our system, it is possible that entities hold contradictory know-
ledge about a binding. When this happens, we say that there is a collision.
There are two types of collisions: inactive and negative collisions.

Definition 11 (Inactive Collision). Given a knowledge σ which is positive, and
a knowledge ρ which is inactive, both for the binding between B and B.Kj , there
is an inactive collision if they have the same recipient C.

Definition 12 (Negative Collision). Given a knowledge σ which is positive or
inactive, and a knowledge ρ which is negative, both for the binding between B and
B.Kj , there is a negative collision if they have the same recipient C.

Collisions can be handled in different ways, e.g. by letting either posi-
tive or negative knowledge take precedence, or by some other policy. We
have chosen to give precedence to inactive knowledge when there are no
negatives present, and precedence to negative knowledge when present.
In this way we get an ordering relation between the three states: accept
positive knowledge if there is no inactive or negative present; accept inac-
tive knowledge if there are no negatives present; always accept negative
knowledge. The rationale for this choice is the following: Since we assume
that all entities are trustworthy, if someone has issued an inactive or nega-
tive statement for a binding, then there must be a reason why that binding
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should not be considered valid. It is safer to believe in the revocation state-
ment than in the asserting statement.

Note that we only consider contradictory knowledge statements to be
in conflict when they are held by the same entity. We do not handle the case
of different entities holding contradictory knowledge, since this can be con-
sidered to be a natural situation in a distributed system. Furthermore, as
described in section 4.6, entities are assumed to have access only to their
own information — they would not be aware of other entities holding con-
tradictory knowledge. If total control the entities’ information is desired, it
may be better to use a system with a central CA, or to implement another
policy on the spreading of inactive and negative statements.

4.5 Valid State

We have now discussed all the concepts we need to define what we mean
by a valid state for a certificate system.

Definition 13 (Valid State). A system is in a valid state if and only if:

(1) the support set of each statement is valid, complete and non-empty;

(2) there are no collisions;

(3) where there is support for deduced knowledge, the deduction is made;

(4) when an entity has one or more inactive public-key knowledge state-
ments about a specific binding, the one with the earliest inactivation time
is marked.

The first item requires that all statements are supported. If the support
set is valid and complete, then it contains all valid paths. If it is non-empty,
then there is at least one such valid path, i.e., there is support for the cer-
tificate. The second item requires no collisions, i.e., in a valid
system there is no entity that holds both positive/inactive and negative
knowledge about the same binding. The third item requires that deduced
knowledge is generated when the support is present. If an entity has the
necessary information to draw a conclusion, it is logical that it should be
drawn, in the spirit of modus ponens. The fourth item requires the earliest
inactivated knowledge that an entity holds for each binding to be marked.
The reason for this is that when basing decisions on inactive knowledge,
the earliest inactivation time should be considered.

Note that a system may not always be in a valid state. The moment
a negative certificate is distributed to an entity that already has a positive
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certificate for the same binding, there is a collision and hence the second
requirement is violated. The system should be able to handle such situa-
tions and be able to reach a valid state again. In chapter 6 we will analyze
the rules of our system with respect to the notion of validity.

4.6 Assumptions

Our model is global in the sense that all statements which have been dis-
tributed in the system are shown in a single graph. It is local, however, in
the sense that each entity is aware of only those statements which it has it-
self generated, received or distributed. We state the following assumptions
about what information each entity has access to:

Assumption 1 (Local Awareness). An entity is aware of all and only those
statements which it is currently receiving and distributing.

In other words, each entity has a local view of the system graph, and
can only see incoming and outgoing edges. Since there is no history of
which statements have previously been present, an entity can only be aware
of the current state.

Assumption 2 (Local Decisions). An entity can base its decisions only on those
statements of which it is aware.

Since an entity only has a local view of the system graph, it cannot use
information from other parts of the graph.

Assumption 3 (Local Changes). An entity can directly affect only those state-
ments of which it is aware.

Note that the effect of changing a statement that an entity is distributing
may propagate in the paths that stem from that statement, although the
entity only can directly affect the first statement of those paths. Changes
in those statements which an entity is receiving are only intended to be
performed via deductive rules, i.e. automatic rules which are executed by
the system to keep the graph in a valid state — see chapter 5 for details.

Entities are assumed to store their knowledge and certificates securely
— only by applying one of the rules in chapter 5 can information be spread
in the system.



Chapter 5

Modeling Key Certificates

In this chapter we will present the C-graph formalism, which is a model
describing entities of a system and their knowledge of keys and of public
key certificates. By adding graph transformation rules that act on a C-
graph, we can breathe life into the model and allow the entities to issue,
distribute and revoke the certificates they have access to.

5.1 The C-Graph

The formalization we will use to model a distributed PKI is a directed,
attributed graph with attributes taken from the predefined sets V-ATT and
E-ATT. We call such a graph a C-graph.

Definition 14 (C-Graph). A C-graph is an attributed graph (V,E, s, t, v-att, e-att)
where V is the set of entities in the system and E = EP ∪ EK ∪ EC is the set
of (entities’) public-key pairs, their knowledge of public keys, and their signed
statements about (entities’) public keys. The functions s, t : E → V assign a
distributor and recipient to each edge, respectively, and v-att : V → V-ATT and
e-att : E → E-ATT assign attributes. The node attribute function v-att assigns
names from a name alphabet V-ATT to nodes. For simplicity of presentation, we
split the edge attribute function e-att into three — e-attK , e-attP , and e-attC , one
for each type of edge — with several subfunctions:

e-attK =











keypair : E → (IDk × k) × (IDK ×K) × T

state : E → {+, 0,−}

support : E → V-ATT
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e-attP =























public-key : E → (IDK ×K) × T

type : E → {O, I}

state : E → {+, 0, 0∗,−}

support : E → 2V-ATT∗

e-attC =











cert : E → IDk × (IDK ×K) × T 2

state : E → {+, 0,−}

support : E → 2V-ATT∗

The subfunctions of the edge attribute functions are defined separately.
For e-attK , the attribute function for entities’ knowledge of their own key-
pairs, keypair assigns a private and a public key, along with the ID for the
keypair (private and public keys of the same key pair are assumed to share
an ID), and a time stamp indicating the time of creation to the edge. The
state function describes if the knowledge is positive, inactive or negative,
and support assigns a support set. In the case of keypair knowledge, the
support set is just the name of the key owner, hence a single member of
V-ATT is sufficient.

The attribute function e-attP describes entities’ knowledge of other enti-
ties’ public keys, whether obtained outside the system, or deduced within
the system. The public-key function assigns a public key with correspond-
ing ID, along with a time stamp indicating the time the knowledge was
formed. The type function distinguishes between knowledge obtained from
the outside and knowledge deduced within the system, and the state func-
tion describes if the knowledge is positive, inactive, or negative, with the
0∗ state used to designate the earliest inactivation time for a specific key
among the knowledge possessed by each entity. The support function as-
signs a support set (a set of strings over the set of entity names) to each
knowledge.

For e-attC , the attribute function for certificates, the certificate function
cert assigns a private key ID (of the signing entity) and a public key ID
and key (of the subject entity), along with two time stamps, as attributes to
each edge — knowing which signing key was used gives entities enough
information to verify the signature, and knowing the ID of the public key
as well as the public key itself gives entities information to use the public
key in new verifications. The time stamps specify when knowledge of the
public key was formed or inactivated, and when the certificate was created.
The reason that two time stamps are needed is that entities need to know
both the time that the public key was inactivated (if it was), and when the
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certificate itself was created (in case the signing key itself has been inac-
tivated). The functions state and support are similar to the corresponding
functions in e-attP .

5.1.1 Graphical Representation

Attributes are represented in different ways graphically. The knowledge
or certificate itself (the keypair, public-key or cert function) is represented by
a box on each edge, holding the attributes.

Keypair knowledge boxes contain the private key identifier at left, and
the public key identifier in the middle (the actual keys are implied). The
time stamp is at right, and indicates the time the keypair was created, or
inactivated (when applicable). Since keypair knowledge always belongs to
the owner of the keypair, it is not necessary to state the name of the key
owner in the box.

Public-key knowledge boxes contain the identifier of the public key that
the distributor/recipient has knowledge of (the actual key is implied). The
time stamp is at the right. If the public-key knowledge is of typeO, the time
stamp indicates the time that the knowledge was formed (or inactivated,
when applicable); if the knowledge is of type I , the time stamp indicates
the time stamp of the root of the path leading to that knowledge. Edges
representing O knowledge are shown with double boxes; edges represent-
ing I knowledge are shown with single boxes.

Certificates contain first the signing key identifier, and then the identi-
fier of the public key being certified (the actual key and the signature are
implied). The two rightmost elements are time stamps. The first one indi-
cates the time that the knowledge of the public key (at the root of the path
leading to the certificate) was created or inactivated (when applicable); the
second one indicates the time that the certificate itself was created.

The value of the state function is shown at the top right corner of each
box. Positive knowledge or certificates are marked with a plus sign, in-
active knowledge or certificates are marked with a zero (possibly with an
asterisk), and negative knowledge or certificates are marked with a minus
sign. Finally, the (valid and complete) support set of a knowledge or certifi-
cate is shown below the box.

An entity can have any number of private/public key pairs associated
with it, easily distinguished with an index; the public keys of entity A can
be numbered A.K1, A.K2, etc. In the following rules we may sometimes
leave out this index to simplify the notation, but note that in a matching
of A.k and A.K, the private and public keys are assumed to have the same
index.
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5.1.2 Examples

Figure 5.1 shows A’s keypair knowledge of (ki,Ki), created at time t. The
keys in a keypair knowledge are written without the key owner’s name,
since the owner is always the holder of the knowledge.

A ki | Ki | t

{A}

+

Figure 5.1. A has the keypair (ki,Ki)

In figure 5.2 there are two entities, A and B. The edge represents A’s
public-key knowledge of B.Kj , which was obtained at time t. The dou-
ble lines marking the box implicate that the knowledge has been obtained
outside the graph system (A may have been told by B in person). The sup-
port set — below the certificate box — has only one member, the path A.
O certificates are always the first edges on a path, and are always marked
with the signer as the path attribute. For clarity, we have included the node
representing B in this figure. In subsequent figures, the signer and subject
are implied when they are not identical to the distributor or recipient.

A B.Kj | t

{A}

+
B

Figure 5.2. A has knowledge of B.Kj

Figure 5.3 describes a certificate which is quoted (distributed) by C and
received byD. The box on the edge represents a certificate forB.Kj , signed
by A at time t2. A’s knowledge of B was formed at time t1. The path
attribute Π = {π1, . . . , πk} represents the valid and complete support set of
the certificate.

C A.ki | B.Kj | t1 | t2
Π

+
D

Figure 5.3. C quoting a certificate to D
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5.2 Rules for the C-Graph

By specifying a set of graph transformation rules that act on a C-graph,
we can model a system for certificate distribution and revocation. These
rules are either functions that the users can call if certain conditions are
met — interactive rules — or automatically applied deductions — deductive
rules. Deductive rules bring the graph to a valid state (e.g. by deriving new
knowledge or removing unsupported knowledge) after an interactive rule
has been applied. In interactive rules, variables are from the beginning of
the alphabet; deductive rules have variables from the end.

New outside knowledge and certificates are added with a time stamp
value tc, which is intended as the current global time in the system. We
assume an ordering relation between time values such that t1 < t2 if t1
took place before t2.

When a rule describes an edge with a single box, it is still possible that
it is matched into a double-edge box. Double-edge boxes can be seen as a
special case of single-edge boxes, and the main reason they are present are
to act as a visual guide to which certificates have originated outside (note
that a support set with a single member is sufficient to indicate outside
knowledge). When double-edge boxes are specified in a rule, they can
only be matched into double-edge boxes in the host graph.

Note that the rules do not describe the protocol for exchanging infor-
mation. For example, in the rule for quotation (rule 7), we do not know
why D chooses to quote the certificate to E. E may have requested the in-
formation from D, but the mechanics of that request are outside the scope
of this work.

We will present the rules in steps: first the rules that add knowledge
and certificates to the graph, then three different kinds of revocation —
through removal, inactivation, and negation (we refer to section 6.1 for a
flowchart representation of the revocation functionality described in this
chapter). Rules are presented in framed boxes to clearly distinguish them
from examples. An example will run throughout the chapter, with changes
made to the example graph after each section of presented rules.

5.3 Adding Entities, Knowledge, and Certificates

The first five rules describe the addition of entities, knowledge, and certifi-
cates to the system.
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A ⇀ A

Rule 1: Adding an entity

A ki | Ki | t
+

⇀ A ki | Ki | tc

{A}

+

Rule 2: Generating a new key pair

A 6= B

A B.Ki | t
+

B ⇀ A B.Ki | tc

{A}

+
B

Rule 3: Adding outside knowledge

ki | Ki | ti

+

A A.ki | B.Kj | tb | t
s

C ⇀

B.Kj | tb

Ω

s

ki | Ki | ti

+

A A.ki | B.Kj | tb | tc

ΩA

s
C

B.Kj | tb

Ω

s

Rule 4: Creating a certificate
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∄ψ ∈ Ψ : ω = ψφ

ki | Ki | ti

+

X X.ki | Y.Kj | ty | t

Ψ

s
Z ⇀

Y.Kj | ty

Ω ∪ ω

s

ki | Ki | ti

+

X X.ki | Y.Kj | ty | t

Ψ ∪ ωX

s
Z

Y.Kj | ty

Ω ∪ ω

s

Rule 5: Updating the support set of a certificate

i 6= j

ki | Ki | ti

+

A A.ki | A.Kj | ta | t
s

C ⇀

kj | Kj | ta

{A}

s

ki | Ki | ti

+

A A.ki | A.Kj | ta | tc

{AA}

s
C

kj | Kj | ta

{A}

s

Rule 6: Creating a certificate for one’s own key
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Rule 1 allows the addition of entities to the system. This makes it some-
thing of a meta-rule, and is intended to be called by an administrator out-
side the system. Rule 1 is the only administrative rule.

The interactive rule 2 allows entities to add new key pairs of their own,
and is called interactively by the key owner A. The knowledge will be
stamped with the current time tc, and the NAC avoids duplicates.

Rule 3 (called by A) lets entities add knowledge interactively that they
have acquired outside the system. The NAC avoids duplicates.

Rule 4 allows entities to interactively create certificates for keys that
they know, using one of their own keys — that they believe to be non-
revoked — to sign the certificate. Duplicates are avoided through the NAC.
Note that the certificate inherits its support set and the time stamp forB.Kj

from A’s knowledge of B.Kj .
Rule 5 is a deductive rule, which ensures that the support set of the

first certificate in a chain (i.e. a certificate created through the use of rule 4)
is kept updated, when there is added support. The rule adds all existing
paths to Ψ (the support set of the certificate), while excluding cyclic paths
through the condition that there must not be a path in Ψ that is a prefix of
ω, the path to be added.

Rule 6 lets entities interactively create certificates for their own keys,
using another key than the certified one to sign the certificate. There is no
need for a rule that updates the support for such certificates, since they are
based on the keypair knowledge ofA, which has the non-changing support
set {A}. The NAC constraints are similar to those in rule 4.

5.3.1 Example

We will now give an example to illustrate the use of the rules for adding
entities, outside knowledge, and certificates. Starting with an empty sys-
tem, the administrator applies rule 1 five times to create entities A, B, C,
D and E. The negative application condition of the rule ensures that each
entity has a unique name. The result is shown in figure 5.4.

The new entities now start acting. A creates the key pair (ki,Ki), B
creates the key pair (kj ,Kj), and D creates the key pair (kl,Kl), each using
rule 2 to add them to the system. A has outside knowledge of B.Kj , and
D has outside knowledge of A.Ki. They each apply rule 3 to add their
outside knowledge to the system. The NACs of both rules ensure that the
added items are not duplicates. The result of these operations is shown in
figure 5.5.

Next, A decides to tell B and C about their knowledge of B.Kj , using
rule 4 to create certificates and sign them with A.ki. After these operations,
the system will look as shown in figure 5.6.
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A B

C

D E

Figure 5.4. New entities

B.Kj | t4

{A}

+

ki | Ki | t1

{A}

+

A B kj | Kj | t2

{B}

+

C

kl | Kl | t3

{D}

+

D E

A.Ki | t5

{D}

+

Figure 5.5. Outside knowledge added by A and D

B.Kj | t4

{A}

+

ki | Ki | t1

{A}

+

A A.ki | B.Kj | t4 | t6

{AA}

+

B kj | Kj | t2

{B}

+

A.ki | B.Kj | t4 | t7

{AA}

+

C

kl | Kl | t3

{D}

+

D E

A.Ki | t5

{D}

+

Figure 5.6. Certificates added by A
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5.4 Quotation

Certificates can be quoted, as described by the interactive rule 7: if D has
been told by C about A’s certification of B.Kj , D can spread that informa-
tion to E. Since the state of the quoted certificate is given as a variable s,
the rule describes quotation of positive certificates as well as inactive and
negative ones. The state of a quoted certificate is the same as the one that
supports it (cf. the matching condition in section 3.2).

Rule 8 is deductive, and updates the support set of quotations when
necessary. The rule applies to quotations of all three states.

D 6= A

C A.ki | B.Kj | tb | ta

Π

s
D A.ki | B.Kj | tb | ta

s
E ⇀

C A.ki | B.Kj | tb | ta

Π

s
D A.ki | B.Kj | tb | ta

ΠD

s
E

Rule 7: Quotation

∄ψ ∈ Ψ : ω = ψφ

U X.ki | Y.Kj | ty | tx

Ω ∪ ω

s
V X.ki | Y.Kj | ty | tx

Ψ

s
W ⇀

U X.ki | Y.Kj | ty | tx

Ω ∪ ω

s
V X.ki | Y.Kj | ty | tx

Ψ ∪ ωV

s
W

Rule 8: Updating the support set

5.4.1 Example

C now quotes to D the certificate that they received from A. To add the
quotation, rule 7 is applied by C. The NAC of the rule checks for duplicate
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quotations. Note how the support sets are formed, indicating the path back
to A’s outside knowledge of B.Kj . The result is shown in figure 5.7.

B.Kj | t4

{A}

+

ki | Ki | t1

{A}

+
A A.ki | B.Kj | t4 | t6

{AA}

+
B kj | Kj | t2

{B}

+

A.ki | B.Kj | t4 | t7

{AA}

+

C

A.ki | B.Kj | t4 | t7

{AAC}

+

kl | Kl | t3

{D}

+
D E

A.Ki | t5

{D}

+

Figure 5.7. Quotation added by C

At this point the system is not in a valid state, because D is able to
make a deduction about B.Kj . Rules for deducing new knowledge are
presented in the following section, so the example will be suspended until
section 5.5.1, where the deduction will be carried through.

5.5 Deducing Knowledge

The deductive rules 9, 10, 11, and 12 ensure that new knowledge is de-
duced when there is support for it, and that the support sets of such know-
ledge are kept updated. The rules apply to deductions with any state, but
note that the variable s must be instantiated to the same state when it ap-
pears several times in the same rule.

Rule 9 works as follows: if Z has knowledge ρ that X.Ki is X’s public
key, and a certificate σ signed withX.ki for Y.Kj , Z has the ability to verify
the signature on σ and will deduce type I knowledge about Y.Kj . The
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Ψ 6= {Z}

W X.ki | Y.Kj | ty | tx

Ω

s

Z Y.Kj | ty

Ψ

s
⇀

X.Ki | t

Π

+

W X.ki | Y.Kj | ty | tx

Ω

s

Z Y.Kj | ty

ΩZ

s

X.Ki | t

Π

+

Rule 9: Deducing new knowledge

∄ψ ∈ Ψ : ω = ψφ

W X.ki | Y.Kj | ty | tx

Ω ∪ ω

s

Z Y.Kj | ty

Ψ

s
⇀

X.Ki | t

Π

+

W X.ki | Y.Kj | ty | tx

Ω ∪ ω

s

Z Y.Kj | ty

Ψ ∪ ωZ

s

X.Ki | t

Π

+

Rule 10: Updating the support set of deduced knowledge
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tx < t

W X.ki | Y.Kj | ty | tx

Ω

s

Z Y.Kj | ty

s
⇀

X.Ki | t

Π

0∗

W X.ki | Y.Kj | ty | tx

Ω

s

Z Y.Kj | ty

ΩZ

s

X.Ki | t

Π

0∗

Rule 11: Deducing new knowledge with inactive signing key

∄ψ ∈ Ψ : ω = ψφ

tx < t

W X.ki | Y.Kj | ty | tx

Ω ∪ ω

s

Z Y.Kj | ty

Ψ

s
⇀

X.Ki | t

Π

0∗

W X.ki | Y.Kj | ty | tx

Ω ∪ ω

s

Z Y.Kj | ty

Ψ ∪ ωZ

s

X.Ki | t

Π

0∗

Rule 12: Updating the support set of deduced knowledge
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support set of the new knowledge is derived from the support set of σ.
When new certificates are given to Z on the same form as σ, rule 10 will
add that support to the support set of Z’s knowledge, similarly to rule 8.
Rules 11 and 12 work correspondingly, in the case that ρ is inactive. In this
case, the time stamps of ρ and σ must be compared: σ can only be accepted
if it was created before the earliest known inactivation of ρ.

5.5.1 Example

B.Kj | t4

{A}

+

ki | Ki | t1

{A}

+
A A.ki | B.Kj | t4 | t6

{AA}

+
B kj | Kj | t2

{B}

+

A.ki | B.Kj | t4 | t7

{AA}

+

C

A.ki | B.Kj | t4 | t7

{AAC}

+

kl | Kl | t3

{D}

+
D B.Kj | t4

{AACD}

+
E

A.Ki | t5

{D}

+

Figure 5.8. Deduction made by D

When the quotation from C to D was added (in section 5.4.1), the de-
ductive rule 9 applies: D has knowledge aboutA.Ki, as well as a certificate
signed with that key. Therefore, D has the possibility to check A’s signa-
ture, and deduces knowledge about B.Kj . The checking of the signature
may be performed at any time; if the signature turns out not to be correct,
D may choose to apply some form of revocation. Note how the support
set as well as the time stamp of the deduction trace back to A’s original
knowledge. The result of this automatic process is shown in figure 5.8.
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5.6 Revocation by Removal

Removal of knowledge or certificates should be interpreted as the revoking
user no longer being able to vouch for the authenticity of the statement in
question. We will now describe how such removal affects the graph. For
clarity, the interactive and deductive rules for removal will be presented in
sections describing removal of keypair knowledge, public-key knowledge,
and certificates, respectively.

The rules in this section all apply to knowledge or certificates of any
state s.

5.6.1 Removal of Keypair Knowledge

A ki | Ki | t

{A}

s
⇀ A

Rule 13: Removing keypair knowledge

tx < t0

ki | Ki | t
+

X X.ki | Y.Kj | ty | tx

s
Z ⇀

ki | Ki | t0
0

X Z

Rule 14: Invalid signature

Rule 13 is an interactive rule that lets entities remove keypair know-
ledge that they hold. Rule 14 is deductive, and removes certificates with
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kj | Kj | tj

s
X X.ki | X.Kj | tj | tx

{XX}

s
Z ⇀ X Z

Rule 15: Removal of certificate without support

signatures that have become invalid due to removal (or inactivation, see
section 5.7) of keypair knowledge. There are two NACs; the top NAC de-
scribes the lack of a positive keypair knowledge, and the bottom NAC de-
scribes the lack of inactive keypair knowledge that was inactivated after
the public-key knowledge of Y.Kj was formed. If neither of the two key-
pair knowledge variants are present, the signature cannot be accepted, and
the certificate must be revoked. Note that Y may be matched into the same
entity as X , for certificates that are signed by the key owner.

Rule 15 is also deductive, and removes certificates for a distributor’s
own keys, when there is no longer corresponding keypair knowledge of
the same state.

5.6.2 Removal of Public-Key Knowledge

A B.Kj | t

Γ

s
⇀ C

Rule 16: Removing type O public-key knowledge

The interactive rule 16 lets entities remove type O public-key knowledge
that they hold. It is unnecessary to remove deduced knowledge, since it
will reappear automatically as long as the premises for it are present.

Rule 17 is deductive, and updates the support set of the first certificate
in a chain when some support is missing. If there is no support left, rule 21
will remove the certificate itself.

The deductive rule 18 removes deduced public-key knowledge that is
no longer supported, either because there is no incoming quotation with a
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Y.Kj | ty

Ω ∪ ω

s
X X.ki | Y.Kj | ty | tx

Ψ ∪ ωX

s
Z ⇀

X X.ki | Y.Ki | ty | tx

Ψ

s
Z

Rule 17: Updating the support set

t3 < t4

W X.ki | Y.Kj | ty | t1

s
X.Ki | t2

+

Z Y.Kj | ty

s
⇀

V X.ki | Y.Kj | ty | t3

s
X.Ki | t4

0∗

Z

Rule 18: Removal of deduced knowledge

matching positive public-key knowledge, or because there is no incoming
quotation with a matching inactive public-key knowledge (where the inac-
tivation took place after the quoted certificate was signed). Note that the
constraints of rule 18 handles all three possible scenarios of lost support:
quotation present but knowledge revoked, quotation revoked but know-
ledge present, or both quotation and knowledge revoked. Remember that
within a constraint that consists of several elements, all elements must be
present for the constraint to be violated. If both elements within one of the
constraints are present there is support for the deduced knowledge, and
indeed the rule should not apply.
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5.6.3 Removal of Certificates

C A.ki | B.Kj | tb | ta

Γ

s
D ⇀ C D

Rule 19: Removing a certificate

V 6= X

U X.ki | Y.Kj | ty | tx

Ω ∪ ω

s
V X.ki | Y.Kj | ty | tx

Ψ ∪ ωV

s
W ⇀

V X.ki | Y.Kj | ty | tx

Ψ

s
W

Rule 20: Updating the support set

V X.ki | Y.Kj | ty | tx

∅

s
W ⇀ V W

Rule 21: Removal of unsupported quotations

The interactive rule 19 lets entities remove certificates of any state that
they have distributed. The rest of the rules in this section are deductive.

Removing a certificate can affect the paths of quotations. Rule 20 re-
moves path information that no longer holds. Note the condition that
V 6= X , which keeps V and X from being matched into the same entity
— certificates distributed by the signer are based on the signer’s know-
ledge, not a quotation. If all support is missing after the application of
rule 20, rule 21 detects the lack of support and removes the unsupported
quotation.

The second way that revocation can propagate in the graph is by re-
moving deduced knowledge. Rule 22 updates the support set of deduced
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ω 6= ǫ

W X.ki | Y.Kj | ty | tx

Ω ∪ ω

s

Z Y.Kj | ty

Ψ ∪ ωZ

s
⇀

X.Ki | t

Π

+

X.Ki | t

Π

+
Z Y.Kj | ty

Ψ

s

Rule 22: Updating the support set

tx < t0, ω 6= ǫ

W X.ki | Y.Kj | ty | tx

Ω ∪ ω

s

Z Y.Kj | ty

Ψ ∪ ωZ

s
⇀

X.Ki | t0

Π

0∗

X.Ki | t0

Π

0∗

Z Y.Kj | ty

Ψ

s

Rule 23: Updating the support set

knowledge when supporting certificates are removed, to keep the path in-
formation current. Note the condition that ω 6= ǫ (where ǫ is the empty
string), which prevents the support set of type O public-key knowledge of
being removed.

Rules 23 works in the same way as 22, but with the assumption that Z’s
knowledge is inactive.
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5.6.4 Example

C decides to remove the quotation previously given to D, and applies rule
19 to remove the certificate. The result is shown in figure 5.9.

B.Kj | t4

{A}

+

ki | Ki | t1

{A}

+
A A.ki | B.Kj | t4 | t6

{AA}

+
B kj | Kj | t2

{B}

+

A.ki | B.Kj | t4 | t7

{AA}

+

C

kl | Kl | t3

{D}

+
D B.Kj | t4

{AACD}

+
E

A.Ki | t5

{D}

+

Figure 5.9. C removes the quotation made to D

Now there is no longer support forD’s deduced knowledge aboutB.Kj ,
so the deductive rules come into play. Rule 18 detects the missing quota-
tion to D, and removes the deduction. The result is shown in figure 5.10.

B.Kj | t4

{A}

+

ki | Ki | t1

{A}

+
A A.ki | B.Kj | t4 | t6

{AA}

+
B kj | Kj | t2

{B}

+

A.ki | B.Kj | t4 | t7

{AA}

+

C

kl | Kl | t3

{D}

+
D E

A.Ki | t5

{D}

+

Figure 5.10. D’s unsupported type I public-key knowledge is removed
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5.7 Revocation by Inactivation

To capture the mechanics of revocation due to expiration, we use inactiva-
tion. By inactivating knowledge, entities can hold and spread information
on the form ”X.Ki wasX’s public key, but since time te it is not valid”. This
may be necessary not only when a key has reached its expiration time, but
also when a key simply should not be used any longer for non-malicious
reasons, e.g. when a user has changed work assignments. Therefore, we
call this procedure inactivation, and note that expiration is only one of sev-
eral reasons why it should be performed.

Users can inactivate their own keys, as well as those of others. Even
when a key is inactive it is necessary to store it, to be able to verify sig-
natures that were made while the key was still valid. However, signatures
that have been created after its inactivation should not be considered valid.
We address this issue by keeping inactivated certificates in the graph, but
not letting entities accept signatures made with keys that they know are in-
active (as ensured by rule 11). Furthermore, once an entity has inactivated
their own key, or knows that their key has been inactivated by another en-
tity, they are no longer able to sign certificates with that key (as ensured by
rules 4 and 6), and any signatures made between the time of inactivation
and the time that the key owner learns of the inactivation will be removed
(as ensured by rule 14).

Inactive knowledge and certificates are marked with a zero in the up-
per right corner. When an inactive collision occurs, the policy will be to
give precedence to inactive knowledge and certificates over positive ones.
When an inactive knowledge or certificate is added where there is already
a corresponding positive statement, the inactive will be spread along any
existing positive paths. Following this, the positive statements will be re-
moved from the graph (or, in some cases, inactivated).

More formally, precedence is given to inactive statements through the
following policy:

(1) When a user has an inactive collision caused by the inactive state-
ment ρ, follow the paths of positive certificates on the same form as ρ
that emanate from that user, and add inactive certificates along those
paths.

(2) When the end of a path is reached, backtrack along the path and re-
move the positive certificates on the same form as ρ that are distrib-
uted to entities on the path.
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5.7.1 Inactivation of Keypair Knowledge

A ki | Ki | t

{A}

+
⇀ A ki | Ki | t

{A}

+

ki | Ki | tc

{A}

0

Rule 24: Inactivating keypair knowledge

X.kj | X.Ki | t1 | t2

{XX}

+

ki | Ki | ti

{X}

0
X Y ⇀

X.kj | X.Ki | ti | tj

{XX}

0

X.kj | X.Ki | t1 | t2

{XX}

+

kj | Ki | ti

{X}

0
X Y

X.kj | X.Ki | ti | tc

{XX}

0

Rule 25: Propagating inactive keypair knowledge along positive paths

Entities may inactivate their own keys by using the interactive rule 24.
The inactivated keypair knowledge will be stamped with the current time
tc. Applying this rule can affect the graph through the deductive rule 25,
which describes how certificates for the inactivated key are propagated
along the paths of positive certificates for the key. The reason for this prop-
agation is to spread information about the inactivation to any user that
previously had information about the positive certification. While rule 25
initiates the propagation, its continuation is ensured by rule 30, which han-
dles propagation along general certificate paths. Note that the positive
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knowledge is kept by these rules — the reason for this is that any positive
certificates issued by A should be kept until the propagation is complete
(if the positive knowledge was not kept, rules 15, 20 and 21 would remove
the positive certificates). After the propagation, rule 33 will remove the
positive knowledge.

Once an entity has inactivated one of its keypairs, it cannot be used to
sign new certificates, as ensured by rules 4 and 6. Rule 6 lets users create
certificates for inactive keypair knowledge, as long as the signing key is
not inactive.

5.7.2 Inactivation of Public-Key Knowledge

B.Kj | t

{A}

+
A B ⇀

B.Kj | t

{A}

+
A B.Kj | tc

{A}

0
B

Rule 26: Inactivating public-key knowledge

Keys can also be inactivated by other entities than the key owner. Type
O public-key knowledge can be inactivated interactively via rule 26. The
deductive rule 27 will initiate the propagation of the inactivation via posi-
tive paths, and this propagation will be continued by rule 30. The positive
knowledge is kept for the same reason as in rule 24, and will be removed
after propagation by rule 34.

The procedures for creating and updating certificates for inactive public-
key knowledge are described by rules 4 and 5.

When a key is inactivated by some other entity than the key owner, the
key owner may not be aware of the inactivation for some time, and may
therefore use the key. When the key owner does deduce knowledge about
the inactivated key, all certificates signed with that key since the time of
inactivation will be removed by the deductive rule 14.

Different entities may inactivate a key at different times. Since an entity
may receive certificates for the inactivation of a given key from different
sources, they may end up with deduced public-key knowledge of that key
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X.ki | Y.Kj | t1 | t2

Ψ

+

Y.Kj | tj

Ω

0
X Y ⇀

X.ki | Y.Kj | tj | ti

{ΩX}

0

X.kj | X.Ki | t1 | t2

Ψ

+

Y.Kj | tj

Ω

0
X Y

X.ki | Y.Kj | tj | tc

ΩX

0

Rule 27: Propagating inactive public-key knowledge along positive paths

t2 < t1

Y.Kj | t1
0

X ⇀ Y.Kj | t1
0∗

X

Y.Kj | t2
0

Rule 28: Finding the earliest inactivation time

with different time stamps. In this case, it is important that the entity con-
siders the earliest possible inactivation they have access to — failing to do
so means possibly accepting signatures that were made after the key was
inactivated. To keep track of the earliest inactivation for a specific public
key, the deductive rules 28 and 29 mark it with an asterisk.
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t2 < t1

Y.Kj | t1
0∗

Y.Kj | t1
0

X ⇀ X

Y.Kj | t2
0

Y.Kj | t2
0∗

Rule 29: Updating the earliest inactivation time
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Ω

0
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Ψ
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Ω

0
V W

X.ki | Y.Kj | t3 | t4
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Rule 30: Propagating inactive certificates along positive paths

5.7.3 Inactive Certificates

Certificates themselves cannot be interactively inactivated — the inactiva-
tion of a certificate must be based on inactive keypair or public-key know-
ledge. However, there are deductive rules that inactivate certificates when
necessary. As already mentioned, rules 25 and 27 initiate the propagation
of inactive knowledge along paths of positive certificates. Rules 30 and 31
continue and end the process. When an inactive certificate σ is added to
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T X.ki | Y.Kj | t1 | t2

Π

+

V X.ki | Y.Kj | tj | ti

+
W ⇀

U X.ki | Y.Kj | t3 | t4

Ω

0

T U X.ki | Y.Kj | t3 | t4

Ω

0
V

Rule 31: Backtracking along positive paths

ki | Ki | ti

{X}

+

X X.kj | X.Ki | t1 | t2

Φ

s
Z ⇀

X.Ki | t

Ω

0∗

ki | Ki | t

{X}

0
X X.Ki | t

Ω

0∗

Rule 32: Inactivating positive keypair knowledge

a C-graph, rule 30 will propagate it along the paths of the positive certifi-
cates on the same form as σ. Rule 31 detects the end of each such path and
removes the last positive certificate on the path, thus back-tracking to the
beginning of quoted paths until no positive certificates for the same bind-
ing as σ are left. Rules 33 and 34 remove the positive keypair or public-key
knowledge at the root of the paths when propagation and backtracking
are complete. Rules 35, 36, 37, and 38 remove incoming positive certifi-
cates when they appear as part of the support for a deduction about the
key. This is done in order to ensure that new positive knowledge cannot be
deduced about the key, and to remove deductions that are already in place.
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ki | Ki | t1

{X}

+

X X.kj | X.Ki | t3 | t4

{XX}

+
Y ⇀

ki | Ki | t2

{X}

0

ki | Ki | t2

{X}

0
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Rule 33: Removing positive keypair knowledge

Y.Kj | t1

+

X X.ki | Y.Kj | t3 | t4

+
Z ⇀

Y.Kj | t2
0

Y.Kj | t2
0

X

Rule 34: Removing positive public-key knowledge

5.7.4 Removal of Inactive Statements

Inactive knowledge and certificates can be removed in a similar way to
their positive counterparts. However, we do not need revocation rules spe-
cific to inactive statements, since the intended results are achieved by the
rules 13–23. Removal of an inactive certificate can be necessary when de-
duced knowledge loses its support, or when information about the inactive
key is not needed in the system any longer.
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t2 < tl
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Rule 35: Removing the support for positive public-key knowledge
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Rule 36: Removing the support for positive public-key knowledge
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Rule 37: Removing the support for positive public-key knowledge
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Rule 38: Removing the support for positive public-key knowledge
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Figure 5.11. B adds knowledge and certificate about D.Kl

5.7.5 Example

Assume a system graph that looks like in figure 5.8, and that B adds out-
side knowledge about D.Kl in a certificate that they also quote to E. This
will give us the system graph in figure 5.11.

Now assume that A decides to inactivate their public-key knowledge
of B.Kj , and applies rule 26 to do so — this will add a new inactive know-
ledge with a current time stamp. Rule 28 will mark the knowledge with an
asterisk, since it is the earliest inactivation of B.Kj in A’s possession. Rule
27 will now detect that A holds inactive knowledge and distributes posi-
tive certificates for the same key, and add inactive certificates between A
and B, and between A and C. Again, rule 27 applies and adds the inactive
certificate between C and D. This will produce the graph shown in figure
5.12.

At this point, the ends of the paths of quoted positive certificates have
been reached at B and at D. Rule 31 detects that the ends are reached,
and backtracks to remove the three positive certificates along the paths. At
D, there is no longer an incoming certificate for B.Kj , so rule 18 removes
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Figure 5.12. A’s inactivation is spread in the graph

D’s deduced knowledge. Rule 9 deduces new knowledge for D about the
inactivation of B.Kj , and rule 28 marks it with an asterisk since it is the
earliest inactivation for B.Kj in D’s possession. At A, rule 34 removes the
positive public-key knowledge for B.Kj .

Now assume thatB adds outside public-key knowledge ofA.Kj , using
rule 3. The presence of the new knowledge triggers rule 9, which deduces
knowledge of the inactivation of B.Kj atB. Rule 28 marks it with an aster-
isk. Rule 31 detects B’s positive keypair knowledge and inactive public-
key knowledge, and inactivates the keypair knowledge. SinceB signed the
certificate for D.Kl before t10, there is still support for the certificate and it
will not be removed. The result is shown in figure 5.13.
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Figure 5.13. Positive certificates are removed along the paths

5.8 Revocation by Negation

There are many times when a revocation should be interpreted as the re-
voking user making a negative assertion about the authenticity of a bind-
ing, e.g. when the certified key or the signing key has been compromised,
and entities must be prevented from believing in a certain binding. Negat-
ing a statement is the strongest way to revoke; by doing so, entities can
spread information on the form ”X.Ki is not X’s public key”.

Negative knowledge and certificates are marked with a minus sign in
the upper right corner. When a negative collision occurs, the policy will
be to give precedence to negative statements. When a negative statement
is added where there is already a corresponding positive or inactive state-
ment, the negative will be spread along any existing positive or inactive
paths, and the positive and inactive statements will then be removed from
the graph (or, in some cases, negated). Negative certificates cannot be in-
activated, but may be removed and revoked if they lose their support.
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We have chosen to give precedence to negative statements through the
following policy:

(1) When a user has a negative collision, follow the paths of positive
and/or inactive certificates that emanate from that user, and add neg-
ative certificates along those paths.

(2) When the end of a path is reached, backtrack along the path and re-
move the corresponding positive and/or inactive certificates distrib-
uted to entities along the path.

5.8.1 Negation of Keypair Knowledge

s ∈ {+, 0}

A ki | Ki | t

{A}

s
⇀ A ki | Ki | t

{A}

s

ki | Ki | tc

{A}

-

Rule 39: Negating keypair knowledge

Positive or inactive keypair knowledge can be interactively negated by
rule 39 — the knowledge will be time-stamped with the current time tc.
The existing knowledge is kept in the graph until propagation is finished.
The deductive rule 40 spreads the negation by distributing negated certifi-
cates to recipients of positive certificates for the same binding, in the same
way as for inactivation. The propagation is continued by rule 43, and the
backtracking process is finished by rule 46.

Certificates for negative keypair knowledge can be created by rule 6.

5.8.2 Negation of Public-Key Knowledge

Public-key knowledge that is positive or inactive can be interactively negated
via rule 41. The existing knowledge is kept until propagation is finished in
the same way as for inactivation. Rule 42 initiates the propagation of the
negation on positive and inactive paths; the propagation is continued by
rule 43 and the backtracking is finished by rule 47.
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Rule 40: Propagating negative keypair knowledge
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Rule 41: Negating public-key knowledge

When an entity learns that one of their keys has been negated, all cer-
tificates signed with that key are removed. This is achieved by rule 45,
which negates the knowledge (after any necessary propagation on paths
of certificates for that key), and rule 15, which removes certificates without
support.

Certificates for negative public-key knowledge can be created by rule 4.
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Rule 42: Propagating negative public-key knowledge

5.8.3 Negation of Certificates

Like inactivation, negation cannot be applied directly to a certificate — a
certificate must be based on keypair or public-key knowledge. However,
once knowledge about a key has been negated, certificates on paths stem-
ming from that knowledge are negated as well.

Rules 43 and 44 work together in the same way as rules 30 and 31.
When a negative certificate ρ is added to a C-graph by either of the rules 40
or 42, rule 43 will propagate it along the paths of the positive or inactive
certificates on the same form as ρ. Rule 44 detects the end of each such
path and removes the last positive or inactive certificate on the path, thus
back-tracking to the beginning until no positive or inactive certificates on
the same for as ρ are left. Rules 46 and 47 remove the positive or inactive
knowledge at the beginning of the path when the propagation of negative
statements and backtracking are finished. Rules 48, 49, 50, and 51 remove
incoming positive or inactive certificates for the negated key, when they
form part of the support for a deduction about the negated key. This is
done in order to make sure that no new positive or inactive knowledge
will be deduced about the key — removing a deduced knowledge is not
enough; if there is support for it, it will automatically reappear.
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Rule 43: Propagating negative certificates
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Rule 44: Backtracking
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Rule 45: Negating positive/inactive keypair knowledge
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Rule 46: Removing positive/inactive keypair knowledge
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Rule 47: Removing positive/inactive public-key knowledge
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Rule 48: Removing the support for positive/inactive public-key knowledge
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Rule 49: Removing the support for positive/inactive public-key knowledge
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Rule 50: Removing the support for positive/inactive public-key knowledge
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Rule 51: Removing the support for positive/inactive public-key knowledge
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5.8.4 Removal of Negative Statements

The revocation rules 13–23 apply for negative knowledge and certificates
as well, giving a functionality for revocation of negative statements. The
main reason for revocation of a negative statement is that a deduction loses
its support — possibly because the knowledge of the signing key needed
in the deduction has been revoked — but it is also possible that a nega-
tive certificate has been issued by mistake and should simply be removed,
along with any knowledge based on that certificate.

5.8.5 Example

Following the situation in figure 5.13, B negates their knowledge of D.Kl,
and D negates their knowledge of A.Ki, both using rule 41. This gives the
graph shown in figure 5.14.
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Figure 5.14. B and D negate their knowledge

As regards B, rule 42 detects the combination of negative knowledge
and the positive certificate distributed to E, and adds a negative certificate
to E as well. Rule 44 then detects that E has both a positive and a negative
certificate for D.Kl, and no outgoing certificates, and removes the positive
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certificate issued by B. Next, rule 47 detects B’s combination of positive
and negative knowledge for D.kl, and removes the positive.

As forD, rule 47 detects the combination of positive and negative know-
ledge for A.Ki, and removes the positive. Rule 18 detects the lack of sup-
port for the deduction of B.Kj , and removes it.

The resulting graph is shown in figure 5.15.
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Figure 5.15. The negations are propagated
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5.9 Summary: Interactive Rules

The interactive rules available for entities to create, quote, and revoke know-
ledge and certificates are summarized in table 5.1. All other rules for the
C-graph are deductive, except for rule 1, which is administrative.

Creation Quotation Removal Inactivation Negation

Keypair
knowledge

+ Rule 2 NAb Rule 13 Rule 24 Rule 39

0 NAa NAb Rule 13 NAc Rule 39

− NAa NAb Rule 13 NAd NAe

Public-key
knowledge,
Type O

+ Rule 3 NAb Rule 16 Rule 26 Rule 41

0 NAa NAb Rule 16 NAc Rule 41

− NAa NAb Rule 16 NAd NAe

Certificates

+ Rules 4,6 Rule 7 Rule 19 NAf NAg

0 Rules 4,6 Rule 7 Rule 19 NAf NAg

− Rules 4,6 Rule 7 Rule 19 NAf NAg

a Only positive knowledge can be created
b Creating a certificate can be viewed as quotation of knowledge
c Inactive knowledge cannot be inactivated
d Negative knowledge cannot be inactivated
e Negative knowledge cannot be negated
f Inactivation of certificates is achieved deductively
g Negation of certificates is achieved deductively

Table 5.1. Interactive rules

5.10 Graph Rule Layers

When the graph is in certain states, two or more rules may affect each
other’s applicability (i.e. they are not independent of each other, see sec-
tion 3.3). To avoid such situations, we define three graph rule layers. The
first layer consists of interactive rules, that can be applied by entities or
an administrator. The following layers consist of deductive rules. In the
second layer are rules that add information, and in the third layer are rules
that remove information. Rule 28 (which neither adds nor removes objects)
is in both layer 2 and layer 3, since it may be necessary in both of them to
mark the earliest inactivation time. Note that the companion rule 29 only
applies after knowledge with an earlier inactivation time has been added,
so it is not needed in layer 3.
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1. Interactive rules: 1, 2, 3, 4, 6, 7, 13, 16, 19, 24, 26, 39, 41

2. Deductive adding rules: 5, 8, 9, 10, 11, 12, 25, 27, 28, 29, 30, 40, 42, 43

3. Deductive removal rules: 14, 15, 17, 18, 20, 21, 22, 23, 28, 31, 32, 33,
34, 35, 36, 37, 38, 44, 45, 46, 47, 48, 49, 50, 51

User Administrator

Choose one
2 3 4 6 7 13
16 19 24
26 39 41

1 Layer 1

As long as possible

5 8 9 10 11
12 25 27
28 29 30
40 42 43

Layer 2

As long as possible

14 15 17
18 20 21
22 23 28
31 32 33
34 35 36
37 38 44
45 46 47
48 49 50
51

Layer 3

Interactive rules

Deductive rules

Figure 5.16. The layers of the C-graph rules
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Figure 5.16 describes the layers graphically. Users or administrators are
allowed to call the rules from layer 1; these are the interactive rules. After
the application of one of these rules, the other layers must be passed. The
rules of layer 2 will be applied as long as possible, then the rules from layer
3. Within each layer the rules may be applied in any order; they are not in
conflict with each other (this is shown in section 6.2.3).

It is important to note that lower layers do not affect the layers above
them — i.e., when layer 2 has been passed, no rules in layer 3 make the
rules applicable again (this is shown in section 6.2.3). This means that the
layering only helps to separate conflicting rules, it does not hinder the flow
of revocation in any way.



Chapter 6

Analysis of the C-graph

In this chapter we will analyze the C-graph system: first by studying the
flow of actions induced by the different types of revocation, then by prov-
ing some formal properties of the C-graph.

6.1 Revocation Algorithms

It may be difficult to get an overview of the rules in the previous chapter. In
this section, we illustrate the revocation algorithms in a more comprehen-
sive way, by describing flowcharts of how the different types of revocation
propagate in a system.

Figure 6.1 describes the flow of actions and system states that may re-
sult from any form of removal of a statement. Ovals describe groups of one
or more rule actions. The gray ovals represent actions that may be inter-
active (and may thus be entry points into the flowchart); white ovals de-
scribe changes that are purely deductive. The dashed lines that leave each
oval point to boxes decribing states — problematic scenarios that may or
may not apply after the action in the oval has been taken — note that sev-
eral may apply. After each box, a solid line points to the action that will be
taken in the C-graph to resolve the problem in the box. The flow of actions
may end after any action, when no problem state applies.

Rule numbers have been omitted for legibility, but note that each oval
may represent a group of possible rules which all perform the named ac-
tion.

Note that some problem boxes describe states for other keys than the
one that was just removed. When moving from such a box to an oval, the
action taken will affect another key than the one that was just removed.
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Figure 6.1. Revocation by removal

As an example, assume that an entity has just applied rule 19 to remove
a certificate that they had previously quoted to another entity. This means
that the flowchart is entered in the oval marked ”Remove certificate”. In
this case, three different problems may arise with the entity that previously
received the newly removed certificate. If they have deduced knowledge
about the subject key of the certificate, the deduction may have lost its
support completely — in which case the leftmost path of the flowchart
should be taken — or may have had its support reduced — in which case
the middle path applies. If the entity quoted the certificate to somebody
else, this quoted certificate may have had its support reduced, in which
case the rightmost path in the flowchart applies. Note that several cases
may apply, and that in that case, several paths will be taken.

Figure 6.2 describes the flow of actions and system states that may re-
sult from an inactivation. In this chart, an added type of ovals is used: the
hatched ovals represent actions that are part of the removal flowchart (fig-
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Figure 6.2. Revocation by inactivation

ure 6.1). When one of these ovals are reached, the flow of actions jumps
to the corresponding oval in the removal flowchart, and continues from
there.

In this chart, the state box marked ”Inactive collision” has several dot-
ted lines leaving it. These describe alternative ways to solve the problem
of the collision, depending on the reason for it — note that at least one of
the alternatives must apply.

The state boxes marked ”Positive certificate ahead” and ”No positive
certificate ahead”, and the actions that follow them, represent the propaga-
tion/backtracking functionality.

Figure 6.3, finally, describes the flow of actions and system states that
may result from a negation. It is analogous in structure to the inactivation
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flowchart.
Studying the flowcharts, it is interesting to note that removal of a state-

ment may lead to the removal of statements about other keys, whereas
inactivation and negation of a statement never can lead to inactivation or
negation of other keys, respectively. However, inactivation and negation
may both induce removal of statements about the inactivated/negated key
as well as removal of statements about other keys.

The flowcharts describe how the C-graph rules work in concert, but
the rules may also be viewed as an implementation of the flowcharts. In
other words, the flowcharts represent what we believe to be appropriate
revocation practices for a system with the properties described in chapter 4.
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6.2 C-graph Properties

We will now investigate the formal properties of the C-graph model. In
particular, we will establish soundness and completeness results for the
graph rules from chapter 5 with respect to the notion of a valid state, which
we recapitulate:

Definition 13 (Valid state). A system is in a valid state if and only if:

(1) the support set of each statement is valid, complete and non-empty;

(2) there are no collisions;

(3) where there is support for deduced knowledge, the deduction is made;

(4) when an entity has one or more inactive public-key knowledge state-
ments about a specific binding, the one with the earliest inactivation time
is marked.

We define validity and stability for the C-graph, two concepts that are
necessary in the following discussion:

Definition 15 (Validity). A C-graph is said to be valid if it represents a valid
state (see definition 13).

Definition 16 (Stability). A C-graph is said to be stable if no deductive rule (5,
8, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 27, 28, 29, 30,31, 32, 33, 34, 35,
36, 37, 38, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51) applies.

In order to prove soundness and completeness for the C-graph rules,
we will need a few preliminary results:

Observation 1 (Existing subjects). In a C-graph, the subject of every statement
is an existing entity.

Proof. Rules 2 and 3 are the only rules that add new knowledge to the sys-
tem. In both cases, the subject of the knowledge is an existing entity, and
no rules remove entities.

Lemma 1 (Support sets are valid and complete). In a stable C-graph generated
by the rules in chapter 5, the support set of any statement σ is valid, complete, and
non-empty.
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Proof. Assume that a given C-graph, generated by the rules in chapter 5, is
stable. Consider the support set Ω of a statement σ.

• Assume that σ is a keypair knowledge. The support set of σ was
generated by rule 2 when σ was created — at this time, Ω was valid,
complete, and non-empty. No rules change the support or support
set of keypair knowledge, so Ω must be valid, complete, and non-
empty.

• Assume that σ is a type O public-key knowledge. The support set
of σ was generated by rule 3 when σ was created — at this time, Ω
was valid, complete, and non-empty. No rules change the support
set of type O public-key knowledge, so Ω must be valid, complete,
and non-empty.

• Assume that σ is a type I public-key knowledge. Rules 9 and 11
ensured that Ω was valid, complete, and non-empty at the time σ was
added, given that its supporting certificate had a valid and complete
support set. When any supporting certificate is added, rules 10 and
12 ensure that all (and only) new valid paths are added to Ω, given
that the new support has valid and complete support sets. When any
supporting certificate is removed, rules 22 and 23 ensure that all (and
only) the missing support is removed from Ω, and rule 18 removes σ
itself if all support is missing.

• Assume that σ is a certificate. Rules 4, 6 and 7 ensured that Ω was
valid, complete, and non-empty at the time σ was added, given that
its supporting statement had a valid and complete support set. When
any supporting statement is added, rules 5 and 8 ensure that all (and
only) new valid paths are added to Ω, given that the new support has
valid and complete support sets. When any supporting statement
is removed, rules 17 and 20 ensure that all (and only) the missing
support is removed from Ω, and rules 14, 15, and 21 remove σ itself
if all support is missing.

Since rules 2 and 3 are the only rules that add new information to the
graph — with valid and complete support sets — and since that informa-
tion is in the form of keypair knowledge or type O public-key knowledge,
every chain of certificates and deduced knowledge must stem from eitehr
of these two types of knowledge. By observation 1, the subject of every
statement in the C-graph is an existing entity. Hence, by induction, each
support set in the graph must be valid, complete, and non-empty.
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Lemma 2 (Freedom from collisions). In a stable C-graph, there are no colli-
sions.

Proof. Assume that a given C-graph is stable, i.e. that no deductive rule
applies.

Assume that there is an inactive collision between the two knowledge
statements σ (positive) and ρ (inactive). Note that the entity holding the
conflicting knowledge either distributes a certificate for the positive know-
ledge, or not. One of the following cases must apply:

• If σ and ρ are both keypair knowledge statements, either rule 25 or
rule 33 applies, and hence the C-graph is not stable.

• If σ is a keypair knowledge, and ρ is a public-key knowledge, either
rule 27 or rule 32 applies, and hence the C-graph is not stable.

• If σ is a public-key knowledge, and ρ is a keypair knowledge, either
rule 25, rule 37 or rule 38 applies (in this case, ρ must be of type I , so
there must be support for it), and hence the C-graph is not stable.

• If σ and ρ are both public-key knowledge statements, either rule 27
or rule 34 applies, and hence the C-graph is not stable.

Alternatively, assume that there is a negative collision between the two
knowledge statements σ (positive or inactive) and ρ (negative). One of the
following cases must apply:

• If σ and ρ are both keypair knowledge statements, either rule 40 or
rule 46 applies, and hence the C-graph is not stable.

• If σ is a keypair knowledge, and ρ is a public-key knowledge, either
rule 42 or rule 45 applies, and hence the C-graph is not stable.

• If σ is a public-key knowledge, and ρ is a keypair knowledge, either
rule 40, rule 50 or rule 51 applies (in this case, ρ must be of type I , so
there must be support for it), and hence the C-graph is not stable.

• If σ and ρ are both public-key knowledge statements, either rule 42
or rule 47 applies, hence the C-graph is not stable.

Hence, a stable C-graph cannot include certificate collisions.
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6.2.1 Soundness

We will now show soundness of the C-graph formalism, i.e., that stable
C-graphs generated by the given rules are valid. After applying any of the
interactive rules, the system will apply the deductive rules as long as they
are applicable. The soundness theorem shows that if the system reaches a
stable state, the state is also guaranteed to be valid.

Theorem 1 (Soundness). Any stable C-graph generated by the rules in chapter 5
is valid.

Proof. Assume that a given C-graph generated by the rules in chapter 5 is
stable, and that it is not valid (i.e., at least one of the properties of defini-
tion 13 is not satisfied).

• If property (1) is not satisified, there exists a statement with a support
set that is not valid, complete, and non-empty. By lemma 1, the C-
graph cannot be stable.

• If property (2) is not satisfied, there exists an inactive or negative
collision in the graph. By lemma 2, the C-graph cannot be stable.

• If property (3) is not satisfied, there is support for a deduction which
is not made. Hence, rule 9, 10, 11 or 12 applies, and hence the C-
graph is not stable.

• If property (4) is not satisfied, there is an entity with inactive know-
ledge, where the knowledge with the earliest inactivation time is not
marked. Hence, either rule 28 or rule 29 applies, and hence the C-
graph is not stable.

It follows that an invalid C-graph cannot be stable, and hence a stable
C-graph must be valid.

6.2.2 Completeness

Completeness for the C-graph means that all valid states are stable, and
can be generated by the given rules.

Theorem 2 (Completeness). Any valid C-graph is stable and can be generated
by the rules in chapter 5.

Proof. Assume that a given C-graph is valid but not stable, i.e., one of the
deductive rules applies:
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• If rule 5 or 8 applies, there exists a certificate with an incomplete sup-
port set, i.e., property (1) of the valid state is violated.

• If rule 10 or 12 applies, there exists a knowledge statement with an
incomplete support set, i.e., property (1) of the valid state is violated.

• If rule 14, 15, 17, or 20 applies, there exists a certificate with a non-
valid support set, i.e., property (1) of the valid state is violated.

• If rule 18, 22, or 23 applies, there exists a knowledge statement with a
non-valid support set, i.e., property (1) of the valid state is violated.

• If rule 21 applies, there exists a certificate with an empty support set,
i.e., property (1) of the valid state is violated.

• If rule 25 or 27 applies, there is either support for the positive certifi-
cate in the left-hand side of the rule or not. If there is support, X has
an inactive collision, i.e., property (2) of the valid state is violated. If
there is not support, property (1) of the valid state is violated.

• If rule 28 or 29 applies, then the earliest inactivation time is not marked,
hence property (4) of the valid state is violated.

• If rule 30 or 31 applies, then either X has an inactive collision and
property (2) of the valid state is violated, or one of the certificates
on the left-hand side of the rule has a non-valid support set, hence
property (1) of the valid state is violated.

• If rule 32, 33, or 34 applies, there exists an entity with an inactive
collision, hence property (2) of the valid state is violated.

• If rule 35, 36, 37, or 38 applies, there is either support for a deduction
that has not been made and property (3) of the valid state is violated,
or there is an inactive collision and property (2) of the valid state is
violated.

• If rule 40 or 42 applies, there is either support for the positive/inactive
certificate in the left-hand side of the rule or not. If there is support,X
has a negative collision, i.e. property (2) of the valid state is violated.
If there is not support, property (1) of the valid state is violated.

• If rule 43 or 44 applies, then either X has a negative collision and
property (2) of the valid state is violated, or one of the certificates



110 Chapter 6. Analysis of the C-graph

on the left-hand side of the rule has a non-valid support set, hence
property (1) of the valid state is violated.

• If rule 45, 46, or 47 applies, there exists an entity with a negative
collision, hence property (2) of the valid state is violated.

• If rule 48, 49, 50, or 51 applies, there is either support for a deduction
that has not been made and property (3) of the valid state is violated,
or there is a negative collision and property (2) of the valid state is
violated.

Hence, a valid C-graph must be stable.

Now consider the rules used to generate the valid C-graph.

First, the interactive rules: Any entities needed in the system can be
generated by rule 1. Any keypair knowledge can be generated by rule 2,
and any outside knowledge can be added by rule 3. Any supported certifi-
cates can be generated by rule 4 and 6, and quoted by rule 7. Any keypair
knowledge can be removed by rule 13, any type O public-key knowledge
can be removed by rule 16. Any certificate may be removed by rule 19.
Any keypair knowledge can be inactivated by rule 24, and any type O
public-key knowledge can be inactivated by rule 26. Any keypair know-
ledge can be negated by rule 39, and any typeO public-key knowledge can
be negated by rule 41.

Next, the deductive adding rules: If a certificate has an incomplete sup-
port set, rule 5 or 8 will add the necessary paths. If a type I public-key
knowledge has an incomplete support set, rule 10 or 12 will add the nec-
essary paths. If there is support for a deduction, rule 9 or 11 will make the
deduction. If an entity has inactive public-key knowledge for a key with an
earlier inactivation time than any other inactive knowledge that the same
entity has about the same key, and it is not marked (because it is newly
added), then rule 28 will mark that knowledge. If an entity has a marked
inactive public-key knowledge for a key, but that knowledge has a later
inactivation time than some other inactive knowledge that the same entity
has about the same key (because knowledge with an earlier inactivation
time is newly added), rule 29 will remove the incorrect mark.

Finally, the deductive removal rules: If a certificate has a non-valid sup-
port set, rule 14, 15, 17, or 20 will either remove the certificate if it lacks
support completely, or update the support set. If a certificate has an empty
support set, rule 21 will remove it. If a type I public-key knowledge has a
non-valid support set, rule 18, 22, or 23 will either remove the knowledge if
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it lacks support completely, or update the support set. If an entity has inac-
tive public-key knowledge for a key with an earlier inactivation time than
any other inactive knowledge that the same entity has about the same key,
and it is not marked (because the knowledge that was previously marked
has been removed), then rule 28 will mark that knowledge.

Hence, the interactive rules allow any supported statements to be is-
sued and distributed in the C-graph. The deductive rules ensure that the
properties of the valid state are all observed. All statements have valid,
complete, and non-empty support sets, as required by property (1). The
C-graph is stable, so by lemma 2, it is free of certificate collisions, as re-
quired by property (2). All supported deductions are made, as required by
property (3), and all inactive knowledge with the earliest inactivation time
for a specific key held by an entity is marked, as required by property (4).
Hence, any valid C-graph can be generated by the rules in chapter 5.

6.2.3 Rule Independence

As specified in section 5.10, the C-graph rules are separated into three lay-
ers: interactive rules, deductive adding rules, and deductive removal rules.
In this section we will examine the layers of deductive rules and show par-
allel and sequential independence within and between them, respectively.
It is important to remember that each pass of the rules begins with the
application of exactly one of the interactive rules; hence, it is for example
impossible for two different keys to be inactivated in the same round.

Parallel Independence

Parallel independence between two derivations ensures that they may oc-
cur in any order with the same result. We recall the requirements for par-
allel independence between two derivations [EHK+97]:

(1) neither derivation deletes an object that is necessary for matching the
other, and

(2) neither derivation establishes a context that is forbidden by a NAC
of the other.

For parallel independence between two rules, all possible matchings
of the rules must be parallel independent. To convince ourselves of the
parallel independence between the rules in each layer, we have compared
each pair of rules with respect to the requirements above.
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Table 6.1 shows the analysis of layer 2. When it comes to adding rules,
the first requirement is never a problem, since no rules delete any objects.
The second requirement, however, must be considered. There are some
cases when the requirement is not met, but closer examination shows that
these cases cause no problems. In particular, two rules that add the same
object obtain identical results; it does not matter which rule is the one to
perform the operation.

Tables 6.2 and 6.3 show the analysis of layer 3. For deductive removal
rules, the second requirement of parallel independence is never a problem
— since no rules add new objects — but the first requirement must be con-
sidered. These rules have more conflicts, but when examined they can be
shown not to cause problems (see the footnotes for each table). Some rules
may remove the same object, but it does not matter which rule performs
the operation.

Rules 5 8 9 10 11 12 25 27 28 29 30 40 42 43

43 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

42 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

40 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

30 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

29 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

28 1,2 1,2 1,2a 1,2 1,2a 1,2 1,2 1,2 1,2

27 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

25 1,2 1,2 1,2 1,2 1,2 1,2 1,2

12 1,2 1,2 1,2 1,2b 1,2 1,2

11 1,2 1,2 1,2b 1,2 1,2

10 1,2 1,2 1,2 1,2

9 1,2 1,2 1,2

8 1,2 1,2

5 1,2
a Rule 29 solves the conflict that may arise in rule 28 if new knowledge is deduced
b These rules may add the same object

Table 6.1. Parallel independence of deductive adding rules
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Rules 14 15 17 18 20 21 22 23 28 31 32 33

51 1i,2 1,2 1b,2 1i,2 1b,2 1,2 1f,2 1f,2 1,2 1j ,2 1,2 1,2

50 1i,2 1,2 1b,2 1i,2 1b,2 1,2 1f,2 1f,2 1,2 1j ,2 1,2 1,2

49 1i,2 1,2 1b,2 1i,2 1b,2 1,2 1f,2 1f,2 1,2 1j ,2 1,2 1,2

48 1i,2 1i,2 1b,2 1i,2 1b,2 1c,2 1,2 1,2 1,2 1j ,2 1,2 1,2

47 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1h,2 1,2 1,2 1,2

46 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1j ,2

45 1,2 1,2 1,2 1d,2 1,2 1,2 1,2 1,2 1,2 1,2 1j ,2 1,2

44 1i,2 1a,2 1b,2 1,2 1b,2 1c,2 1,2 1,2 1,2 1j ,2 1,2 1,2

38 1g,2 1,2 1b,2 1g,2 1b,2 1,2 1f,2 1f,2 1,2 1c,2 1,2 1,2

37 1g,2 1,2 1b,2 1g,2 1b,2 1,2 1f,2 1f,2 1,2 1c,2 1,2 1,2

36 1g,2 1,2 1b,2 1g,2 1b,2 1,2 1f,2 1f,2 1,2 1c,2 1,2 1,2

35 1g,2 1g,2 1b,2 1g,2 1b,2 1c,2 1,2 1,2 1,2 1c,2 1,2 1,2

34 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

33 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

32 1,2 1,2 1,2 1e, 2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

31 1g,2 1a,2 1b,2 1,2 1b,2 1c,2 1,2 1,2 1,2 1,2

28 1,2 1,2 1,2 1h,2 1,2 1,2 1,2 1,2 1,2

23 1,2 1,2 1,2 1f,2 1,2 1,2 1,2 1,2

22 1,2 1,2 1,2 1f,2 1,2 1,2 1,2

21 1,2 1,2 1,2 1,2 1,2 1,2

20 1,2 1,2 1,2 1,2 1,2

18 1,2 1,2 1,2 1,2

17 1b,2 1,2 1,2

15 1c,2 1,2

14 1,2
a The propagation/backtracking rules ensure that these rules do not conflict
b If the certificate is removed, it is unnecessary to update the support set
c These rules may remove the same object
d Keys cannot be both negated and removed during the same round
e Keys cannot be both inactivated and removed during the same round
f If the knowledge is removed, it is unnecessary to update the support set
g Different keys cannot be inactivated during the same round
h If the knowledge is removed, it is unnecessary to mark it
i Different keys cannot be negated during the same round
j Keys cannot be both inactivated and negated during the same round

Table 6.2. Parallel independence of deductive removal rules, part 1
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Rules 34 35 36 37 38 44 45 46 47 48 49 50 51

51 1,2 1,2 1,2 1,2 1,2 1c,2 1,2 1,2 1,2 1c,2 1c,2 1c,2 1,2

50 1,2 1,2 1,2 1,2 1,2 1c,2 1,2 1,2 1,2 1c,2 1c,2 1,2

49 1,2 1,2 1,2 1,2 1,2 1c,2 1,2 1,2 1,2 1,2 1c,2

48 1,2 1b,2 1,2 1,2 1,2 1c,2 1,2 1,2 1,2 1,2

47 1b,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

46 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

45 1,2 1,2 1,2 1,2 1,2 1,2 1,2

44 1,2 1b,2 1j ,2 1j ,2 1j ,2 1,2

38 1,2 1d,2 1c,2 1,2 1,2

37 1,2 1d,2 1c,2 1,2

36 1,2 1d,2 1,2

35 1,2 1,2

34 1,2
a If the knowledge is removed, it is unnecessary to mark it with an asterisk
b Keys cannot be both inactivated and negated in the same round
c These rules may remove the same object

Table 6.3. Parallel independence of deductive removal rules, part 2

Sequential Independence

A derivation d′2 is weakly sequentially independent of d1 if it does not rely
on d1 to be applied before it. As stated in chapter 3, the following require-
ments ensure that the derivation d′2 is weakly sequentially independent of
d1 [EHK+97]:

(1) the overlapping of the right-hand side of d1 and the left-hand side of
d′2 does not contain elements which are generated by d1, and

(2) no context that is forbidden by a NAC of d′2 is destroyed by d1.
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Rules 5 8 9 10 11 12 25 27 29 30 40 42 43

14 1,2 1,2 1,2 1,2 1,2 1,2 1,2a 1,2b 1,2 1,2b 1,2a 1,2b 1,2b

15 1,2 1,2 1,2 1,2 1,2 1,2 1,2a 1,2b 1,2 1,2b 1,2a 1,2b 1,2b

17 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

18 1,2 1,2 1,2a 1,2 1,2a 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

20 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

21 1,2 1,2 1,2 1,2 1,2 1,2 1,2a 1,2a 1,2 1,2a 1,2a 1,2a 1,2a

22 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

23 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

31 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2c

32 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2c

33 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2c

34 1,2 1,2 1,2d 1,2 1,2d 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2c

35 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2c

36 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2c

37 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2c

38 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2c

44 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2 1,2c 1,2 1,2 1,2

45 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

46 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

47 1,2 1,2 1,2f 1,2 1,2f 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

48 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2 1,2c 1,2 1,2 1,2

49 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2 1,2c 1,2 1,2 1,2

50 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2 1,2c 1,2 1,2 1,2

51 1,2 1,2 1,2 1,2 1,2 1,2 1,2c 1,2c 1,2 1,2c 1,2 1,2 1,2
a These rules are mutually exclusive
b Different keys cannot be inactivated during the same round
c Keys cannot be both inactivated and negated during the same round
d Rule 35 ensures that these two rules are mutually exclusive
e Different keys cannot be negated during the same round
f Rule 48 ensures that these two rules are mutually exclusive

Table 6.4. Weak sequential independence of layer 2 with respect to layer 3

For the C-graph, we must show that the rules (i.e. all possible match-
ings) in layer 2 are weakly sequentially independent of the rules in layer 3.
The analysis is shown in table 6.4. Since rule 28 is in both layers, it is not
necessary to show sequential independence for that rule.

Since rules in layer 3 do not generate any elements, the first require-
ment is trivially met for all pairs of rules in the table. The second require-
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ment needs more examination, but each case of potential conflict can be
shown to be nonproblematic.

6.2.4 Summary

We have showed that the rules in chapter 5 can generate any valid C-
graphs, and that validity and stability for the C-graph occur simultane-
ously. This means that when the rules have been applied as long as possi-
ble the result will be a valid system, and that when a valid state is reached,
no rules will apply.

The parallel independence of the rules in their respective layers guaran-
tees that the order in which the rules are applied has no effect on the result
of their application, i.e., the state of the C-graph after a layer has reached
stability will be deterministic. The sequential independence between the
layers guarantees that no removal rule will make an adding rule applica-
ble, i.e., that one pass through the rule layers is sufficient for the C-graph
to reach a valid and stable state.



Chapter 7

Model Evolution

In this chapter we will give an overview of how the C-graph model has
developed along with motivations for some of the choices that were made
along the way, as well as suggestions for future extensions to the model.

7.1 Development of the C-graph Model

The C-graph model has developed over time. In this section we will give
some examples of how it has changed and why, regarding time stamps and
how statements are represented.

Originally, all edges were on the form of certificates with only two
fields: one for a signing key identifier, one for a public key (being certi-
fied). This abstraction was used both for entities’ internal knowledge of
keys, and for quotations passed between users. An entity A’s knowledge
about a user B’s key was modeled as a certificate held by A, signed with
one ofA’s own keys. The structure for entities’ knowledge about their own
keys was unclear. The rule for adding new knowledge looked like in fig-
ure 7.1, with just a NAC for avoiding duplicates.

A.ki | B.Kj

+
A B ⇀ A A.ki | B.Kj

{A}

+
B

Figure 7.1. Adding knowledge
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In this early version, inactivation was solved by a rule expression which
inactivated all certificates for a key in the entire system at once. When the
localness assumptions in chapter 4 were formulated, it became clear that
simultaneously inactivating all certificates for a key was in conflict with
these basic assumptions of how the system should work. We decided on
local inactivations which were spread in the system in the same way as
negative certificates. This meant that users would not necessarily know
about the inactivation of one of their keys instantly, but may continue to
issue certificates due to ignorance until information about the inactivation
finally reached them. Time stamps would have to be introduced, to keep
track of when a certificate was issued, and when a key was inactivated.

Certificates were still used to model all kinds of statements, but we
started to think about what would happen if the key A used to sign a cer-
tificate with was inactivated by some other entity. Since A only has local
knowledge, the only case where the inactivation mattered was if A knew
about it. This gave us a new variant of the rule for adding knowledge,
shown in figure 7.2.

A.ki | B.Kj | t1

+

A B ⇀

X Y.kl | A.Ki | t2
0

A A.ki | B.Kj | tc

{A}

+
B

Figure 7.2. Adding knowledge

However, A should have knowledge about Y ’s public key Y.Kl to be
able to check the signature on the incoming certificate, and this is where
we ran into trouble. What if A’s knowledge of Y.Kl had been signed with
A.ki, the very key that was being inactivated? Would we accept that know-
ledge now that A.ki was inactivated? Furthermore, why would A have to
choose only one of their keys to sign that knowledge? If it happened to
have been signed with A.ki, it would be problematic to accept Y ’s cer-
tificate, a problem that would not have arisen, had the knowledge been
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signed with another of A’s keys. This indicates a form of non-determinism
and haphazardness in the system.

Additionally, even if the knowledge of Y.Kl had been signed with some
other key A.kx, how would we be sure that A.kx was valid? By checking
if that key in turn had been signed by another key that was valid? This
created a chicken-and-egg problem, which ultimately was due to the fact
that we used one and the same data structure for all information in the
system.

To avoid these problems, we first thought about assigning to each entity
an internal key k0 that they would use to sign their own internal know-
ledge. In this scenario, a rule for adding knowledge might look like in
figure 7.3.

A.ki | B.Kj | t1

+

X Y.kl | A.Ki | t2
0

A B ⇀

A.k0 | Y.Kl | t3

{A}

+

A A.ki | B.Kj | tc

{A}

+
B

Figure 7.3. Adding knowledge

This approach solved the chicken-and-egg problem as well as the ran-
domness that choosing any key to sign knowledge attributed, but unfortu-
nately it was not an ideal solution. If the internal key k0 of each entity was
really to be an internal key, it should not be used when quoting certificates
to other entities. But if we were to keep the certificate structure for internal
knowledge, the rules of the system would apply to the knowledge certifi-
cates as well — so, for instance, they would be quotable. This meant that
every rule would need a special condition attached, specifying that signing
keys should not be internal keys.

Another approach was to accept that it is not necessary to represent
knowledge by certificates, using instead another data structure that does
not include a signature. Entities can have knowledge about their own
public-key pairs (which they are assumed to generate themselves), and
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about other entities’ public keys. Knowledge about other entities’ keys
can be deduced from other information, or formed outside the system.
Therefore, we need two other kinds of boxes beside the certificates: key-
pair knowledge and public-key knowledge, as described in chapter 5.

A final adjustment was made to the time stamps when we realized that
the inactivation time must follow all statements about the inactivated key,
but the signing time of a certificate must also be included. A certificate
for the inactivated key B.Kj signed with A.ki must keep track of B.Kj ’s
inactivation time, as well as the signing time, if A.ki should ever be inacti-
vated. Therefore, an additional time stamp was appended to the certificate
structure.

7.2 Model Extensions

We will now consider possible extension to the rules of chapter 5, by outlin-
ing three ways to revoke a user, as well as the addition of trust statements.

7.2.1 User Revocation

In chapter 5, keys were revoked one at a time. A more efficient way of
revoking all the keys of a user would be to revoke the user itself. To begin,
we would need to expand the vertice attribution function v-att to be able
to express that a user is inactivated or negated:

v-att =

{

name : V → V-ATT

v-sign : V → {+, 0,−}

In a non-static environment, users may need to be permanently re-
moved from the system, e.g. if they leave their jobs and any information
produced by them is no longer needed. Removal of a user node would be
an administrative, active rule, shown in figure 7.4.

A ⇀

Figure 7.4. Removing an entity

When a user is removed from the graph, it is necessary to clean up
all information that either stems from or relates to that user. An impor-
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tant reason for this is to ensure that each subject or signer of a certifi-
cate corresponds to an existing user. First consider certificates signed by
the user: since graph transformation rules automatically remove dangling
edges when a node is removed, all original knowledge that had been signed
by the removed user will be removed. Following this, the revocation rules
of section 5.6 will revoke all certificates that are no longer supported —
i.e. all quoted certificates with a signature by the removed user, and de-
ductions based on such certificates. Next, consider certificates signed by
others, but quoted by the user: these will also be removed by the dangling-
edge clean-up, and again the rules from section 5.6 will complete the revo-
cation.

Finally consider certificates for the removed user, i.e. where the user
is the subject. Here we run into a situation that is unclear in our current
model: do users know the identity and status of other users? If they do,
it would be easy to construct a rule which removes statements about re-
moved users — see figure 7.5 — but if they do not, it seems necessary to
include knowledge about other users’ identities, possibly as a third variety
of knowledge box. This would allow users to hold local knowledge about
each other’s identities and status. The addition of such knowledge would
allow entities, not only administrators, to perform user revocations.

X V Y.ki | X.Kj | tx | ty

s
W ⇀ V W

Figure 7.5. Removal of certificates for removed users

The result of the outlined process — which is clearly a form of revoca-
tion — is that no information relating to the removed user remains in the
C-graph.

Another type of user revocation to be considered is inactivation of a
user, where all of a user’s keys should be inactivated. This could be used
when a user is promoted and receives a new set of keys, but the previous
signatures should still be valid. Negation of a user would entail the nega-
tion of all the user’s keys. This could be useful when a user turns out to
have malicious intentions, or even to be a criminal.
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7.2.2 Modeling Keys and Trust

In this work we have assumed that all entities are trustworthy, and the
rules reflect this assumption. One obvious way to extend the C-graph
model would be to depart from the assumption that all users are trustwor-
thy, and to introduce an explicit way for users to talk about trust. Previous
research in this field and proposed models have been presented by Blaze
et al. [BFL96], Abdul-Rahman and Hailes [ARH97], Maurer et al. [UM96,
KM00], Caronni [GC00], Liu et al. [LOC01], Carbone et al. [CNS03], Dragovic
et al. [DHH+03] and in OpenPGP [OpenPGP05].

By introducing trust statements, users can specify which users they
trust, and to what extent. Knowledge would only be deduced based on
a received certificate if the recipient holds the key to verify the signature,
and trusts the signer of the certificate. Trust statements could also be re-
moved, inactivated, or negated, as necessary.

7.2.3 Additional Statements

An extension that seems very natural to introduce would be to let entities
use their keys for encryption, as well as for signatures. Since the C-graph
already includes all the rules necessary for distributing and revoking the
keys themselves, all that is needed are rules for encryption and decryption,
as well as policies to deal with encrypted messages when a key is revoked
in any way, that would work in concert with the existing system.

An interesting and easy-to-implement extension to the model would
be allowing any form of signed statements, e.g. tickets, capabilities and
delegation of rights.
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Discussion

In this chapter we will discuss some aspects of the C-graph model: us-
ing the model, classification of the revocation types, and how paths in our
model compare to some related work.

8.1 Using the Model

The C-graph model should be viewed as an attempt to describe how revo-
cation by removal, inactivation, and negation should affect the information
that each entity in a distributed system holds. The choices we have made
have been stated in chapters 4 and 5. With other choices, e.g. on what con-
stitutes a valid system, what information the entities have access to, and
how inactivation and negation shold be spread in the system, other results
may have been reached.

The model can be used in two ways: either as a comparison to existing
PKI systems when analyzing their methods of revocation, or as a starting
point for designing a new PKI model. When doing so, some of the choices
of our model may prove to be impractical or even impossible to achieve
in reality. For example, we assume that the system only accepts the appli-
cation of one interactive rule at a time and then takes the time to stabilize
before allowing another interactive rule. It would be very difficult to obtain
this functionality in real life. Furthermore, in a real-life distributed system
nodes may be disconnected from the rest of the system, and thereby miss
information that should be passed to them. This means that provable sta-
bility and validity may both be out of reach in a real system.

Although the C-graph model is distributed, it can also be used to model
a hierarchical system by imposing meta-conditions on some rules. If a cen-
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tral CA is desired, it would be easy to assign one of the entities as a CA,
and to let only that entity hold outside knowledge and issue certificates.

It would also be possible to choose certain parts of the C-graph model
and to abstain from others, if needed. For example, the rules for negat-
ing statements could be left out completely. If a system where removal of
statements is undesirable, leaving out rules 13, 16, and 19 would remove
the possibility for interactive removal, while keeping the deductive rules
that work in concert with the inactivation and negation rules.

8.2 Revocation Classifications

There are many different reasons why a certificate could be revoked [FL98,
DC98, HFPS02, GJ00]; this is why we need different revocation schemes.
In chapter 5 we described the revocation mechanisms by local operations,
but it is more interesting to consider the entire chain of a revocation. The
flowcharts in chapter 6 are an example of how the chains can be viewed;
here we will try to classify the mechanisms with the dimensions resilience,
propagation, and dominance.

Hagström et al. [HJPPW01] describe and classify revocation mecha-
nisms in an access control system, investigating the consequences of a re-
vocation for a graph as a whole. This approach can be used in our context
after translating the C-graph into permissions and grants.

Think of the information that is passed from one user A to anotherB as
permissions, and the information that A has (either in the form of know-
ledge, or as a received quotation) as a positive grant option (meaning that
A has the right to grant permissions to others). This makes sense, because
A cannot spread information they do not know about, in the same way that
they could not give a permission unless they themselves were granted the
right to do so. We use this interpretation to analyze the revocation schemes.

8.2.1 Revocation by Removal

Revocation by removal describes revocation of the signature on a certifi-
cate, and is used e.g. when an entity changes affiliation. We find that re-
moval ofA’s knowledge/received quotation results in a weak global delete
operation. The revocation propagates in the system, removing statements
that are no longer supported, but only if no other statements remain that do
support them — this is why the revocation is of the weak type. It is global



8.3 Paths in Other Models 125

because it affects not only the recipient of the first removed statement, and
it is a delete operation because it removes statements.

For a PKI with a central CA, there would be no other supporting state-
ments, so when the CA removed its own knowledge of a key, the revoca-
tion would propagate in the strong sense — no statements about the re-
voked key would remain in the system.

8.2.2 Revocation by Inactivation

Inactivation models revocation of the binding between the subject and the
public key, and is used for reasons such as supersession or cessation of
operation of a key. Inactivation propagates in the system and is time-
persistent, so it is a global negative operation. When it comes to domi-
nance, inactive statements dominate positive ones, but not negatives; hence
it takes the middle road.

8.2.3 Revocation by Negation

Finally, we consider revocation by negative assertions. This is a revocation
of the key itself and is used in cases of key compromise. The operation
dominates positive and inactive certificates, propagates in the system, and
is time-persistent. Hence, it can be described as a strong global negative
operation, the most restrictive of all revocation schemes.

If several users certify a key and one of them revokes his certificate by
negating it, it will not affect certificates signed by others. This could be a
problem in the case of key compromise, since it would be desirable to block
every user’s use of the revoked certificate. However, in a decentralized
system users have to make decisions based on the information at hand.
If there is only one CA then the revocation would indeed be strong, and
remove every instance of the certificate.

8.3 Paths in Other Models

The paths that are considered in the path validation process of X.509 ([HFPS02],
as described in section 2.2) are not what we call paths in our model. X.509
paths consist of a set of certificates, held by the same entity, where the en-
tity has knowledge of the trust anchor’s key, and the trust anchor certifies
the key of a second entity, who certifies the key of a third entity etc, until
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the wanted certificate is reached and verified. Paths in our model are cer-
tificates passed between entities, either through quotations or deductions.
Cycle detection becomes an issue in our setting since each entity only has
local knowledge. Note that the functionality of X.509 path validation is
performed in our system as well, although the existence of support is de-
termined continuously as changes are made, not only at verification time.

Paths in the graph model of Capkun et al. [CBH03] are similar to those
of X.509.



Chapter 9

Conclusions

We have presented a graphical framework for reasoning about certificates,
called the C-graph model. In the C-graph, entities can explicitly state and
revoke knowledge they have about keys of their own and of others, and
they can sign this knowledge to create certificates which can be distributed
and revoked to and from other entities. Revocation can be performed in
three ways: by removal, by inactivation, and by negation.

Statements are of three types: keypair knowledge which entities hold
about their own keypairs, public-key knowledge which entities hold about
other user’s public keys, and certificates which are signed statements about
keys.

Public-key knowledge can be formed outside the system through some
secure out-of-band procedure, or be deduced from statements received by
the entities. When an entity holds a certificate for a binding, and has know-
ledge of the certificate’s signing key, they will deduce knowledge of the
binding in the certificate. Each statement in the system that is deduced or
quoted from other statements has support in knowledge established out-
side the system.

Cycles are prevented from being considered as support through the use
of support sets, which solve the problem of instant cycle detection. By com-
paring the values of the paths in the support set of an incoming supporting
statement σ to those of a depending statement ρ, it can be seen if σ depends
cyclically on ρ. If the support set of σ contains paths with a prefix that is a
path from ρ’s support set, then there is a cycle.

When positive, inactive, and negative knowledge is allowed in a sys-
tem, collisions may occur when entities hold conflicting knowledge. In the
C-graph, conflicts are resolved by giving top priority to negative know-
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ledge, and priority to inactive knowledge if there is no negative know-
ledge. The overridden positive or inactive knowledge is removed, and, if
necessary, the support for that knowledge is removed.

The functionality of the C-graph is modelled by graph transformation
rules — partial graph morphisms that describe how a part of the graph
should change when certain conditions are met. Some rules are interactive,
and can be applied to the C-graph by entities or administrators, but most
of the rules are deductive. These bring the C-graph back to a valid state
after the application of one of the interactive rules. The set of rules has
been divided into layers in order to prevent conflicts between rules and
make sure that the outcome of their application is deterministic. In the top
layer are the interactive rules, then come those deductive rules which add
elements, and finally those deductive rules which remove elements.

We have proved soundness and completeness of the model with respect
to the definition of a valid state. Additionally, we have proved that the
rules within each layer are parallel independent of each other, and that the
layer with deductive adding rules is weakly sequentially independent of
the layer with deductive removal rules. This means that the derivations
within a layer may occur in any order, and that the adding rules do not
depend on the removal rules to be applied before them.

Our model is global in the sense that it includes the knowledge of all
entities in the system, and therefore allows the deduction of new know-
ledge based on other entities’ statements. Nevertheless, it is possible that
two users have conflicting knowledge. From this perspective, the model is
local.

The model is decentralized, because this is the most general way to cap-
ture a PKI. Adapting the model to be hierarchical or centralized would be
easy, e.g. by separating the entities into CAs and end users, and allowing
only CAs to form outside knowledge.

Interesting topics to study in the future include the addition of trust
statements and other types of signed or encrypted statements to the model.
It would also be interesting to compare the model to existing PKI systems
in order to analyze their revocation procedures, or even to design a new
PKI system and try to implement sound revocation practices.
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