Aligning and Merging Biomedical Ontologies

by

He Tan

Submitted to Linköping Institute of Technology at Linköping University in partial fulfilment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet
SE-581 83 Linköping, Sweden

Linköping 2006
Aligning and Merging Biomedical Ontologies

by

He Tan

January 2006
ISBN 91-85497-01-0
Linköping Studies in Science and Technology
Thesis No. 1225
ISSN 0280-7971
LiU-Tek-Lic-2006:6

ABSTRACT

Due to the explosion of the amount of biomedical data, knowledge and tools that are often publicly available over the Web, a number of difficulties are experienced by biomedical researchers. For instance, it is difficult to find, retrieve and integrate information that is relevant to their research tasks. Ontologies and the vision of a Semantic Web for life sciences alleviate these difficulties. In recent years many biomedical ontologies have been developed and many of these ontologies contain overlapping information. To be able to use multiple ontologies they have to be aligned or merged. A number of systems have been developed for aligning and merging ontologies and various alignment strategies are used in these systems. However, there are no general methods to support building such tools, and there exist very few evaluations of these strategies. In this thesis we give an overview of the existing systems. We propose a general framework for aligning and merging ontologies. Most existing systems can be seen as instantiations of this framework. Further, we develop SAMBO (System for Aligning and Merging Biomedical Ontologies) according to this framework. We implement different alignment strategies and their combinations, and evaluate them in terms of quality and processing time within SAMBO. We also compare SAMBO with two other systems. The work in this thesis is a first step towards a general framework that can be used for comparative evaluations of alignment strategies and their combinations.

This work has been supported by CUGS (the Swedish national graduate school in computer science), CENIIT (the Center for Industrial Information Technology) and the EU Network of Excellence REWERSE (Sixth Framework Programme project 506779).

Department of Computer and Information Science
Linköpings universitet
SE-581 83 Linköping, Sweden
Abstract

Due to the explosion of the amount of biomedical data, knowledge and tools that are often publicly available over the Web, a number of difficulties are experienced by biomedical researchers. For instance, it is difficult to find, retrieve and integrate information that is relevant to their research tasks. Ontologies and the vision of a Semantic Web for life sciences alleviate these difficulties. In recent years many biomedical ontologies have been developed and many of these ontologies contain overlapping information. To be able to use multiple ontologies they have to be aligned or merged. A number of systems have been developed for aligning and merging ontologies and various alignment strategies are used in these systems. However, there are no general methods to support building such tools, and there exist very few evaluations of these strategies. In this thesis we give an overview of the existing systems. We propose a general framework for aligning and merging ontologies. Most existing systems can be seen as instantiations of this framework. Further, we develop SAMBO (System for Aligning and Merging Biomedical Ontologies) according to this framework. We implement different alignment strategies and their combinations, and evaluate them in terms of quality and processing time within SAMBO. We also compare SAMBO with two other systems. The work in this thesis is a first step towards a general framework that can be used for comparative evaluations of alignment strategies and their combinations.
Acknowledgements

I would like to express my deepest gratitude to my supervisor Associate Professor Patrick Lamrix, who has introduced me to the research. Thank you for your invaluable guidance, discussions and comments during the work. I appreciate your support and encouragement. Your steady, reliable and attentive presence provides such comfortable work environment. I would like to express my appreciations to Professor Nahid Shahmehri for providing useful comments and pointing out important aspects of the research world.

I am thankful to my colleagues at the Laboratory for Intelligent Information Systems (IISLAB) and at the Division for Database and Information Techniques (ADIT).

Thanks to my friends. I appreciate the time we share challenges and celebrate joys of lifes. Thanks to Gunilla Sunnerud for the warmth of family you give me in the foreign land. Last but not least, I feel grateful to my parents for your understanding, support and endless love.

We acknowledge the financial support from the Center for Industrial Information Technology, the Swedish national graduate school in computer science, and of the EU Network of Excellence REWERSE (Sixth Framework Programme project 506779).

Tan, He
Linköping, Sweden
December, 2005
List of Enclosed Papers

This thesis contains the following papers:


List of Additional Papers

In addition to these papers, the research conducted in this thesis has resulted in the following related publications that are not included in the thesis. The contributions from the following publications are covered by paper 1.


Table of Contents

Introduction .................................................. 1
Motivation ....................................................... 3
Problem Statement ............................................. 4
Contributions .................................................... 6
Paper Summaries ............................................... 7
Related Work ................................................... 8
Conclusion and Future Work ................................. 9
References ....................................................... 11

Paper 1 .......................................................... 15

Paper 2 .......................................................... 47
Introduction
1 Motivation

Nowadays the sequences of genomes for many organisms from microbes to plants to humans have been completed [CMP03, FJTO03]. In the genomics research efforts in the last decade, massive quantities of data and knowledge have been generated, and an enormous number of tools for data analysis, informatics tools and other related techniques have been developed. In the post-genomic era these data, knowledge and tools are used by researchers from different areas, like biological research, clinical medicine, health, environment and agriculture, to find solutions for the challenges across the life sciences, such as, detecting systemic functional behaviors of the cell and the organism, and developing genomics-based approaches in the practice of health care [CGGG03]. To support the work of researchers techniques from areas such as data source integration, information retrieval, knowledge discovery, and decision support systems are needed [KB03, MK03]. Due to the explosion of the amount of biological data and tools, often publicly available over the Web, a number of difficulties are experienced in these areas. For instance, as discussed in [Lam05], it is difficult to locate the relevant data sources and tools which are being continuously updated, retrieve the relevant information based on the current syntax based approaches, and integrate the heterogeneous data sources. Ontologies and the vision of a Semantic Web for life sciences alleviate these difficulties [REW]. The Semantic Web can be seen as an extension of the current Web in which information is given a well defined meaning by annotating Web content with ontology terms.

Ontologies (e.g. [Gom99, Lam04]) can be seen as defining the basic concepts and relations of a domain of interest, as well as the rules for combining these concepts and relations. The benefits of the use of ontologies include reuse and sharing of knowledge across platforms, and improved maintainability, documentation, maintenance, and reliability, portability [JU99]. Ontologies are used for communication between people and organizations by providing a common terminology over a domain. They provide the basis for interoperability between systems. They can be used for making the content in information sources explicit and serve as an index to a repository of information. Further, they can be used as a basis for integration of information sources and as a query model for information sources. They also support clearly separating domain knowledge from application-based knowledge as well as validation of data sources. Overall, ontologies lead to a better understanding of a field and to more effective and efficient handling of information.
in that field.

In biomedical research the importance of ontologies has been recognized. There is much international research cooperation for the development of biomedical ontologies, e.g. Gene Ontology (GO) [GO], Open Biomedical Ontologies (OBO) [OBO], and Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) [SNOMED]. Also there are many efforts to advance the practical use of biomedical ontologies and ontology-based tools. For instance, the National Center for Biomedical Ontology [BO] was founded in October 2005, and will focus on the use of biomedical ontologies to facilitate access, review and integration of disparate knowledge resources in all aspects of biomedical investigation and clinical practice.

Although the technology is not yet mature [BMM03], a vast amount of biomedical ontologies have been created. Many of these ontologies contain overlapping information. Therefore applications often have to deal with multiple ontologies. For example, applications using their own but similar ontologies need cooperation. Application developers often link custom-specific and smaller ontologies to the standard ontologies. Applications need to use ontologies from different areas or from different views on one area. Ontology builders may use already existing ontologies as the basis for the creation of new ontologies by extending the existing ontologies or by combining knowledge from different smaller ontologies. In each of these cases, the relationships between the different ontologies need to be known. It has been accepted that defining the relationships between the different ontologies is one of the main issues in making biomedical ontologies work [NRM04], and some organizations have started to deal with it. For instance, the organization for Standards and Ontologies for Functional Genomics (SOFG) [SOFG] developed the SOFG Anatomy Entry List (SAEL) which defines cross species anatomical terms relevant to functional genomics and which can be used as an entry point to anatomical ontologies. The objective of our work involves developing tools to find these inter-ontology relationships.

2 Problem Statement

In this thesis we present our work on aligning and merging biomedical ontologies. We use the following definitions in our work.

**Aligning Ontologies** is to define the relationships between concepts or relations from two different source ontologies. The relationships can
be equivalence as well as is-a, part-of or any other kind of relation.

**Merging Ontologies** is to derive a new ontology which is a (minimal) union of two source ontologies based on the identified alignments between them.

A number of systems have been developed for aligning and merging ontologies. However, there are no general methods to support building such tools, and there exist no comparisons between these systems. Various approaches are used to discover the alignments between different ontologies in these systems and very few evaluations of these strategies exist. Also, how different strategies can be combined to produce better results, needs to be investigated. Therefore, there is a need to develop a framework that can be used to integrate different alignment strategies and evaluate them. Thus, in this work we have chosen to focus on the following problems.

1. Development of a general framework for aligning and merging ontologies. The framework can be used to integrate different alignment strategies and to evaluate the strategies and their combinations.

2. Development of an ontology aligning and merging system based on the framework.

3. Implementation and evaluation of different alignment strategies as well as their combinations using the developed system.

In the rest of this section we define the scope of our work. Ontologies can be classified into different types depending on which of the components (e.g. [SGB01]) are represented and the kind of information they can represent [Lam04]. A simple type of ontology are the **controlled vocabularies**, which are essentially lists of concepts that are enumerated explicitly. When the concepts are organized into a hierarchical structure, we obtain a taxonomy. The relations in a taxonomy can be is-a and part-of. Thesauri are more complex ontologies, in which there are also relations that connect concepts across the hierarchy. Most currently available biomedical ontologies are of these three types of ontologies. Other types of ontologies are **data models** and **knowledge bases**. In data models axioms which describe facts that are always true in topic area of the ontology, are used in addition to relations. Knowledge bases can represent the other types of ontologies and are often based
on a logic. In this thesis we focus on controlled vocabularies, taxonomies and thesauri.

The heterogeneity of ontologies may occur at different levels [Kle01]. On language level ontologies may have different representation formats, such as RDF(s) [RDF], F-Logic [KLW95] and OWL [OWL]. On terminology level, ontologies mismatch due to, for example, synonyms, homonyms and different encodings. On concept level we encounter the heterogeneity of ontologies due to different scope, granularity and perspective. On pragmatics level the discrepancy of ontologies is determined by the context related to the knowledge represented by the ontologies. The focus of the work in this thesis is to overcome the heterogeneity of ontologies on the terminology and concept levels. We also assume that the ontologies to be aligned and merged are represented in DAML+OIL [DAML] and OWL, and that these biomedical ontologies are in one context.

In the definition of aligning ontologies the relationships between concepts or relations from different ontologies can be equivalence, is-a, part-of or any other kind of relation, but in this work we only focus on identifying equivalence and is-a relations.

## 3 Contributions

The work presented in this thesis contributes to aligning and merging biomedical ontologies as follows.

1. As a first step in dealing with problem 1 stated in the previous section, we studied the existing systems for aligning ontologies and schema matching from literature and their public distributions. Some of the systems also support ontology merging. We identified the types of the various approaches used in these systems for the discovery of the alignments between the different ontologies, and investigated the procedure to perform aligning and merging ontologies in these systems. An overview of the existing ontology aligning and merging systems and the strategies they use is given in paper 1.

2. As the second step in coping with problem 1, we proposed, based on contribution 1, a general framework for aligning and merging ontologies. Most of the existing systems can be seen as an instantiations of our framework. The framework also provides support for experiment-
ing with different alignment strategies and their combinations. This contribution is found in paper 1.

3. Considering problem 2, we developed SAMBO (System for Aligning and Merging Biomedical Ontologies) according to the general framework. In SAMBO the alignment process is separated into two steps, aligning relations and aligning concepts. The user can perform the alignment manually or based on the suggestions. Suggestions are the alignment candidates proposed by the alignment strategies as well as their combinations. We implemented several different matchers that are representatives for the different types of alignment strategies in SAMBO. The strategies can be combined in different ways by giving different weights for each matcher. The user can set a threshold to filter the suggestions. After the user accomplishes the alignment process, the system can be asked to compute a merged ontology from the source ontologies and their identified alignments. Furthermore, SAMBO uses a DIG description logic reasoner (e.g. Racer [Racer] or FaCT [FaCT]) to provide a number of reasoning services. This contribution is discussed in paper 1.

4. Regarding problem 3, we evaluated different alignment strategies as well as their combinations within SAMBO. In the evaluation we focused on the quality of the suggestions. The lessons learned from the evaluation can provide recommendations for the improvement of the existing alignment strategies, the development of new alignment algorithms, and choosing the appropriate combinations. This is also the first step towards our ambition to develop a framework for comparative evaluations of different alignment strategies. This contribution is found in paper 1 and 2.

4 Paper Summaries

There are two papers enclosed in this thesis. In the following we give short summaries of the two papers.

Paper 1: SAMBO - A System for Aligning and Merging Biomedical Ontologies

In this paper we present a general framework for aligning and merging ontologies. In the framework the alignments between two source ontologies can
be determined under the supervision of the user based on the suggestions generated by various alignment strategies as well as their combinations. Further, we identify the types of alignment strategies used in the current alignment systems. We describe SAMBO which exemplifies the use of the framework. In SAMBO we implement several matchers that are representatives for the different types of alignment strategies, and also experiment with the different combinations of these matchers. We present the results of evaluations in which we compare the quality of suggestions generated by the different matchers and their combinations with different thresholds, and the amount of time they take to generate the suggestions. We also compare SAMBO with two other alignment systems with respect to the quality of suggestions. We use several well-known biomedical ontologies in the evaluations.

Paper 2: Alignment of biomedical ontologies using life science literature

In this paper we present one of our experiments on alignment strategies in SAMBO. The matchers investigated in this experiment utilize life science literature related to concepts from the source ontologies. The basic matcher uses the Bayesian learning method, and its extensions take the structure of the ontologies into account. We compare the basic matcher with its extensions, and with other alignment strategies implemented in SAMBO in terms of the quality of suggestions and the amount of time they take to generate the suggestions. We also present the results of evaluations on the different combinations of these matchers with other implemented alignment strategies.

5 Related Work

There exist many systems devoted to ontology alignment, such as PROMPT [NM03], Chimaera [MFRW00], ArtGen [MW02], FCA-Merge [SM01], OntoMapper [SYT02], GLUE [DMDH03], QOM [ES04] (FOAM), ASCO [LKG04], HCOME [KV04], IF-Map [YM03], iMapper [SHB04], and S-Match [GSY04]. Some of the systems also support merging ontologies. A number of different alignment strategies are used in these systems. An overview of the alignment strategies is given in paper 1.

Another related work is evaluations of systems for ontology alignment and merging. Up to date only three comparative evaluations of systems for ontology alignment and merging have been performed. The EU OntoWeb
project [OntoWeb] evaluated the systems iPROMPT [NM00] based on Protegé (with extension Anchor-PROMPT [NM01]), Chimaera (described, not evaluated), FCA-Merge and ODEMerge. This evaluation focused on such things as functionality, interoperability and visualization, but did not include tests on the quality of the alignment. In [LE03, LT05] PROMPT, Chimaera and a former version of SAMBO were evaluated in terms of the quality of the alignment as well as the time it takes to align ontologies with these tools. Further, an ontology alignment contest was held at EON-2004 [Euz04]. FOAM, OLA [ELTV04], SCM [HYNT04] and PROMPT participated. The main goal of the contest was to show how ontology alignment tools can be evaluated and a follow-up was planned for 2005. Other tools have not appeared in comparative evaluation studies.

6 Conclusion and Future Work

This thesis makes a contribution to an essential problem, aligning and merging ontologies, of the use of ontologies in the biomedical community. It proposes a general framework for aligning and merging ontologies, in which various different alignment strategies can be integrated. A system (SAMBO) is developed as an example of the use of the framework. A set of evaluations is performed on comparison between the alignment strategies and their combinations implemented in SAMBO, and those in other publicly available alignment systems. Although in this thesis we focus on the types of ontologies that currently are available in the biomedical domain, the work can be extended to ontologies in other domains.

In the future the work will continue towards different directions. Although a number of systems have been developed for aligning and merging ontologies, and different alignment strategies are implemented in these systems, there are few comparative evaluations of these systems and no tool is available to perform such evaluations. The main task of the future work is to develop a framework that can be used to integrate different alignment strategies and evaluate these techniques using different types of ontologies which can be from various domains. The results of the evaluations would be recommendations on which (combinations of) strategies are well suited for aligning which kinds of ontologies, and how to improve the (combinations of) alignment algorithms, or develop new alignment approaches.

Another track is to further develop SAMBO. We will improve the existing matchers, develop new alignment algorithms in SAMBO, and evaluate
them. We are working on integrating a highly interactive ontology visualization tool into SAMBO, which not only improves the user interface to visualize information, but also may lead to the development of new alignment algorithms.

The ontologies used in this work are currently available in the biomedical domain. Most of these ontologies are controlled vocabularies, taxonomies or thesauri. We will evaluate our current strategies on more complex ontologies. Also, we will investigate alignment strategies, e.g. constraint-based approaches, that take into account all kinds of information, such as axioms, that the complex ontologies provide.
References


[DAML] DAML+OIL. http://www.w3.org/Submission/2001/12/.


Introduction


[RDF] RDF. http://www.w3.org/RDF/.


Aligning and Merging Biomedical Ontologies

Due to the explosion of the amount of biomedical data, knowledge and tools that are often publicly available over the Web, a number of difficulties are experienced by biomedical researchers. For instance, it is difficult to find, retrieve and integrate information that is relevant to their research tasks. Ontologies and the vision of a Semantic Web for life sciences alleviate these difficulties. In recent years many biomedical ontologies have been developed and many of these ontologies contain overlapping information. To be able to use multiple ontologies they have to be aligned or merged. A number of systems have been developed for aligning and merging ontologies and various alignment strategies are used in these systems. However, there are no general methods to support building such tools, and there exist very few evaluations of these strategies. In this thesis we give an overview of the existing systems. We propose a general framework for aligning and merging ontologies. Most existing systems can be seen as instantiations of this framework. Further, we develop SAMBO (System for Aligning and Merging Biomedical Ontologies) according to this framework. We implement different alignment strategies and their combinations, and evaluate them in terms of quality and processing time within SAMBO. We also compare SAMBO with two other systems. The work in this thesis is a first step towards a general framework that can be used for comparative evaluations of alignment strategies and their combinations.
No 17  Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at: FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)
No 73  Ola Strömors: A Structure Editor for Documents and Programs, 1986.
No 177  Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181  Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 380  Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
| No 488 | Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based Programming, 1995. |
| FHS 8/95 | Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap och metodanalys, 1995. |
| No 538 | Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996. |
| No 546 | Magnus Werner: Multidatabase Integration using Polymorphic Queries and Views, 1996. |
| FiF-a 1/96 | Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod, 1996. |
| No 558 | Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996. |
| No 563 | Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996. |
| No 587 | Jörgen Lindström: Chefs användning av kommunikationsteknik, 1996. |
| No 589 | Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems, 1996. |
| No 591 | Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996. |


Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
Charlotte Börjekgren: Learning for the next project - Bearers and barriers in knowledge transfer within an organisation, 1999.
Svein Bergum: Managerial communication in telework, 2000.
<table>
<thead>
<tr>
<th>No</th>
<th>Author</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>810</td>
<td>Karin Hedström</td>
<td>Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter från ett FOU-samarbete</td>
<td>2000</td>
</tr>
<tr>
<td>808</td>
<td>Linda Askenäs</td>
<td>Affärsystemet - En studie om teknikens aktiva och passiva roll i en organisation</td>
<td>2000</td>
</tr>
<tr>
<td>820</td>
<td>Jean Paul Meynard</td>
<td>Control of industrial robots through high-level task programming</td>
<td>2000</td>
</tr>
<tr>
<td>823</td>
<td>Lars Hult</td>
<td>Publika Gränsytor - ett designexempel</td>
<td>2000</td>
</tr>
<tr>
<td>832</td>
<td>Paul Pop</td>
<td>Scheduling and Communication Synthesis for Distributed Real-Time Systems</td>
<td>2000</td>
</tr>
<tr>
<td>843</td>
<td>Göran Hultgren</td>
<td>Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och utveckling av affärsrelationer och informationssystem</td>
<td>2000</td>
</tr>
<tr>
<td>842</td>
<td>Magnus Kald</td>
<td>The role of management control systems in strategic business units</td>
<td>2000</td>
</tr>
<tr>
<td>844</td>
<td>Mikael Cäker</td>
<td>Vad kostar kunden? Modeller för intern redovisning</td>
<td>2000</td>
</tr>
<tr>
<td>837</td>
<td>Ewa Braf</td>
<td>Organisationsers kunskapsverksamhet - en kritisk studie av ”knowledge management”</td>
<td>2000</td>
</tr>
<tr>
<td>840</td>
<td>Henrik Lindberg</td>
<td>Webbaserade affärsprocesser - Mönster och begränsningar</td>
<td>2000</td>
</tr>
<tr>
<td>841</td>
<td>Benneth Christiansson</td>
<td>Att komponentbaserad informationssystem - Vad säger teori och praktik?</td>
<td>2000</td>
</tr>
<tr>
<td>854</td>
<td>Ola Pettersson</td>
<td>Deliberation in a Mobile Robot</td>
<td>2000</td>
</tr>
<tr>
<td>863</td>
<td>Dan Lawesson</td>
<td>Towards Behavioral Model Fault Isolation for Object Oriented Control Systems</td>
<td>2000</td>
</tr>
<tr>
<td>881</td>
<td>Johan Moe</td>
<td>Execution Tracing of Large Distributed Systems</td>
<td>2001</td>
</tr>
<tr>
<td>882</td>
<td>Yuxiao Zhao</td>
<td>XML-based Frameworks for Internet Commerce and an Implementation of B2B e-procurement</td>
<td>2001</td>
</tr>
<tr>
<td>890</td>
<td>Anna Flycht-Eriksson</td>
<td>Domain Knowledge Management in Information-providing Dialogue systems</td>
<td>2001</td>
</tr>
<tr>
<td>897</td>
<td>Per-Arne Segerkvist</td>
<td>Webbaserade imaginära organisationers samverkansformer</td>
<td>2001</td>
</tr>
<tr>
<td>894</td>
<td>Stefan Svarén</td>
<td>Styrning av investeringar i divisionerade företag - Ett koncernperspektiv</td>
<td>2001</td>
</tr>
<tr>
<td>906</td>
<td>Lin Han</td>
<td>Secure and Scalable E-Service Software Delivery</td>
<td>2001</td>
</tr>
<tr>
<td>917</td>
<td>Emma Hansson</td>
<td>Optionsprogram för anställda - en studie av svenska bostäskompanier</td>
<td>2001</td>
</tr>
<tr>
<td>916</td>
<td>Susanne Odar</td>
<td>IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet som stöd för beslut om anskaffning av JAS 1982</td>
<td>2002</td>
</tr>
<tr>
<td>949</td>
<td>Stefan Holgersson</td>
<td>IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och beslutsfattande som bygger på uppgifter hämtade från polisens IT-system</td>
<td>2001</td>
</tr>
<tr>
<td>951</td>
<td>Per Oscarsson</td>
<td>Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av informationssäkerhet och dess hantering</td>
<td>2001</td>
</tr>
<tr>
<td>915</td>
<td>Niklas Sandell</td>
<td>Redovisning i skuggan av en bankkris - Värdering av fastigheter</td>
<td>2001</td>
</tr>
<tr>
<td>931</td>
<td>Fredrik Elg</td>
<td>Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala modeller, mål och konfidenti i kontroll av mikrovärlden Moro</td>
<td>2002</td>
</tr>
<tr>
<td>933</td>
<td>Peter Aroonsson</td>
<td>Automatic Parallelization of Simulation Code from Equation Based Simulation Languages</td>
<td>2002</td>
</tr>
<tr>
<td>938</td>
<td>Bourhane Kadmiry</td>
<td>Fuzzy Control of Unmanned Helicopter</td>
<td>2002</td>
</tr>
<tr>
<td>942</td>
<td>Patrik Haslum</td>
<td>Prediction as a Knowledge Representation Problem: A Case Study in Model Design</td>
<td>2002</td>
</tr>
<tr>
<td>956</td>
<td>Robert Sevenius</td>
<td>On the instruments of governance - A law &amp; economics study of capital instruments in limited liability companies</td>
<td>2002</td>
</tr>
<tr>
<td>958</td>
<td>Johan Petersson</td>
<td>Lokala elektroniska marknadspalatser - informationssystem för platsbundna affärer</td>
<td>2002</td>
</tr>
<tr>
<td>964</td>
<td>Peter Bunus</td>
<td>Debugging and Structural Analysis of Declarative Equation-Based Languages</td>
<td>2002</td>
</tr>
<tr>
<td>973</td>
<td>Gert Jervan</td>
<td>High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems</td>
<td>2002</td>
</tr>
<tr>
<td>958</td>
<td>Fredrika Berglund</td>
<td>Management Control and Strategy - a Case Study of Pharmaceutical Drug Development</td>
<td>2002</td>
</tr>
<tr>
<td>985</td>
<td>Sorin Manolache</td>
<td>Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times</td>
<td>2002</td>
</tr>
<tr>
<td>982</td>
<td>Diana Szentiványi</td>
<td>Performance and Availability Trade-offs in Fault-Tolerant Middleware</td>
<td>2002</td>
</tr>
<tr>
<td>989</td>
<td>Jakov Nakhimenoski</td>
<td>Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems</td>
<td>2002</td>
</tr>
<tr>
<td>990</td>
<td>Levon Saldamali</td>
<td>PDEModelica - Towards a High-Level Language for Modeling with Partial Differential Equations</td>
<td>2002</td>
</tr>
<tr>
<td>991</td>
<td>Almut Herzog</td>
<td>Secure Execution Environment for Java Electronic Services</td>
<td>2002</td>
</tr>
<tr>
<td>999</td>
<td>Jon Edvardsson</td>
<td>Contributions to Program- and Specification-based Test Data Generation</td>
<td>2002</td>
</tr>
<tr>
<td>1000</td>
<td>Anders Arpteg</td>
<td>Adaptive Semi-structured Information Extraction</td>
<td>2002</td>
</tr>
<tr>
<td>1001</td>
<td>Andrzej Bednarzski</td>
<td>A Dynamic Programming Approach to Optimal Retargetable Code Generation for Irregular Architectures</td>
<td>2002</td>
</tr>
<tr>
<td>988</td>
<td>Mattias Arvola</td>
<td>Good to use! : Use quality of multi-user applications in the home</td>
<td>2003</td>
</tr>
<tr>
<td>1008</td>
<td>Jens Gustavsson</td>
<td>Towards Unanticipated Runtime Software Evolution</td>
<td>2003</td>
</tr>
<tr>
<td>1010</td>
<td>Calin Curescu</td>
<td>Adaptive QoS-aware Resource Allocation for Wireless Networks</td>
<td>2003</td>
</tr>
<tr>
<td>1018</td>
<td>Björn Johansson</td>
<td>Feedforward Control in Dynamic Situations</td>
<td>2003</td>
</tr>
<tr>
<td>1022</td>
<td>Traian Pop</td>
<td>Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded Systems</td>
<td>2003</td>
</tr>
<tr>
<td>1025</td>
<td>Britt-Marie Johansson</td>
<td>Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i affärstransaktioner</td>
<td>2003</td>
</tr>
<tr>
<td>1024</td>
<td>Aleksandra Tesanovic</td>
<td>Towards Aspectual Component-Based Real-Time System Development</td>
<td>2003</td>
</tr>
</tbody>
</table>


Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region, 2004.


Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.


Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.

Abdill Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.


Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of educational technology, 2005.


David Dinka: Role and Identity - Experience of technology in professional settings, 2005.

Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting Data, 2005.


Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered Approach, 2005


Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett landsting, 2005.

He Tan: Aligning and Merging Biomedical Ontologies, 2006.