Link6ping Studies in Science and Technology

Thesis No. 890

Domain Knowledge Management in
Information-providing Dialogue Systems

by

Annika Flycht-Eriksson

\ﬁGS UNy l)@

AL

“Wes pry®

INSTITUTE OF TECHNOLOGY
LINKOPINGS UNIVERSITET

V10 L1y,
Q‘)}X %G,
s, 54

Tpr, _‘39

Submitted to the School of Engineering at Linkdping University in partial
fulfilment of the requirements for the degree of Licentiate of Philosophy

Department of Computer and Information Science
Linkdpings universitet
SE-581 83 Linkdping, Sweden

Linkdping 2001

Domain Knowledge Management in
Information-providing Dialogue Systems

by
Annika Flycht-Eriksson

May 2001
ISBN 91-7373-050-5
Linkopings Studies in Science and Technology
Thesis No. 890
ISSN 0280-7971
LiU-Tek-Lic-2001:27

ABSTRACT

In this thesis a new concept callddmain knowledge managementor information-

providing dialogue systems is introduced. Domain knowledge management includes issues
related to representation and use of domain knowledge as well as access of background
information sources, issues that previously have been incorporated in dialogue management.

The work on domain knowledge management reported in this thesis can be divided in two
parts. On a general theoretical level, knowledge sources and models used for dialogue
management, including domain knowledge management, are studied and related to the
capabilities they support. On a more practical level, domain knowledge management is
examined in the contexts of a dialogue system framework and a specific instance of this
framework, the ORAF system. In this system domain knowledge management is
implemented in a separate moduld)@amain Knowledge Manager

The use of a specialised Domain Knowledge Manager has a number of advantages. The first
is that dialogue management becomes more focused as it only has to consider dialogue
phenomena, while domain-specific reasoning is handled by the Domain Knowledge Manager.
Secondly, porting of a system to new domains is facilitated since domain-related issues are
separated out in specialised domain knowledge sources. The third advantage with a separate
module for domain knowledge management is that domain knowledge sources can be easily
modified, exchanged, and reused.

This work has been supported by The Swedish Transport & Communications Research Board
(KFB).

Department of Computer and Information Science
Linkopings universitet
SE-581 83 Linkdping, Sweden

Acknowledgements

First and foremost I would like thank my supervisor Arne Jénnsson
who with contagious enthusiasm has guided me in the work that has
resulted in this thesis. Despite a very busy schedule he has always
been available for questions and discussions, and he has read and com-
mented on a great number of drafts of this thesis. I am very grateful
for his supervision, without it I would not have made it. I would
also like to thank my secondary supervisors, Nils Dahlback and Lars
Degerstedt, who through insightful discussions and comments have
helped me bring order to my thoughts and the material presented
in this thesis. Thanks also to the other members of NLPLAB, who
have contributed to the very stimulating and positive atmosphere this
thesis has been created in.

When I have had problems with unco-operative computers or ques-
tions regarding technical matters Bernt Nilsson has helped me, many
thanks for this. Thanks also to Marie Ekstrém Lorentzon, Lise-Lott
Andersson and Lillemor Wallgren who have handled the administra-
tion. Finally, I would like to thank Ivan Rankin for improving my
English.

Contents

1 Introduction

2

1.1

1.2

1.3

1.4

1.5

Dialogue systems

Knowledge sources in dialogue systems
Domain knowledge management
Issues and contributions

Thesis outline

Knowledge sources for dialogue management

2.1

An overview of the surveyed dialogue systems
2.1.1 CirculT FI1x-IT SHOP
212 GALaxvyIl.
213 LINLIN

214 RAWWTEL

iii

11

13

iv CONTENTS
21,5 SUNDIAL v vttt e it e 16
21.6 TRAINS, 17
2.1.7 WAXHOLM 17
21.8 VERBMOBIL« v v v v i v i v i 18

2.2 Characteristics of knowledge sources 18
2.2.1 Discourse and dialogue knowledge 19
2.2.2 Domain knowledge 23
2.2.3 Task knowledge 26
2.24 Knowledge of theuser 29
2.2.5 Knowledge sources and dialogue types 30

2.3 Relations between knowledge sources 31

24 Summary e e e 32

Capabilities for dialogue management 35

3.1 Graceful and co-operative interaction 35

3.2 Capabilities for dialogue management 38
3.2.1 Handling tasks and requests 39
3.2.2 Achieving mixed-initiative dialogue 39
3.2.3 Handling focus and discourse 40

3.2.4 Handling domain knowledge 40

CONTENTS

3.3 Relations between capabilities and knowledge sources. 41

3.4 TImplications for design of dialogue systems. 50
3.5 Summary 50

4 Capabilities for information-providing dialogues 51
4.1 Corpus description 51
4.2 Capabilities Lo 53
4.2.1 Tasksand requests 53

4.2.2 Mixed-initiative dialogue 55

4.2.3 Focus and discourse 56

4.2.4 Domain knowledge 57

4.3 Summary e e 61

5 Domain knowledge management in the MALIN frame-

work 63
5.1 The LINLIN framework 64
5.1.1 The CARSsystem 64
5.1.2 Architecture 66
5.1.3 Dialogue management 67
5.1.4 Capabilities of LINLIN 68

5.1.5 Shortcomings of LINLIN 71

vi CONTENTS
5.2 The MALIN framework 74

5.2.1 Architecture, 74

5.2.2 Dialogue management 76

5.3 Domain knowledge management 76

5.3.1 Domain knowledge management capabilities . . 78

5.3.2 The Domain Knowledge Manager 79

5.4 Summary 86

Domain knowledge management in the OTRAF system 89

6.1 Architecture and information flow 89
6.2 The Dialogue Manager 91
6.3 The Domain Knowledge Manager 94
6.3.1 Recipes oo 94
6.3.2 Integrationrules 96
6.3.3 Domainagents 97
6.3.4 Spatial Reasoning Agent 98
6.3.5 Temporal Reasoning Agent 105
6.3.6 Timetable Information Agent 113
6.3.7 System and Help Information Agent 113

6.4 An example dialogue 114

CONTENTS

vil

6.5 Summaryo

7 Summary and Discussion
7.1 Knowledge sources and capabilities
7.2 Future work on knowledge sources and capabilities .
7.3 The Domain Knowledge Manager

7.4 Future work on the Domain Knowledge Manager . . .

A Capabilities for dialogue management

B Capabilities and knowledge sources

125

126

. 126

127

130

143

147

Chapter 1

Introduction

The topic of this thesis is domain knowledge management in information-
providing dialogue systems. The purpose of the dialogue in such
systems is to help the user formulate information requests that the
system can respond to by retrieving information from one or several
information sources and presenting it to the user. The information
provided by the system is usually restricted to one specific domain,
for example travel or weather information.

To make the interaction natural the system needs to represent and
reason about features of the domain. Consider, for instance, an
information-providing dialogue system in the domain of local pub-
lic transportation. To respond intelligently to a user utterance such
as ”’I want information about buses to Vidingsjo in the evening”, the
system needs to represent and reason about geographical and tem-
poral features of the domain. Geographical knowledge is needed to
detect that ”Vidingsjo” is the name of a suburb and to find some
suitable bus stops in this suburb. Temporal knowledge is required to
handle the expression ”in the evening”, which in the context of local
public transportation should be interpreted as the time interval from
6 p.m. to 10 p.m. This thesis explores how such domain knowledge

Chapter 1 Introduction

can be represented and used to support capabilities that are needed
to achieve natural interaction with a dialogue system.

1.1 Dialogue systems

The term dialogue system has been used to denote very differ-
ent types of systems. The disparity is due to the twofold heritage
of the dialogue system research area. On one hand, there is the
speech community where researchers have been working on combin-
ing the achievements of speech recognition and speech synthesis re-
search, thus creating spoken language systems. On the other hand,
the computational linguistics and artificial intelligence communities
have been working on the modelling of language, discourse and di-
alogue. Work that has often resulted in implementations of natural
language systems with typed input and output.

This twofold legacy poses problems when trying to define what a nat-
ural language dialogue system is, because depending on their back-
ground, researchers will give very disparate answers both on what
characterises a dialogue system and which aspects to model in the
architectures. I use the term dialogue system to denote a computer
system that interacts with users utilising connected natural language
dialogue, where the use of language need not consist of predefined
commands.

Interactive dialogue systems have been developed since the late 1980s.
The PHILIPS dialogue system [34] for train timetable information in
Germany was the first commercial system to be made publicly avail-
able in 1994. The PHILIPS system has since then been customised
for other countries and languages, for example The Netherlands and
Sweden. Figure 1.1 shows a dialogue with the German system (trans-
lated from German to English).

Today there are several information-providing dialogue systems on
the market and they are becoming increasingly common. Other types

1.1 Dialogue systems

S1: Good morning. This is the automatic timetable in-
formation service. How can I help you?

U2: Good morning. I need a connection from Hamburg
to Munich.

S3: When would you like to go from Hamburg to Mu-
nich?

U4: Next Friday, er, at eight o’clock.

S5: So you want to travel on Friday the 23rd of Septem-
ber at 8 a.m.?

U6: Exactly.

S7: There is the following connection: with Intercity Ex-
press 793, departure from Hamburg at 8:02, arrival
in Munich at 14:05. Would you like me to repeat the
connection?

U8: No but I need a train for the return trip on Sunday.

S9: At what time would you like to go from Munich to
Hamburg on Sunday the 25th of September?

U10: I have to arrive in Hamburg late in the evening.

S11: There are three connections. This is the first one:
with Intercity Express 880, departure from Munich
at 15:54, arrival in Hamburg at 21:58. Would you
like me to repeat the connection?

U12: No, thank you.

S13: Would you like the next connection?

U1l4: No, thanks, this one is fine.

S15: Do you need another connection?

U16: No.
S17: I wish you a pleasant journey. Thank you for calling.
Good bye.

Figure 1.1: A dialogue between a user and the system for train
timetable information developed by Philips [9].

Chapter 1 Introduction

of dialogue systems, like problem-solving, argumentation, advisory
and tutoring systems, have also been developed but have not been
commercialised to the same extent. An example of a problem-solving
research system is the well-known TRAINS [25] system in which the
system and a user co-operate to plan railroad transportations. An
example dialogue is given in Figure 1.2.

Ul: I need to get to Detroit, Syracuse and Montreal.

S2: Ok. [highlights the three cities]

U3: Let’s send the trains from Chicago to Detroit.

S4: Ok. [draws route from Chicago to Detroit via Toledo]
But the terminal at Toledo is delaying traffic due to
bad weather. trains will take an additional five hours
to move through there. [highlights Toledo red]

U5: That’s ok. Now let’s go from Atlanta up to Syracuse.

S6: Please tell me a route to use to get from Atlanta
to Syracuse. [highlight engine at Atlanta and city
Syracuse]

U7: Go via Charleston and Pittsburgh.

S8: Ok. [draws route via Cincinnati] But traffic through
Cincinnati is being delayed due to construction.

U9: Ok, lets go via Charleston and Buffalo instead.

S10: No problem. [draws route]

Ull: That’s great.

S12: I hope it was helpful.

U13: Finally, I want to go to Montreal from Philadelphia.

S14: Ok. [draws route]

U15: That’s great. I'm done.

Figure 1.2: A dialogue between a user and the TRAINS system.

As title of this thesis implies, it deals primarily with dialogue systems
that provide information, although problem-solving systems are also
discussed. Information-providing systems are systems where the
user wants some information that is available in one or more back-
ground systems. The system helps the user to construct an infor-
mation request that is specific enough for the system to retrieve the

1.2 Knowledge sources in dialogue systems

information and present it to the user. Such information-providing
dialogue systems are also called simple service systems [35]. The
PHILIPS train information system [34] is one example of such a sys-
tem. Problem-solving systems collaborates with the user to solve
tasks that he or she cannot solve alone. Usually, the human knows
about strategies and the system has information about the problem
and various details. Thus, it is very important that the system and
user co-operate to make the best of their specialities. TRAINS [25] is
a typical problem-solving dialogue system.

1.2 Knowledge sources in dialogue
systems

Research on dialogue systems can be divided in three areas: interpre-
tation, dialogue management, and generation. Each of these areas
utilise knowledge sources of various types, such as lexicons, gram-
mars, dialogue models etc. Since the focus is on domain knowledge
management, knowledge sources used for interpretation and genera-
tion is not considered in this thesis. Dialogue management has, how-
ever, often incorporated aspects of domain knowledge management
and therefore knowledge sources used in this area will be discussed.

The term knowledge source will be used to denote a component in
a dialogue system, which consists of a knowledge model and mecha-
nisms used to manipulate and reason about the information held by
the model. The types of knowledge sources used for dialogue man-
agement in dialogue systems are related to knowledge of dialogue and
discourse, task, user and domain.

Knowledge of various features of dialogue and discourse, such as
turn-taking, grounding, topic and referring expressions, is of course
crucial to a dialogue system. Knowledge sources for dialogue knowl-
edge can be used for various purposes; the most prominent is to decide
what is an appropriate response to a user utterance, for example, if
a clarification should be initiated, e.g. S6 in figure 1.2, or database

Chapter 1 Introduction

access and presentation of information as in S7 in figure 1.1. They
can also be used to make context-dependent interpretations, as in
U8-S9 in figure 1.1 where a return trip is interpreted as a trip from
Munich to Hamburg.

The tasks performed by dialogue systems differ in character depend-
ing on the service-type of the system. In information-providing sys-
tems the tasks are communicative, mainly to exchange information,
for example the system asks the user to specify parameters of a re-
quest or presents requested information. Problem-solving systems
deal with tasks that take place outside the system and are executed or
planned during the dialogue. Knowledge sources with task knowledge
can help the system in the interaction with the user. The PHILIPS
system can, for example, use knowledge of the system’s task of pro-
viding train information to decide which information to ask for from
the user, e.g. S3 in figure 1.1.

Knowledge of the user can also improve the quality of the interaction.
The TRAINS system, for example, utilises a user model to decide what
information to present. In S4 and S8 in figure 1.2 the system provides
information that is relevant for the task and previously unknown by
the user.

To be able to conduct a dialogue and perform a task the system has
to have knowledge of the world that is under discussion. However, to
make a feasible system the knowledge of the world has to be restricted
to some aspects that are useful for the task at hand; this restricted
view of the world is the domain of the system. A domain can be
defined as ”a section of the world about which we wish to express
some knowledge” [55].

Knowledge of the domain can be represented in various ways. I
make a distinction between conceptual models and domain knowledge
sources. A conceptual model is often a representation of a set object
types or concepts, their properties and relations among them. For
example, a conceptual model can represent information on how the
concept ’velocity’ is related to the concept ’car’. Domain knowledge
sources contain a data- or knowledge-base and reasoning mechanisms

1.2 Knowledge sources in dialogue systems

for manipulation of this, for example, a temporal knowledge source
can include a calendar and temporal reasoning mechanisms. A dif-
ference between domain knowledge sources and conceptual models is
that domain knowledge sources often contain a subset of general world
knowledge, while the conceptual model can represent application-
specific deviations from the general meaning of a concept.

In relation to domain knowledge sources, background and application
systems should be mentioned. A background or application system is
the primary information source in an information-providing dialogue
system, or the problem-solving component in a problem-solving dia-
logue system. Domain knowledge sources are often needed to support
access of the background system, for example by mapping vague ex-
pressions to a more suitable format. For instance, to correctly inter-
pret the utterances U4, U8, and U10 in the dialogue with the PHILIPS
system (figure 1.1), it has to have knowledge of and be able to reason
about the temporal expressions that describe dates and times. In
U4 the expressions "next Friday” and ”at eight o’clock” have to be
mapped to precise entities, in this case the 23rd September and 8 a.m.
A similar problem is present in U8 where ”Sunday” should be mapped
to a date. In this context of a return trip ”Sunday” means the Sun-
day following the Friday on which the trip begins. The system, thus,
needs both domain knowledge and knowledge of the context, i.e. the
previous exchanges between the user and the system. Finally, in U10
the vague description ”late in the evening” must be mapped to a time
interval, thus requiring temporal knowledge.

Examples of the need for domain knowledge and reasoning can also
be found in the TRAINS dialogue (figure 1.2). The system must have
knowledge about possible routes between cities, and situations that
are potential problems along the routes. For example, in S4 and S8
the system evaluates the routes proposed by the user and points out
possible delays due to bad weather and construction.

Chapter 1 Introduction

Although knowledge of dialogue, task, user, and domain has been
presented as separate entities, there is often a mixture of knowledge
types in the knowledge sources used in dialogue systems, for example,
task, domain and dialogue knowledge are often integrated.

This mixture of knowledge has a number of drawbacks, especially
for research systems and systems not primarily developed for limited
dialogue in one application. First of all it is hard and time-consuming
to port a system to a new domain or task. Another related problem
is that it is difficult to experiment with a system’s behaviour, for
example trying different dialogue strategies, since a change in some
item often causes other changes. The lack of clear boundaries between
models also makes it hard to reuse and incorporate previous work
done by others. These problems indicate that clear definitions of the
different models are desired.

One objective with the work presented here is therefore to clarify
the situation by characterising the knowledge sources, their roles and
relations.

1.3 Domain knowledge management

Development of a usable dialogue system requires considerable effort.
An important aspect when developing a dialogue system is therefore
portability; to be able to easily customise the dialogue system for
a new task or domain. Recently the idea of portability has been
taken further and development of frameworks and toolkits that can
be used as the basis for development of new dialogue system has been
promoted. CSLUrp [18] is an example of a toolkit that can be used
to construct simple dialogue systems, TRINDIKIT [66] is a more
sophisticated toolkit for information-providing dialogue systems, and
TRIPS [6] is a generalisation of TRAINS to a framework for problem-
solving dialogues.

1.4 Issues and contributions

A prerequisite for development of dialogue system frameworks is that
domain-dependent features can be separated from domain-independent
features. Furthermore, it must be easy to incorporate various back-
ground systems and domain knowledge sources in a dialogue system
that has been based on the framework. A way to achieve this is to sep-
arate management of domain knowledge and the background systems
from dialogue management, which leaves the dialogue management
more focused and domain-independent.

A second objective of this thesis is to examine how this separation
can be done. A suggestion of how domain knowledge management
can be clearly separated from dialogue management is presented. A
new module, a Domain Knowledge Manager, which is responsible for
domain knowledge sources and background systems is introduced and
it is shown how this new module manages the domain knowledge.

1.4 Issues and contributions

The work presented in this thesis can be divided in two main parts.
The first part concerns the relations between various types of knowl-
edge sources used for dialogue management in dialogue systems, and
the capabilities they support.

Issues:

o What characterises the knowledge sources commonly used in di-
alogue systems? What roles do the different knowledge sources
and models have? What are the relations between the different
knowledge sources and models?

e What capabilities can help a dialogue system achieve natural
interaction with a user? What knowledge sources and models
are required for the different capabilities?

10 Chapter 1 Introduction

Contributions:

e A characterisation and categorisation of the various types of
knowledge sources and models used in dialogue systems, which
contributes to a clarification of the sometimes confusing ter-
minology. This is based on a survey of several information-
providing and problem-solving dialogue systems.

e A mapping of the knowledge sources and models to dialogue
system capabilities considered useful to achieve natural inter-
action. The dialogue system capabilities are compiled from a
set of guidelines and development principles for dialogue sys-
tems.

The second part of the work presented in this thesis focus on domain
knowledge management in a framework for information-providing di-
alogue systems.

Issues:

e What are the desirable capabilities of an information-providing
dialogue system?

e How is domain knowledge management related to dialogue man-
agement? How can domain knowledge management be sepa-
rated from dialogue management?

e How can domain knowledge management be realised in a dia-
logue system?

Contributions:

¢ An empirically based set of capabilities required for information-
providing dialogue systems. This set of desirable capabilities is
the result of a corpus study.

1.5 Thesis outline

11

e A characterisation of dialogue management and domain knowl-
edge management in terms of the capabilities they should pro-
vide and the knowledge sources used to support the capabili-
ties. The relations between the capabilities and the knowledge
sources were used as a basis for distinguishing dialogue and
domain knowledge management capabilities.

e A separate module for domain knowledge management, a Do-
main Knowledge Manager, to be used in information-providing
dialogue systems. The design of the module is made in the con-
text of a dialogue system framework called MALIN. The Domain
Knowledge Manager was is also implemented in a dialogue sys-
tem that provides information on local public transportation,
the OTRAF system.

1.5 Thesis outline

The topic of this thesis is domain knowledge management in information-
providing dialogue systems. Aspects of domain knowledge and back-
ground and application systems have, however, often been incorpo-
rated in dialogue management. The first two chapters are therefore
concerned with knowledge sources and models, and dialogue sys-
tem capabilities related to dialogue management. In the following
chapters the focus then shifts towards domain knowledge manage-
ment which is presented and discussed in the context of a dialogue
system framework and a particular instance of this framework, an
information-providing dialogue system in the domain of local public
transportation. A more detailed description of the chapters follows
below.

Chapter 2 Knowledge sources for dialogue manage-
ment The knowledge sources and models used
in information-providing and problem-solving dia-
logue systems are characterised and their roles and
relations in dialogue systems are discussed.

12

Chapter 1 Introduction

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Capabilities for dialogue management To
achieve natural and graceful interaction with a
user, a dialogue system must have a variety of ca-
pabilities. A list of such capabilities is presented
with a discussion on how the capabilities are re-
lated by the knowledge sources and models pre-
sented in chapter 2.

Capabilities for information-providing dia-
logues The result of an empirical study of cor-
pus material used to decide which capabilities an
information-providing dialogue system requires is
presented. The capabilities are discussed in terms
of the knowledge they require.

Domain knowledge management in the
MALIN framework A framework for information-
providing dialogue systems, MALIN, which includes
a new separate module for domain knowledge man-
agement, a Domain Knowledge Manager is pre-
sented. The architecture and knowledge sources
of the Domain Knowledge Manager are presented
and discussed.

Domain knowledge management in the
OTRAF system A specific instance of the MALIN
framework, the OTRAF System, for the domain of
local public transportation is presented. Different
features of domain knowledge management are ex-
emplified and clarified.

Summary and discussion The concept of do-
main knowledge management and the proposed de-
sign of a Domain Knowledge Manager are sum-
marised and discussed.

Chapter 2

Knowledge sources for
dialogue management

There is a variety of dialogue systems that provide information ser-
vices or assistance in solving a specific task. The systems differ in
complexity due to the domain and the approach taken in the design
of the system. Some systems are highly knowledge-intensive and con-
tain several interacting knowledge sources and models, while others
rely on much simpler models and procedures. The variety of dialogue
system architectures that incorporate various models has led to con-
fusion when it comes to the purpose and contributions of a specific
model. The relations between various knowledge sources and models
are also diffuse. In order to clarify the situation, the following issues
are examined in this chapter!:

e What characterises the knowledge sources and models used for
dialogue management in dialogue systems?

e What roles do the different knowledge sources and models have?

IThis chapter is a revised and extended version of [26]

13

Chapter 2 Knowledge sources for dialogue management

o What are the relations between the different knowledge sources
and models?

To address these issues a study has been conducted on how knowl-

edge sources and models are utilised in eight different information-

providing or problem-solving dialogue systems: CIRCUIT FIX-IT SHOP,
GALAXYII, LINLIN, RAILTEL, SUNDIAL, TRAINS, VERBMOBIL, and

WaxHoLM2. The survey of knowledge sources and models focuses

on knowledge for dialogue, discourse, task, domain and users. Al-

though there are other models, this selection represents the most com-

mon types of knowledge sources and models utilised in information-

providing and problem-solving dialogue systems today.

2.1 An overview of the surveyed
dialogue systems

Dialogue systems are developed for very different tasks and domains.
In this survey the focus is on two types of dialogue systems, information-
providing systems and problem-solving systems®, leaving out other
types of systems such as argumentation and tutoring systems. In this
survey the GALAXYII, LINLIN, RAILTEL, SUNDIAL, and WAXHOLM
systems belong to the information-providing category. The CIr-
CcUIT FIX-IT SHOP and TRAINS systems are instances of the problem-
solving class of systems.

2The systems have been chosen to cover most types of dialogue systems: com-
mercial or research, plan-based or grammar-based, general purpose or domain-
specific, and natural language only or multi-modal

3Gince there is no consensus on classifications of dialogue systems, I have made
a distinction between information-providing and problem-solving systems, both
of which are sometimes refered to as task-oriented.

2.1 An overview of the surveyed dialogue systems

15

2.1.1 CirculT FIX-IT SHOP

The CIRCUIT FI1X-IT SHOP system is an example of a problem-solving
system that assists a user as he or she is fixing an electric circuit.
The system is based on the Missing Axiom Theory [61] in which
completion of an action is viewed as a theorem and the process of
accomplishing an action or a task is the same as proving the theorem.
If a task cannot be completed, it is interpreted as a missing axiom
which has to be provided by the user through a dialogue with the
system.

The system consists of five components: a dialogue controller that is
the supervisor of the system, a domain processor that holds informa-
tion about the application domain, a general reasoning component
responsible for theorem proving, a linguistic interface component for
interpretation and generation of utterances, and finally a knowledge
module which represents knowledge about the dialogue, the user and
the actions that can be performed.

2.1.2 GALaxYII

The GALAXY system, followed by the GALAXYII system, developed
by the Spoken Language Systems group at MIT, is a distributed
multi-modal multi-domain system that provides users with informa-
tion about, for example, travel and weather [30]. The GALAXYII
system consists of several specialised modules, e.g. for speech recogni-
tion and understanding, dialogue management and context tracking,
application back-ends, generation and speech synthesis. The different
modules interact via a hub using a common knowledge representation
format, semantic frames [59].

16

Chapter 2 Knowledge sources for dialogue management

2.1.3 LINLIN

The LINLIN system* [2] is a natural language dialogue system that has
been customised for various domains, e.g. information on second-
hand cars and charter trips to the Greek archipelago. The system
includes a generator, a parser, a database interface, an instantiator,
and a dialogue manager that is the kernel of the system. The dialogue
manager is responsible for controlling the interaction with the user
and also controls the other modules.

2.1.4 RAILTEL

The RAILTEL system is an example of a practical system that is pub-
licly available and currently in use [8]. It provides information over
the telephone about railway journeys. The system is composed of
a number of components, such as a speech recogniser and a natural
language component, a dialogue manager, and a response generator.
The architecture is serial: information represented as semantic frames
flows from the speech recogniser to the language understanding mod-
ule, on to the dialogue manager which accesses the application and
forwards the result to the response generator.

2.1.5 SUNDIAL

The SUNDIAL system has been developed within the SUNDIAL project
(Speech UNderstanding in DTIALogue) where several dialogue systems
for information exchange over the telephone have been created for
different languages [36]. The system provides information over the
telephone about air and train traffic. The system contains a com-
ponent for speech recognition, a parser, a dialogue manager, a text

4LINLIN is strictly speaking a framework that can be used to implement var-
ious dialogue systems. The name has, however, also been used to denote some
customised systems, and this is how it will be used in this chapter.

2.1 An overview of the surveyed dialogue systems

17

generator, and a text-to-speech system. The dialogue manager in the
SUNDIAL system has a distributed architecture, and consists of five
modules: a Linguistic Interface, a Message Generator, a Dialogue
Module, a Belief Module, and a Task Module, which can be seen as
independent agents. Its purpose is to interpret the input that has
been analysed by the parser, decide how to continue the dialogue,
and plan the system utterances [10].

2.1.6 TRAINS

The TRAINS system is used for mixed-initiative collaborative plan-
ning in the transport domain [7]. It is task-oriented, giving the user
advice on how to perform a task in the real world outside the system.
The system is designed as an agent having a mental state and the
dialogue management is plan-based. It is based on the common BDI
(Beliefs Desires Intentions) model which have been adapted to conver-
sation between two agents. The first system TRAINS-90 has over the
years been redesigned and improved and there are a TRAINS-93 [64],
TRAINS-95 [24] as well as a TRAINS-96 [25] system. The TRAINS-96
system consists of a number of modules for interpreting and gener-
ating natural language, dialogue processing and domain reasoning.
The modules are connected in a star-like fashion and message pass-
ing is handled by a specific processor. KQML (cf. [67]) is used as the
communication language.

2.1.7 WAXHOLM

The WAXHOLM system provides users with information about boat
traffic in the Stockholm archipelago. It has much in common with
RAILTEL, both systems are domain-specific spoken dialogue systems
originating from the speech research community. However, the WAX-
HOLM system also allows for limited multi-modal interaction [11]. The
interaction between modules within the system is based on the use
of semantic frames. The module for speech recognition and interpre-

18

Chapter 2 Knowledge sources for dialogue management

tation delivers a semantic frame representation of a request to the
dialogue manager, which decides how to respond to the request and
updates the semantic frame. The updated frame is then sent to the
components responsible for generation of speech and graphics.

2.1.8 VERBMOBIL

The VERBMOBIL system is not a traditional dialogue system as the
system is not an active participant in the dialogue. Instead, it listens
in on two persons having a conversation in a language that is not
their mother tongue, e.g. a German and a Japanese trying to book
a meeting speaking English. The system’s task is to monitor the
dialogue and to give the users translations when required [4].

The system has two different processing modes. When the dialogue
participants are speaking English and no translation is necessary,
only shallow processing takes place. This means that the system only
looks for keywords and tries to identify the speech act performed. In
this way, the system knows at what stage the dialogue is. When a
translation is requested, the system enters a mode of deep process-
ing where utterances are analysed with respect to prosody, syntax,
semantics and pragmatics. Besides modules for keyword spotting,
speech recognition and language analysis, there are modules for se-
mantic construction and evaluation, transfer, and generation [3].

2.2 Characteristics of knowledge sources

Even if dialogue system architectures differ all systems need and
utilise similar knowledge. However, the terminology used to de-
scribe the knowledge sources and models varies between the systems.
Therefore a uniform terminology is introduced in this section, and
the various knowledge sources and models used by the systems are
characterised in terms of the type of knowledge they represent.

2.2 Characteristics of knowledge sources

19

2.2.1 Discourse and dialogue knowledge

In dialogue systems two aspects of the dialogue need to be modelled,
a generic description of the structure of dialogues that can be used to
form a coherent dialogue with the user, and a dynamic representation
of the current dialogue. I will refer to the first as the dialogue model
and the second as the dialogue history. The dialogue model is often
closely connected to and dependent on the information represented
in the dialogue history.

Dialogue models have the common purpose of describing how the
system should respond to user utterances, for example by access-
ing a database or asking for clarifications. The general information
about the dialogue, held by the dialogue model, is often based on
a representation of relations between the constituents of a dialogue.
This knowledge is used to control the interaction, i.e. to decide what
action to take in a certain situation.

There are several approaches to dialogue modelling used today: the
most common are state transition networks, grammar-based, and
plan-based approaches.

State transition networks are a rather simple method for modelling
and controlling dialogue flow. The system responds to a user utter-
ance by moving from one state to another, thus traversing the network
and producing a sequence of exchanges between the user and the sys-
tem. The advantage of this type of model is its simplicity, given that
the task being modelled is well-structured and consists of a limited
number of necessary exchanges. If the task is highly complex, the
transition networks tend to get unmanageable. This is also true if
the model should contain repair strategies and allow the user more
unrestricted input [48].

Dialogue grammars have a rather long history and are based on the
notion of adjacency pairs [56]. Adjacency pairs express the fact that
speech acts typically form a regular sequence, such as a question
followed by an answer. Rules in the dialogue grammar capture the

20

Chapter 2 Knowledge sources for dialogue management

sequential and hierarchical constraints of dialogues in the same way
that grammar rules describe the syntactic structure of a sentence.

Plan-based models go beyond the utterance and try to model the
speaker’s intentions and goals [13]. Communication becomes a part of
the speaker’s overall behaviour. Elements in these models are plans,
actions, mental states and mechanisms for recognising a specific plan
and for reasoning about the speaker’s beliefs, intentions, and actions.

The dialogue models used by the systems in the survey incorporate
both grammar-based and plan-based dialogue modelling. The RAIL-
TEL, SUNDIAL, LINLIN, and WAXHOLM systems have a dialogue model
consisting of a dialogue grammar that models the dialogue’s hierar-
chical structure. In the RAILTEL system the dialogue is partitioned
into three phases each consisting of a number of sub-dialogues. It
is modelled by a hierarchical structure of sub-dialogues and dialogue
acts, represented by a set of rules in a dialogue grammar [8]. A sim-
ilar approach is taken by SUNDIAL [10] and the LINLIN system [39],
which model the dialogue using a dialogue grammar and speech acts.

The dialogue model in the WAXHOLM system is based on the idea
that the dialogue should be described as a grammar and at the same
time be probabilistic [12]. The WAXHOLM system thus has a dialogue
grammar represented as finite state machines but also a statistical
component for topic prediction, which is part of the dialogue model.

A combination of approaches is also utilised in the VERBMOBIL sys-
tem. The possible moves for the user and system to make during the
interaction are represented in a dialogue model using dialogue acts.
The dialogue module in the VERBMOBIL system consists of three sub-
modules: a Statistical Module, a Finite State Machine, and a Dia-
logue Planner. The Statistical Module can, given a dialogue state,
predict all possible successive dialogue acts and their likelihood. The
Finite State Machine has a similar task: it checks whether a dialogue
act is consistent with the underlying dialogue model and which sub-
sequent dialogue acts are possible. The Dialogue Planner is the most
sophisticated of the three sub-modules. Plan operators are utilised
to plan the dialogue and handle different phases like negotiations,

2.2 Characteristics of knowledge sources

21

clarifications and repairs. A plan is built up hierarchically with the
leaves in the hierarchy being dialogue acts [4].

The TRAINS system takes a distinct plan-based approach to dialogue
modelling. The system is viewed as a conversational agent having
goals, intentions, plans, and obligations. Answers to user utterances
are planned by the system in order to reach its goals and at the same
time fulfil its obligations [64].

Another way to handle the dialogue is to do it more procedurally as in
the GALAXYII system where the dialogue is controlled by a stepwise
process. This means that there is no explicit dialogue model as the
model lies implicit in the processing algorithm [58].

The CirculiT FIxX-IT SHOP system also lacks an explicit dialogue
model; instead handling the dialogue is tightly coupled to the task
model. The task model is used to find missing axioms that result in
clarification dialogues and also to insert sub-tasks corresponding to
sub-dialogues initiated by the user [61].

The dialogue model is often used together with information about
the dialogue state. The variety of ways to model the state of the
dialogue has led to a variety of names, e.g. discourse memory, dis-
course history, dialogue memory, dialogue history, history table, and
context model. To avoid confusion only the term dialogue history
will be used. Dialogue histories could then be described as partial or
full depending on the number of information levels, and the degree
of structure could also be used for further classification.

The dialogue history in a dialogue system represents the state of the
dialogue, that is, what has been talked about and the current topic of
the dialogue. It can be used for dialogue control, disambiguation of
context-dependent utterances, and context-sensitive interpretation,
e.g. reference resolution and handling of ellipsis.

The representations of dialogue histories range from complex hierar-
chical structures, containing a variety of information, to much simpler
sequential representations. The kind of dialogue history required in

22

Chapter 2 Knowledge sources for dialogue management

a dialogue system depends on the linguistic phenomena that have
to be handled, such as misunderstandings, interruptions, and deictic
expressions, and the complexity of the task and domain which is re-
flected in the interaction. If a dialogue is made up of several clearly
separated sub-dialogues, a more structured representation may be
preferred to a sequential.

In the LINLIN system a dialogue tree consisting of dialogue objects
is constructed during the interaction [39]. The tree has three levels
which correspond to the whole dialogue, discourse segments called
initiative response units, and dialogue moves. A dialogue object con-
tains situation parameters and content parameters. The first holds
information about Initiator, Responder and context parameters while
the second records the current focus of the dialogue.

The representation of the dialogue history in the SUNDIAL system is
distributed over several models. A tree is used to represent the dia-
logue structure. It resembles the dialogue tree in the LINLIN system
but has one more intermediate level to represent a common topic [10].
An interpretation is called a belief and a sequence of beliefs which
corresponds to the user’s utterances is represented in a contextual
model [47]. This model is used to make context-sensitive semantic
interpretations of user utterances. Changes in the contextual model
are reflected in a flag called status that indicates how the contextual
model has changed; the value repeat, for example, means that noth-
ing new has been contributed. This information can be used by the
dialogue module to reason about the function of an utterance, e.g. if
it is a confirmation or a new request [36].

The dialogue planner in the VERBMOBIL system contains a dialogue
history representing intentional, thematic and referential information.
Intentional information corresponds to the dialogue acts performed
by the participants, and is structured in a tree-like representation.
The thematic information refers to relevant information in utterances
while referential information is the lexical realisation of utterances. A
representation of the proceeding dialogue is constructed dynamically
in the dialogue memory during the dialogue [4].

2.2 Characteristics of knowledge sources

23

Some of the other systems focus only on the objects that have been
mentioned, which could be compared with the attentional level of the
discourse using Grosz & Sidner’s terminology [32]. The GALAXYII,
RAILTEL, and WAXHOLM systems all maintain a history of semantic
frames that are used to represent the objects and relations in fo-
cus. The discourse module in the GALAXYII system maintains a his-
tory table of referable objects to facilitate the interpretation process.
Items and requests are represented internally as semantic frames, and
the history table consists of a sequence of frames [58]. In the RAIL-
TEL system the context is represented by a dialogue history and a
generation history which contain the semantic frame representation
of the user’s and the system’s previous utterances respectively [8].
The utterances are stored sequentially within these. The WAXHOLM
system utilises a dialogue history based on the semantic frame repre-
sentation and the updates of this representation [12].

The dialogue history in the TRAINS system lies somewhere between
the complex multi-level and simple frame-based representations, as
it models both attentional and intentional features. The discourse is
modelled as a stack of discourse units (DUs) which represent utter-
ances and the corresponding speech acts. In the model the initiator
and state of DUs are also recorded. Two other contextual features
represented in the system are the turn and the local initiative, each of
which is held by one of the dialogue participants. The turn indicates
who is speaking now, while the local initiative informs which speaker
is obliged to speak next [64].

The CirculT Fix-1T SHOP system differs from the other systems
as it focuses on what might be said next instead of what has been
said earlier. Thus, the attentional state is represented as a set of
expectations about the possible responses from the user [60].

2.2.2 Domain knowledge

The amount of domain knowledge needed in a dialogue system dif-
fers depending on the domain and the system’s task. This means

24

Chapter 2 Knowledge sources for dialogue management

that the sources of domain knowledge can range from rather simple
conceptual models to full-fledged world models capable of complex
reasoning. Dahlbéack & Jonsson [22] make a distinction between do-
main models and conceptual models. The domain model represents
the structure of the world and usually comprises a subset of general
world knowledge, while the conceptual model represents the general
and domain-specific concepts. I will also use this distinction, but
since reasoning is central to what Dahlbéack and J6nsson call domain
models I will instead use the term domain knowledge source.

Information from the conceptual model and the domain knowledge
sources is primarily used to identify the relevant items and relations
that are discussed, reason about and derive new information from
the information provided by the user, to supply default values, etc.
In information-providing systems the knowledge represented in a do-
main knowledge source is often closely connected to the background
system, e.g. a database system. In such cases domain knowledge is
used to map information in the user’s utterances to concepts suitable
for database search.

The semantic frames used in the RAILTEL system contain the rele-
vant domain concepts and serve as a simple conceptual model. The
domain knowledge also consists of two kinds of rules: Default value
rules supply default values, e.g. the current or next month for a de-
parture date; Interpretative rules transform vague qualitative values
into more precise quantitative values used by the system, for example
they map the concept "morning” onto the precise interval ”between
6 a.m. and noon” [8].

The domain knowledge in the SUNDIAL system is distributed. One
module contains a hierarchy of surface-oriented concepts while an-
other module contains a hierarchy of task-oriented concepts. The
surface-oriented concepts, for example ”at noon”, are mapped onto
task-related concepts, ”"at twelve o’clock”. The domain knowledge
thus consists of two concept hierarchies and inference rules used to
map one to the other [36].

2.2 Characteristics of knowledge sources

25

Domain knowledge in the VERBMOBIL system is represented in a
conceptual hierarchy that represents relations between different cate-
gories, entities, and situations. Situations are entities determined by
spatial and temporal features like year, month, week, day, location,
etc. The hierarchical structure of the model makes it suitable for
decisions about possible references. It also allows inheritance; if a
temporal object is available for scheduling, the super-ordinate object
is regarded as free too, and similarly, if an object is not available,
none of the subordinated objects are either [51].

The TRAINS system on the other hand has a more complex repre-
sentation of domain knowledge. The Domain Plan Reasoner in the
system is responsible for the representation of and reasoning about
the domain. It maintains a representation of the state of the world,
provides new suggestions about routes, and adjusts the current plan
given new constraints. Inspection of plans that have been suggested
by the user is also done to check whether any unknown conditions
need to be considered [24].

The CircuIT FIX-IT SHOP system also needs substantial knowledge
about the domain. The domain knowledge is divided into a concep-
tual model and a domain model. The conceptual model represents
how different components of a circuit are related to each other and
how the different components should function. The domain model
consists of a set of axioms that represent the current state of the
circuit that is being fixed [60]. The term domain model thus has a
different meaning in this system since it is more of a representation
of a state than general knowledge about the domain.

In the GALAXYII system conceptual models and domain knowledge
sources are combined for some domains. The domain knowledge in
the GALAXYII system can be found in two places, declarative tables
in the discourse module, and in domain servers that contain the ap-
plication data. The tables can be seen as conceptual models which
describe the possible semantic classes a value can have and some re-
lations between them. The domain servers can contain more specific
domain knowledge needed to interpret the semantic frame [58].

26

Chapter 2 Knowledge sources for dialogue management

In the LINLIN system a conceptual model has been used in the travel
domain. It consists of a hierarchy with concepts for charter trips,
such as resort, hotels, etc. It is used for focus tracking and to resolve
anaphoric expressions [22].

The WAXHOLM system contains no explicit domain knowledge sources;
domain knowledge is instead incorporated in the lexicon and the
grammar. The parser is based on a semantic feature structure with
features of two kinds, basic features and function features. The basic
features, e.g. boat and place, provide simple semantic information
about a word. They are organised in a hierarchy. The function fea-
tures, e.g. departure_time, to_place, do not have the same structure
and they are associated with actions rather than objects [11].

2.2.3 Task knowledge

The terms task and task model are often used when describing dia-
logue systems, but they can refer to very different phenomena. It is
important to make a clear distinction between the system’s task(s)
and the user’s task(s). A user task is non-linguistic and takes place
in the real world outside the system. Models of such tasks represent
the user’s goals, and knowledge of how they can be achieved. Models
of system tasks describe how the system’s communicative acts and
other tasks, e.g. database access, are carried out.

Dahlbéck [21] uses the term dialogue-task distance to describe the
degree of connectedness between the user’s non-linguistic task and
the dialogue structure. For some types of dialogues it is important
that the system knows what nonlinguistic task the user is performing
or is planning to perform. In these cases the system can often infer
the necessary information from the linguistic information. For other
types of dialogue, where the dialogue-task distance is long, informa-
tion about the user’s task is less necessary.

Depending on dialogue-task distance different dialogue models are
suitable. For advisory or problem-solving dialogues a plan-based

2.2 Characteristics of knowledge sources

27

model, in which the user’s intentions and goals are represented, might
be appropriate. For these types of dialogues, there is a close con-
nection between the task and the language, which means that it is
possible to infer the non-linguistic intentions behind an utterance.
In simple human-computer interaction for information retrieval, the
connection between the task and the dialogue is weaker. The user’s
task is not necessarily reflected in the dialogue that seemingly only
consists of information exchanges. This makes it harder to infer the
underlying intentions if one wants to model these in the system. On
the other hand that type of information is not always necessary for
the system to be able to respond appropriately. For this type of
interaction a dialogue grammar is sufficient [21].

User task models can vary in complexity depending on the amount
of information that has to be exchanged, the structure of the task,
and the negotiation necessary. A user task model can consist of
a hierarchical representation of sub-tasks which captures the task
structure. The structure or lack of structure is important. If a task
is ill structured, the system cannot predict what kind of information
the user will request and when. In a well-structured task with a
predefined, at least partially ordered exchange of information, it is
much easier for the system to model the interaction.

In an information-providing system a system task model can assist
the system in judging if all the required parameters are present and
in cases where they are not, determine what type of information to
collect from the user. The use of an explicit system task model makes
the system more flexible since it is easier to modify or add new tasks.

In this survey the TRAINS and CIRCUIT FIX-IT SHOP systems are
the only systems that are problem-solving and have models of the
user’s task. The task in the TRAINS system is route planning and
knowledge about the task, i.e. the planning process is represented
explicitly. The plans that are developed during the interaction with
the user are represented as a hierarchy of goals that are expanded
into sub-goals. The hierarchy is complemented with a linear history
of the planning process. For some sub-problems specialised domain
servers are used [25].

28

Chapter 2 Knowledge sources for dialogue management

In the CircuUIT FIX-IT SHOP system the task model is prominent,
and it contains information about goals, actions and states. Actions
can consist of a hierarchy of sub-actions. Actions that lack sub-
actions are primitive, and specify physical or sensory actions that
users can perform. Goals can be accomplished by performing one or
more actions. States can be either physical, representing properties or
behaviours, or mental, representing beliefs about the physical state or
the user’s abilities. The task model can be used to answer questions
about the physical state or determine what action to recommend the
user to perform [60].

The other systems are all some sort of information-providing sys-
tem providing information retrieved from databases. In the LINLIN,
VERBMOBIL and WAXHOLM systems the system task knowledge is in-
tegrated with other knowledge sources and models, and lies implicit
in the system. The GALAXYII, and RAILTEL systems have a frame-
based specification form that is more or less utilised as a system task
model. In the GALAXYII system there is no explicit task model but
a frame representation is used to see if all the required slots are filled
and, in case some are missing, ask the user for a clarification [58]. In
a very similar way task rules in the grammar of the RAILTEL system
are connected to the semantic frame representation of the provided
information and sub-dialogues are initiated if information is missing
in the frame [8].

The SUNDIAL system utilises a more sophisticated system task model
that represents the task structure and keeps track of the status of the
task. This often means deciding whether the user has given enough
information and if not, what has to be further provided. Another role
is to handle situations that arise when the provided information is
incorrect. In this case the task model is used to relax the parameters
instead of returning a negative answer. For example, if the user has
requested a flight at noon and none is available, the system tries to
find one in the morning instead [47].

2.2 Characteristics of knowledge sources

29

2.2.4 Knowledge of the user

User models represent the user’s goals and plans, capabilities, atti-
tudes, and knowledge or beliefs. They vary in complexity, ranging
from user stereotypes [53] to complete models of the user’s knowledge,
intentions, attitudes, etc. [42].

Depending on what kind of information a user model contains it can
be used for various purposes. If a user model represents what the
user knows about the domain, the system can adapt its answers so
that they are informative and easily understandable. User models
can also be utilised for dialogue control.

Kass & Finin [42] discuss when user models can be of great assis-
tance and when they can be left out of a system. In simple question-
answering systems no user model is necessary. In co-operative ques-
tion answering systems user models can be more beneficial. For such
systems a simple model of the user’s goal can be used but a generic
model suffices. Co-operative consultation systems on the other hand
need an extensive user model.

The TRAINS system is an example of a co-operative system which
uses much elaborated models of the and itself. The user model and
self model represent the user’s and system’s mental state and contain
information about their beliefs and proposals about the domain. The
beliefs can be private to either the system or the user, or they can
be shared by both. Mutual beliefs include aspects of the domain
plans that are considered to be agreed on by both system and user.
An example of private beliefs held by the user are the domain plans
that have been proposed but not acknowledged. The system’s private
beliefs consist of the domain plans the Domain Planner has derived
but have not been presented to the user [64].

The user model in the CIRCUIT FIX-IT SHOP system is a collection
of axioms representing the user’s knowledge about the state, as it is
known by the system. These axioms are used by the system when it
tries to prove a theorem and generate missing axioms, i.e. when it

30

Chapter 2 Knowledge sources for dialogue management

decides which sub-actions have to be performed in order to complete
a task. For example, if the system knows that the user knows how to
perform a sub-task, it can give a higher order instruction instead of
explaining and guiding the user through the sub-task [60].

2.2.5 Knowledge sources and dialogue types

To summarise the discussion of the different types of knowledge,
information-providing systems and problem-solving systems are con-
trasted in this section.

Information-providing systems

In information-providing systems the dialogue and the information
exchanged through the dialogue are the central features of the system.
This is reflected by the fact that the dialogue model and dialogue
history are often prominent in such systems.

Information-providing systems are in general less focused on the user’s
task than problem-solving systems. This is reflected in the lack of user
task models. Some systems instead have explicit system task mod-
els that represent the information-seeking and information-providing
tasks the system. In information-providing systems user models are
not necessary, since the execution of the system’s tasks is highly in-
dependent of the user’s knowledge.

The type of domain knowledge needed in information-providing sys-
tems also differs from problem-solving systems. If the domain and
task are fairly simple, complex domain knowledge sources might be
unnecessary when instead a simple conceptual model would suffice.

2.3 Relations between knowledge sources

31

Problem-solving systems

In problem-solving systems the dialogue between the user and the
system is just a means of solving a problem. To identify and co-
operate to achieve the user’s goals is the primary concern of the
system. The focus on the tasks and goals of the user is reflected
in the the dialogue model and the dialogue history, which in most
cases are intention-based.

Another consequence of the focus on the task is that the user task
model is essential, and sometimes takes on some of the responsibilities
held by the dialogue model in information-providing systems. For
example, the user task model can be used instead of the dialogue
model to decide how to deal with sub-goals that are not accomplished.

When a dialogue system is working jointly with the user on a task,
it has to build a model of the domain or world that is being altered
by actions performed by the user during the dialogue. The domain
knowledge sources in problem-solving systems therefore have to be
dynamic and in most cases more elaborate than the domain knowl-
edge sources found in information-providing systems. The system
also has to keep track of the user’s changing knowledge about the
domain, thus making a user model a necessity.

2.3 Relations between knowledge
sources

To be able to respond properly to a user request in an information
providing system, the system has to have knowledge about both the
domain and the task. Thus, it can be very tempting to integrate
this kind of knowledge in the dialogue model. The task and domain
knowledge can also be mixed since the performance of a task is often
domain-dependent.

32

Chapter 2 Knowledge sources for dialogue management

Dialogue systems for information retrieval often lack an explicit sys-
tem task model, in these systems the representation of task knowledge
frequently becomes a part of the dialogue model. This works well in
simple domains where the system only performs one or a few similar
tasks but if a system is to manage several different tasks explicit task
models are preferred.

A typical example of the integration of domain and task knowledge
is the use of semantic frames which are part of many information-
providing dialogue systems. They represent the relevant domain con-
cepts, and are sometimes coupled to rules for interpretation of domain
concepts and rules to fill in default values in a frame. Besides the role
of conceptual models, the semantic frames often serve as system task
models since they are used to describe what information has to be
gathered by the system before a database access. This multiple use
of semantic frames is useful as long as the system task is rather sim-
ple and well-structured. If the task becomes more complex, separate
system task models might be needed.

The relation between user models and dialogue histories has been
debated. Opinions range from user models and dialogue histories
being completely separate to being two sides of the same coin [43,
57, 14]. The differences in opinion seems to a great extent to depend
on how the two types of models are defined. Some researchers focus
on the user’s goal and compare it to the intentional level of dialogue
histories, others look at the user’s beliefs and knowledge and compare
it to the attentional information in dialogue histories.

2.4 Summary

This chapter presented a survey of eight information-providing or
problem-solving dialogue systems with the focus on the knowledge
sources and models they use for dialogue management. Four types
of knowledge, represented by seven different knowledge sources, were
identified. Dialogue knowledge is represented in dialogue models

2.4 Summary

33

and dialogue histories. Task knowledge can be divided in system
task models and user task models. Domain knowledge is held by
domain knowledge sources and conceptual models. Finally, Knowl-
edge of the user can be represented by a user model. The aim
with this new categorisation was to clear up the sometimes confusing
terminology.

Chapter 3

Capabilities for dialogue
management

Choosing natural language as a means for interaction with a system
is often motivated by the ease and naturalness of natural language.
However, a system needs many capabilities if the dialogue is to be
perceived as natural by the user. In this chapter such capabilities
related to dialogue management are presented, and how the capabil-
ities are supported by the knowledge sources and models presented
in the previous chapter are discussed.

3.1 Graceful and co-operative
interaction

Hayes & Reddy [35] describe a set of skills they consider necessary
to achieve graceful interaction between a human and an information-
providing dialogue system.

35

36

Chapter 3 Capabilities for dialogue management

The need for domain knowledge! is stressed. Two aspects of domain
knowledge that should be captured are a priori knowledge about the
domain and the services and a specification of how to interact with a
user during the formulation of a request. The first is related to three
different skills: knowledge about the type and structure of entities in
the domain, ability to derive new information from the provided infor-
mation, and default information. The second involves three different
skills: to know what information has been provided so far, what vital
information is missing, and the focus of the current conversation.

According to Hayes & Reddy a dialogue system also needs skills for
dealing with questions about its capabilities, actions performed by the
system, and hypothetical questions. There are also several skills re-
lated to the goals and focus of a user interacting with an information-
providing dialogue system. The user always has an overall goal with
his utterances while the system is assumed to have no other goal
than to co-operate with the user. However, on lower levels where the
user’s goal is divided into sub-goals, the system may also have goals.
To deal with goals and sub-goals the system must be able to detect
and adopt to the user’s high level goal, to generate sub-goals, and to
know how to achieve a goal. Handling the focus of the conversation
requires capabilities to follow shift of focus, and to resolve anaphora
and ellipsis.

Finally, since requests in information-providing dialogue systems are
specified by providing a set of entities, the system needs skills for
identification of entities from descriptions. An attempt to map a
description to an entity can have three different outcomes: a unique
entity is found, the description is ambiguous and several objects are
found, or the description is unsatisfiable and no entity is found.

Abella et al. [1] provide a set of dialogue principles for successful
interaction with a dialogue system. These are completion, disam-
biguation, relaxation, confirmation, augmentation, and user confu-
sion/error correction. Some of these overlap with Hayes & Reddy’s

1Hayes & Reddy do not distinguish between domain and task knowledge. Us-
ing the terminology from the previous chapter some of the domain-related capa-
bilities would be classified as task-related instead.

3.1 Graceful and co-operative interaction

37

skills, for example disambiguation is similar to the skills for dealing
with descriptions.

Completion of a request means requesting missing pieces of informa-
tion from the user. Disambiguation can be needed for two reasons,
if the user has said something ambiguous, or if there are too many
responses from the application. Relaxation and Confirmation are two
ways to deal with requests that cannot be executed due to conflicting
information. Relaxation means that the properties of a request that
are considered the least important are dropped and the system tries
to fulfil the new, less specific, request. Confirmation can be used
by a system to check if information that seems incorrect has been
understood correctly, for example if a user has provided a date that
is out of the range of possible dates. Augmentation is the opposite
of relaxation. If a request lacks some constraints, the system should
choose the best question to ask in order to resolve the ambiguity. If a
user does not know how to answer, a question or gives an erroneous
answer the system must be able to find another question to ask. This
is called User confusion/Error correction by Abella et al. [1].

Another set of guidelines aiming at the designing of co-operative sys-
tems for information-providing dialogues, is presented by Bernsen et
al. [9]. The emphasis is on co-operativity and skills that minimise
miscommunications. There are also some skills for the clarification
and repair meta-communication necessary to handle misscommuni-
cations, as such cannot be totally eliminated in dialogue systems due
to technical limitations.

Seven aspects of the interaction are captured by the guidelines: infor-
mativeness, truth and evidence, relevance, partner assymetry, back-
ground knowledge and repair and clarification. Each aspect is repre-
sented by one or several generic or specific guidelines, which include
some of Grice’s maxims [31].

The guidelines overlap the skills presented by Hayes & Reddy [35] and
the principles of Abella et al. [1]; for example, to provide feedback,
to deal with inconsistent or vague user input, to handle misunder-
standings by the system or the user, and to provide sufficient domain

38

Chapter 3 Capabilities for dialogue management

knowledge and inference. However, the guidelines also cover some
other aspects of the interaction, for example, communication of the
commitments made by the user, to use the same formulation of a
question everywhere, to communicate what the system can and can-
not do, and to provide instructions on how the user should interact
with the system. They also promote user-adaptive interaction; the
system should differentiate between the needs of novice and expert
users whenever possible.

Another aspect of the interaction between a user and a dialogue sys-
tem which is not explicitly mentioned by the principles and guidelines
is initiative. To allow mixed-initiative in dialogues is, however, con-
sidered a very important feature of dialogue systems by many. Initia-
tive can be viewed in different ways (see [15] for some approaches), I
use the term mixed-initiative to mean that both user and system can
control the flow of the dialogue by introducing new topics and ini-
tiating clarification sub-dialogues. Skills related to mixed-initiative
dialogue include how the user might answer a question from the sys-
tem, for example by ignoring it or giving too much information, and
how clarification sub-dialogues can be initiated.

3.2 Capabilities for dialogue
management

The skills, principles and guidelines presented above, which are par-
tially overlapping, deal with features that are considered useful in
order for a dialogue system to interact with a user in a co-operative
and natural way. In this section I will reformulate them in a uni-
form format and introduce a classification. When skills, principles
and guidelines are similar, the most generic one has been chosen.
The capabilities are also presented in appendix A to facilitate future
references to them.

3.2 Capabilities for dialogue management

3.2.1 Handling tasks and requests

The communication between user and system always has a purpose,
to achieve a task. The task can originate from the user or from the
system, depending on the service type of the system. In a problem-
solving system the user’s task is in focus while an information-providing
system concentrates on the information requests from the user and
the corresponding system task. In an information providing system,
a typical sub-task is to specify a parameter in a request. A request
can be quite complex and consist of a number of constraints that the
user has to provide. There are several capabilities useful for handling
tasks and requests:

A1 To identify the task.

A2 To identify sub-tasks and know how they are related to a task.
A3 To reason about how much of a task has been achieved so far.
A4 To decide what action to take in order to achieve a task.

A5 To deal with situations in which no answer can be retrieved from
the background system.

A6 To deal with situations in which the answer from the background
system includes to much information.

AT To detect and deal with hypothetical questions.

A8 To explicitly communicate a commitment made by the user in
the conversation.

3.2.2 Achieving mixed-initiative dialogue

A key to achieving a natural interaction is to allow mixed-initiative
dialogue in which both user and system can take the initiative. The
mixed-initiative behaviour of a dialogue system depends on the fol-
lowing capabilities:

40

Chapter 3 Capabilities for dialogue management

A9 To allow the user to over-answer questions.
A10 To allow the user to initiate clarification sub-dialogues.

A1l To allow the user to abandon the current request and pose a
new request instead.

3.2.3 Handling focus and discourse

In order to achieve a natural dialogue, a system has to know what
the conversation is about. This involves knowledge of what the focus
of the current conversation is and other capabilities related to the
discourse:

A12 To follow shifts in focus.
A13 To resolve anaphora and ellipsis.

A14 To answer questions on what has been said and done during
the conversation

A15 To answer questions about the reason why an action was per-
formed.

3.2.4 Handling domain knowledge

Other capabilities needed to achieve a natural dialogue are related to
the system’s knowledge about the domain. To be an intelligent con-
versational partner, the system has to have sufficient domain knowl-
edge and be able to make inferences. The domain knowledge is neces-
sary for the system to be able to handle descriptions and processing
of requests:

3.3 Relations between capabilities and knowledge sources

41

Al6
Al7
Al8
Al9
A20

A21

A22
A23
A24

3.3

To map a description to an entity.

To detect ambiguous descriptions and deal with them.

To detect erroneous descriptions and deal with them.

To know the type and structure of the entities in the domain.

To reason about and derive new information from the informa-
tion provided by the user.

To deal with a user’s erroneous inferences or false presupposi-
tions

To have domain-related default information.
To adapt to the user’s domain expertise.

To know what the system can and cannot do.

Relations between capabilities and
knowledge sources

The capabilities presented all depend on the use of various knowledge
sources and models. For some of the capabilities knowledge from
several knowledge sources or models is required while for others one
knowledge source is enough. In this section I will explore how the
different capabilities can be achieved. The systems presented in the
previous chapter will be used as a basis for the analysis.

42

Chapter 3 Capabilities for dialogue management

Al

A2

To identify the task. In systems that only perform a spe-
cific task, like the RAILTEL and WAXHOLM systems, this
capability only requires a dialogue model that holds the in-
formation on how the system should behave in order to co-
operate with the user to achieve the task at hand. In systems
where the task is more complex or several tasks must be ac-
complished, explicit models of the system’s or the user’s tasks
are used, as is the case in, for example, the SUNDIAL and the
TRAINS systems, which utilise system task models and user
task models respectively.

To identify sub-tasks and know how they are related
to a task. For this capability either a dialogue model, a
system task model, or a user task model is needed. For the
problem-solving systems, TRAINS and CIRCUIT FIX-IT SHOP,
the user task model explicitly represents how sub-tasks are
related to the user’s task. In CIRCUIT FIX-IT SHOP a task
that is not accomplished is represented by a theorem that is
not yet proven, and missing axioms correspond to sub-tasks.
In many of the information-providing systems, for example
RAILTEL, SUNDIAL and GALAXYII, frames are used as sys-
tem task models which implicitly model how sub-tasks are
related to the system’s task, for example, how specification
of a departure location is related to the overall task of pro-
viding trip information. In information-providing systems
where no explicit system task model is used, e.g. LINLIN, the
relation between a sub-task and a task is represented by the
dialogue model, for example by a sub-dialogue specification.

3.3 Relations between capabilities and knowledge sources

43

A3

A4

A5

To reason about how much of a task has been
achieved so far. To accomplish this capability either a
dialogue history, a system task model or a user task model
can be used. The problem-solving systems, e.g. TRAINS and
CirculT FIX-1T SHOP, utilise user task models, while the
information-providing systems that have system task mod-
els, e.g. RAILTEL and SUNDIAL, use these. Information-
providing systems that lack explicit system task models, e.g.
LINLIN, use a dialogue history instead, which represents what
has been accomplished in the dialogue so far.

To decide what action to take in order to achieve a
task. In simple cases, e.g. systems such as LINLIN that only
perform one task, a dialogue model is sufficient for this pur-
pose. For systems that deal with a complex task or more
than one task, explicit system task models or user task mod-
els are used together with a dialogue model, as in GALAXYII,
SUNDIAL, TRAINS and CIRCUIT FIX-IT SHOP.

To deal with situations in which no answer can be
retrieved from the background system. This capability
is primarily needed for information-providing systems where
fully specified requests are used to retrieve an answer from
some background system. A way to deal with this type of
situation is to relax some of the constraints in the request.
This approach is taken in, for example, SUNDIAL. Another
approach is to present the problem to the user and let her
deal with it. This requires a dialogue model that can handle
this type of situation.

44

Chapter 3 Capabilities for dialogue management

A6

AT

A8

To deal with situations in which the answer from the
background system includes too much information.
To achieve this capability knowledge from a domain knowl-
edge source or conceptual model can be used to narrow the
set of possible answers. The dialogue model can also pro-
vide information on how to correct the situation, primarily
by entering a sub-dialogue. For instance, RAILTEL has three
different dialogue grammar rules to deal with the latter type
of situation: If there are less than 3 answers to a request, all
information is presented; if there are 3 to 10 answers, par-
tial information is presented and more specific information is
asked for in order to narrow down the set; if there are more
than 10 answers, more specific information is requested from
the user [8].

To detect and deal with hypothetical questions. None
of the systems in the survey deals with hypothetical ques-
tions. To be able to do so the system should be able to
differentiate between the task at hand and the new task that
the hypothetical question involves. This requires a sophisti-
cated dialogue model, and a dialogue history that records the
current task which the system can switch back to later. A
system task model or user task model might also be helpful
to separate hypothetical from ordinary requests.

To explicitly communicate a commitment made by
the user in the conversation. This capability requires
a dialogue model that can confirm the commitments made,
and a system task model, user task model, or dialogue his-
tory that serve as a source of this type of information. For
example, when the user has specified a trip, the provided
constraints can be recorded in a task model or the dialogue
history. Before accessing the background system the system
can then communicate these commitments to the user by
means of one of these models and the dialogue model.

3.3 Relations between capabilities and knowledge sources

45

A9

Al0

All

Al2

To allow the user to over-answer questions. Over-
answering a question from the system means that the user
provides the requested information but also takes the initia-
tive and provides new information. To handle this requires
a flexible dialogue model which allows the user several ways
to respond to a system utterance. A dialogue history, sys-
tem task model, or user task model is also needed for stor-
age of the provided information. The LINLIN system accom-
plish this capability with the use of the dialogue model and
dialogue history, while, for example, the RAILTEL system
utilises the dialogue model and system task model.

To allow the user to initiate clarification sub-
dialogues. This capability requires both a flexible dialogue
model and a dialogue history. If the user is to be able to
postpone the answer to a question from the system, the sys-
tem must remember previous states of the dialogue so that
it can pick them up later in the interaction.

To allow the user to abandon the current request and
pose a new request instead. This is the third capability
related to mixed-initiative dialogue, and as previously (A9-
A10) this also requires a flexible dialogue model. The user
must be allowed to shift topic and sometimes ignore a direct
question from the system.

To follow shifts in focus. Shifts in focus can be detected
by the use of a dialogue model. In many systems, for exam-
ple CircuIlT FIX-IT SHOP, VERBMOBIL and SUNDIAL, the
dialogue model supports the computation of expected types
of responses, which can be used to determine whether a shift
in focus has occurred. To know what the previous and cur-
rent foci are also requires a dialogue history that models the
attentional state of the dialogue. Such dialogue histories can
be found in the GALAXYII and RAILTEL systems, for exam-
ple.

46

Chapter 3 Capabilities for dialogue management

A1l3

Al4

Al5

Al6

To resolve anaphora and ellipsis. To resolve anaphora
and ellipsis a dialogue history that models the entities that
have been talked about is required in order to find the possi-
ble referents. For example, a sequence of previous frames as
in the GALAXYII and WAXHOLM systems, or a more struc-
tured representation like the trees in the SUNDIAL, RAIL-
TEL and LINLIN systems, can be used for this purpose.

To answer questions on what has been said and done
during the conversation. For this capability a dialogue
history that records the previous states of the dialogue is
essential together with a dialogue model that can handle
this type of question. User task models of the type in the
CIrcUIT FIX-IT SHOP system can also provide information
on what has been done.

To answer questions about the reason why an action
was performed. If the system is to be able to answer why
an action was performed, it has to have a sophisticated model
of the tasks that include why they were performed. User task
models of the type found in the TRAINS and CIRCUIT FIX-IT
SHOP systems could be used for this purpose. Of course, the
dialogue model must also know how to deal with this type
of question.

To map a description to an entity. Since background
and application systems often contain quantitative and pre-
cise data, vague qualitative terms have to be transformed
to precise entities, for example the expression ”this evening”
can be transformed to a precise date and time interval. This
can be done with a domain knowledge source, for example
by the use of interpretative rules like those in the RAILTEL
system.

3.3 Relations between capabilities and knowledge sources

47

Al7

Al8

A19

A20

To detect ambiguous descriptions and deal with
them. Descriptions can be ambiguous, meaning that there
are several matching entities. Domain knowledge sources or
conceptual model can be used both to decide if descriptions
are ambiguous and to determine how the situation should be
handled, for example by providing alternatives or asking for
clarifying information. The latter strategy, of course, has to
be supported by the dialogue model.

To detect erroneous descriptions and deal with them.
Descriptions can also be erroneous if they hold faulty or in-
consistent information. In this case a domain knowledge
source or conceptual model can be used to find the problem
and sometimes suggest other possible interpretations that
can be presented to and evaluated by the user.

To know the type and structure of the entities in
the domain. A conceptual model is suitable for this. In
the CIRCUIT FIX-IT SHOP system a specific model that is
separated from the rest of the task and domain knowledge is
used for this purpose. A domain knowledge source can also
hold this type of information.

To reason about and derive new information from
the information provided by the user. This capability
can be achieved by utilising a domain knowledge source or a
conceptual model, given that they are capable of reasoning
about entities and concepts. For example, in the VERBMOBIL
system the conceptual hierarchy of temporal entities is used
to reason about and derive available times for scheduling.

48

Chapter 3 Capabilities for dialogue management

A21 To deal with a user’s erroneous inferences or false
presuppositions. This capability requires a domain knowl-
edge source that can reason about information provided by
the user and spot erroneous inferences and false presupposi-
tions, as well as a dialogue model that can give appropriate
responses in these situations. A user model of the type found
in TRAINS that represents the user’s beliefs can also be useful
in detecting problems of this type.

A22 To have domain-related default information. The do-
main knowledge sources can incorporate reasoning mecha-
nisms to provide default information. Default values can
also be incorporated in a system task model. For example,
in RAILTEL default value rules that are linked to the seman-
tic frame that represents a request are used for this purpose.

A23 To adapt to the user’s domain expertise. In the CIR-
cuIT F1x-1T SHOP and TRAINS systems the user model holds
the information needed to achieve this ability. In TRAINS the
user model represents the beliefs held by the user. This in-
formation is utilised to decide what new information should
be brought to the user’s attention.

A24 To know what the system can and cannot do. For this
capability the system must have meta-knowledge about the
tasks and domain it covers. This knowledge could be part
of, or be derivable from, a domain knowledge source.

An overview of the relations between knowledge sources and capabil-
ities is given in table 3.1. The table is also presented in appendix B
where the capabilities are written out. Knowledge sources that are
Required to achieve a specific capability are marked by an R and L
means at Least one of the knowledge sources is required.

3.3 Relations between capabilities and knowledge sources

49

Table 3.1: An overview of the relations between capabilities and
knowledge sources and models. R stands for required and L for at
Least one of.

Model/ Dial Dial | Sys User | Dom Conc | User
Capability || Mod Hist | Task Task | Mod Mod | Mod
Mod Mod
Task and requests
A1l L L L
A2 L L L
A3 L L L
A4 L L L
A5 L L L L
A6 L L L
A7 R R
A8 R L L L
Mixed-initiative dialogue
A9 R L L L
A10 R R
A1l R
Focus and discourse
A12 R R
A13 R
Al4 R R L L
Al5 R L L
Domain knowledge
Ale R
A17 R L L
A18 R L L
A19 L L
A20 L L
A21 R L L L
A22 L L
A23 R
A24 L L

50

Chapter 3 Capabilities for dialogue management

3.4 Implications for design of dialogue
systems

The design of a dialogue system should be based on an analysis of
the system’s intended functionality and behaviour. This type of char-
acterisation can be based on studies of corpora or other empirical
studies. The requirements can be expressed in terms of the capabil-
ities described in this chapter. Given a set of desirable capabilities,
the minimum set of required knowledge sources and models can be
derived with the help of table 3.1.

It is, however, important to realise that the set of models that is
most suitable for some capabilities might not be sufficient to support
implementation of other capabilities. The decision as to which models
to use in a dialogue system must therefore be guided by the situation
the system will be used in, but it is important that it is an explicit
choice and that the restrictions it imposes are considered.

By introducing more knowledge sources and models a more flexible
dialogue system that can more easily be extended with new capa-
bilities may be designed. It may also facilitate modularisation and
clarity of the knowledge sources and models’ responsibilities.

3.5 Summary

In this chapter a number of capabilities considered useful for achiev-
ing natural and graceful interaction were presented and related to
the knowledge sources and models from the previous chapter. This
information can be used to support design of dialogue systems as it
forces the developer to make explicit choices of which capabilities to
include in the system, and to consider the limitations the design of
knowledge sources and models impose on the system.

Chapter 4

Capabilities for
information-providing
dialogues

In order to examine what capabilities an information-providing dia-
logue system should have a corpus study was conducted. A set of
dialogues was analysed in terms of the capabilities required to handle
the phenomena occurring in the dialogues.

4.1 Corpus description

The domain for the corpus study was information about local public
transportation. This domain is similar to the much studied domains
of air and train journeys but differs in the complexity of the geo-
graphical domain. Users’ natural way of expressing departure and
arrival locations rarely coincide with the official names of the bus-
stops. These locations are instead described using street or area

51

52

Chapter 4 Capabilities for information-providing dialogues

names, locative expressions like ”close to the library”, or by point-
ing and clicking on a map. The temporal domain is, however, very
similar with expressions like ”tomorrow morning” or ”around eight”.

As a foundation for the study, a corpus of 43 dialogues between bus
travellers and personnel at the local bus traffic company was collected.
Of these, 5 dialogues were removed from the corpus since they were
outside the scope of the system to be. The remaining 38 dialogues
included requests for information about bus and train journeys, bus
routes, bus-stops, price, and lost items.

A problem when using human-human dialogues for dialogue-system
development is that the person who provides the services in the dia-
logues does not have the same performance characteristics as a com-
puter, and that communication between humans differs from com-
munication between a user and a dialogue system [40]. A method
called distillation [44] was used to solve this problem. The purpose
of distillation is to rewrite human-human dialogues to more resem-
ble human-computer interaction. The distillation is based on a set
of guidelines developed with respect to the linguistic, functional and
ethical properties of the desired system. The result of the distillation
was a corpus of dialogues, more resembling human-computer interac-
tion?.

Each exchange between the ’user’ and the 'system’ was analysed with
focus on the capabilities the system needs to interpret and respond
to user utterances. The identified capabilities are presented below
together with the dialogue excerpts® that motivate them. The capa-
bilities are also discussed in terms of their knowledge requirements.

1The method of distillation has been developed and refined over the last two
years. The distillation of the dialogues in the corpus used here was based on a
first draft of the guidelines, which were very general [19]. More precise guidelines
have been developed since then. However, since later developments have mostly
focused on the linguistic and ethical properties but not as much on the functional,
it should not affect the quality of the distilled dialogues used in this study since
it only considers the functional properties of the dialogues.

2The excerpts have been translated from Swedish to English. The ungram-
matical English reflects the wording of the original utterances. The English trans-
lation is shown together with the Swedish original.

4.2 Capabilities

53

4.2 Capabilities

The required capabilities found in the corpus has been grouped un-
der the headings: tasks and requests, mixed-initiative, focus and dis-
course, and domain knowledge.

4.2.1 Tasks and requests

The people who answered the questions in the original corpus of
human-human dialogues provide information about local public trans-
portation, but also handle complaints, give price information and help
people find lost items. The system is restricted to the tasks of pro-
viding trip information, route information and providing information
on bus-stops, buses and geographical objects such as landmarks and
areas. Below are some dialogue excerpts that motivate this set of
tasks.

U2: Iwould like to ask about line ja ja skulle vilja fraga om

S3:

U2:

number forty seven does it
stop sometime at the north
gate does it have a bus stop
there

no

hi my name is Sandra I won-
der bus to Askeby on week-
days Monday to Thursday

en linje nummer fyrtiosju
stannar den nagon gang vid
norra porten ocksa har den
nagon hallplats dar

nej

ja hejsan Sandra heter
ja ja tankte hora buss
mot Askeby (.) pa oh
vardagkvillar mandag till
torsdag

54

Chapter 4 Capabilities for information-providing dialogues

U8: eh it only leaves from the eh den gar bara fran busster-
bus terminus or it stops minalen eller stannar den
somewhere else on the way nagonstans pa vagen

S9: bus four hundred fifty nine buss fyrahundrafemtinie

stops at Soédertull and
Hageby

stannar vid Sodertull &
Hageby

Since the dialogues introduce several more or less complex tasks the
following capabilities are required:

Al. To identify the task. Since there are several different tasks in
the domain, the system must be able to differentiate between them
when the user makes a request to be able to respond properly.

A2. To have knowledge of how sub-tasks are related to a
task. This is exemplified in the dialogue excerpt below. The system
must recognise that the user is interested in trip information and it
must also know that to complete this task, the sub-tasks of specifying
departure location, arrival location and time have to be performed.

U2: hi I wonder when the six- ja hejsan ja skulle kolla
twenty leaves now from nir sex-tjugo gar nu fran
Ostersta Ostersta

S3: where do you want to go?

U4: to to Linkdping

vart vill du aka?
mot mot Link6ping

A3. To reason about how much of a task has been achieved
so far. In order to decide which sub-task it should address the system
needs to know which other sub-tasks have already been performed.
In the excerpt above the system must be able to determine that
information about the departure and time has already been provided
in order to be able to decide whether to ask for the arrival location.

A4. To know what action to take in order to achieve a task.
In the example above this means that the system needs to know how
to collect information about the arrival location.

4.2 Capabilities

55

Since the primary task of the system is to answer requests for infor-
mation, some of the capabilities are related to handling the request
responses retrieved from the background system.

A5. To deal with situations in which no answer can be re-
trieved from the background system. The need for this capa-
bility is exemplified by the dialogue below.

U2: I want wonder if you have ja ville undra om ni hade
any er buses or like express nagra 6h bussar eller typ ex-
buses that go from Linléping pressbussar som akte fran
to Vadstena on Sunday Linkoping till Vadstena pa

s6nda

S3: there are no buses from det finns inga bussar fran
Link6ping to Vadstena on Linkdping till Vadstena pa
Sundays sondagar

4.2.2 Mixed-initiative dialogue

A prominent feature of the dialogues is that they are mixed-initiative,
i.e. both the user and the system can take the initiative at every
point in the dialogue, which implies that the system must be able to
perform a mixed-initiative dialogue with the user. In more concrete
terms this requires the following capabilities:

A9. To allow the user to over-answer questions. See for
example the dialogue excerpt below where the user not only responds
by answering with the requested departure information, but also takes
the initiative and provides an arrival location.

56

Chapter 4 Capabilities for information-providing dialogues

U2: hi I would like to know if ja hej ja skulle vilja hora
there are or what bus that om de gar eller va 4 de for
leaves at five or some time buss som gar vid fem ti typ
also around five nan tid dir ocksd ungefar

vid fem

S3: from where do you want to varifran vill du aka
go

U4: from Norrkdping to fran Norrkdping till
Linkoping Linkoping

4.2.3 Focus and discourse

The ’users’ in the corpus frequently refer to items discussed previously
in the dialogue. From this it follows that the system should have the
following capability:

A14. To resolve anaphora and ellipsis. Consider the dialogue:

S5:

bus five hundred forty leaves
from Skeda at a quarter to
oh-six-forty five and arrives

buss femhundraforti gar fran
Skeda klockan kvart i noll-
sex-fortifem och ar framme

in Rimforsa at oh-seven-oh- i Rimforsa klockan noll-sju-
five noll-fem
U6: oh that’s too early ah de & for tidigt

In the dialogue the utterance ”oh that’s too early” (”ah de & for
tidigt”) must be interpreted as ”oh oh-seven-oh-five is too early”,
which means that the anaphoric expression ”that” (”de”) must be
mapped to the previously mentioned temporal expression, ”oh-seven-
oh-five” ("noll-sju-noll-fem”).

The user also talks about different objects within the same dialogue,
which means that the system should be able to:

4.2 Capabilities 57

A13. To follow shifts in focus. This is exemplified below where
the user first talks about an express bus and then shifts focus to

another bus.

U2: hi I wonder when the next ja hejsan ja undrar nar nésta
express bus from Borensberg (.) expressbuss (.) fran
to Linkoping leaves Borensberg till Linképing

gar

S3: the next one leaves at thir- ja nésta gar tretton och fyr-
teen forty seven tisju

U4: uhm and then the five- jaha & sen fem-tjugon nér
twenty when does it leave gar den

4.2.4 Domain knowledge

A recurrent phenomenon in the corpus is that users describe objects
and entities using vague terms. Since the background system only
handles precise entities, it has to provide some capabilities related to
descriptions:

A16. To map descriptions to entities. An example of this can
be seen in temporal expressions that have to be mapped to precise
time intervals, like ”evenings”. Sometimes the descriptions are prob-
lematic to handle. A description can be too vague, for example an
arrival location that can be mapped to a very large set of bus-stops.

58

Chapter 4 Capabilities for information-providing dialogues

U2:

S3:

U4:

hi T wonder bus two hun-
dred and one to Vidingsjo at
about half past one from the
Travel Centre

there are many bus-stops in
Vidingsj6, can you be more
precise and give a landmark
or a street

uhh then I’'m going to some-
thing called Tuvgatan it’s
near the last stop

ja hejsan ja undrar buss
tvahundraett mot Vidingjo
vid halv tva ungefiar fran
resecentrum

det finns for manga
hallplatser i Vidingsjo,
kan du vara mer precis ah
ge ett landmaéarke eller en
gata?

6hh sen ska jag till nagot
som heter Tuvgatan det lig-
ger vid sista stationen

This can be dealt with by asking the user for a specification, prefer-
able by telling the user what kind of information would be helpful.

A17. To detect and deal with ambiguous descriptions. Am-
biguous descriptions are those that cannot be directly mapped onto
a precise entity, for example ”at nine” ("klockan nie”) in the dialogue
below.

Ul: hi I-I want to know a suit- hejsan a-ja skulle vilja ha

S2:

U3:

able bus from Linképing to
Séderképing on a Friday I
should be there at nine

do you want to go in the
morning or the evening
morning

reda pa en bra buss fran
Linkoping till Séderképing
en freda ja ska va dar
klockan nie

vill du aka pa morgonen eller
kvillen?

morgonen

In such situations the system can resolve the ambiguity by providing
alternatives to the user and ask her to choose one. Handling an
ambiguity involves reasoning about what information is needed to
precisely specify an entity and/or present some alternatives that the
user can choose from. In the example, the system needs to know that
an unambiguous time can be specified as a timepoint and a part of

4.2 Capabilities

59

day specification. The system can then provide two alternatives for
the user to choose from. The same type of knowledge is needed to
deal with descriptions that are very vague in order to help the user
specify the intended entity.

To achieve natural interaction between the user and the system, the
system must be able to act intelligently with regard to the domain
and the application, which means that the system must be able to
reason about the domain. Two specific cases of domain reasoning
that were found in the corpus were the use of default values and the
derivation of new information from old.

A22. To provide domain-specific default information. In
some situations users leave out information that they assume is spec-
ified by the context. This type of information should therefore be
inserted by the system utilising knowledge about the domain. In the
dialogues it is, for instance, often the case that the user does not
provide information about the date but assumes it to be the current
day, see below.

U2: hi I'm Anna Nilsson and jaa hej Anna Nilsson heter

I want to go by bus from
Ryd’s Centre to the Travel
Centre in Link6ping I should
be at the Travel Centre be-
fore fourteen thirty five be-
cause we are going to the
long distance buses

jag och jag vill aka buss fran
Ryds centrum till resecen-
trum i Link6ping a ja ska va
pa rececentrum innan fjor-
ton a trettifem f6 vi ska till
langfirdsbussarna

A20. To derive new information from the information pro-
vided by the user. The most common example of this is that the
system has to figure out what the suitable bus-stops are given a de-
scription of the arrival or departure location in a trip specification.
For example:

60

Chapter 4 Capabilities for information-providing dialogues

U2:

S3:

These capabilities require a representation of the domain entities, and

hi I want to know how I can
travel er from the hospital
down to IKEA in LinkSping

bus two hundred and twelve
leaves from the US ma-
chine centre thirteen fifty
seven then you change at the
Travel Centre to two hun-
dred and fifteen

ja hejsan ja skulle vilja veta
hur jag tar mej eh fran
sjukhuset ner till IKEA i
Link&ping

buss tvahundratolv gar fran
US maskincentral tretton
a femtisju sedan byter du
ner pa rececentrum till
tvahundra femton

methods to reason about their properties and relations.

Finally, to avoid frustrated users it is important:

A24. To know what the system can and cannot do. In the
distilled dialogues the answers provided by the personnel have in
some cases been exchanged for a message on the system’s limited

capabilities.

U4:

S5:

uhh travel card how much is
it

I cannot give information
on prices, you can call 020-
211010 for information on

dhh manadskort vad kostar
de

jag kan inte ge information
om priser, du kan ringa 020-
211010 for prisupplysningar

prices

The system, thus, needs meta-knowledge about its capabilities and
limitations. To make the system more useful it would also be appro-
priate to direct the user to another information source in cases when
the system does not have the answer, as in the example above. This,
of course, means that the system must have access to this kind of
’hint’ information.

4.3 Summary

61

4.3 Summary

To summarise, the corpus study presented in this chapter indicates
that the following capabilities are required by an information-providing
dialogue system: A1-A6, A9, A12-14, A16-A17, A20, and A24. The
capabilities are listed in figure 4.1.

Desirable capabilities

A1l To identify the task.

A2 To identify sub-tasks and know how they are re-
lated to a task.

A3 To reason about how much of a task has been
achieved so far.

A4 To decide what action to take in order to achieve
a task.

A5 To deal with situations in which no answer can be
retrieved from the background system.

A6 To deal with situations in which the answer from
the background system includes too much infor-
mation.

A9 To allow the user to over-answer questions.

A12 To follow shifts in focus.

A13 To resolve anaphora and ellipsis.

Al6 To map a description to an entity.

A17 To detect ambiguous descriptions and deal with
them.

A20 To reason about and derive new information from
the information provided by the user.

A22 To have domain-related default information.

A24 To know what the system can and cannot do.

Figure 4.1: The capabilities required by an information-providing
dialogue system as found in the corpus study.

The capabilities in the table should, however, not be seen as a com-
plete list as some useful capabilities might not have been present in
the dialogues in the corpus. It seems, for example, reasonable to be-
lieve that whenever capabilities A16 and A17 are required, capability

62

Chapter 4 Capabilities for information-providing dialogues

A18 will also be needed. The same holds for capabilities A10 and
A11, which are closely related to capability A9. The capabilities dis-
covered in the corpus serve, however, as a minimal set of capabilities
that should be supported by information-providing dialogue systems.

Chapter 5

Domain knowledge
management in the
MALIN framework

To easily and rapidly build dialogue systems for new domains and
new tasks, dialogue system frameworks are highly beneficial. This
assumption rests on The Domain-independence Hypothesis proposed
by Allen et al. [6, p. 1] which states that:

Within the genre of practical dialogue, the bulk of the
complexity in the language interpretation and dialogue
management is independent of the task being performed.

The hypothesis is supported by their work and implies that frame-
works can be developed and used to create new applications by addi-
tion of task and domain knowledge that is specific for the application.

63

64 Chapter 5 Domain knowledge management in the MALIN framework

In this chapter two such dialogue system frameworks, LINLIN and MA-
LIN are presented. The MALIN framework is an extension of the LINLIN
framework, including a new separate module for domain knowledge
management, a Domain Knowledge Manager, which is motivated by
the results from the corpus study presented in chapter 4.

5.1 The LINLIN framework

In chapter 4 LINLIN was one of the dialogue systems presented and
discussed. LINLIN is, however, not just one system but rather a frame-
work for the development of information-providing dialogue systems.
In this section the framework is discussed in more detail and analysed
in terms of the capabilities found in the corpus presented in chapter 4
which are required to deal with complex information-providing dia-
logues.

5.1.1 The CARS system

The LINLIN framework has been customised for two different applica-
tions, TRAVEL and CARS. The cars system is currently running and
can be accessed through the Internet and will therefore be used for
illustration. It is a dialogue system that can provide information on
second-hand cars. An example dialogue with the CARS application
is shown in figure 5.1

As seen in the dialogue, users can pose complex requests for sets of
objects that match certain criteria (see Ul), or different properties,
like price, speed, and size, for an object or a set of objects (e.g. U3
and U5). The dialogue is connected, in U5 the user can refer back
to the set presented in S2. U7 illustrates how the user can shift the
focus during the interaction.

5.1 The LINLIN framework

65

Ul:

S2:

U3:

S4:

Ub:

S6:

ur:

S8:

show all volkswagen from 1993

Manufacturer | Model Year
Volkswagen | Golf 1993
Volkswagen Vento 1993
Volkswagen Passat 1993
Volkswagen Passat Variant 1993
Volkswagen Caravelle 1993

which is the cheapest?
Manufacturer | Model Year Price
Volkswagen | Golf 1993 67700

and the most expensive
Manufacturer | Model Year Price
Volkswagen Caravelle 1993 146000

are there any less expensive volvos?
Manufacturer | Model Year Price
Volvo 850 GL. GLE 1993 128700
Volvo 850 GL. GLE Kombi | 1993 136700

Volvo

940 GL

1993 113400

Figure 5.1: A dialogue between a user and the CARS application that
is based on the LINLIN dialogue system framework.

66

Chapter 5 Domain knowledge management in the MALIN framework

5.1.2 Architecture

The LINLIN framework has a modular architecture with an Inter-
preter, a Dialogue Manager and a Generator (see figure 5.2).

Background
tree System

v -
— Interpreter
p \ I\D/Iialogue
~— Generator /

System
Information

Dialogue
grammar

Figure 5.2: The architecture of the LINLIN framework for information-
providing dialogue systems.

The role of the Interpreter is to analyse the user input and deliver a
meaning representation that can be used by the Dialogue Manager.
It does this utilising a unification-based parser [63].

The Dialogue Manager’s primary tasks are to handle the dialogue
with the user and to keep track of the interaction. Managing the
interaction with the user involves deciding whether a user request
is clear enough to access the background system, or if it is not, to
initiate a clarification sub-dialogue. The type of background system
used is databases where information can be extracted by posing ques-
tions using, for example, SQL. Accessing the background system thus
involves a transformation of a request to an SQL-question and the
transformation of the result from the database to a format suitable

5.1 The LINLIN framework

67

for the Dialogue Manager. The system also utilises a database with
system information to answer system-related requests.

The Generator is responsible for the realisation and presentation of
questions and answers specified by the Dialogue Manager. In the
LINLIN framework the Dialogue Manager has control of the system
and decides when and which of the different modules should perform
a specific task [38].

5.1.3 Dialogue management

In the LINLIN framework dialogue management primarily means to
control the flow of the dialogue by deciding how the system should
respond to user utterances. As a basis for this, the Dialogue Manager
in the LINLIN framework utilises a dialogue model and a dialogue
history.

In the dialogue model used in the LINLIN framework the dialogue is
structured in terms of discourse segments, and a discourse segment
in terms of moves and embedded segments. An initiative-response
(IR) structure determines the compound discourse segments, where
an initiative opens the IR-segment and the response closes the IR-
segment [20]. The discourse segments are classified by general speech
act categories, such as question (Q) and answer (A) [39], rather than
specialised (cf. [33]), or domain-related [5] ones. The action for the
Dialogue Manager to carry out, as modelled in a dialogue grammar,
depends on how domain entities are specified and their relation to
other entities in the domain and the dialogue history.

Two important concepts have been identified: termed Objects and
Properties where Objects models the set of objects in the database and
Properties denotes a complex predicate ascribed to this set. The pa-
rameters in Objects and Properties are application-dependent. Mark-
ers are also utilised for various purposes [41], for example to mark
yes/no questions. Structures that represent information about ob-
jects,

68

Chapter 5 Domain knowledge management in the MALIN framework

properties and markers are termed OPMs. Figure 5.3 shows an ex-
ample OPM which represents the request ”How fast is a Volvo 8507”.

Manufacturer : Volvo

Obj : Model : 850
Year:
) Aspect : speed
Prop: Value :

Figure 5.3: An OPM for the question ”"How fast is a Volvo 8507”

In the LINLIN framework there is only one dialogue history, which
is maintained by the Dialogue Manager. Thus, the other modules
in the system have no memory of the previous interaction since this
could cause conflicts. The dialogue history records focal information,
that is, what has been talked about and what is being talked about
at the moment. It is represented as a dialogue tree and the nodes in
the dialogue tree record information in OPMs.

5.1.4 Capabilities of LINLIN

In section 5.1.1 some of the LINLIN framework’s capabilities were ex-
emplified for the CARS application. In this section the LINLIN frame-
work will be more thoroughly examined in the light of the capabilities
it is designed to support.

Tasks and requests

Since the LINLIN framework was designed to deal with rather simple
tasks and requests, it only provides capabilities A1, To identify the
task, and A4, To decide which action to take in order to achieve a
task, of the capabilities related to tasks. To detect a task means to

5.1 The LINLIN framework

69

differentiate between domain-related and system-related requests for
information, which is performed by the Interpreter based on features
in the user utterances. The co-operation needed to fulfil a task is in
LINLIN captured by the dialogue model. For example, if the system
needs to make a clarification in order to be able to retrieve the re-
quested information, this is captured by the pattern I (I R) R in
the dialogue model. The first I is the user’s initiative where a request
is posed to the system, the (I R) the clarification dialogue initiated
by the system, and the second R the resulting response to the first
initiative.

Problematic responses to requests are only handled to some extent
in the LINLIN framework. Capability A6, Too many responses to a
request, is dealt with by asking the user for a selection, thus primarily
relying on the dialogue model and without using any domain knowl-
edge to facilitate handling of the situation. If no answers to a request
can be found in the background system, capability A5, it is stated to
the user who has to decide how to proceed.

Mixed initiative dialogue

All the capabilities related to mixed-initiative dialogue are provided
by the LINLIN framework. Users can over-answer questions, capa-
bility A9, since the dialogue model can incorporate the information
provided by the user regardless of whether it was asked for or not. Ini-
tiating a clarification sub-dialogue, capability A10, means inserting a
new initiative-response unit in the dialogue tree as a child to the IR-
unit that awaits the response from the user. Once the sub-dialogue is
finished, the dialogue is resumed where it was. Posing a new request
and thereby abandoning the current task, capability A11, is allowed
by the dialogue model since it is possible for an Initiative to never
receive the corresponding Response-part in an IR-unit.

70 Chapter 5 Domain knowledge management in the MALIN framework

Focus and discourse

In its present form the LINLIN framework can handle both changes of
focus, and anaphoric expressions and ellipsis, capabilities A12 and
A13, by utilising the dialogue tree that records focal parameters
(OPMs) for every Initiative and Response made by either the user
or the system. Changes in focus are introduced by new Objects or
Properties in the OPM structure. Anaphoric expressions refer to ob-
jects or a set of objects that are represented by the OPMs in the
dialogue tree. Ellipsis can refer to properties of objects and these are
also found in the dialogue tree.

Domain knowledge

The use of domain knowledge in the LINLIN framework is very limited
and in the CARS system there is no explicit domain knowledge source
exist. This is due to the fact that the capabilities relying on do-
main knowledge are not necessary in this system, there are no vague
descriptions to map to entities. The parameters in the OPMs that
describe objects are precise and used to retrieve sets of objects.

There is, however, a knowledge source with system information which
is used to provide capability A24, to know what the system can and
cannot do.

Summary

The capabilities the LINLIN framework supports in its present form are
summarised in figure 5.4. The table shows that the LINLIN framework
is designed to handle only a small subset of the capabilities detected
in the corpus study, see figure 4.1.

5.1 The LINLIN framework

71

Capabilities of LINLIN

Al To identify the task.

A4 To decide what action to take in order to achieve
a task.

A6 To deal with situations in which the answer from
the background system includes too much infor-
mation.

A9 To allow the user to over-answer questions.

A10 To allow the user to initiate clarification sub-
dialogues.

All To allow the user to abandon the current request
and pose a new request instead.

A12 To follow shifts in focus.

A13 To resolve anaphora and ellipsis.

A24 To know what the system can and cannot do.

Figure 5.4: The capabilities provided by LINLIN.

5.1.5 Shortcomings of LINLIN

In this section the addition of some of the capabilities not covered by
the LINLIN framework are considered, and the consequences for the
knowledge needed to provide them are discussed.

Tasks and requests

In LINLIN there is only one type of simple task-related request, but
in many domains the system must deal with more complex requests.
Complex requests are concerned with the specification and construc-
tion of compound objects, like trips in the RAILTEL domain. The
specification of such an object requires that the user provides infor-
mation on a specific set of parameters, which often involves several
dialogue turns. The specification is used to construct a matching
object by retrieving, and sometimes integrating, knowledge from one
or several domain knowledge sources and background systems. To

72 Chapter 5 Domain knowledge management in the MALIN framework

answer requests on a trip, the system needs to have a number of
parameters specified, such as departure and arrival time and place,
before it is able to access the timetables.

A complex task-related request introduces sub-tasks and the capabil-
ities related to these (A2 and A3). Thus LINLIN should be modified
in order to provide these capabilities. The table 3.1 indicate that a
system-task or user-task model can be useful for this purpose.

With the introduction of the complex task-related requests and com-
pound objects they describe follows an increased risk of problematic
responses to requests. Capability A5 should thus be added and ca-
pability A6 has to be elaborated so that LINLIN can deal with these
responses. Table 3.1 also shows that to deal with problematic re-
sponses knowledge about the domain and the objects and entities in
the domain is useful.

Domain knowledge

The complex task-related requests and compound objects also require
capabilities to deal with descriptions that have not been necessary in
LINLIN. The system must be able to map descriptions to entities
(A16) and to detect and deal with ambiguous and erroneous descrip-
tions (A17 and A18). It should also be able to derive new information
from that provided by the user (A20) and to provide domain-specific
default information (A22). All these capabilities rely on the availabil-
ity of domain knowledge and domain reasoning. Thus, LINLIN has to
incorporate these types of knowledge and reasoning mechanisms.

Summary

The capabilities needed to come to term with the shortcomings of the
LINLIN framework are summarised in figure 5.5.

5.1 The LINLIN framework

73

Desirable capabilities of LINLIN

A2 To identify sub-tasks and know how they are re-
lated to a task.

A3 To reason about how much of a task has been
achieved so far.

A5 To deal with situations in which no answer can be
retrieved from the background system.

A6 To deal with situations in which the answer from
the background system includes too much infor-
mation.

Al6 To map a description to an entity.

A17 To detect ambiguous descriptions and deal with
them.

A18 To detect erroneous descriptions and deal with
them.

A20 To reason about and derive new information from
the information provided by the user.

A22 To have domain-related default information about
requests.

Figure 5.5: Desired capabilities for information-providing dialogue
systems not provided by the LINLIN framework.

To provide these capabilities the LINLIN framework has to be ex-
tended. The introduction of more complex task-related requests have
many consequences; it indicates that the dialogue model and dialogue
history should be modified or that a task model should be introduced
in order to provide the capabilities required to deal with tasks and
sub-tasks, see table 3.1. More complex descriptions and problematic
responses to requests also have to be dealt with, as well as descrip-
tions and various forms of domain reasoning. All these capabilities
demand that domain knowledge and reasoning are incorporated in
the system.

74 Chapter 5 Domain knowledge management in the MALIN framework

5.2 The MALIN framework

The previous section showed that the LINLIN framework lacks some
of the capabilities needed for information-providing dialogue systems.
A new framework called MALIN! has therefore been developed based
on the shortcomings presented above. In this framework much effort
has been put on domain knowledge management since many of the
shortcomings were capabilities that require domain knowledge.

5.2.1 Architecture

An important issue for a framework is that it should be easy to cus-
tomise to new domains and that various dialogue strategies can be
explored. The Dialogue Manager should only be concerned with phe-
nomena, related to the dialogue with the user. It should not be in-
volved in the process of accessing the background system or perform-
ing domain reasoning. I therefore propose that a separate module, a
Domain Knowledge Manager, devoted to access of background sys-
tems and domain knowledge sources should be introduced [27]. The
Dialogue Manager is still the central controller of the interaction but
it co-operates with the Domain Knowledge Manager with the aim of
achieving a natural and intuitive dialogue. The architecture of the
MALIN framework is presented in figure 5.6.

Similar approaches have been adopted by others. In the TRIPS dia-
logue shell [6], a generalisation of the TRAINS system for plan-based
tasks, a Behavioural Agent separated from dialogue management is
responsible for communication with the back-end system. The moti-
vation for this separation is that dialogue management can be made
more domain-independent as the domain-specific features are encap-
sulated by the Behavioural Agent. However, the Behavioural Agent is

I The acronym stands for Multi-modal Application of LINLIN, since the LINLIN
framework was also modified to deal with multi-modal dialogues. This aspect
of MALIN is, however, not covered here, since the focus is on modifications made
with respect to the new knowledge requirements.

5.2 The MALIN framework

75

Domain
Agent
D
@ Domain Doma| n
Agent Agent

Interpreter ‘ ' '
Dialogue Domain
M anager K '\;Ilowl edge
Generator anager

o i

Figure 5.6: The architecture of the MALIN dialogue system frame-
work.

Information
Specification
Forms

Dialogue
grammar

able to ignore requests from the Discourse Manager and instead give
information that it considers more important, thus, taking on some of
the dialogue management responsibilities. The Domain Knowledge
Manager differs from the Behavioral Agent in this respect, the Do-
main Knowledge Manager is obliged to answer a request from the Di-
alogue Manager and cannot take any initiatives on its own. Another
similar approach is taken in the CMU Communicator system [54]
where the Dialogue Manager makes use of domain- and task-specific
information represented as schemas but much of the domain knowl-
edge and reasoning has been separated from dialogue management
and handled by domain agents. There seems, however, not to be any
specialised module for co-ordination of the agents.

76 Chapter 5 Domain knowledge management in the MALIN framework

5.2.2 Dialogue management

To achieve the capabilities related to complex requests, the dialogue
model and dialogue history has been complemented with system task
models. Explicit system task models were chosen because they can
support several tasks and facilitate modification and addition of new
tasks.

The system task models hold the parameters that have to be specified
before successful access of the background system can be performed.
They are known as Information Specification Forms (ISFs) [19]. Just
like OPMs, the ISF's are application-dependent and they are also used
to record information in the dialogue tree, i.e. to inform the Dialogue
Manager which parameters have to be provided by the user and which
should be asked for next.

By introducing this new structure in parallel with the old OPMs, the
system can follow shifts in focus and maintain the mixed-initiative
character of the interaction with the user. For example, if the user
has posed an incomplete complex request and the system asks for the
parameters necessary to specify the request, the user might want to
ask a clarifying question before giving an answer. This shift in focus
can be represented in the dialogue by the introduction of an OPM.
When the clarification question has been answered, the complex task
represented by the ISF can be picked up again.

5.3 Domain knowledge management

Much effort have been spent on natural language understanding and
dialogue management in dialogue systems. The communication with
and the use of external resources containing domain knowledge and
application information are in general not discussed. This is probably
due to the fact that access to such resources is considered rather
straightforward, but there are several capabilities related to this and
some problematic situations that have to be dealt with.

5.3 Domain knowledge management

77

Ambiguous and indeterminate knowledge have been dealt with to
some extent, often by adding specialised components to the dialogue
system. For example, vague temporal expressions must be resolved
in dialogue systems in the ATIS and train travel domain ([23, 37]).
In most cases these components extend the functionality of the in-
terpreter and are called before a request is delivered to the Dialogue
Manager.

A solution to the problem of mapping descriptions provided by the Di-
alogue Manager to a suitable representation for the external database
has been proposed by Whittaker & Attwater [69]. A new compo-
nent, the Information Manager, that interacts with the application
database is introduced. The Information Manager is responsible for
translation between high-level requests and a set of operations on
the database. To perform its task it utilises a data model consisting
of several vocabulary models, e.g. spelt out vocabulary and spoken
vocabulary, and it also has knowledge of synonyms and homophones.

Similarly a separate module, the Action Manager, for communication
with external resources has been proposed [52]. In this architecture
the Dialogue Manager is responsible for the translation between the
requests and the actions carried out by the Action Manager. When a
requested action is delivered to the Action Manager, it has to decide
how the action should be executed and which source to access.

Even if some of the presented architectures include a separate mod-
ule for accessing the application or reasoning with domain knowledge,
they deal only with one of the problems, or a monolithic application.
None of the current approaches deals with all the capabilities related
to domain knowledge management and the integration of several do-
main knowledge sources. A more sophisticated architecture is needed
to handle all these issues.

78 Chapter 5 Domain knowledge management in the MALIN framework

5.3.1 Domain knowledge management
capabilities

Of the capabilities revealed by the corpus study (figure 4.1), but not
supported by LINLIN, capabilities A5-A6, A16-A18, A20 and A22, are
related to domain knowledge and background system access.

Access of background systems can be problematic in two ways: no
answer to the request can be produced (A5), or too many answers are
found (A6). The first situation can occur if a request is inconsistent
or if no object meets all the restrictions of the request. Two different
approaches to dealing with this are for the system to try and fix it
itself, or for the system to help the user to handle the situation. The
first approach includes relaxing some of the constraints or resolving
the inconsistency, both of which require reasoning about the domain.
If the system fails or does not try to solve the problem itself, it can
give the user as much help as possible when he or she has to deal
with the problem, for example by stating the cause of the problem and
suggesting how the request should be modified. MALIN supports both
approaches. The second problematic situation, in which a request has
resulted in too many answers from the background system, can arise
from requests that are not specific enough. The solution chosen in
MALIN is to use the domain knowledge and decide which constraints
should be asked for in order to specify the request, thus helping the
user to formulate a more specific request.

Mapping descriptions to entities (A16) is similar to retrieving answers
to requests. There are also two problematic cases that have to be
dealt with in this case, the descriptions can be ambiguous (A17)
and correspond to several entities, or they can be unsatisfiable (A18)
and not correspond to any entity. Ambiguous descriptions can be
dealt with by either asking the user to choose one of the matching
entities or ask the user to provide a distinguishing feature. In MALIN
both approaches are used depending on how many alternatives there
are. Unsatisfiable descriptions can be dealt with in three different
ways: find and inform the user of faulty presuppositions that cause
the description to be unsatisfiable, find and present near misses by

5.3 Domain knowledge management

79

relaxing some of the features in the description, or inform the user
of the problem giving as helpful information as possible. MALIN uses
the first and third of these; if a faulty presupposition is present it
is presented to the user. Other problems are also brought to the
user’s attention together with helpful information on how they can
be corrected.

Other capabilities relying on domain knowledge include reasoning
about and deriving new information from the information provided
by the user (A20) and using domain-related default information about
requests (A22). If a user has specified a request that is not complete,
the system can fill in the empty spaces by inserting default informa-
tion or by deriving it from the information that has been provided.

5.3.2 The Domain Knowledge Manager

A separate module for domain knowledge management, the Domain
Knowledge Manager, was designed to supply the capabilities related
to domain knowledge. The primary responsibility of the Domain
Knowledge Manager is to provide domain- and application-specific
information when the Dialogue Manager has produced a request.
The Dialogue Manager can deliver a request to the Domain Knowl-
edge Manager and in return expect an answer retrieved from the
background systems or the domain knowledge sources. The Domain
Knowledge Manager maps descriptions to entities and reasons about
where and how the information should be retrieved and how informa-
tion from different domain or application knowledge sources should
be integrated. If the Domain Knowledge Manager encounters a prob-
lem it cannot solve by using domain knowledge, a specification of the
problem and the needed clarifying information is returned to the Di-
alogue Manager.

80 Chapter 5 Domain knowledge management in the MALIN framework

Multi-agent framework

To facilitate addition, replacement, and reuse of domain knowledge
sources an agent-based architecture has been chosen for the Domain
Knowledge Manager. The Domain Knowledge Manager consists of
several agents: the Control Agent, the Recipe Agent, the Inte-
gration Agent, and Domain Agents. The agents provide different
services, for example to retrieve some information given some param-
eters, and can also request services from each other. Communication
and co-operation among the agents are achieved by passing messages
in ICL, the Interagent Communication Language that is a logic-based
declarative language that can represent natural language expressions.

The Control Agent is a generic domain-independent agent that
controls the processing of a request. For this purpose it utilises
knowledge structures called recipes. A recipe (cf. recipe-for-
action [50]) consists of a series of services from different agents,
which are executed in order to construct an answer to the re-
quest.

The Recipe Agent is responsible for the construction of recipes
that match the requests. The recipes are application-specific,
but the agent in itself is domain-independent.

The Integration Agent is a domain-independent agent that can
integrate several response alternatives into one answer, utilising
integration rules, which contain both domain heuristic and more
general principles.

The Domain Agents are responsible for appropriate access of do-
main knowledge sources and are able to perform sophisticated
knowledge reasoning in order to retrieve the information. Thus,
each domain agent provides a set of services such as storing, re-
trieving or constructing a specific type of information. The
domain agents are in general application-specific. Some more
detailed examples of domain agents are provided in chapter 6
that covers the OTRAF application.

5.3 Domain knowledge management

81

The implementation of the Domain Knowledge Manager is based on
the Open Agent Architecture, OAA, which is a framework for the de-
velopment of multi-agent systems [46]. Some characteristics of OAA
are that it is open, meaning that agents can be created in multiple
programming languages and interface with existing legacy systems,
extensible, as agents can be added or replaced individually at run-
time, distributed, since agents can be spread across any network-
enabled computers, parallel, as agents can co-operate or compete on
tasks in parallel.

How the agents work together to process a request is described in the
following section. To make the presentation less abstract, examples
from the local public transportation domain will be used when called
for.

Processing of requests

Processing of a request delivered by the Dialogue Manager, in general
involves three steps. First the Domain Knowledge Manager has to de-
cide how to treat the request, i.e. to produce one or more recipes. In
most cases one recipe is enough, but sometimes the user has provided
ambiguous information that cannot be resolved by the interpreter or
the Dialogue Manager. In these cases several recipes are needed. The
next step is to process the recipe(s). The processing must be carefully
monitored and problematic descriptions or responses dealt with. Fi-
nally alternatives must be inspected and integrated into one answer
that can be sent back to the Dialogue Manager.

Producing the recipes

The first step towards fulfilling a request is to find a suitable recipe
that describes what information is needed and how the information
should be retrieved. For this purpose the Recipe Agent provides
a makeRecipe service. As a basis for the production of a new recipe,

82 Chapter 5 Domain knowledge management in the MALIN framework

a recipe library that contains recipe templates for different types of
requests is utilised. The recipe agent maps the request to a suitable
recipe template and instantiates it with the values from the request.
Figure 5.7 shows a recipe template containing two service-calls to two
different agents. Agentl retrieves some information that is used as
input to the service provided by Agent2.

Agent Service Parameters Result

Agentl servicel featurel, feature2, | Resultl
..., featuren

Agent2 service2 featurem, Resultl | Result2

Figure 5.7: An schematic view of an uninstantiated recipe template.

Since the information given by the Dialogue Manager can be am-
biguous, the Recipe Agent in some cases has to find one or more
unambiguous interpretations of the request. Ambiguous requests re-
sult from ambiguities that cannot be resolved by the interpreter or
the Dialogue Manager during interpretation, for example names de-
noting several objects of different types.

The disambiguation can be approached in several ways: one is to
ask the user for clarification, but this can result in a cumbersome
and unnatural dialogue. Our approach is instead to generate several
interpretations originating from the ambiguous information, and pro-
duce a recipe for each interpretation, and process them in parallel.
The different interpretations can then be evaluated depending on the
result, and subsequently be integrated into one answer.

The same approach can be used to handle alternatives in requests.
For example, a user may say "I want to go to Norrkdping on Friday
night or Saturday morning”. Since bus trips can only have one travel
time, this is treated as two separate requests, and two different recipes
are produced.

5.3 Domain knowledge management

83

Input: Request, RecipeDB
Output: Recipes

Requests := null

if (Request.isAmbiguous()) then
Requests := Request.disambiguateSplit()

else if (Request.containsAlternatives()) then
Requests := Request.alternativesSplit()

else
Requests.add(Request)

Recipes := null

for each Req in Requests do
Recipe := Req.matchRecipeTemplate (RecipeDB)
Recipe.instantiate(Req)
Recipes.addRecipe (Recipe)

Recipes.connector := Requests.connector

Return Recipes

Figure 5.8: The algorithm used to make recipes takes a database of
recipe templates and a request as input and outputs a set of recipes.

The algorithm used to make recipes is presented in figure 5.8. The
disambiguateSplit() method is a domain-dependent means of split-
ting ambiguous requests while the alternativesSplit() is a domain-
independent way of splitting requests that contain alternatives. When
a request is split, it results in a set of requests that are related by a
connector; typically the connector for alternatives is OR, but there
might also be domain-dependent connectors that order the requests

according to some criteria.

84 Chapter 5 Domain knowledge management in the MALIN framework

Processing of recipes

As mentioned above, the main purpose of the Domain Knowledge
Manager is to collect and integrate information from various domain
agents. A complex request involves access of many different domain
agents that map descriptions to entities or retrieve the requested
information. Which of the agents’ services and in what order they
should be called are specified in the recipes. The Control Agent
supervises the process and deals with problematic descriptions or
request responses, and errors.

Each of the recipes produced is processed and the results are collected.
The responses from the different recipes are then integrated into one.
In this process some of the problematic responses might be discarded.
For example, if an ambiguous request was split into several recipes
and some of these resulted in errors these can be ignored if there is
some recipe that has produced an appropriate response.

After integration of the responses there may still remain problems,
for example a description that could not be successfully mapped to
an entity or a request for which no response or too many responses
could be retrieved. For too narrow requests the Domain Knowledge
Manager tries to relax them while for the other problems an explana-
tion will be sent to the Dialogue Manager. The explanation typically
includes the cause of the problem and a suggestion as to how it can
be handled, for example alternatives that can be presented to the
user for her to choose from or parameters that should be specified.
This is illustrated by the algorithm in figure 5.9

5.3 Domain knowledge management 85

Input: Request
Output: Response or Problem

Recipes := RecipeAgent.makeRecipes(Request)
Responses := null
for each Rec in Recipes do

for each ServiceCall in Rec do
Result := ServiceCall.execute()

if (Result.getError() != null) then
SendResponse (ERROR, Result.getError())

Responses.add(Result)
Response := IntegrationAgent.integrateResponses(Responses)

if (Response.getError() == NoResponse) then
NewRequest := Request.relaxConstraint()
NewRequest.process()

else if (Response.getProblem() != null) then
SendResponse (PROBLEM, Response.getError())

else
SendResponse (SUCCESS, Response.getResult())

Figure 5.9: The algorithm used to process a request takes a request
as input, asks the RecipeAgent to make the corresponding recipes,
processes the recipes, asks the IntegrationAgent to integrate the re-
sponses and outputs a response.

86 Chapter 5 Domain knowledge management in the MALIN framework

Integrating the alternatives

Since ambiguous requests and requests containing alternatives result
in a set of recipes which are processed independently, the results must
be integrated before an answer is transferred to the Dialogue Man-
ager. This is performed by the Integration Agent utilising inte-
gration rules. Some of the rules are general and domain-independent
while others are heuristic and specialised for a specific domain. A
simple domain-independent rule that is used to integrate alternatives
states that: If all but one recipe have failed, the successful one is
returned to the dialogue manager. If there are several successful
recipes, more complex domain-dependent rules can be used to sort
and filter the alternatives. For example, in the travel domain travel
time or cost can be used to rank the trips. When there are no success-
ful responses at all, rules are used to how errors should be reported
and dealt with. How several responses can be integrated into one is
illustrated by the algorithm in figure 5.10.

5.4 Summary

In this chapter the MALIN framework, which is an extension of the
LINLIN framework, has been presented. In this framework a new
separate module for domain knowledge management, the Domain
Knowledge Manager, was introduced. The Domain Knowledge Man-
ager supports several capabilities related to domain knwoledge and
access of background systems. An advantage of the separation of di-
alogue management and domain knowledge management is that the
Dialogue Manager become more domain-independent and focused on
the dialogue features. Another advantage is that domain knowledge
sources can be added, exchanged and reused more easily.

5.4 Summary

Input: Responses, RuleDB
Output: Response

TempRes := null

for each Res in Responses do
if (Res.getError() == null) then
TempRes.add (Res)

if (TempRes.length() == 1) then
Response := TempRes

else if (TempRes.length() > 1) then
Rule := TempRes.matchRule(RuleDB)
Response := TempRes.apply(Rule)

else
Rule := Responses.matchRule(RuleDB)
Response := Responses.apply(Rule)

Return Response

Figure 5.10: The algorithm used to integrate responses takes a
database of integration rules and a set of responses and outputs a
response.

Chapter 6

Domain knowledge
management in the
OTRAF system

In this chapter an instance of the MALIN framework, a dialogue sys-
tem that provides information about local public transportation, the
OTRAF system, is presented. The knowledge sources and models
used by the Dialogue Manager and the Domain Knowledge Manager
are presented. An example dialogue is used to illustrate how the
Dialogue Manager and Domain Knowledge Manager co-operate to
achieve a natural dialogue with the user.

6.1 Architecture and information flow

To create a new application from the MALIN framework the knowledge
sources and models used for dialogue and domain knowledge manage-
ment need to be designed and implemented. For the OTRAF system

89

90 Chapter 6 Domain knowledge management in the OTRAF system

tree

Y
—» Interpreter \ Didloaue
/ Manager
~+— Generator

.
/
/

Information
Specification

Forms

Figure 6.1: The architecture of the OTRAF dialogue system.

an application-specific Dialogue Grammar and Information Specifi-
cation Forms, ISFs, has been developed. The information structures
used in the dialogue tree have also been customised to the specific
domain and tasks. For domain knowledge management, application-
specific recipes and integration rules have been specified. Domain
agents that hold knowledge of the spatial/geographical domain, tem-
poral domain, timetable information for the local public transporta-
tion, and system and help information have been added. All these
knowledge sources and models are shown in figure 6.1 that provides
an overview of the OTRAF system architecture.

The full arrows in the figure indicate how information flows between
the modules. A user utterance is parsed by the Interpreter and a fea-
ture structure containing the relevant information in the utterance
is passed on to the Dialogue Manager. The Dialogue Manager then

6.2 The Dialogue Manager

91

takes the given information and processes it in the dialogue context.
This means that the new information may be incorporated in a previ-
ous partially specified request or that it results in a new request. As
described in chapter 5, simple requests are represented by OPMs and
complex requests by ISFs. If a request is fully specified, the Dialogue
Manager sends the ISF or OPM to the Domain Knowledge Manager
in order for a response to be retrieved from the domain agents. The
Domain Knowledge Manager uses the request in the form of an ISF or
OPM to make a recipe that describes how the requested information
can be retrieved. The service-calls specified by the recipe are then
executed and the result passed back to the Dialogue Manager in a
specified response format, i.e. a feature structure containing specific
fields like status, result, and error. The response is then used by the
Dialogue Manager to communicate to the Generator what response
it should present to the user.

In the description of the OTRAF system, the focus is on domain
knowledge management but some aspects of dialogue management
will also be described. Representations of requests are relevant since
they serve as inputs to the Domain Knowledge Manager. An impor-
tant part of the development of a dialogue system is to specify the
types of requests and questions that should be handled, and the range
of possible responses to these requests. Once this is done, customisa-
tion of the Dialogue Manager and the Domain Knowledge Manager
can be done independently.

6.2 The Dialogue Manager

The requests the Dialogue Manager has to deal with can be divided
into simple and complex requests. A number of complex information
requests were discovered in the corpus, see chapter 4 section 4.2.1.
Modelling of these is performed using the system task models, ISFs,
that were introduced with the MALIN framework. The most common,
trip information, occurs when the user needs to know how and when
on a particular day, most often the current day, he or she can travel

92 Chapter 6 Domain knowledge management in the OTRAF system

from one point to another by public transportation. An ISF for such
requests models information on departure and arrival destinations
and information on arrival and/or departure time, which is necessary
to access the timetable dabase. The user can also provide information
about the travel type, but this is optional. Figure 6.2 shows an empty

Trip ISF.
Type : Trip
Arr : req.
Dep : req.
TTime: req.
TType: opt.

Figure 6.2: An empty Trip ISF with fields for required information
about arrival, departure and time, and optional information about
travel type.

Another common information need, route information, is when the
user wants information on which buses or trains go from one point
to another. This ISF is similar to the Trip ISF but time information
is no longer required, see figure 6.3

Type : Trip

Arr : req.
Dep : req.
TTime: opt.
TType: opt.

Figure 6.3: An empty Route ISF with fields for required information
about arrival and departure, and optional information about time
and travel type.

The simple requests are represented by OPM structures that de-
scribe objects and their properties and relations. In the OTRAF
system there are three types of OPMs: FIND_ALL, GET_VALUE,
and INFO. The first type, FIND_ALL, is used to represent requests
for objects that have some specific properties or relations to other

6.2 The Dialogue Manager 93

objects. An example of such requests is ”Which buses pass the Uni-
versity?” (figure 6.4).
. #1 [BusLine: 7?7]
Obj : . . .
#2[Location : [Landmark : University]]

BusLine : #1]]

Prop : [PassesBy : |: Location : #2

Figure 6.4: The OPM representing the question ”Which buses pass
the University?”

Requests of the type GET_VALUE model questions where the value
of a certain property or relation is sought. Figure 6.5 shows the
example ”How far is it from the City Centre to the Railway Station?”.

Obj - #1 [Location : [Area: City Centre]]
) #2[Location : [Landmark : Railway Station]]
Location : #1
Prop : Distance : [Location : #2]]
Value :

Figure 6.5: The OPM representing the question ”How far is it from
the City Centre to the Railway Station?”.

Finally the INFO type request is used when information about as-
pects not handled by the system, like prices or lost and found items,
is requested. An example of request for price information is given in
figure 6.6.

[Prop : [Aspect : Price]]

Figure 6.6: The OPM representing the question ”How much is it?”.

Both OPMs and ISF's are thus used to represent information requests,
and are placed in the dialogue tree in order to keep track of what has
been said. The use of the OPMs and ISFs will be further illustrated
by the example dialogue in section 6.4.

Chapter 6 Domain knowledge management in the OTRAF system

6.3 The Domain Knowledge Manager

As mentioned in the description of the MALIN framework, the role of
the Domain Knowledge Manager is to retrieve and integrate infor-
mation from several domain agents in response to requests from the
Dialogue Manager. Thus the Dialogue Manager forwards a fully spec-
ified request from the user in the form of an OPM or an ISF. These
have a counterpart in the recipes used by the Domain Knowledge
Manager. The recipes are thus application-specific and correspond
to the information structures used by the Dialogue Manager.

6.3.1 Recipes

In the OTRAF system there are recipes corresponding to the two
types of ISFs and various variants of OPMs.

Agent Service Parameters Result
Spatial findBusStops Dep.BusStop, DepBusStops
Reasoning Dep.Landmark,
Agent Dep.Street,

Dep.Area,

Dep.Town
Spatial findBusStops Arr.BusStop, ArrBusStops
Reasoning Arr.Landmark,
Agent Arr.Street,

Arr.Area,

Arr.Town
Timetable | getBusRoutes DepBusStops, Routes
Agent ArrBusStops,

Date, ArrTime

Figure 6.7: An example of an uninstantiated recipe for route infor-
mation.

6.3 The Domain Knowledge Manager

95

The recipes for the Route and Trip ISFs are very similar, as can be
seen in figure 6.7 and figure 6.8. Both need two sets of bus-stops
corresponding to the departure and an arrival location, but only the

Trip specification requires a time.

Agent Service Parameters Result
Spatial findBusStops Dep.BusStop, DepBusStops
Reasoning Dep.Landmark,
Agent Dep.Street,

Dep.Area,

Dep.Town
Spatial findBusStops Arr.BusStop, ArrBusStops
Reasoning Arr.Landmark,
Agent Arr.Street,

Arr.Area,

Arr.Town
Temporal findTime TTime.Time TravelTime
Reasoning
Agent
Timetable | getTrips DepBusStops, Trips
Agent ArrBusStops,

Travel Time

Figure 6.8: An example of an uninstantiated recipe for trip informa-

tion.

Simple requests represented by OPMs are mapped to different recipes
depending on the type of the OPM and the type of object or property
that is requested. The recipes corresponding to the OPMs presented
above illustrates this, see figure 6.9. The recipes for OPM requests
are in general very simple and only consist of one service-call.

96

Chapter 6 Domain knowledge management in the OTRAF system

Agent Service Parameters Result
Spatial PassesBy Objects.Location | BusLines
Reasoning

Agent

Agent Service Parameters Result
Spatial Distance Objects.Locationl, | Distance
Reasoning Objects.Location2

Agent

Agent Service Parameters Result
System getInfo Properties.Aspect | Info
Information

Agent

Figure 6.9: Recipes corresponding to the OPMs requesting bus lines
that pass a specific bus-stop, the distance between two locations, and
price information.

6.3.2 Integration rules

The recipes describe how a request should be treated. But in cases
where a request contain alternatives or ambiguities, as discussed in
the chapter about MALIN, the request is divided into several recipes
and the results from these have to be integrated. Different integra-
tion patterns are represented by integration rules. There are some
very trivial domain- and application-independent rules, as described
in section 5.3.2, but in the OTRAF system a specific type of ambigu-
ity requires domaln dependent rules to be handled. This ambiguity
arises when the same name can be used to denote objects of differ-
ent types, as is examplified by the request ”I want to go by bus to
Berga Centre”. It is ambiguous since ”Berga Centre” is the name
of both a bus-stop and a place. Does the user mean that she wants
to go to the bus-stop called ”Berga Centre” or that she wants to go
to the place "Berga Centre”? If the system only considered the bus-

6.3 The Domain Knowledge Manager

97

stop ”Berga Centre”, it would not find faster trips stopping at the
bus-stop ”Berga Séderleden” nearby ”Berga Centre”. Thus both pos-
sibilities are considered, but the interpretation of the location as the
bus-stop is taken as the preferred interpretation. If both interpreta-
tions result in sets of trips these have to be compared and integrated.
The integration rule used for this purpose is presented in figure 6.10.
The getSet(<, travelTime, result2, resultl) collects the set of trips
in result2 (originating from the interpretation as a place) that has
a travel time that is shorter than some of the trips in resultl (the
bus-stop interpretation). These trips are returned as alternatives to
the trips in resultl.

Connector | Conditions Result

POR

successful (result1.Status)
successful (result2.Status)
Exist

getSet(<, travelTime,

Result = resultl

Result.alternatives =

getSet(<, travelTime,
result2, resultl)

result2, resultl)

Figure 6.10: An domain-specific integration rule used to integrate
results from a trip request.

6.3.3 Domain agents

In the domain of local public transportation, four different domain
agents are present. The Temporal Reasoning Agent contains a
calendar and reasons about temporal expressions. The Spatial Rea-
soning Agent consists of a Geographical Information System and
a reasoning mechanism used to deduce the relations between geo-
graphical objects. The Timetable Agent accesses an information
source on the Internet which contains the timetables for local public
transportation. There is also a System and Help Information
Agent with system information, like references to human operators
for questions outside the scope of timetable information, for example
on lost property.

98 Chapter 6 Domain knowledge management in the OTRAF system

Temporal reasoning in dialogue systems is needed in several applica-
tions, and thus a number of approaches have been developed. Some of
these will be described in relation to the Temporal Reasoning Agent.
Spataial reasoning has not been explored to the same extent as tem-
poral reasoning. A new approach [28], using a Geographical Informa-
tion System, is therefore presented. The remaining two agents, are
only briefly described.

6.3.4 Spatial Reasoning Agent

From the corpus presented in chapter 4 a number of relevant ge-
ographical and spatial objects, properties and relations have been
identified. Thus knowledge about these types of objects and their
properties and relations have been incorporated in the OTRAF sys-
tem in the form of a Spatial Reasoning Agent.

Spatial information

One common way of describing a departure or arrival location is
by a town name, for example: "I wonder when the next bus from
Skarblacka to Norrkdping leaves?”. This implies that the Spatial
Reasoning Agent must be able to map a town name to a small set of
bus-stops that can be used when searching the timetable database.
Since small towns, in this case Skérblacka, often have few bus-stops
and where only a few buses pass by, they can be mapped to a set
containing all of the bus-stops in the town. Larger towns, Norrkdping
in the example, are more problematic to map to a set that contains
few bus-stops. One solution is to ask the user for information that can
be used to limit the possibilities. Another approach, which is similar
to the approach used by the human operators, is to use the bus-stops
that are most frequented by buses that travel between towns, such
as the Bus Terminus or the Railway Station.

6.3 The Domain Knowledge Manager

Another frequently used way to describe a location is to present an
area such as a suburb. The problem is similar to the cases in which
town names are used, sometimes further specification is needed in
order to present a correct response, as in:

U2: Hi, I wonder when the Hej ja undrar nésta buss
next bus from Malmsldtt fran Malmslatt in till stan
to the city runs? gar

S3: Let’s see, bus 213. Where Da ska vi se hir da buss
in Malmslétt do you want tvahundratretton gar var i
to enter? Malmsl3 vill du ga pa

Some users present a location by providing the exact address, e.g.
"Hi, I am going to 8 Owl street” ("Hej, jag vill dka till Ugglegatan
8”). For such examples the Spatial Reasoning Agent needs to map the
address onto possible bus-stops near the address. A similar example
is when a user presents two landmarks and expect the system to
respond with a suggestion , e.g. ”"Hi, I would like to know how to get
from the hospital down to IKEA in Linkoping?” (”Hej, hur kan man
ta sig fran sjukhuset ner till IKEA i Link6ping?”).

The geographical objects and their properties are listed in figure 6.11.
Between these objects various spatial relations exist, for example the
distance between two objects or nearness of objects. The complete
set of relations modelled in the O TRAF system is given in figure 6.12.

Reasoning about the relations between bus-stops and other geograph-
ical objects requires a representation of spatial and geographical in-
formation. Such information can be represented and reasoned with
in different ways.

Representing geographical and spatial information

In the traditional quantitative approach a co-ordinate system is used
as a basis for the representation of objects and regions. Information

100 Chapter 6 Domain knowledge management in the OTRAF system

Object Properties

Bus-stop Name, Id number, Location
Landmark Name, Location

Street Name, Location, Length
Area Name, Location, Area
Town Name, Location

Bus line Line number

Figure 6.11: The set of geographical objects modelled in the OTRAF
system, and their properties.

Relation Objects Objects

Distance = Bus-stop, Landmark, Bus-stop, Landmark,
Street, Area, Town Street, Area, Town

Near Bus-stop, Landmark, Bus-stop, Landmark,
Street Street

In Bus-stop, Landmark, Area, Town
Street, Area

PassesBy Bus line Bus-stop

PassedBy Bus-stop Bus line

Figure 6.12: The spatial relations between the objects represented in
the OTRAF system.

about the objects’ properties and relations among objects is extracted
by means of arithmetic and trigonometrical computations. The rep-
resentation and manipulation of spatial data is done numerically [45].
Another approach is to use a qualitative representation and reasoning
mechanism. Qualitative representations are symbolic and based on
discrete values: the distance between two objects can, for example,
be expressed as one of the values very close, close, far or very far [16].
Maps are also a medium for representing geographic information. In
a map both geometric aspects and symbolic representations of objects
can be integrated [49].

6.3 The Domain Knowledge Manager

101

In the field of Geographical Information Systems, quantitative repre-
sentations are combined with maps. A geographic information sys-
tem (GIS) can be defined as ”A computer-based information system
that enables capture, modelling, manipulation, retrieval, analysis,
and presentation of geographically referenced data.” [70, p. 1]. A
GIS consists of three components: a database, an analytic engine
and an interface. The design of the database affects how the GIS
stores and models reality. The analytic engine is responsible for the
manipulations and transformations of the data. The interface differs
depending on the domain and application but one common feature
is a map that can be used for visualisation of the spatial data in the
database [68].

Using a GIS in a dialogue system that has to perform spatial reason-
ing has a number of advantages. For instance, a GIS comes with a va-
riety of predefined functions for spatial reasoning. Furthermore, much
spatial data is available in a form ready to use in a GIS. Since GISs
support maps there is also the possibility of constructing a multi-
modal web-based interface, without modifying the underlying spatial
representation.

The Spatial Reasoning Agent thus utilizes a GIS to represent the
spatial information about bus-stops, streets, landmarks, areas and
towns. Since traditional GISs are of a quantitative nature while spa-
tial relations expressed in natural language are more qualitative, the
Spatial Reasoning Agent must be able to transform qualitative con-
cepts to quantitative. Two major concepts, in and near, which need
to be transformed were identified in the corpus. The Spatial Reason-
ing Agent maps the qualitative term near onto a precise distance in
the quantitative representation, i.e. into an area near the location.
The concept in describes the topological relation between bus-stops,
places or streets and a town or a suburb.

102 Chapter 6 Domain knowledge management in the OTRAF system

Services

Based on the geographical information held by the GIS and some rea-
soning mechanisms to derive new information from that represented
the Spatial Reasoning Agent provides the following services: find-
BusStops, getBusStopsNear, BusStopNear?, getDistance, getPassesBy,
PassesBy?, getPassedBy? and PassedBy?.

The corpus showed that a user’s natural way of expressing a depar-
ture or arrival location is not by means of the ”official” name of a
bus-stop. Instead, other expressions are utilized, such as an area or
town district, a set of reference points, or a street. Thus, the OTRAF
system must be able to map such an imprecise description to a set
of bus-stops that corresponds to the description, i.e. the service find-
BusStops.

When the Spatial Reasoning Agent maps a departure or arrival loca-
tion specified by the user in terms of a bus-stop, a street, a landmark,
a suburb and/or a town to a set of bus-stops, it utilizes the in and near
relations. All bus-stops within the distance which specify the near
concept are gathered when mapping a landmark, street or bus-stop
to the nearby bus-stops. For areas such as suburbs all the bus-stops
that lie in the region are collected. The same applies for small towns.
Large towns are mapped to the set of bus-stops which lie in the town
and are key bus-stops, i.e. bus-stops that most of the bus routes
pass. If a user has specified a location by means of different kinds of
spatial information, for example a landmark and a street, the Spatial
Reasoning Agent maps each kind of information separately to sets
containing the nearby bus-stops and then takes the intersection of
the sets. The complete algorithm used to find bus-stops is presented
in figure 6.13.

6.3 The Domain Knowledge Manager 103

Input: SpatialDescription, consisting of a Stop, Landmark,
Street, Area, and Town
Output: Bus-stops or ClarificationRequest

TempBusStops := null
for each SpatialUnit in SpatialDescription do

if (SpatialUnit.isAmbiguous()) then
SpatialUnit := disambiguate(SpatialUnit, SpatialDescription)

if (SpatialUnit.isAmbiguous()) then
Return ClarificationRequest (AMBIGUITY, SpatialUnit.getError())

BusStopSet := findBusStops(SpatialUnit)

if (BustStopSet.getError() !'= null) then

Return ClarificationRequest (PROBLEM, BusStopSet.getError())
else

TempBusStops.add(BusStopSet)

BusStops := intersectionOf (TempBusStops)

if (NewBusStops == null) then
Return ClarificationRequest (INCONSISTENCY,
findInc(SpatialDescription))

else if (BusStops.count() > limit) then
Return ClarificationRequest (PROBLEM,
getProblem(SpatialDescription))

else
Return NewBusStops

Figure 6.13: The algorithm used to map spatial descriptions to sets
of bus-stops.

104 Chapter 6 Domain knowledge management in the OTRAF system

The in and near concepts are also used by the spatial reasoning mod-
ule to resolve ambiguous spatial information which can refer to a
number of different locations. When a name is ambiguous, the Spatial
Reasoning Agent identifies the alternative locations and systemati-
cally examine how the alternatives are related to other spatial entities
mentioned by the user.

In cases where a location is mapped to a too large set of bus-stops
the Spatial Reasoning Agent must find a way of narrowing down the
alternatives or ask the user for a specification. The mapping of streets
to bus-stops that results in too many alternative bus-stops are treated
in two different ways. If the street is long, i.e. more than 300 meters,
the Spatial Reasoning Agent asks for a clarification by means of a bus-
stop, landmark or suburb. Otherwise the Spatial Reasoning Agent
presents the alternatives and asks the user to select one. Suburbs
and areas are treated in a similar way. In the case of a large area,
a bus-stop, landmark or street is requested for specification of the
location. If the area is small, the user has to choose one bus-stop
from the set of possible bus-stops.

The Spatial Reasoning Agent must also be able to discover inconsis-
tent information that may be due to false presuppositions or misinter-
pretations of utterances. An example is a location specified in terms
of a landmark and a town where there is no landmark with that name
in the town. Using the in and near relations the Spatial Reasoning
Agent can find the inconsistency and explain it to the user.

The getBusStopsNear service are very similar to findBusStops; it takes
a bus-stop, landmark and/or street as input and use the same type
of reasoning mechanisms to find the nearby bus-stops. The service
can thus give as a result a set of bus-stops, a clarification request
or an error message, depending on the provided description of the
location. BusStopNear? is a variant of this service, but takes also a
specific bus-stop as an argument and determines if this bus-stop is
among the ones near the describe location.

6.3 The Domain Knowledge Manager

105

The getDistance service take two locations as input and is expected
to provide a distance. This service must also deal with possibly am-
biguous or inconsistent descriptions.

The getPassedBy, getPassesBy, PassedBy? and PassesBy? simply re-
trieve the requested information from the GIS. The only problematic
situation that occur is when a provided bus-stop has an ambiguous
name. In these cases a clarification is sought from the user.

To summarise, the Spatial Reasoning Agent provides capabilities
A16-A18, as it maps descriptions of locations to the precise enti-
ties, deals with ambiguous descriptions, and deals with inconsistent
descriptions. It can also detect and deal with false presuppositions
(A21).

6.3.5 Temporal Reasoning Agent

A study of the corpus from chapter 4 revealed several types of tem-
poral expressions that need to be handled by the OTRAF system.

Temporal expressions

Timepoints can be precise, e.g. ”8.15” and "half past ten” (halv
elva”), but they can also be vague, for example ”around four” (vid
fyratiden), ”by half past one approximately” (”vid halv tva ungefar”).
The precise timepoint can be used as is for database access; the vague
timepoint needs, however, to be transformed into a precise time in-
terval.

Common expressions in the corpus are ”in the morning” (pd mor-

gonen), "afternoon” (eftermiddag), and ”in the evening” ("kvallstid”).

These are all examples of parts of day. How such expressions should
be handled depends on whether other kinds of temporal information
are available. If the user, for example, has said that she wants to

106 Chapter 6 Domain knowledge management in the OTRAF system

arrive at 8.15 in the morning, the information of part of day is used
to disambiguate 8.15, concluding that it must be 8.15 a.m. On the
other hand, if the user has given only ”in the evening” as a temporal
constraint for the trip, the part of day expression has to be mapped
onto a precise time interval.

Information about the day or days, termed part of weeks, are some-
times given by the user in combination with other types of temporal
descriptions. An example of such expressions found in the corpus
are "weekdays Monday to Thursday” (”vardagkvillar mandag till
torsdag”). This information is useful when route information is re-
quested since buses may travel by different routes on different parts
of the week, for example on the weekend.

Most of the requests found in the corpus concern trips taking place
the same day, thus the date is left out. There are, however, some
dialogues in which ”tomorrow” (”imorgon”) is used and there is also
a case where a day is used to denote a date, e.g. ”on Sunday” (pa
sondag). These types of expression have to be translated into exact
dates in the system before accessing the database.

Common ways of modifying a temporal description is to use ”before”
(”fore”, ”innan”), and ”after” (“efter”). These modifiers transform
a timepoint into a time interval with the timepoint as a starting- or
ending point. Another type of modifier is "next” (”nésta”) which also
transform a timepoint, i.e. the current time, to an interval starting
at the current timepoint.

Representing temporal information in dialogue systems

Many dialogue systems that provide timetable information, do schedul-
ing, or negotiate times for meetings, have to deal with temporal
expressions. Different approaches have been taken by different re-
searchers but they all have much in common. In this section three
approaches are described, one for bus timetables, one for train timeta-
bles, and one for negotiation of times for meetings.

6.3 The Domain Knowledge Manager

107

Dobrin & Boda [23] describe how temporal expressions can be re-
solved in a www-based dialogue system for bus timetable inquiries.
They propose a rule-based resolution for date and time expression.
Three modules are used in the process: concept activation, labelling,
and understanding.

The first stage, concept activation, involves a search of a database
for words that match the input. The result is a subset of the words
present in both the input and the database, changed to their canonical
form.

The set of words that are passed on from the first stage are labelled
in the next stage. The labels denote if a word is, for example, a
number, a post-determiner, a predeterminer, a date determiner, a
month determiner, or a week determiner. The expression "before
7.15” is labelled by HIGH_ DET BEFORE NUM PRE DET_PAST
NUM.

In the final stage rules are applied to the labelled time expressions.
Lexical and contextual rules are associated with the different labels,
and depending on the context, consisting of the two or three sur-
rounding words, one rule is selected. The application of a rule mostly
results in an assignment of a value to one or more fields in the for-
mal time representation. For higher-order concepts one more step is
needed. These concepts, e.g. next, before, after, are restrictions or
constraints on previously processed and assigned values in the formal
time representation. The constraints are often realised as a change
from a specific timepoint to a time interval. For example, ”before
7.15” is first mapped to [hh = 7 minimum = 15 durm = 0] and then
modified to [hh = 5 minimum = 15 durm = 120], which is the full
interpretation of the expression ”before 7.15”.

Hildebrandt et al. [37] also propose a three-step analysis of temporal
expressions. The first step is to do a syntactic and semantic analysis
at the phrase structure level. The second step involves interpretation
at the sentence structure level. Finally the analysis sometimes has to
be done at the dialogue level. Since they work within the domain of
train timetable information, the resolution of a time expression results

108

Chapter 6 Domain knowledge management in the OTRAF system

in a form with four-by-two fields for day, month, hour, minute, and
to and from respectively, see figure 6.14.

| From Until

day
month
hour
minute

Figure 6.14: A form used to represent temporal information in a train
timetable information system.

The syntactic analysis of time constituents in an utterance is done
independently for each constituent. This analysis is followed by a
semantic analysis of every time constituent. Primarily the core time
of a time constituent is sought. That is, modifiers like ”before” and
”after” are overlooked. Then the time of reference is computed based
on the modifiers and time of speech. The resulting time is an interval.

The analysis and interpretation on the sentence structure level mean
that the separate time constituents have to be tested for consistency
and merged into one. Ambiguity can often be resolved at this level,
the time of day can, for example, be disambiguated using section of
day.

When the system ask the user for confirmation of the computed time,
the user can change or add some information. This has to be analysed
on the phrase and sentence level, and then merged with the previous
representation. This is performed on the dialogue level.

In the VERBMOBIL system temporal expressions are interpreted in
a contextual evaluation module (ConEval) [62]. The interpretation
is performed in two steps: the first translates the natural language
input into a ”ZeitGram” expression, and the next transforms this
representation into a ”interval description” (ID).

6.3 The Domain Knowledge Manager

109

ZeitGrams are collections of temporal objects that have the form
TYPE:VALUE. Possible temporal objects are points, intervals, mod-
ifiers, composed_pointlike, modifiable_pointlike, and modified modifi-
able_pointlike. The temporal objects can be qualified with the mod-
ifiers early, late, begin, middle, or end. They can also be ”fuzzified”
by a certain type of modifier, fuzzy.

Clock times (TOD) are represented like points of the form hh:mm.
Timepoints can also be specified as a distance from a reference point.
Intervals can be durations represented by a number and a temporal
unit, limited time spans that are expressions of the form: before/after
timepoint. Pointlike objects are, for example, part of day (POD),
day of week (DOW), part of year (seasons), and week of year.

The ZeitGrams are mapped to IDs that are typed feature structures
consisting of two date expressions denoting the beginning and end of
an interval. The date expressions have four attributes, year, month,
day and time, that are further divided into subtypes. Thus this
representation contains the same information as the representation
presented by Hildebrandt et al. [37] although it is structured a bit
differently. The IDs are constructed in a process where each temporal
object in the ZeitGram is translated to an underspecified ID that is
then unified with the ID built up so far. The translation of a temporal
object to an ID involves knowledge from four sources. A table con-
tains information for a heuristic mapping of part of day and part of
year expressions to concrete intervals. A calendar provides informa-
tion, such as date, about specific holidays or weeks. Utterances are
time-stamped, and this information is used to deal with expression
like today. Finally the context is used to resolve anaphoric expres-
sions.

The three approaches are similar in several ways. The constituents of
temporal expressions are first processed independently of each other.
The final result is then composed by integrating the partial results.
Modifiers that ”fuzzify” a time are also added in the final stage in
which they can transform a timepoint to a time interval. The format
and information in the resulting temporal representation differ, how-
ever, between the approaches: the form presented in figure 6.14 is

110 Chapter 6 Domain knowledge management in the OTRAF system

very application-specific while the results from the other approaches
are more general.

Services

Time expressions in the bus timetables are exact and precise. Time
expressions in natural language are vague and imprecise. This dis-
crepancy means that some sort of mapping between the two has to
take place, the temporal expressions described above should be trans-
formed to a date and a timepoint or a time interval.

In the OTRAF system different features of the approaches presented
in the previous section are used. The temporal descriptions sent by
the Dialogue Manager to the Domain Knowledge Manager are rep-
resented in the same manner as ZeitGrams. The features partially
overlap with the ones used in ZeitGrams; they are date, part of day
(POD), part of week (POW), timepoint, time interval, and depar-
ture/arrival (DA). Timepoints can be made fuzzy by modifiers like
around, before, after, earlier than and later than.

The representation of a resulting exact time, corresponding to a
temporal description, is very similar to the one used by Dobrin &
Boda [23]; it consists of a date and a time interval specified by a
start timepoint and a duration.

Mapping between temporal descriptions and time representations is
provided by the service findTime. As a basis for the service two
knowledge sources are used. A database containing information on
how part of day expressions can be mapped on to concrete intervals,
and rules for how modifiers transform a timepoint to an interval are
used. A calendar provides information that can be used to map part
of week expressions on to precise dates. Following the approaches pre-
sented above, each constituent of a temporal expression is processed
independently and result in a partial time representation. The cor-
respondence between the different types of temporal expressions and
time representations is shown in figure 6.15.

6.3 The Domain Knowledge Manager

111

Type Temporal Time
expression representation
Date date(Month, Day) DATE: YYMMDD
POD pod(POD_STRING, TIMEPOINT:
MOD_STRING) HHMM DUR: MM
POW pow(POW_STRING) DATE: YYMMDD
Timepoint timepoint(MOD_STRING, TIMEPOINT:

Hours, Minutes) HHMM DUR: MM
Time Interval timelnterval(tp(...), TIMEPOINT:

tp(...)) HHMM DUR: MM
DA da(DA_STRING) RIKT: DEP or ARR

POD_STRING: morning, before_noon, noon, afternoon,
evening, night, midnight

POW_STRING: Monday, Tuesday, ..., Sunday,
weekdays, weekends, tomorrow, tomorrow+

MOD_STRING: around, now, earlier_than, later_than,
before, after

DA_STRING: departure, arrival

Figure 6.15: The figure shows the correspondence between vague
temporal descriptions and the precise time representations used in
the OTRAF system.

In this first stage all timepoints are in the interval 8:00 to 19:59 if
not explicitly indicated otherwise in the input. In the next stage,
when the partial time representations are merged, the timepoint can
be changed. If ambiguities or inconsistencies are detected after the
merging of the partial results, the situation is analysed and the prob-
lem and a suggested solution, often in the form of a clarification, are
given as the answer. The algorithm used to map temporal descrip-
tions to time representations is presented in figure 6.16.

112 Chapter 6 Domain knowledge management in the OTRAF system

Input: TemporalDescription, consisting of a Date, POD, POW,

Timepoint, Time interval, and DA

Output: TimeRepresentation or ClarificationRequest

PartialTimeReps := null

for eah TemporalUnit in TemporalDescription do
PartialTimeRep := mapToPrecise(TemporalUnit)
PartialTimeReps.add(PartialTimeRep)

TimeRepresentation = PartialTimeReps.getFirst()

for each PartialTimeRep in PartialTimeReps do

TimeRepresentation := combine(TimeRepresentation,
PartialTimeRep)
if (TimeRepresentation == null) then

Return ClarificationRequest (PROBLEM,
TimeRepresentation.getError())

if (TimeRepresentation.isAmbiguous()) then
Return ClarificationRequest (AMBIGUITY,
TimeRepresentation.getError())

if (TimeRepresentations.getDate() == null) then
TimeRepresentation.addDefaultDate()

Return TimeRepresentation

Figure 6.16: The algorithm used to map temporal descriptions to
time representations.

Thus the Temporal Reasoning Agent maps vague descriptions of tem-
poral expressions to precise temporal entities (A16), and it also deals
with ambiguous or erroneous descriptions (A17 and A18). It can also
detect and handle false presuppositions (A21) concerning dates, for
example if the user has said the 31st April, the system can inform
her that April only has 30 days. Finally default information (A22)
about dates can be added if not specified by the user.

6.3 The Domain Knowledge Manager

113

6.3.6 Timetable Information Agent

When users have requested trip or route information, and the Spatial
Reasoning Agent and the Temporal Reasoning Agent have provided
precise departure and arrival locations and a time representation, the
Timetable Information Agent is called. It accesses an information
source available on the Internet and retrieves a set of trips or bus
routes that match the parameters specified by the user. The retrieved
information can be problematic in two ways that have to be dealt with
by the Timetable Information Agent; there may be no answer that
fulfil the specification (A5) or there may be too many trips or routes
that correspond to the request (A6). If there is no answer the Domain
Knowledge Manager can decide to relax some of the parameters and
ask the agent to try again and find a trip or route. If there are too
many answers, they are sorted according to a criterion, the default is
the travel time, and only the best are returned.

6.3.7 System and Help Information Agent

The System and Help Information Agent use a database with point-
ers to other information sources, i.e. telephone numbers to various
telephone-based services, to give helpful answers to questions that are
slightly out of the range of the system, for example price information
or lost and found items. The database also contains information
about how to use the system and explanations of concepts used by
the system. This agent thus provides capability A24 as it can com-
municate what the system can and cannot do.

114 Chapter 6 Domain knowledge management in the OTRAF system

6.4 An example dialogue

To illustrate how the Dialogue Manager and the Domain Knowledge
Manager co-operate’ to achieve a natural interaction with the user,
consider the hypothetical dialogue shown in figure 6.172. The dia-
logue tree in figure 6.18 shows the resulting structure of the dialogue.

Ul: I want to go to the City Centre in Link&ping.

S2: There are many bus-stops in the City Centre. Can
you point on the map or give more specific informa-
tion like a landmark or a street?

U3: Are there any bus-stops near the Garden Square?

S4: There are several bus-stops near the Garden Square.
< Shows the bus — stops in the map >

U5: Then I want to go there from the University.

S6: When do you want to go?

U7: On the 31st April before lunch.

S8: The 31st is not a valid date, there are only 30 days
in April. Give a new date please.

U9: The 30th April.

S10: The trips are shown in the table.
< Shows a table of trips >

Figure 6.17: A hypothetical dialogue with the OTRAF dialogue sys-
tem.

The first utterance ”I want to go to the City Centre”, Ul, is recog-
nised as a request for information about trips and thus a Trip ISF is
initiated. Information about the arrival location provided by the user
is inserted in the ISF in the field Arr, which results in the structure
presented in figure 6.19, which is included in IR1 in the dialogue tree.

!The example presented in this section is an extended version of the example
in [29].

2The dialogue is constructed on the basis of the corpus in order to illustrate
many of the features of the dialogue and domain knowledge management in our
multi-modal system.

6.4 An example dialogue

115

D
A
IR1
T
Ul IR2 IR4 IR5 S10
S2 U5 S6 U7 S8 §]¢]
IR3
U3 A

Figure 6.18: The dialogue tree resulting from the dialogue in fig-
ure 6.17.

Type : Trip

Arr: [Area: City Centre]
Dep : req.
TTime: req.
TType: opt.

Figure 6.19: The ISF in IR1 after processing Ul.

The ISF indicates that information about the departure location and
time has to be further specified by the user by the marker req in the
fields Dep and TTime (TravelTime). However, before continuing the
dialogue and asking the user for the information that is missing in the
ISF, the Dialogue Manager asks the Domain Knowledge Manager to
validate the values provided. This validation is performed to detect
vague or erroneous information that might have been given by the
user.

The arrival location in a Trip ISF will be used to find suitable bus-
stops that can be used to search the timetable database. The valida-

Chapter 6 Domain knowledge management in the OTRAF system

tion of the arrival location therefore means that the Spatial Reasoning
Agent tries to map the location to a small set of bus-stops. The Do-
main Knowledge Manager instantiates a recipe template for this type
of questions, see 6.20.

Agent Service Parameters Result
Spatial findBusStops Area: BusStops
Reasoning City Centre

Agent

Figure 6.20: The recipe used to validate the arrival location of the
request in figure 6.19.

The recipe only contains one service-call which is executed. In this
case the Domain Knowledge Manager discovers that Area: City Cen-
tre is too vague a description since it corresponds to too many stops,
in our case more than 5 stops. The Dialogue Manager is informed of
this and is also given the information that more specific information
like a point, a landmark or a street is required, figure 6.21.

[Status : Error W
Item : Area: Clty center]
Tupe : TooMany : BusStops
ype : [Up: 5]
SpecInfo: {Point,
Solution : Landmark,]
L Street} J

Figure 6.21: The response from the Domain Knowledge Manager to
the domain validation of the arrival location.

Thus, the user will not be asked to provide the value of another
parameter since it would be an implicit confirmation that the arrival
place is correct; instead a new IR-unit, IR2 in the dialogue tree, is
created and a clarification, S2 ” There are many bus-stops in the City
Centre. Can you point on the map or give more specific information
like a landmark or a street?”, is initiated based on the information

6.4 An example dialogue

117

from the Domain Knowledge Manager that indicates the problematic
item, the type of problem, and a possible solution to the problem.

Instead of answering the system’s question the user takes the initia-
tive by requesting new information ” Are there any bus-stops near the
Garden Square?”, U3. This request results in a new IR-unit, IR3, to
be inserted in the dialogue tree as a clarification of the system’s clar-
ification in IR2, as shown in figure 6.18. The utterance is a simple
request and the Dialogue Manager utilises an OPM to model this,
figure 6.22.

#1[Stop: 7]
Obj : 29 |: Landmark : Garden]
Square
Locationl : #1]]

Prop: |: Near: |: Location2 : #2

Figure 6.22: The OPM in IR3 after processing of U3.

To answer this request means reasoning about spatial relations be-
tween geographical objects. The request is therefore sent to the Do-
main Knowledge Manager which retrieves and instantiates a recipe
template for this type of question, see 6.23.

Agent Service Parameters Result
Spatial getBusStopsNear| Landmark: BusStops
Reasoning Garden Square

Agent

Figure 6.23: The recipe corresponding to the request represented by
the OPM in figure 6.22.

The recipe only contains one service-call which is executed. The
request is successfully processed and some nearby bus-stops are found
and sent back to the Dialogue Manager utilising the structure in
figure 6.24.

118

Chapter 6 Domain knowledge management in the OTRAF system

[Status: Success

[[Name: Centrum W
#1 Snickareg. 30
| Id: 1268
Stops : 42 Name : Linnegatan
Id: 1220
| Name: Stora torget
| | #3 Id: 450] J]

Figure 6.24: The response from the Domain Knowledge Manager to
the OPM in IR3.

The Dialogue Manager can then ask the generator to present them
to the user "There are several bus-stops near the Garden Square.”,
S4. The user responds to this answer by confirming his departure
location ”"Then I want to go there from the University.”, U5, and
thereby responds to the request S2 of IR2. He also provides an arrival
location. This new information, see figure 6.25, is placed in IR2.

21 Landmark : Garden
Obj : Square
#2 | Landmark: University]

) Arr . #1
Prop : |: Dep: #2]

Figure 6.25: The OPM in IR2 after processing Ub5.

The Dialogue Manager resumes processing of the ISF in IR1 and
updates it with the arrival and departure location based on the in-
formation in the OPM of IR2. Information about the arrival location
is added to the previously provided information in the field Arr. The
new information about the departure location is inserted in the field
Dep, yielding the structure in figure 6.26.

6.4 An example dialogue

119

Type : Trip

App - Area : City center

’ Landmark : Garden Square
Dep : [Landmark : University]
TTime: req.
TType: opt.

Figure 6.26: The ISF in IR1 after updates with information from the
subtree in IR2.

Again the Dialogue Manager asks the Domain Knowledge Manager
for domain validation of the partially specified ISF. This involves
mapping the departure location and the arrival location to sets of bus
stops. The Domain Knowledge Manager therefore asks the Spatial
reasoning Agent to execute service-call findBusStops with the param-
eters Landmark: Garden Square and Landmark: University.

Both service-calls are successful and the ISF is approved by the Do-
main Knowledge Manager. The Dialogue Manager now needs a time
to complete the ISF, and consequently a new IR-unit, IR4 in the di-
alogue tree, is created and, in utterance S6 ”When do you want to
go?”, the user is asked for this. The answer ”On the 31st April before
lunch.”, U7, is a valid response to S6 and is inserted in the tree at
IR4, see figure 6.27.

| Day: 31
Obj: #1 Date : Month : April
g . POD : lunch
Time :

Mod: before
Prop : [TTime: 1]

Figure 6.27: The OPM in IR4 after processing UT.

The new information from IR4 is then inserted as TTime in the ISF
of IR1. This results in a fully specified Trip ISF, figure 6.28.

120

Chapter 6 Domain knowledge management in the OTRAF system

[Type :
Arr:
Dep :

TTime :

| TType :

Trip
[Area : City center
Landmark : Garden Square
" Landmark : University
Day : 31
Date:: |: Month : April
Time : |: POD : lunch]
Mod: before
o})t.

J

Figure 6.28: The ISF of IR1 after updates with information from IR4.

The ISF is again sent to the Domain Knowledge Manager for valida-
tion. A service-call to the findTime service provided by the Temporal
Reasoning Agent is executed to test that the temporal description
can be mapped to a time representation. When the Temporal Rea-
soning Agent tries to map the temporal description in TTime to a for-
mat suitable for timetable database search, it discovers the erroneous
date. The Domain Knowledge Manager then returns a response, fig-
ure 6.29, to the Dialogue Manager informing it of the error. The
Dialogue Manager initiates a new clarification IR-unit, IR5, and a
clarification ”The 31st is not a valid date, there are only 30 days in
April. Give a new date please.” is formulated, S8.

Status :

Item :

Type :

Solution :

Error
| Day: 31
Date : [Month : April]]
L Month : April
NotValid : Up : 30

[SpecInfo: {Date}]

/]

Figure 6.29: The response from the Domain Knowledge Manager to
the domain validation of the time description, explaining the erro-

neous date.

6.4 An example dialogue

121

The user responds to the system’s clarification request and provides a
new date ”The 30th April.”, U9. The response (figure 6.30) is placed
in IR5.

. . Day : 30
Obj: #1 [Date : [Month : April]]

Prop : [TTime: F#1]

Figure 6.30: The OPM of IR5 after U9.

The information in the clarification request IR-unit, IR5, is propa-
gated to the ISF of IR1 which is updated. This time the new informa-
tion replaces the old in TTime since it was erroneous. The resulting
ISF is presented in figure 6.31.

[Type : Trip
Arp - [Area : City Centre] W
Landmark : Garden Square
Dep : " Landmark : University]
. Day : 30
TTime: Date : |: Mogzth: April]]
Time. | POD: lunch]
Mod: before
| TType : o-pt. J

Figure 6.31: The ISF of IR1 after integration with the information
in IR5.

Once more a validation of the ISF is performed by the Domain Knowl-
edge Manager. This time no problems are detected and a search for
suitable trips can finally be done.

The Domain Knowledge Manager does this by instantiating a Trip
recipe, figure 6.32, and then execute the service-calls one by one: first
asking the Spatial Reasoning Agent to map the departure and arrival
locations to two sets of bus-stops, then asking the Temporal Reason-
ing Agent to map the vague temporal description to a precise time

122

Chapter 6 Domain knowledge management in the OTRAF system

Agent Service Parameters Result
Spatial findBusStops —, University, _, _, | DepBusStops
Reasoning _
Agent
Spatial findBusStops _, Garden Square, | ArrBusStops
Reasoning IR
Agent
Temporal | findTime date(30, April), | TravelTime
Reasoning pod(lunch, be-
Agent fore), _, -, -
Timetable | getTrips DepBusStops, Ar- | Trips
Agent rBusStops, Trav-

elTime

Figure 6.32: The instantiated recipe for trip information correspond-
ing to the request represented by the ISF in figure 6.31.

interval. Given this information, the Domain Knowledge Manager
then searches the timetable database to find one or more trips that
fulfil the requirements. The resulting trips are sent back to the Di-
alogue Manager and displayed to the user, ”The trips are shown in
the table.”, S10.

6.5 Summary

The main purpose of this chapter was to illustrate how a Domain
Knowledge Manager can be implemented and integrated in a dia-
logue system. As illustrated by the dialogue in section 6.4 the Di-
alogue Manager and Domain Knowledge Manager divide the labour
and provide different capabilities needed to achieve natural interac-
tion with the user. To summarise, the Dialogue Manager utilises the
system task models, the ISFs, to handle tasks and requests (capabil-
ities A1-A4), the dialogue model to allow mixed-initiative dialogue
(capabilities A9-A11), and the dialogue history to follow shifts in fo-

6.5 Summary

123

cus and resolve anaphora and ellipsis (capabilities A12-A13). The
Domain Knowledge Manager utilises domain agents to handle prob-
lematic responses from background systems (capabilities A5-A6), to
handle descriptions (capabilities A16-A18), domain knowledge rea-
soning (capabilities A19-A22). Thus a natural separation of knowl-
edge sources and capabilities related to dialogue management and
domain knowledge management has been achieved.

Chapter 7

Summary and
Discussion

In this thesis a new concept called domain knowledge manage-
ment has been introduced. Domain knowledge management includes
issues related to representation and use of domain knowledge and ac-
cess of background systems, issues that previously have been incor-
porated in dialogue management.

The work on domain knowledge management presented in this thesis
can be divided in two parts. On a general theoretical level, knowledge
sources and models used for dialogue management, including domain
knowledge management, have been studied and related to the capa-
bilities they support. On a more practical level, domain knowledge
management has been discussed in the context of the MALIN dia-
logue system framework and a specific instance of this framework,
the OTRAF system. In these, domain knowledge management has
been implemented in a separate module, a Domain Knowledge Man-
ager.

125

126

Chapter 7 Summary and Discussion

7.1 Knowledge sources and capabilities

To clarify what dialogue management involves and what can be sep-
arated out in domain knowledge management, the knowledge sources
and models used for dialogue management in dialogue systems, and
the capabilities they support were analysed.

In a survey of eight information-providing or problem-solving dia-
logue systems four types of knowledge, represented by seven different
knowledge sources, were identified. Dialogue knowledge is repre-
sented in dialogue models and dialogue histories. Task knowledge
can be divided in system task models and user task models. Domain
knowledge is held by domain knowledge sources and conceptual mod-
els. Finally, Knowledge of the user can be represented by a user
model. With this new categorisation the sometimes confusing termi-
nology concerning knowledge sources and models in dialogue systems
was made more clear.

A list of capabilities considered useful for achieving natural and grace-
ful interaction was compiled from a set of guidelines and development
principles for dialogue system (see Appendix A). The relation be-
tween the knowledge sources and the capabilities were mapped out
and summarised in table in Appendix B. This information can be
used to support design of dialogue systems as it forces the developer
to make explicit choices of which capabilities to include in the sys-
tem and consider the limitations the design of knowledge sources and
models impose on the system.

7.2 Future work on knowledge sources
and capabilities

The guidelines and development principles used to create the list
of capabilities are primarily aimed at information-providing dialogue
systems. To make the list complete and also include other types of

7.3 The Domain Knowledge Manager

127

dialogue systems, more work has to be done. For this purpose more
guidelines and development principles can be examined, and studies
of corpora will also be useful.

As mentioned above, the capabilities can be used for the design of
dialogue systems. Another way to use them is for evaluation of dia-
logue systems and frameworks. Evaluation can be made for various
purposes: to detect errors in design and implementation during the
development, to measure how well it meets the user’s needs and ex-
pectations in the actual context of use, and to obtain quantitative
measurements for comparisons with other systems [9]. How dialogue
systems and dialogue managers can and should be evaluated is a dif-
ficult question to answer.

An approach to evaluation of dialogue systems proposed in the TRINDI
project [65] is to examine whether certain characteristic behaviours
are manifested by the system. A ”Tick-list” consisting of twelve yes-
no questions is presented and suggested for this purpose [17]. Some
of these questions correspond to the capabilities, for example ”Can
the system deal with answers to questions that give more informa-
tion than was requested?” corresponds to capability A9, ”To allow
the user to over-answer questions” and ”Can the system deal with
ambiguous designators?” corresponds to capability A17, ”To detect
ambiguous descriptions and deal with them”. Another use of the ca-
pabilities, besides design of dialogue systems, could therefore be to
create "tick-lists” that can be used for evaluation and comparison of
dialogue systems and frameworks.

7.3 The Domain Knowledge Manager

If we examine table in appendix B we see that all of the capabilities
related to mixed-initiative dialogue and handling of focus and dis-
course, and most of the capabilities for tasks and requests, rely only
on knowledge sources and models for dialogue and task knowledge.
Furthermore, almost all of the capabilities related to domain knowl-

128

Chapter 7 Summary and Discussion

edge depend exclusively on knowledge of the domain. This group-
ing of capabilities and knowledge sources was seen as a support for
a separation between dialogue management and domain knowledge
management.

In chapter 5 a separate module for domain knowledge management,
a Domain Knowledge Manager, was introduced in the context
of the MALIN dialogue system framework. The Domain Knowledge
Manager co-operates with the Dialogue Manager and provides the
capabilities needed to handle problematic responses to requests (A5-
A6), to handle descriptions (A16-A18), to handle false presupposi-
tions (A21), to perform domain reasoning (A20), to provide default
information (A22), and to have system meta-knowledge(A24).

A few previous attempts to separate issues related to domain knowl-
edge management from dialogue management have been made. For
example, Whittaker & Attwater [69], suggested a new component, the
Information Manager, that maps descriptions provided by the Dia-
logue Manager to a suitable representation for the external database.
Another example is the Action Manager proposed by Radev et al. [52].
In their architecture a requested action is delivered to the Action
Manager and it has to decide how the action should be executed and
which source to access. It is, however, the Dialogue Manager that is
responsible for the translation between the requests and the actions
carried out by the Action Manager. Thus, both these approaches only
deal with very few of the domain knowledge management issues, or a
monolithic application. None of them handles all the issues and the
integration of several domain knowledge sources. A more sophisti-
cated and general module is needed to handle all these features.

This type of more sophisticated module can be found in the TRIPS
dialogue shell [6], where a Behavioural Agent separated from dialogue
management is responsible for communication with the back-end sys-
tem. The separation of dialogue management and domain knowledge
management is, however, not complete as the Behavioural Agent is
able to ignore requests from the Discourse Manager and instead give
information that it considers more important, thus, taking on some of
the dialogue management responsibilities. In the MALIN framework

7.3 The Domain Knowledge Manager

129

all dialogue management features are handled by the Dialogue Man-
ager and the Domain Knowledge Manager only responds to requests
made by the Dialogue Manager.

The use of a specialised Domain Knowledge Manager has a num-
ber of advantages. The first is that dialogue management becomes
more focused as it only has to consider dialogue phenomena, while
domain-specific reasoning is handled by the Domain Knowledge Man-
ager. The second major advantage is that once an interface between
the Dialogue Manager and the Domain Knowledge Manager has been
specified, they can be developed and experimented with indepen-
dently of each other. This in turn facilitates porting of a system to
new domains since domain-related issues are included in the domain
knowledge sources. Another advantage is that the domain knowledge
sources can be easily modified, exchanged, and reused. Finally, with
a separate module for domain knowledge management the domain-
dependent features and background systems are gathered in one lo-
cation, which can be used both by the Dialogue Manager and also
the Interpreter and Generator.

The design of the Domain Knowledge Manager can be designed has
two important features: the mechanisms for managing requests are
generic and to some extent domain-independent, and the domain
knowledge sources have a common well-specified interface based on
an agent communication protocol. This means that a system can
be easily extended by introducing new domain knowledge sources
and adding new recipe templates and integration rules; porting to a
new domain for the Domain Knowledge Manager only involves the
creation of new recipe templates, integration rules, and plugging in
new domain agents.

130 Chapter 7 Summary and Discussion

7.4 Future work on the Domain
Knowledge Manager

Future work on the Dialogue Manager can be made in three different
directions: new capabilities and knowledge sources for information-
providing dialogue systems, new types of domains for information-
providing dialogue systems, and new service types such as tutoring
or solving problems.

The proposed Domain Knowledge Manager and the dialogue sys-
tem framework MALIN was developed with certain types of services
and domains in mind. Depending on the capabilities supported by
information-providing dialogue systems a possible classification could
be: simple, intelligent, and adaptive.

Simple information-providing dialogue systems handle fairly sim-
ple information requests that do not require sophisticated task
and domain knowledge. The LINLIN framework falls into this
category.

Intelligent information-providing dialogue systems handle more
complex information requests, which rely on sophisticated task
and domain knowledge. The MALIN framework is an example
of this class.

Adaptive information-providing dialogue systems do not only
handle complex information requests but can also adapt to the
user, thus requiring knowledge of the user as well as the tasks
and the domain.

Based on this hierarchy a natural next step would be to extend the
framework so as to also handle dialogues where the system can adapt
to the user. The question is whether this adaptation is part of di-
alogue management or domain knowledge management. If the user
model is utilised to guide the dialogue, for example which information
is requested from the user by the system or how the user is prompted,

7.4 Future work on the Domain Knowledge Manager

131

it should belong to dialogue management. However, if knowledge of
the user’s expertise is used to decide what information should be
retrieved from background system or how descriptions and request
responses should be handled, it should be part of domain knowledge
management. Since both uses can and probably will occur, the user
model should probably be a knowledge source shared by the Dialogue
Manager and the Domain Knowledge Manager.

It would also be of interest to study how the Domain Knowledge
Manager can be modified to work in new types of domains where the
domain is more dynamic and less structured, for example large docu-
ment bases and unstructured information. Applications of this type
may include methods like data mining, information extraction, and
automatic generation of ontologies. The role of the Domain Knowl-
edge Manager would be to serve as the intermediator between the
Dialogue Manager and an information processing component respon-
sible for bringing structure to the documents and the information.
Advantages of using a Domain Knowledge Manager are that the Di-
alogue Manager need not be aware of the unstructured nature of the
domain and consider this when contextually specifing a request, and
that an information processing component need not consider aspects
of the dialogue.

Another way of extending the framework is to widen the type of do-
mains and the type of services the framework supports. Moving from
information-providing dialogue systems to other types of services like
problem-solving and tutoring systems, domain knowledge reasoning
will probably become even more important. In these types of systems
it is crucial that the system can reason about and integrate knowl-
edge from several domain knowledge sources. New capabilities, for
example explanation, will be required, and with them it is likely that
new types of knowledge sources will have to be added. An interesting
question to examine is how the Domain Knowledge Manager should
be modified to also handle these new types of services.

Bibliography

[1]

2]

3]

[5]

Alicia Abella, Michael K. Brown, and Bruce Buntschuh. De-
velopment principles for dialog-based interfaces. In Elisabeth
Maier, Marion Mast, and Susann Luperfoy, editors, Dialogue
Processing in Spoken Language Systems, volume 1236 of Lec-
ture Notes in Computer Science, pages 141-155. Springer-Verlag,
1997.

Lars Ahrenberg, Arne Jonsson, and Nils Dahlbéck. Discourse
representation and discourse management for natural language
interfaces. In Proceedings of the Second Nordic Conference on
Text Comprehension in Man and Machine, Tdby, Sweden, 1990.

Jan Alexandersson. Plan recognition in VERBMOBIL. Techni-
cal Report 81, DFKI GmbH,

URL: http://www.dfki.uni-sb.de/cgi-bin/verbmobil /htbin/
doc-access.cgi, 1995.

Jan Alexandersson, Elisabeth Maier, and Norbert Reithinger.
A robust and efficient three-layered dialogue component for
speech-to-speech translation system. Technical Report 50, DFKI
GmbH,

URL: http://www.dfki.uni-sb.de/cgi-bin/verbmobil /htbin/
doc-access.cgi, 1994.

Jan Alexandersson and Norbert Reithinger. Designing the dia-
logue component in a speech translation system. In Proceedings

133

134

BIBLIOGRAPHY

[7]

[12]

of the Ninth Twente Workshop on Language Technology (TWLT-
9), pages 3543, 1995.

James Allen, Donna Byron, Myroslava Dzikovska, George Fer-
guson, Lucian Galescu, , and Amanda Stent. An architecture
for a generic dialogue shell. Journal of Natural Language En-
gineering, Special Issue on Best Practices in Spoken Language
Dialogue Systems Engineering, 3(6):1-16, December 2000.

James Allen, Lenhart Schubert, George Ferguson, Peter Hee-
man, Chung He Hwang, Tsuneaki Kato, Mark Light, Nathaniel
Martin, Bradford Miller, Massimo Poesio, and David Traum.
The TRAINS project: a case study in building a conversational
planning agent. Journal of Ezperimental and Theoretical Artifi-
cial Intelligence, 7:7-48, 1995.

S. Bennacef, L. Devillers, S. Rosset, and L. Lamel. Dialog in
the RAILTEL telephone-based system. In Proceedings of Inter-
national Conference on Spoken Language Processing, ICSLP’96,
volume 1, pages 550-553, Philadelphia, USA, October 1996.

Niels Ole Bernsen, Hans Dybkaer, and Laila Dybkaer. Designing
Interactive Speech Systems: From First Ideas to User Testing.
Springer Verlag, 1998.

Eric Bilange. A task independent oral dialogue model. In Pro-
ceedings of the Fifth Conference of the European Chapter of the
Association for Computational Linguistics, EACL’91, pages 83—
88, Berlin, Germany, 1991.

Rolf Carlson and Sheri Hunnicut. Generic and domain-specific
aspects of the Waxholm NLP and dialog modules. In Proceedings
of International Conference on Spoken Language Processing, IC-
SLP’96, volume 2, pages 677680, Philadelphia, USA, October
1996.

Rolf Carlson, Sheri Hunnicut, and Joakim Gustafsson. Dialog
management in the Waxholm system. In Papers from the Fighth
Swedish Phonetics Conference, Working Papers 43, pages 46-49,
1994.

BIBLIOGRAPHY

135

[13] Philip. R. Cohen and C. Raymond Perrault. Elements of a plan-
based theory of speech acts. Cognitive Science, 3:177-212, 1979.

[14] Robin Cohen. On the relationship between user models and
discourse models. Computational Linguistics, 14(3):88-90, 1988.

[15] Robin Cohen, Coralee Allaby, Christian Cumbaa, Mark Fitzger-
ald, Konsin Ho, Bowen Hui, Celine Latulipe, Fletcher Lu, Nancy
Moussa, David Pooley, Alex Qian, and Saheem Siddigi. What
is initiative. User Modeling and User-adapted Interaction, 8(3—
4):5-48, 1998.

[16] A.G. Cohn. Qualitative spatial representation and reasoning
techniques. In G. Brewka, C. Habel, and B. Nebel, editors, KI-
97: Advances in Artificial Intelligence: Proceedings of 21st An-
nual German Conference on Artificial Intelligence, volume 1303
of Lecture Notes in Artificial Intelligence, pages 1-30. Springer-
Verlag, 19.

[17] Robin Cooper, Staffan Larsson, C. Matheson, and David Traum.
Coding instructional dialogue for information state. Technical
Report D1.1, TRINDI,

URL: http://www.ling.gu.se/research/projects/trindi/
publications.html, 2000.

[18] The CSLU toolkit.
URL: http://cslu.cse.ogi.edu/toolkit/, 2001.

[19] Nils Dahlbéck and Arne Jonsson. Knowledge sources in spoken
dialogue systems. In Proceedings of Eurospeech’99, Budapest,
Hungary, 1999.

[20] Nils Dahlbédck. Representations of Discourse, Cognitive and
Computational Aspects. PhD thesis, Linképing University, 1991.

[21] Nils Dahlbéck. Towards a dialogue taxonomy. In Elisabeth
Maier, Marion Mast, and Susann LuperFoy, editors, Dialogue
Processing in Spoken Language Systems, number 1236 in LNAI-
Lecture Notes in Artificial Intelligence. Springer Verlag, 1997.

136

BIBLIOGRAPHY

[22]

[23]

[24]

[29]

Nils Dahlbéck and Arne Jonsson. Integrating domain specific
focusing in dialogue models. In Proceedings of Eurospeech’97,
volume 4, pages 2215-2218, Rhodes, Greece, 1997.

Cristina Dobrin and Peter Boda. Resolution of date and time
expressions in a www-based dialogue system. In COST249 10th
Management Committee Meeting, Porto, Portugal, February 12-
13 1998.

George Ferguson, James Allen, and Brad Miller. TRAINS-95:
Towards a mixed-initiative planning assistant. In Proceedings
of the Third Conference on Artificial Intelligence Planning Sys-
tems, AIPS-96, pages 70-77, 1996.

George M. Ferguson, James F. Allen, Brad W. Miller, and
Eric K. Ringger. The design and implementation of the
TRAINS-96 system: A prototype mixed-initiative planning as-
sistant. TRAINS Technical Not 96-5, October 1996.

Annika Flycht-Eriksson. A survey of knowledge sources in dia-
logue systems. In Proceedings of IJCAI’99 Workshop on Knowl-
edge and Reasoning in Practical Dialogue Systems, pages 41-48,
Stockholm, August 1999.

Annika Flycht-Eriksson. A domain knowledge manager for dia-
logue systems. In Proceedings of the 14th European Conference
on Artificial Intelligence, ECAI 2000. 10S Press, Amsterdam,
2000.

Annika Flycht-Eriksson and Arne J6nsson. A spoken dialogue
system utilizing spatial information. In Proceedings of Interna-
tional Conference on Spoken Language Processing, ICSLP’98,
volume 4, pages 1207-1210, Sydney, Australia, December 1998.

Annika Flycht-Eriksson and Arne Jénsson. Dialogue and domain
knowledge management in dialogue systems. In Proceedings of
1st SIGdial Workshop on Discourse and Dialogue, Hong Kong,
2000.

David Goddeau, Eric Brill, James Glass, Christine Pao, Michael
Philips, Joseph Polifroni, Stephanie Seneff, and Victor Zue.

BIBLIOGRAPHY

137

GALAXY: A human-language interface to on-line travel infor-
mation. In Proceedings of International Conference on Spo-
ken Language Processing, ICSLP’94, pages 707-710, Yokohama,
Japan, September 1994.

[31] Paul H. Grice. Logic and conversation. In Peter Cole and Jerry L.
Morgan, editors, Syntaz and Semantics (vol. 3) Speech Acts.
Academic Press, 1975.

[32] Barbara J. Grosz and Candace L. Sidner. Attention, inten-
tion and the structure of discourse. Computational Linguistics,
12(3):175-204, 1986.

[33] Eli Hagen. An approach to mixed initiative spoken information
retrieval dialogue. User modeling and User-Adapted Interaction,
9(1-2):167-213, 1999.

[34] Frank Seide Harald Aust, Martin Oerder and Volker Stein-
biss. The Philips automatic train timetable information system.
Speech Communication, 1995.

[35] Philip J. Hayes and D. Raj Reddy. Steps toward graceful inter-
action in spoken and written man-machine communication. In-
ternational Journal of Man-Machine Studies, 19:231-284, 1983.

[36] Paul Heisterkamp, Scott McGlashan, and Nick Youd. Dialogue
semantics for a spoken dialogue system. In Proceedings of the

International Conference on Spoken Language Processing, IC-
SLP’92, Banff, Canada, 1992.

[37] Bernd Hildebrandt, Gernot A. Fink, Franz Kummert, and Ger-
hard Sagerer. Understanding of time constituents in spoken lan-
guage dialogues. pages 939-942, 1994.

[38] Arne Jonsson. Dialogue Management for Natural Language In-
terfaces. PhD thesis, Link6ping University, 1993.

[39] Arne J6nsson. A model for habitable and efficient dialogue man-
agement for natural language interaction. Natural Language En-
gineering, 3(2/3):103-122, 1997.

138

BIBLIOGRAPHY

[40]

[47]

[48]

Arne Jonsson and Nils Dahlbéck. Talking to a computer is not
like talking to your best friend. In Proceedings of the First Scan-
dinavian Conference on Artificial Intelligence, Tromsg, 1988.

Arne J6nsson and Lena Strombéck. Robust interaction through
partial interpretation and dialogue management. In Proceedings
of Coling/ACL’98, Montréal, 1998.

Robert Kass and Tim Finin. Modeling the user in natural lan-
guage systems. Computational Linguistics, 14(3):5-22, 1988.

Alfred Kobsa. User models and discourse models united they
stand... Computational Linguistics, 14(3):91-94, 1988.

Staffan Larsson, Lena Santamarta, and Arne Jonsson. Using the
process of distilling dialogues to understand dialogue systems. In
Proceedings of 6th International Conference on Spoken Language
Processing, ICSLP2000, Beijing, China, 2000.

Robert Laurini and Derek Thompson. Fundamentals of Spatial
Information Systems. Academic Press, 1992.

David L. Martin, Adam Cheyer, and Gowang Lo Lee. Agent
Development Tools for the Open Agent Architecture. In Pro-
ceedings of the First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology,
pages 387-404, London, April 1996. The Practical Application
Company Ltd.

Scott McGlashan, Norman Fraser, Nigel Gilbert, Eric Bilange,
Paul Heisterkamp, and Nick Youd. Dialogue management for
telephone information systems. In Proceedings of the Interna-
tional Conference on Applied Language Processing, ICSLP’92,
Trento, Italy, 1992.

Michael McTear. Spoken dialogue technology: Enabling the con-
versational user interface.

URL: http://www.infj.ulst.ac.uk/™ cbdg23/survey/
spoken_dialogue_technology.html, 2000.

M. Monmonier. How to Lie with Maps. Univ. of Chicago Press,
second edition, 1996.

BIBLIOGRAPHY

139

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Martha E. Pollack. Plans as complex mental attitudes. In In-
tentions in Commaunication, chapter 5. MIT Press, 1990.

Joachim Quantz, Manfred Gehrke, Uwe Kssner, and Birte
Schmitz. The VERBMOBIL domain model version 1.0. Techni-
cal Report 29, Technishe Universitdt Berlin, September 1994.

Dragomir R. Radev, Nanda Kambhatla, Catherine Wolf Yim-
ing Ye, and Wlodek Zadrozny. Dsml: A proposal for xml stan-
dards for messaging between components of a natural language
dialogue system. In Proceedings of AISB Workshop on Refer-
ence Architectures and Data Standards for NLP, Edinburgh, UK,
April 1999.

Elaine Rich. User modelling via stereotypes. In Readings in
Intelligent User Interfaces, pages 329-341. Morgan Kaufmann,
1998.

A. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R. Sh-
ern, K. Lenzo, W. Xu, and A. Oh. Creating natural dialogs in
the Carnegie Mellon Communicator system. In Proceedings of
Eurospeech’99, volume 4, pages 1531-1534, 1999.

Stuart Russel and Peter Norvig. Artificial Intelligence: A mod-
ern approach. Prentice Hall, 1995.

Emanuel A. Schegloff and Harvey Sacks. Opening up closings.
Semiotica, 7:289-327, 1973.

Ethel Schuster. Establishing the relationship between discourse
models and user models. Computational Linguistics, 14(3):82—
85, 1988.

Stephanie Seneff, David Goddeau, Christine Pao, and Joseph
Polifroni. Multimodal discourse modelling in a multi-user multi-
domain environment. In Proceedings of International Confer-
ence on Spoken Language Processing, ICSLP’96, pages 192-195,
Philadelphia, USA, October 1996.

Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao,
Philipp Schmid, and Victor Zue. GALAXYII: A reference archi-
tecture for conversational system development. In Proceedings

140

BIBLIOGRAPHY

of International Conference on Spoken Language Processing, IC-
SLP’98, volume 3, pages 931-934, Sydney, Australia, December
1998.

R. W. Smith and D. R. Hipp. Spoken Natural Language Dialog
Systems: A Practical Approach. New York: Oxford University
Press, 1994.

Ronnie W. Smith. Integration of domain problem solving with
natural language dialog: The missing axiom theory. In Proceed-
ings of Applications of AI X: Knowledge-Based Systems, pages
270-278, 1992.

Manfre Stede, Stefan Haas, and Uwe Kiissner. Tracking and un-
derstanding temporal descriptions in dialogue. Technical Report
232, Technishe Universitat Berlin, October 1998.

Lena Strombéck and Arne Jonsson. Robust interpretation for
spoken dialogue systems. In Proceedings of ICSLP’98, Sydney,
Australia, 1998.

David R. Traum. Conversational agency: The TRAINS-93 di-
alogue manager. In Susann LuperFoy, Anton Nijhholt, and
Gert Veldhuijzen van Zanten, editors, Proceedings of Twente
Workshop on Language Technology, TWLT-II, 1996.

The TRINDI project website.
URL: http://www.ling.gu.se/research/projects/trindi/, 2001.

The TRINDIKIT.
URL: http://www.ling.gu.se/research /projects/trindi/trindikit/,
2001.

UMBC KQML Web.
URL: http://www.cs.umbc.edu/kqml/, 2000.

W.P.A. van Deursen. Geographical Information Systems and Dy-
namic Models. PhD thesis, University Utrecht, 1995.

Steve J. Whittaker and David J. Attwater. The design of com-
plex telephony applications using large vocabulary speech tech-
nology. In Proceedings of International Conference on Spoken

BIBLIOGRAPHY 141

Language Processing, ICSLP’96, pages 705-708, Philadelphia,
USA, October 1996.

[70] Michael F. Worboys. GIS: A Computing Perspective. Taylor &
Francis, 1997.

Appendix A

Capabilities for dialogue
management

This appendix contains the collection of capabilities considered use-
ful for achieving natural interaction between a user and a dialogue
system.

Handling tasks and requests

A1 To identify the task.

A2 To identify sub-tasks and know how they are related to a task.
A3 To reason about how much of a task has been achieved so far.
A4 To decide what action to take in order to achieve a task.

A5 To deal with situations in which no answer can be retrieved from
the background system.

A6 To deal with situations in which the answer from the background
system includes to much information.

143

144

Appendix A Capabilities for dialogue management

A7 To detect and deal with hypothetical questions.

A8 To explicitly communicate a commitment made by the user in
the conversation.

Achieving mixed-initiative dialogue

A9 To allow the user to over-answer questions.
A10 To allow the user to initiate clarification sub-dialogues.

A11 To allow the user to abandon the current request and pose a
new request instead.

Handling focus and discourse

A12 To follow shifts in focus.
A13 To resolve anaphora and ellipsis.

A14 To answer questions on what has been said and done during
the conversation

A15 To answer questions about the reason why an action was per-
formed.

Handling domain knowledge

A16 To map a description to an entity.
A17 To detect ambiguous descriptions and deal with them.
A18 To detect erroneous descriptions and deal with them.

A19 To know the type and structure of the entities in the domain.

145

A20

A21

A22
A23
A24

To reason about and derive new information from the informa-
tion provided by the user.

To deal with a user’s erroneous inferences or false presupposi-
tions

To have domain-related default information.
To adapt to the user’s domain expertise.

To know what the system can and cannot do.

Appendix B

Capabilities and
knowledge sources

The relations between capabilities and knowledge sources and mod-
els are summarised in the tables on the following pages. Knowledge
sources that are Required to achieve a specific capability are marked
by an R and L means at Least one of the knowledge sources is re-
quired.

147

148

Appendix B Capabilities and knowledge sources

Knowledge source/ Dial Dial | Sys User| Dom Conq User
Capability Mod Hist | T ask T ask Mod Mod| Mod
Mod Mod
T ask and requests
A1l To iden tify the task. R L L
A2 T oiden tify sub-tasks and know| L L L
how they are related to a task.
A3 T oreason about howm uchof a L L L
task has been achiev ed so far.
A4 T o decide what action to tale in | R L L L
order to ac hiev e a task.
A5 T o deal with situations in whih || R L L L
no answer can be retrieved from
the bac kground system.
A6 T o deal with situations in whih || R L L L
the answer from the background
system includes to much informa-
tion.
A7 To detect and deal with hypo- || R R
thetical questions.
A8 T o explicitly communicate a com- || R L L L
mitment made by the user in the
con versation.
Mixed-initiative dialogue
A9 To allow the user to wer-answer | R L L L
questions.
A10 T o allow the user to initiate clar-|| R R
ification sub-dialogues.
A11 T o allow the user to abandon the|| R
curren t request and pose a new
request instead.
Focus and discourse
A12 T o follow shifts in focus. R R
A13 T o resolv e anaphora and ellipsis. R
A14 T o ansver questions on what has | R R L L
been said and done during the
con versation
A15 T o answer questions about the | R L L

reason wh yan action w as per-

formed.

149

Knowledge source/ Dial Dial| Sys User| Dom Cond User
Capability Mod Hist | Task Task| Mod Mod| Mod
Mod Mod
Domain knowledge
A16 To map a description to an entity. R
A17 To detect ambiguous descriptions L L
and deal with them.
A18 To detect erroneous descriptions L L
and deal with them.
A19 To know the type and structure L L
of the entities in the domain.
A20 To reason about and derive new L L
information from the information
provided by the user.
A21 To deal with a user’s erroneous || R L L L
inferences or false presupposi-
tions
A22 To have domain-related default L L
information.
A23 To adapt to the user’s domain ex- R
pertise.
A24 To know what the system can and L L

cannot do.

GS UN,

ip“ﬁ “'%, Avdelning, institution g;teu "

5 ‘ ’ @:\ Division, department

5

%‘ J" [5 Institutionen for datavetenskap

G, S
“gs S Department of Computer 2001-05-07
LINKOPINGS UNIVERSITET and Information Science
Sprak Rapporttyp ISBN
Language Report category 91-7373-050-5
Svenska/Swedish X | Licentiatavhandlin; . .
] ‘ fceniataiiancine | 1 ISRN LiU-Tek-Lic-2001:27
Engelska/English I:l Examensarbete
I:l C-uppsats Serietitel och serienummer ISSN
I:l D i Title of series, numbering 0280-7971
-uppsats
|:| I:l Ovrig rapport
Linkoping Studies in Science and Technology
URL for elektronisk version
Thesis No. 890

Titel
Title

Domain Knowledge Management in Information-providing Dialogue Systems

Forfattare
Author

Annika Flycht-Eriksson

Sammanfattning
Abstract

In this thesis a new concept callddmain knowledge managementor information-providing dialogue
systems is introduced. Domain knowledge management includes issues related to representation
of domain knowledge as well as access of background information sources, issues that previously
been incorporated in dialogue management.

general theoretical level, knowledge sources and models used for dialogue management, includin
practical level, domain knowledge management is examined in the contexts of a dialogue system

framework and a specific instance of this framework, thek@Tsystem. In this system domain
knowledge management is implemented in a separate moddianain Knowledge Manager

domain-specific reasoning is handled by the Domain Knowledge Manager. Secondly, porting of a
to new domains is facilitated since domain-related issues are separated out in specialised domain

that domain knowledge sources can be easily modified, exchanged, and reused.

Nyckelord
Keywords

Dialogue system, domain knowledge management, dialogue management, knowledge representation

The use of a specialised Domain Knowledge Manager has a number of advantages. The first is that
dialogue management becomes more focused as it only has to consider dialogue phenomena, while

and us
have

The work on domain knowledge management reported in this thesis can be divided in two parts. On a

g

domain knowledge management, are studied and related to the capabilities they support. On a more

systenm

knowledge sources. The third advantage with a separate module for domain knowledge management is

No 17
No 28

No 29
No 48
No 52
No 60
No 71
No 72
No 73
No 74
No 104

No 108
No 111
No 113
No 118

No 126
No 127

No 139
No 140
No 146
No 150
No 165
No 166
No 174
No 177
No 181
No 184
No 187
No 189
No 196
No 197
No 203
No 212
No 230
No 237
No 250
No 253
No 260
No 283

No 298
No 318

No 319

No 326
No 328
No 333
No 335

No 348
No 352

No 371
No 378
No 380
No 381
No 383
No 386
No 398

Department of Computer and Information Science
Linkdpings universitet

Linképing Studies in Science and Technology
Faculty of Arts and Sciences - Theses

Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Link&ping, Sweden. FOA Report B30062E)

Arne Jonsson, Mikael Patel:An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.

Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
Zebo Peng:Steps Towards the Formalization of Designing VLS| Systems, 1985.

Johan Fagerstrom: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.

Tony Larsson: On the Specification and Verification of VLS| Systems, 1986.

Ola Stromfors: A Structure Editor for Documents and Programs, 1986.

Christos Levcopoulos:New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-
puter Methodology, 1987.

Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.

Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.

Ralph Roénnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-
grams, 1987.

Dan Strémberg: Transfer and Distribution of Application Programs, 1987.

Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-
tems, 1987.

Christer Backstrom: Reasoning about Interdependent Actions, 1988.

Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.

Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.

Jonas Léwgren:Supporting Design and Management of Expert System User Interfaces, 1989.

Ola Petersson:On Adaptive Sorting in Sequential and Parallel Models, 1989.

Yngve Larsson:Dynamic Configuration in a Distributed Environment, 1989.

Peter Aberg: Design of a Multiple View Presentation and Interaction Manager, 1989.

Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.

Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.

Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
Magnus Merkel: Temporal Information in Natural Language, 1989.

UIf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.

Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.

Bjorn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.

Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.

Lars Stromberg: Postmortem Debugging of Distributed Systems, 1990.

Torbjérn Naslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.

Peter D. Holmes:Using Connectivity Graphs to Support Map-Related Reasoning, 1991.

Olof Johansson:Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-
Bases, 1991.

Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.

Lena Srémbéack: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algo-
rithm for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.

Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denota-
tional Specification, 1992.

Andreas Kagedal:Logic Programming with External Procedures: an Implementation, 1992.

Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.

Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.

Torbjérn Néslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,
1992.

UIf Cederling: Industrial Software Development - a Case Study, 1992.

Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-
plementation, 1992.

Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.

Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.

Johan Ringstrém: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
Michael Jansson:Propagation of Change in an Intelligent Information System, 1993.

Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
Per Osterling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.

Johan Boye:Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402
No 406
No 414

No 417
No 436
No 437
No 440
FHS 3/94

FHS 4/94

No 441
No 446
No 450
No 451
No 452

No 455
FHS 5/94

No 462
No 463
No 464
No 469
No 473
No 475
No 476
No 478
FHS 7/95
No 482

No 488

No 489
No 497
No 498

No 503
FHS 8/95

FHS 9/95

No 513
No 517
No 518
No 522
No 538
No 545

No 546
FiF-a 1/96

No 549
No 550

No 557
No 558
No 561
No 563
No 567
No 575
No 576
No 587
No 589

No 591
No 595
No 597

Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.

Anna Moberg: Satellitkontor - en studie av kommunikationsmonster vid arbete pa distans, 1993.

Peter Carlsson:Separation av foretagsledning och finansiering - fallstudier av foretagsledarutkdp ur ett agent-
teoretiskt perspektiv, 1994.

Camilla Sjostrom: Revision och lagreglering - ett historiskt perspektiv, 1994.

Cecilia Sjoberg: Voices in Design: Argumentation in Participatory Development, 1994.

Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.

Owen Eriksson: Informationssystem med verksamhetskvalitet - utvardering baserat pa ett verksamhetsinrik-
tat och samskapande perspektiv, 1994.

Karin Pettersson: Informationssystemstrukturering, ansvarsférdelning och anvandarinflytande - En kompa-
rativ studie med utgangspunkt i tvd informationssystemstrategier, 1994.

Lars Poignant: Informationsteknologi och féretagsetablering - Effekter pa produktivitet och region, 1994.
Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.

Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.

Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.

Martin Skold: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,
1994.

Pér Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System
Developers in Usability-Oriented Systems Development, 1994.

Stefan Cronholm: Varfér CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-
betssatt och arbetsformer, 1994.

Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.

Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks forvarv av Bahco Verktyg, 1994.
Hans Olsén:Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.

Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
UIf Séderman: On Conceptual Modelling of Mode Switching Systems, 1995.

Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.

Bo Lagerstrom: Successiv resultatavrakning av padgaende arbeten. - Fallstudier i tre byggféretag, 1995.
Peter JonssonComplexity of State-Variable Planning under Structural Restrictions, 1995.

Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.

Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-
on, 1995.

Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based
Programming, 1995.

Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.

Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.

Stefan Svenberg:Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual
Generation, 1995.

Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.

Dan Fristedt: Metoder i anvandning - mot forbéttring av systemutveckling genom situationell metodkunskap
och metodanalys, 1995.

Malin Bergvall: Systemférvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och
ansvarsroller, 1995.

Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.

Jakob Axelsson:Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.

Goran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
Jorgen Andersson:Bilder av sméforetagares ekonomistyrning, 1995.

Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.

Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in
Scientific Computing, 1996.

Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.

Mikael Lind: Affarsprocessinriktad forandringsanalys - utveckling och tillampning av synsatt och metod,
1996.

Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.

Kristina Larsen: Forutsattningar och begransningar foér arbete pa distans - erfarenheter frén fyra svenska fore-
tag. 1996.

Mikael Johansson:Quality Functions for Requirements Engineering Methods, 1996.

Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.

Anders Ekman: Exploration of Polygonal Environments, 1996.

Niclas Andersson:Compilation of Mathematical Models to Parallel Code, 1996.

Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.

Niclas Ohlsson:Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.

Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.

Jorgen Lindstrém: Chefers anvandning av kommunikationsteknik, 1996.

Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,
1996.

Niclas Wabhllof: A Default Extension to Description Logics and its Applications, 1996.

Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598
No 599
No 607

No 609
FiF-a4
FiF-a 6

No 615
No 623
No 626
No 627
No 629
No 631
No 639
No 640
No 643
No 653
FiF-a 13

No 674

No 676
No 668

No 675
FiF-a 14

No 695
No 700
FiF-a 16

No 712

No 719
No 723
No 725
No 730

No 731
No 733
No 734

FiF-a 21
FiF-a 22
No 737
No 738
FiF-a 25

No 742
No 748
No 751

No 752
No 753
No 754

No 766
No 769
No 775
FiF-a 30
No 787

No 788

No 790
No 791
No 800
No 807

Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.

Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.

Per-Arne Persson:Toward a Grounded Theory for Support of Command and Control in Military Coalitions,
1997.

Jonas S KarlssonA Scalable Data Structure for a Parallel Data Server, 1997.

Carita Abom: Videométesteknik i olika affarssituationer - méjligheter och hinder, 1997.

Tommy Wedlund: Att skapa en féretagsanpassad systemutvecklingsmodell - genom rekonstruktion, varde-
ring och vidareutveckling | T50-bolag inom ABB, 1997.

Silvia Coradeschi A Decision-Mechanism for Reactive and Coordinated Agents, 1997.

Jan Ollinen: Det flexibla kontorets utveckling pa Digital - Ett stod for multiflex? 1997.

David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.

Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.

Gunilla Ivefors: Krigsspel coh Informationsteknik infor en oférutsdgbar framtid, 1997

Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997

Jukka Maki-Turja: . Smalltalk - a suitable Real-Time Language, 1997.

Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
Man Lin : Formal Analysis of Reactive Rule-based Programs, 1997.

Mats Gustafsson Bringing Role-Based Access Control to Distributed Systems, 1997.

Boris Karlsson: Metodanalys for forstaelse och utveckling av systemutvecklingsverksamhet. Analys och var-
dering av systemutvecklingsmodeller och dess anvandning, 1997.

Marcus Bjareland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,
1998.

Jan Hakegard Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.

Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsradets re-
kommendation om koncernredovisning (RR01:91), 1998.

Jimmy Tjader : Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-
lingsprojekt, 1998.

IlJIf Melin : Informationssystem vid 6kad affars- och processorientering - egenskaper, strategier och utveck-
ing, 1998.

Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
Patrik Hagglund: Programming Languages for Computer Algebra, 1998.

Marie-Therese Christiansson:Inter-organistorisk verksamhetsutveckling - metoder som stéd vid utveckling
av partnerskap och informationssystem, 1998.

Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt
i personal inom skogsindustrin, 1998.

Joakim Gustafsson:Extending Temporal Action Logic for Ramification and Concurrency, 1998.

Henrik André-Jonsson: Indexing time-series data using text indexing methods, 1999.

Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.

Carl-Johan Westin: Informationsforsorjning: en frdga om ansvar - aktiviteter och uppdrag i fem stora svens-
ka organisationers operativa informationsférsorjning, 1998.

Ase JanssonMiljghénsyn - en del i foretags styrning, 1998.

Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.

Agggrs Backstrom: Vardeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,
1 .

UIf Seigerroth: Integration av férandringsmetoder - en modell for valgrundad metodintegration, 1999.
Fredrik Oberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.

Jonas Mellin: Predictable Event Monitoring, 1998.

Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.

Bengt E W Andersson:Samverkande informationssystem mellan aktorer i offentliga ataganden - En teori om
aktdrsarenor i samverkan om utbyte av information, 1998.

Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.

Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.

Anders Ferntoft: Elektronisk affarskommunikation - kontaktkostnader och kontaktprocesser mellan kunder
och leverantérer p& producentmarknader,1999.

Jo Ska&medal:Arbete pa distans och arbetsformens paverkan pa resor och resmonster, 1999.

Johan Alvehus: Motets metaforer. En studie av berattelser om moéten, 1999.

Magnus Lindahl: Bankens villkor i laneavtal vid kreditgivning till hogt belanade foretagsforvarv: En studie
ur ett agentteoretiskt perspektiv, 2000.

Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.

Jesper AnderssoniTowards Reactive Software Architectures, 1999.

Anders Henriksson: Unique kernel diagnosis, 1999.

Par J. Agerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
Charlotte Bjorkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an
organisation, 1999.

Hakan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyraer,
2000.

Erik Berglund: Use-Oriented Documentation in Software Development, 1999.

Klas Gére: Verksamhetsférandringar i samband med IS-inférande, 1999.

Anders Subotic: Software Quality Inspection, 1999.

Svein Bergum Managerial communication in telework, 2000.

No 809
FiF-a 32

No 808
No 820
No 823
No 832
FiF-a 34

No 842
No 844
FiF-a 37
FiF-a 40
FiF-a 41
No. 854
No 863
No 881
No 882

No 890

Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.

Karin Hedstrom: Kunskapsanvandning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter
fran ett FOU-samarbete, 2000.

Linda Askenas: Affarssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.

Lars Hult: Publika Gréansytor - ett designexempel, 2000.

Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.

Goran Hultgren: Natverksinriktad Férandringsanalys - perspektiv och metoder som stéd for férstaelse och
utveckling av affarsrelationer och informationssystem, 2000.

Magnus Kald: The role of management control systems in strategic business units, 2000.

Mikael Céker: Vad kostar kunden? Modeller for intern redovisning, 2000.

Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av "knowledge management”, 2000.
Henrik Lindberg: Webbaserade affarsprocesser - Mojligheter och begransningar, 2000.

Benneth Christiansson:Att komponentbasera informationssystem - Vad séager teori och praktik?, 2000.
Ola Pettersson:Deliberation in a Mobile Robot, 2000.

Dan Lawesson Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
Johan Moe: Execution Tracing of Large Distributed Systems, 2001.

Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B
e-procurement, 2001.

Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing

Dialogue Systems, 2001.

	baksida-lic copy.pdf
	No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Ava...
	No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Rea...
	No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
	No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1...
	No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
	No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes...
	No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
	No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
	No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
	No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulat...
	No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledg...
	No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
	No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
	No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, ...
	No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Querie...
	No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
	No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of ...
	No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
	No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1...
	No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical Syst...
	No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
	No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
	No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
	No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
	No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
	No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
	No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
	No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Program...
	No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
	No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
	No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framewo...
	No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
	No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synt...
	No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
	No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
	No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
	No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
	No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
	No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented ...
	No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
	No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description:...
	No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers fro...
	No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
	No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
	No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
	No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Suppor...
	No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
	No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model...
	No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
	No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
	No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specificatio...
	No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
	No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing ...
	No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
	No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.
	No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
	No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
	No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsle...
	No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
	No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
	No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Compu...
	No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
	FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett v...
	FHS 4/94 Karin Pettersson:�Informationssystemstrukturering, ansvarsfördelning och användarinflyta...
	No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet oc...
	No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
	No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
	No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
	No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitorin...
	No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators...
	FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudi...
	No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
	No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco ...
	No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, ...
	No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framewo...
	No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
	No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
	No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggfö...
	No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
	FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
	No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning ...
	No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented a...
	No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
	No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
	No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for M...
	No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
	FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situation...
	FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala b...
	No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
	No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
	No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1...
	No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
	No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
	No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for App...
	No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
	FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av s...
	No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
	No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter fr...
	No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
	No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
	No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
	No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
	No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
	No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Module...
	No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
	No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
	No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Datab...
	No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
	No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv...
	No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.
	No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
	No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
	No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military ...
	No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
	FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
	FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstrukti...
	No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
	No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
	No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
	No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
	No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
	No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
	No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
	No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic M...
	No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
	No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
	FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet...
	No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and T...
	No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1...
	No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisn...
	No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- o...
	FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, stra...
	No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
	No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
	FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stö...
	No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och u...
	No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
	No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
	No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
	No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i...
	No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
	No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
	No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt...
	FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegr...
	FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
	No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
	No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
	FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtagande...
	No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
	No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
	No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser m...
	No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
	No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
	No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsf...
	No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
	No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
	No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
	FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodologica...
	No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge tr...
	No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra...
	No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
	No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
	No 800 Anders Subotic: Software Quality Inspection, 1999.
	No 807 Svein Bergum: Managerial communication in telework, 2000.
	No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
	FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erf...
	No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organi...
	No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
	No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
	No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
	FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för...
	No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
	No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
	FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge managem...
	FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
	FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och prak...
	No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
	No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems...
	No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
	No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B
	e-procurement, 2001.
	No 890 Annika Flycht-Eriksson: Domain Knowledge Management in Information-providing Dialogue Syst...

