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Abstract 

 

The development process for new aircraft configurations needs to be more efficient in terms 
of performance, cost and time to market. The potential to influence these factors is highest in 
early design phases. Thus, high confidence must be established in the product earlier than 
today. To accomplish this, the concept of virtual product development needs to be 
established. This implies having a mathematical representation of the product and its 
associated properties and functions, often obtained through numerical simulations. Building 
confidence in the product early in the development process through simulations postpones 
expensive testing and verification to later development stages when the design is more 
mature. 

To use this in aerodynamic design will mean introducing more advanced physical modelling 
of the flow as well as significantly reducing the turn around time for flow solutions.  

This work describes the benefit of using parallel computers for flow simulations in the 
aircraft design process. Reduced turn around time for flow simulations is a prerequisite for 
non-linear flow modelling in early design stages and a condition for introducing high-end 
turbulence models and unsteady simulations in later stages of the aircraft design process. The 
outcome also demonstrates the importance of bridging the gap between the research 
community and industrial applications. 

The computer platforms are very important to reduce the turn around time for flow 
simulations. With the recent popularity of Linux–clusters it is now possible to design cost 
efficient systems for a specific application. Two flow solvers are investigated for parallel 
performance on various clusters.  Hardware and software factors influencing the efficiency 
are analyzed and recommendations are made for cost efficiency and peak performance. 
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1 Introduction 

Computational Fluid Dynamics (CFD) is the science of generating numerical solutions to a 
system of partial differential equations which describe fluid flow. CFD is done with discrete 
methods and the purpose is to better understand qualitative and quantitative physical 
phenomena in the flow which then is often used to improve upon engineering design. CFD 
brings together a number of different traditional disciplines: fluid dynamics, the mathematical 
theory of partial differential systems, computational geometry, numerical analysis and 
computer science. 

The current challenges in the aerospace field are to offer products that are both better in 
performance and also faster and cheaper to produce. Thus the current business market forces 
aircraft designers towards risk minimization and a definitive reduction in cost and time to 
market [1]. The possibility to influence life cycle cost is largest in the early design stages. 
This means that the confidence in the design must increase in the early phases compared to 
today. Introducing high fidelity simulations early in the design process will facilitate this if 
the turn around time requirement can be met.  In early phases the allowable time frame to 
conduct flow simulations is very limited, in extreme cases in the order of minutes. Also in 
later design stages there is a need to reduce the total simulation wall time to allow for more 
advanced physical modelling or increased resolution that due to computational cost not are 
feasible today.  

A recent example from Airbus with the development of the A380 wing illustrates the 
challenges. The wing design required the computer simulations of over 800 design proposals 
for which the computer analyses were carried out over a period of two years. To reduce this 
to 3 months, as the market may demand for a future aircraft of even more complexity, will 
require at least an order of magnitude increase in design efficiency and productivity.  

A significant reduction in turn around time of a design can be accomplished by carrying out 
the design activities simultaneously in each discipline using simulation and optimization 
tools. This work is usually carried out in groups working in close cooperation. To accomplish 
this, a mathematical model of the product is needed. This concept of using a high fidelity 
mathematical/numerical representation of the physical properties and the functions of the 
product is often called a virtual product (VP). Critical to the success of the VP is the 
capability for rapid generation of high fidelity information from all disciplines, which recent 
advances in information technologies and high performance computer systems now have 
enabled. Figure 1 presents a vision of what the VP offers to aircraft design. Using the VP 
generates more and better knowledge about the design during the earlier design phases 
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resulting in an improved final design because the fidelity of the design is higher and available 
earlier in the process. This will eventually reduce the number of design cycles, the 
development risks, the number of flight tests, the cost and time to market. 

 
Figure 1 Illustration of the benefit of the virtual product in aircraft design, namely 
higher fidelity in the design earlier in the cycle. 

The development of the Dassault FALCON F7X business jet [2] presents a similar picture as 
the A380 wing development. The use of the VP concept in the development process has 
increased compared with previous designs and computer simulations and optimizations are 
routinely used. However, the aerodynamic design still represents a significant part of the time 
to market and a significant reduction is expected to the next generation business jet. For the 
FALCON F7X aerodynamic design more than 500 3D (three-dimensional) full aircraft 
Navier–Stokes calculations were performed. Key factors in the analysis process were rapid 
unstructured mesh generation and efficient flow solvers on parallel computers that allowed 
for data generation of a complete polar in a matter of days. To further reduce the 
development time improvements are needed both in the physical modelling capability and 
flow solver turn around time. 

The necessity of high fidelity modelling in the design process is often conflicting with the 
requirement of short turn around time. A balance between modelling requirement and turn 
around time limitation needs to be established at every phase in the design cycle. A way to 
reduce the turn around time is to use powerful parallel computer systems. Traditionally, 
supercomputer resources have been equivalent with large cost and therefore not widespread 
in industry. This started to change in the late 1990s when PC–cluster with Linux, so called 
Beowulf systems, became popular. Larger and application specific computer systems are now 
designed using cheap commodity components. When designing a PC–cluster for a specific 
application several design choices have to be made. The selection of computer node 
configuration and interconnecting network are major factors influencing the parallel 
performance. Making the better choices will provide improved performance of the flow 
solver and thereby offering a chance to improve the modelling capability or reducing the turn 
around time.  
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2 Aims 

The aim of this study is to increase the confidence in the aerodynamic design by extending 
the flow modelling capability in the design process. 

This is done following two paths: 

o Improving the confidence in the simulations by introducing an explicit algebraic 
Reynolds stress model for aircraft design applications. 

o Investigation of the factors influencing the flow solver efficiency on parallel computers.  

Methods and tools must reach a level of maturity before they are allowed to enter the aircraft 
design process. This means that the leading edge of modelling technology in the design 
process will differ from what it the leading edge in the research community. Technologies 
being developed at universities and research establishments will often require some years of 
refinement and tuning before they are validated and acknowledged to enter the design 
process.  

This study covers a period when much of the aerospace industry introduced a new generation 
of flow solvers based on unstructured grids. This shift in methodology is mainly governed by 
the turn around time requirements for the complete CFD solution process, not only the raw 
performance of computers and flow solvers. This is an important industrial aspect of 
modelling capability – the ability to deliver reliable results in a limited time frame. 
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3 The role of CFD in aircraft design 

3.1 DESIGN ENVIRONMENT 

The design of aircraft is an extremely interdisciplinary activity involving numerous 
engineering disciplines. The design task is to achieve an optimal integration of all 
components into an efficient, robust and reliable aircraft with high performance that can be 
manufactured with low technical and economical risk at an affordable cost over the whole 
lifetime of the aircraft. The aircraft design process is in general divided into three phases 
which tend to overlap in a staggered fashion. This is elaborated in more details in [3] with 
focus on aerodynamic design. 

In the conceptual design phase the aircraft is defined at a system level. Many variants are 
studied, and the design selected is the one that bests fulfils the specifications of the market or 
a customer.  

In the preliminary design phase the tentatively selected concept is refined until feasibility is 
established, i.e. extensive array of design sensitivities are generated, design margins, etc. 
About two–thirds of the way through this phase, the concept is frozen and no major changes 
are expected thereafter unless serious problems arise.  

The final phase is the detailed design phase in which details of the product are elaborated, 
optimizations are made and data sets are generated.  

A large variety of aerodynamic tools are used in each phase of the design process, including 
empirical/handbook methods, wind tunnel testing, flight testing and numerical simulation and 
optimization tools. In general, low fidelity tools are supposed to be used in the conceptual 
design phase where many alternatives are to be analyzed in a short period, while high fidelity 
tools are used in the other design phases since the concept evolves to an acceptable level of 
maturity. The term fidelity refers to the representation of the aircraft geometry and of the 
physical modelling.  

To locate the role of CFD in the design process and the relationship to the computing 
platform different levels of functionality of the integrated design process is described in 
Figure 2. 
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Figure 2 Functionality of four layers of integrated interdisciplinary aircraft design. 

At the highest level, the integrated design environment, the disciplines of aerodynamics, 
structures, flight mechanics and flight control etc. all interact through a product data 
management system (PDM) to determine the configuration and characteristics of the aircraft. 
The second layer focuses on aerodynamics where CFD simulations are playing an 
increasingly important role in design.  The CFD solution process in the third layer covers the 
geometry modelling, the grid generation, flow solver and data visualization. On the level of 
the flow solver the designer selects the physical model for the CFD simulation according to 
the design stage, ranging from conceptual to detailed design. A suitable balance must be 
found between solution accuracy and turn around time. This covers both the physical 
modelling as well as the mesh resolution. The turn around time is also influenced by the 
solver efficiency which depends strongly on the relationship between the computer 
implementation and the computing platform. 
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Within the integrated design environment the different disciplines run their design processes 
concurrently with interfaces to each other via the common PDM system. This is described in 
the flow chart in Figure 3. The process covers all the design phases and a number of iterations 
are performed to improve and optimize the design. In the conceptual design phase much of 
the analysis is performed with handbook methods or panel methods while nonlinear methods 
(Euler and Navier–Stokes) are usually employed in later stages. Szodruch [4] presents a 
similar example of the aerodynamic wing design that illustrates the process used at Airbus.  

 
 
Figure 3 Integrated and concurrent aerodynamic wing design. 
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o Significantly increase of available computer resources. 

o Development of efficient numerical algorithms. 

o Enhancements in physical modelling. 

Several authors have reviewed aspects of these developments extensively; see for recent 
examples [5, 6, 7]. Here only a brief summary is given to set the stage of the current use of 
CFD in aircraft design.  

In the 1960s and early 1970s CFD in aircraft design consisted of simplified (linear) models, 
i.e. the Laplace or the Prandtl–Glauert equations solved mainly by panel methods. Panel 
methods are still widely used in early stages in the design cycle. 

The panel methods were refined during the 1970s to include coupling to boundary layer 
methods. Nonlinear compressible formulations were also developed to treat transonic flows 
with shocks. One example of this class is the TRANAIR [8] code that after several 
generations of evolution now includes multipoint design optimization accounting for 
geometry constraints and off design optimization. 

CFD is one of the major computationally demanding disciplines and the CFD community has 
always been early adopters of new technologies in high performance computing (HPC).  
Technology leaps in HPC have often enabled stepwise improvements in flow modelling 
capability. New computer systems are often designed and evaluated based on CFD 
workloads. One example is the NAS benchmark [9] that tries to mimic the computation and 
data movement characteristics of large scale CFD applications. 

A good example showing the importance of technology breakthrough in HPC for flow 
modelling is the era of vector computers.  It started with the Cray–1 in 1976 and dominated 
the supercomputer scene for two decades. A significant increase in computational capacity 
became available, e.g. the peak performance of the Cray–1 was 160 megaflops which can be 
compared to the performance of a desktop computer more than 30 years later. This increase 
made it feasible introducing nonlinear methods for complex flows. The first Euler research 
codes for aircraft design appeared in the early 1980s [10] and later that decade they were 
introduced in the aircraft design environment. These were applied mainly for steady 
aerodynamics while panel methods were extended to handle unsteady problems. 

By the end of the 1980s parallel computers further increased the computational capacity. 
Massively parallel architectures were seen as a very promising way to solve realistic flow 
problems with an acceptable turn around time. Among other developments, parallel 
processing opened up for a shift from Euler simulations to Navier–Stokes simulations for 
steady flows and applying Euler simulations for unsteady flows. In the beginning parallel 
computers, e.g. CM–1 from Thinking Machine, were complicated to program. The 
programming environment was underdeveloped and it was hard to make full use of the 
hardware. Progress was made in the following years and parallel computers as the distributed 
memory machines Cray T3D/T3E and IBM SP–2 and shared memory multiprocessor 
machines, from e.g. SGI, made parallel computing more widely spread during the mid 1990s. 
This period also saw a standardization of parallelization techniques, with message passing 
libraries as PVM (Parallel Virtual Machine) [11] and MPI (Message Passing Interface) [12] 
and shared memory parallelization by OpenMP [13]. 
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The development of Beowulf clusters, collection of PCs or workstations connected with an 
internal network, started as a research project in 1993 [14] and entered the supercomputing 
scene in the late 1990s. Based on commodity components and open source software it has 
proved to deliver very cost–efficient HPC capacity. The development of Beowulf clusters has 
made HPC resources available to a wider community. It was early regarded as a poor mans 
supercomputer but with the high–end components now available on the market many clusters 
are at the leading edge of supercomputers all categories. 

Since the mid 1990s efforts are underway to incorporate the extensive and existing body of 
CFD knowledge fully into methods and routines used in aircraft design as described by 
several organizations [15, 16, 17, 18, 19]. For a flow simulation tool to be of practical use in 
the industry several essential qualities have to be met [5, 20]: 

o Assured accuracy in the sense that the engineer has confidence in the results. 

o Acceptable cost in terms of both computer run times, including setup and turn around, 
and human effort to learn the skills to run the code. 

o Robustness so that it can be run by a non specialist. 

o Sufficient generality in the data structures and objects allowing future code 
modifications, refinements and developments. 

These four factors are tightly inter–related, e.g. if higher accuracy is demanded, the cost goes 
up and the robustness of the computation may diminish. Thus a balance must be found and 
this is the task of the engineer to decide on the trade–offs. 
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4 Numerical method 

4.1 BASIC SOLVER TECHNIQUE 

In this study two different flow solvers are used; the block structured solver Multnas and the 
hybrid grid solver Edge. Both solve the compressible Navier–Stokes equations. Multnas uses 
structured multi block meshes and Edge uses meshes with arbitrary elements. The solvers 
represent two different generations of solvers in the aircraft industry.  

The development of Multnas started at Saab in the late 1980s as a single block Euler solver 
following the concept presented by Jameson [10, 21]. The basic features at this stage were 
cell centred finite volume discretization with added artificial dissipation of blended 2nd and 
4th order, explicit time integration with multistage Runge–Kutta scheme using local time 
steps. Following a number of research contracts with the European Space Agency (ESA) and 
the European Commission (AVTAC project [16]) during the 1990s the code developed and 
matured into an efficient multi block viscous flow solver applicable in a wide range of areas 
in aerospace design and flow analysis. Several of the applications that spurred the 
development of Multnas are connected to the space plane research conducted in Europe 
during the 1990s. In 1992, one of the early laminar Navier–Stokes simulations in Europe with 
a mesh size exceeding one million points was performed on the HERMES space plane to 
study the heating rate on the windshields at re–entry [22]. The following space plane 
applications introduced enhanced physical modelling in the code, e.g. a k–τ model, direct 
surface radiation effects and a two–component gas model [23, 24]. The turbulence model 
range was extended with k-ε and k-ω models and further improved in the 1999 with an 
EARSM [I, 25]. To accelerate the convergence to steady state multi grid was introduced 
using a V–cycle of the FAS algorithm. Introduction of implicit residual smoothing and mixed 
explicit–implicit residual smoothing enhanced the convergence rate even further. 
Implementation details are found in [26, 27, 28].  In 2000 the development of Multnas 
discontinued in favour of the Edge [29] code from the Swedish Defence Research Agency 
(FOI). An overview of the code features is presented in table 1.  

The Edge solver has an edge–based formulation that makes it possible to compute on any 
type of mesh; structured, unstructured or hybrid. Despite the difference in computational 
meshes both codes share the same basic features. Edge also uses a finite volume approach to 
approximate the flow equations on the computational mesh. The spatial discretization is done 
either with a cell centred scheme with added artificial dissipation or an upwind scheme, all 
second order accurate. The flow equations are integrated forward in time using a Runge–
Kutta method until the time derivatives are sufficiently small and consequently close to a 
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steady state solution. The convergence to steady state is accelerated by an agglomeration 
multi grid method, where the solutions on a sequence of coarser meshes are combined to 
improve the convergence rate on the finest mesh level. Several physical models are available 
to simulate the flow: inviscid flow, laminar, turbulent and LES (Large Eddy Simulations). 
Time dependent simulations are done using a dual time stepping algorithm.  

Table 1 Summary of features in Multnas and Edge 

Code Multnas Edge 

Domain 
discretization 

Structured multi block with 
block wise grid refinement/ 
coarsening 

Hybrid grids, dual grid technique, 
edge based data structure, local grid 
refinement, ALE, moving and 
deforming grids, rotating frame 

Space 
discretization 

Central differencing + 
scalar/matrix artificial 
dissipation, upwind CUSP, 
Roe 

Central differencing + artificial 
dissipation, Roe type upwind scheme 
(second order with TVD limiters) 

Physical 
modelling 

2-eq. turb. models(k-ε, k-ω), 
EARSM, fixed transition on 
arbitrary lines, equilibrium air 
chemistry, 2-component gas 
model, engine inlet/outlet and 
propeller disc B.C. 

1-eq. model S-A, 2-eq turbulence 
models (k-ω, SST), EARSM, RSM, 
DES, LES, transition on arbitrary 
lines, equilibrium air chemistry, 
multi species gas model, propeller 
disc B.C. 

Steady state 
driver 

Explicit Runge-Kutta, 
GMRES, Implicit-explicit 
residual smoothing, multi grid 

Explicit Runge-Kutta with 
agglomeration multi grid, implicit 
residual smoothing, preconditioner 
for low speed flows 

Time accurate 
scheme 

Explicit Runge-Kutta Dual time stepping, Explicit Runge-
Kutta 

Computer 
implementation 

Developed for vector 
computers, optimized for RISC 
architecture, fully parallel 
SPMD paradigm with PVM 

Developed for vector computers, 
optimized for RISC computers, 
parallelized by domain 
decomposition and message passing 
with MPI 

Special features  Modal aero elastics, GUI 

4.2 FLOW MODELLING 

The compressible Navier–Stokes equations represent the flow of air around airplanes very 
well. Close to most surfaces the flow is turbulent with many different scales in space and 
time. Because of insufficient memory capacity and computational speed of available 
computers today, not all scales can be resolved in the direct numerical solution of the Navier–
Stokes equations, except for low Reynolds numbers and simple geometries. Instead are the 
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Reynolds averaged Navier–Stokes (RANS) equations solved and the influence of turbulence 
must be modeled. The main categories of turbulence models are briefly presented below. 

Algebraic models (zero–equation): The simplest of all turbulence models are described as 
algebraic. These models use the Boussinesq eddy-viscosity approximation to compute the 
Reynolds stress tensor as the product of an eddy viscosity and the mean strain rate tensor 
(also true for one–, and two–equation models). For computational simplicity the eddy 
viscosity is often computed in terms of a mixing length that is analogous to the mean free 
path in a gas. In contrast to the molecular viscosity, which is an intrinsic property of the flow, 
the eddy viscosity depends on the flow. Because of this, the eddy viscosity and mixing length 
must be specified in advance, most simply, by an algebraic relation between eddy viscosity 
and length scales of the mean flow. A well known representative in this category is the 
Baldwin–Lomax model [30], which has been extensively used in aircraft design because of 
its robustness and efficiency. Algebraic models are still competitive but limited to attached 
flow or slightly separated flows.  

One–equation models: To improve the ability to predict properties of turbulent flow and to 
develop a more realistic mathematical description of the turbulent stresses Prandtl [31] 
postulated a model in which the eddy viscosity depends upon the kinetic energy of the 
turbulent fluctuations. This improvement, on a conceptual level, takes account of the fact that 
the turbulent stresses, and thus the eddy viscosity, are affected by where the flow has been, 
i.e. upon the flow history. One-equation models solve a transport equation for the turbulent 
viscosity or a related quantity. A recent model in this category is Spalart–Allmaras [32] that 
has become popular among design engineers due to its easy implementation and robustness. 

Two–equation models: The next level of modelling complexity is the class of two–equation 
eddy–viscosity models where two transport equations are solved. A quantity is introduced to 
model the length scale – or rather a related variable – in addition to the turbulent kinetic 
energy. Some of the better known models are the k–ε model of Lauder–Sharma, the k–ε 
model of Chien and the Wilcox k–ω model [33]. From an industrial point of view they are 
considered a suitable compromise between robustness, efficiency and validity. In the aircraft 
industry the Wilcox k–ω model and further improvements [34] has become very popular in 
the last years. Primarily due to its numerical robustness and that it does not need any wall 
distance information, which can be cumbersome to compute for complex 3D configurations.  

A limitation of the two–equation models is that the eddy viscosity is isentropic according the 
Boussinesq approximation, which assumes a direct proportionality between the turbulent 
stresses and the mean strain rate. The anisotropy in the turbulence is however important, 
especially in separated and highly 3D flows. 

Reynolds Stress models: The natural step beyond the eddy–viscosity framework is second 
moment closure, i.e. a model consisting of transport equations for all Reynolds stresses. A 
drawback of second moment closure is its mathematical complexity, and arising from this, 
numerical difficulties and higher computational cost. In 3D flows, the model consists of six 
highly coupled, non–linear, partial differential equations and one for the rate of turbulence 
dissipation. The complexities associated with second–moment closures have prevented a 
broader use in the aircraft sector and motivated efforts to construct simpler models that retain 
the principal advantage of the former over the linear eddy–viscosity models. These have led 
to the formulation of a whole range of non–linear eddy–viscosity and explicit algebraic 
Reynolds stress models, both consisting of sets of explicit algebraic relations for the stresses 
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in terms of strain. These models are not as fundamentally firm as the second–moment 
closure, but easier to implement and cheaper to apply. For aeronautical flows the models 
proposed by Wallin–Johansson [35] and Gatski–Speziale [36] among others have become 
popular. They depend on two turbulence scales, e.g. k and ω, thereby inheriting the numerical 
behaviour of the underlying two–equation model and are only slightly more expensive.  

Many of the flow phenomena in aircraft design are unsteady as e.g. dynamic stall, transonic 
buffet and flutter. This is usually modelled by solving the unsteady RANS equations with 
turbulence models used for steady state computations. The limitation of the RANS approach 
restricts the success with e.g. flow containing larger separated regions. Unsteady massively 
separated flows are characterized by geometry–dependent 3D turbulent eddies, which 
unsteady RANS may or may not be able to reproduce. A more natural choice would be large–
eddy simulation (LES) where the unsteady Navier–Stokes equations are solved on a mesh 
resolving the larger eddies and model only the smaller. However, treating turbulence other 
than with the Reynolds–averaged (RANS) approach is beyond the near future because of the 
magnitude of scales that would have to be resolved for the high–Reynolds number flow 
around an aircraft [5]. The computational cost for LES are several orders of magnitude larger 
than of a RANS calculation, and it is not expected that LES will be used on a routine basis in 
aircraft design in the next 10 years.  

To overcome the deficiencies of RANS models for predicting massively separated flows, 
Spalart [37] proposed detached–eddy simulation (DES) with the objective of developing a 
numerically feasible and accurate approach combining the most favourable elements of 
RANS and LES. The primary advantage of DES is that it can be applied at high Reynolds 
numbers as can Reynolds–averaged techniques, but it also resolves geometry–dependent, 
unsteady 3D turbulent motions as in LES.  

A comprehensive survey on turbulence modelling for aeronautical applications is compiled 
by Leschziner [38]. It discusses all important model categories with emphasis on the 
underlying principles for modelling of aerodynamic flows. The performance of the models is 
reviewed from several validation studies undertaken the last two decades.  

In military aircraft design where vortex flow is a dominating flow phenomenon Euler 
methods are still heavily used. These are a cost–efficient alternative for cases where the 
viscous effects are small. 

4.3 COMPUTATIONAL MODELS 

Numerical prediction of the flow around a body requires generation of  a computational 
model (mesh). The computational mesh is a discretization of the body and a sufficiently large 
part of the surrounding volume. Various methods can be used to generate the mesh. The 
meshes are commonly grouped into structured and unstructured according to the generation 
method.  

In structured meshes the nodes are ordered in a structured way. For most applications the 
structured meshes are multi block. That means that the mesh consists of several structured 
parts or blocks that are connected to each other to form the complete model. Usually there is 
a 1–1 correspondence of the nodes at the block interfaces but overlapping grids (also called 
overset or Chimera) and block wise refined (AMR, Adaptive Mesh Refinement) grids are 
also available. A structured mesh is presented in Figure 4 (left) around the RAE 2822 profile. 
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The high resolution in the normal direction close to the profile is to resolve the boundary 
layer in viscous flow. 

In unstructured meshes the nodes are not ordered in a specific sequence, see Figure 4 (right) 
for a picture of a triangular mesh for inviscid flow around the RAE 2822 profile. The nodes 
are connected to each other to form different types of elements. Unstructured meshes can be 
either of single element type or mixed element type. Inviscid 3D models are usually made up 
of tetrahedral elements but hexahedral elements are also found. Models for viscous flow are 
often of mixed element type, called hybrid meshes. In regions close to solid surfaces the 
boundary layer must be resolved and this is usually done with prismatic elements in 3D.  

 
Figure 4 Example of structured (left) and unstructured(triangular) (right) mesh around 
the RAE 2822 airfoil. 

Flow solvers for multi block meshes are restricted to that type of mesh. Flow solvers for 
unstructured meshes can generally handle multiple types of elements and specifically can 
structured meshes be expressed in an unstructured format. 

Mesh generation is today often performed with commercial software packages, e.g. ICEM 
CFD or Gridgen, tightly coupled with CAD models. In the 1990s structured multi block 
meshes dominated in aircraft applications and for airline configurations they are still popular. 
Generating a multi block mesh for a complex 3D geometry is however still a challenging task 
that requires extensive experience. Figure 5 presents a view of the block topology for a 
(simple) wing-body configuration. The left picture gives the overall view with a close-up of 
the near surface region to the right. The layout with multiple blocks close to the wing-body 
surface is to ensure high grid quality in that sensitive region.  

In the late 1990s unstructured grid technology progressed and many codes for solution of the 
Euler and Navier–Stokes equations are today based on unstructured or hybrid meshes. The 
shift is explained by maturing mesh generation and flow solution techniques, especially for 
viscous flows around complex geometries [18, 39]. From an industrial point of view the most 
important factor is the turn around time. By using unstructured/hybrid meshes instead of 
structured multi block meshes the generation task can be significantly reduced in time. The 
further automated process using unstructured meshes also reduces the long learning curve 
experienced with the structured multi block approach. 
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Figure 5 Example of a block topology around a wing–body configuration, overview to 
the left and a close–up to the right. 

4.4 PARALLELIZATION  

Explicit flow solvers as Multnas and Edge, presented in section 4.1, are well suited for 
parallelization on distributed memory architectures by using domain decomposition. The 
computational mesh is partitioned into a number of domains each one containing a number of 
cells. Each processor executes its own copy of the program and operates on its own domain 
of the computational mesh. This is often referred to as the single program, multiple data 
(SPMD) paradigm. The cells on a domain boundary need data from the neighbours in an 
adjacent domain. These data must be transferred between the processors over the network. In 
every iteration many floating point operations are needed to update the solution in the cells 
inside the domain and only data at the boundary are sent via the network. Keeping the 
quotient between computational and communication time high will give good parallel 
performance. 

A message passing system is needed for the data transfer between the processors. In Multnas  
is PVM implemented. It was the most widely used system at the time of parallelization 
(1994).  In PVM, the programmer has to implement the synchronization of the iteration and 
the send and receive statements for communication between the processors explicitly in the 
code. This is rather straightforward and only handful subroutines are affected. Further details 
on the parallel implementation are found in [28, 40, 41, 42]. 

The Edge code development started the late 1990s and the parallelization was done with MPI 
as the communication system. The implementation is performed in a similar way as the 
PVM–implementation in Multnas. Synchronization of the iterations process and the send and 
receive of data packages are explicitly implemented via subroutine calls. One difference 
between the implementations is that each processor in the parallel Edge implementation reads 
and writes its own data files. This speeds up the reading and writing compared to the Multnas 
implementation where one of the processors performs all the external data handling.  

The communication pattern between the processors is predetermined at run–time following 
the domain decomposition. Communication is accomplished by packing data from all 
boundary cells on a given processor destined to an adjacent processor into a buffer that is sent 
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as a single message. This standard approach to the inter–processor communication has the 
effect of reducing latency overheads by creating fewer and larger messages.  

4.5 LOAD BALANCING  

For parallel efficiency it is crucial that processors are equally busy with local computations 
and that the overall communication is kept to a minimum and distributed evenly between the 
processors.  For explicit solvers, as used in this study, the amount of computational work per 
cell is roughly constant throughout the iteration process. A good load balance can therefore 
be achieved by mapping approximately the same amount of computational cells to each 
processor.  

For unstructured meshes this is usually done with a graph partitioner, as the public domain 
software Metis [43]. In the parallel Edge implementation the same processor operates on all 
multi grid levels of a partition. The domain decomposition is performed only on the finest 
grid level. Control volumes on coarser levels are assigned to the partition that contains the 
largest part of each individual control volume. This minimizes the communication between 
processors when changing grid level but may lead to load imbalance on coarser grid levels. 
An alternative is to perform domain decomposition on each grid level separately. This will 
increase the amount of communication when changing grid level but will guarantee a better 
load balance also on coarser grids levels. This is further elaborated in [44].  

When using structured meshes the block topology and connectivity must be taken into 
account which prevents an arbitrary splitting of the mesh. A heuristic algorithm is devised for 
the load balancing in Multnas, see [28] for details. It distributes the blocks into domains 
based on an analysis of the computational and communication time before the iterations start 
for efficient use of the computer. Sometimes it is not possible to obtain a good balance with 
the original sizes of the blocks. Then it is necessary to split some of the blocks and re–
compute the load distribution to see if a more satisfactory solution has been found.  To keep 
the quotient between computation time and communication time large, as few blocks as 
possible should be split. When a block has been selected for splitting it is divided in the 
middle of the longest edge, so the two new blocks introduce as little extra communication as 
possible. There is no guarantee that the algorithm finds the optimal solution. It will however 
produce an acceptable load balance even though based on a simple communication model 
with the advantage of being computationally inexpensive. 

4.6 EXAMPLES OF CURRENT AIRCRAFT APPLICATIONS 

Most of the European Navier–Stokes solvers used in aircraft design are based on similar 
principles as Multnas and Edge. They are generally optimized for parallel platforms by 
domain decomposition for execution on distributed memory systems. A comprehensive 
survey of European Navier–Stokes solvers in aircraft design is compiled by Vos et al [3]. It 
also covers the present range of applications in the European aircraft industry, illustrating the 
current status in physical and numerical modelling. In the U.S there are several codes used in 
the aerospace sector. Some of the major codes are the overset block structured WIND [45], 
the unstructured USM3D [46], Cobalt [47] and NSU3D [48].  

In the transport aircraft industry Navier–Stokes solvers are daily used in the design process. 
Turbulence is usually modeled by one–equation models but a shift to two–equation models or 
even EARSM is underway. Typical mesh size is in the order of 5–10 million points for a 
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wing–body–pylon–nacelle configuration and in the order of 10–20 million points for a high–
lift configuration. For a realistic flow analysis using a high–lift configuration of the Boeing 
777–200 a grid size of 22.4 million points is reported [49].  

Obviously, the current state–of–the–art within the research community far exceeds this, 
especially in term of physical modelling capability. Many papers have been presented in the 
open literature, showing examples of unsteady simulations of viscous flows around aerospace 
applications using second moment turbulence closures and even LES methods. Two 
examples are presented here to exemplify this: 

o The use of DES in complete aircraft simulation is presented from an abrupt wing stall 
study on the F/A–18E configuration [50]. Improved results are obtained compared both 
with RANS computations using Spalart–Allmaras and k–ω SST models. The method is 
costly and today impossible for use in a design environment. 

o LES results [51] from ONERA over the A–airfoil at high incidence show good agreement 
with experiments that concludes that successful simulations of this kind can be made. The 
CPU requirements are however prohibiting large for use in industry, 366 h on a NEC SX5 
processor running at 4 GFlops for a single case. LES has reached industry but only for 
fundamental studies [52]. 

These papers clearly demonstrate that it is possible to solve complex unsteady 3D viscous 
flow problems but robustness and efficiency issues prevent them from entering the daily 
aircraft design environment.  

There are several publications, mainly from the U.S., reporting performance numbers 
obtained on large parallel systems for aircraft CFD applications. One of the first turbulent 
simulations with mesh size over 25 million point is presented by Mavriplis [44] using parallel 
systems with up to 2048 processor. This type of results is usually obtained at research 
establishment using government computing resources. Only few publications are known from 
simulations in industrial parallel computer environments [53, 54, 55]. Typical characteristics 
of these reports are significantly smaller computer resources and consequently smaller 
models. 
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5 Parallel computer platforms 

5.1 PARALLEL ARCHITECTURE 

Parallel processing is today performed mainly on MIMD (Multiple Instructions Multiple 
Data) machines. These machines execute several instruction streams in parallel on different 
data. There is a large variety of MIMD systems and they are usually divided into two 
different classes; shared memory and distributed memory systems. 

Shared memory (SM) systems: Shared memory systems have multiple CPUs all of which 
share the same address space. This means that the knowledge of where data is stored is of no 
concern to the user as there is only one memory accessed by all CPUs on an equal basis. For 
parallelizing Fortran and C(++) programs on shared memory systems OpenMP [13, 56] has 
quickly been adopted by the major vendors and has become a well established standard.  

Distributed memory (DM) systems: In this case each CPU has its own associated memory. 
The CPUs are connected by some network and may exchange data between their respective 
memories when required. In contrast to shared memory machines the user must be aware of 
the location of the data in the local memories and will have to move or distribute these data 
explicitly when needed. Distributed memory MIMD systems exhibit a large variety in the 
topology of their connecting network. The details of this topology are largely hidden from the 
user which is quite helpful with respect to portability of applications.  

Distributed processing takes the DM–MIMD concept one step further. Instead of many 
integrated processors in one or several boxes, workstations, mainframes, etc. are connected 
by Ethernet, FDDI, or otherwise forming a cluster.  The machines in the cluster work 
concurrently on tasks in the same program. Conceptually, this is not different from DM–
MIMD computing, but the communication between processors is often significantly slower. 
Many packages are available to implement distributed computing. Examples of these are 
PVM and MPI. This style of programming, called the "message passing" model has becomes 
so much accepted that PVM and MPI have been adopted by virtually all major vendors of 
DM–MIMD systems and even on SM–MIMD systems for compatibility reasons.  

With the use of Beowulf clusters, collections of workstations/PCs connected by a local 
network, distributed processing has virtually exploded since the introduction in 1994. The 
attraction lies in the (potentially) low cost of both hardware and software and the control that 
builders/users have over their system. As the cluster scene has become relatively mature and 
an attractive market, large HPC vendors as well as many start–up companies have entered the 
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field and offer more or less ready out–of–the–box cluster solutions for those groups that do 
not want to build their cluster from scratch. Beowulf clusters are mostly operated through the 
Linux operating system. Compared to the more integrated MIMD systems, often called MPP 
systems (Massive Parallel Processing) traditionally offered by supercomputer vendors, 
clusters still lack some of the tools and support to operate the system as effectively as 
possible. However, as clusters become on average both larger and more stable, there is a 
trend to operate them in similar mixed application environments as MPP systems. 

In the design of a cluster two important components are the network and the compute node.  
The speed of the network is very important in all but the most compute bound applications. 
The node configuration is often single or dual processor. A notable observation is that when 
using compute nodes with dual processors, which may be attractive from the point of view of 
cost–efficiency when using an expensive network or from compactness aspects, the 
performance can be severely damaged when more CPUs have to share on a common node 
memory. The bandwidth of the nodes is in this case not up to the demands of memory 
intensive applications. 

There is nowadays a wide range of communication networks available for clusters. Gigabit 
Ethernet is a widespread alternative, which is attractive for economic reasons, but has the 
drawback of a high latency (≈30–40 µs). Alternatively, there are for instance networks that 
operate from user space, like Myrinet [57], Infiniband [58] and SCI (Scalable Coherent 
Interface) [59]. The first two have reported bandwidths using ping–pong experiment in the 
order of 250 MB/s and 850 MB/s, respectively, and latency below 7µs. SCI delivers 320 
MB/s in ping–pong test and latency under 3 µs. The latter solution is more costly but is 
nevertheless employed in some cluster configurations. The network speed as shown by these 
is more or less on par with some MPP systems. So, possibly apart from the speed of the 
processors and of the software that is provided by the vendors of MPP supercomputers, the 
distinction between clusters and MPPs becomes rather small and will certainly decrease in 
the coming years.  

The ranking of the 500 most powerful computer systems [60] worldwide clearly illustrates 
that MPP and cluster systems dominate the supercomputer arena today. Figure 6 presents the 
classification of system architecture on the top500 list since 1993. The classification is done 
using the following classes: 

o Constellation − Collection of SMPs 
o SMP − Symmetric multi processing (shared memory systems) 
o Single processor − Vector processor systems 
o SIMD − Single Instruction Multiple Data systems 
o MPP − Massive parallel processing systems 
o Cluster − Distributed processing systems 

With over 300 entries in the 26th list (Nov 2005) cluster is now the dominating architectural 
class of system. Looking at the trends since 1997 when the first cluster entered the list 
illustrates the impact cluster technology has had on the supercomputer evolution. Currently in 
the 1st position is the IBM system BlueGene/L installed at Lawrence Livermore National 
Laboratory in the U.S. with 131 000 processors delivering a Linpack performance of 281 
TFlops. Of the top 10 ranked systems 8 are MPP systems and 2 are clusters. To enter the 26th 
list a performance of 1645 GFlops is required. 
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Figure 6 Classification of systems in the top500 list. Source data from [60]. 

The largest systems dedicated to aerospace development are today located in Japan and the 
U.S. The National Aerospace Laboratory of Japan runs a 2304 processor Fujitsu system since 
2003 delivering a Linpack performance of 5406 GFlops, currently at position 68. In the U.S 
Lockheed-Martin installed a 320 processor Xeon cluster in 2005 delivering 1710 GFlops. In 
Germany have Airbus, DLR and MTU Aero Engine recently installed clusters with 
performance ranging between 1200 and 1300 GFlops placing them just outside the 26th 
top500 list. Aerospace research centres in the U.S. have access to many of the major 
supercomputer installations, e.g. the BlueGene/L system at LLNL (1st rank) and the 10 000 
processor SGI Altix installation at NASA Ames (4th rank). 

5.2 EVALUATED SYSTEMS 

In this study, covering a time frame of six years, three generations of systems is studied.  The 
early systems are a Cray T3E, a SGI Origin3000 and an early Siemens PC–cluster with 16 
Intel Pentium III processors connected with SCI/Fast Ethernet.  The more recent systems, 
Stokes, Maxwell, Monolith, Dunder and Darkstar, are all Beowulf systems based on Intel 
processors connected by SCI, Infiniband or Gigabit Ethernet. Most of the systems are 
designed and operated by National Supercomputer Centre at Linköping University, NSC1. 

 

 

 

 

 

                                                 
1 http://www.nsc.liu.se 
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Table 2 Main features of evaluated systems. 

System Processor Network Nodes Proc/node Linpack  
(GFlops) 

Service 
entry 

Top500 
entry 

Cray T3E DEC 
EV5 300MHz Cray-specific 268 1 117 1997-09 35 

SGI 
Origin 
3000 

MIPS R14k 
500MHz ccNUMA 128 - 106.9 2001-03 - 

Cluster - 
Siemens 

Intel PIII 850 
MHz 

SCI/Fast 
Ethernet 16 1 6.92 2000-02 - 

Cluster- 
Monolith 

Intel Xeon 2.2 
GHz 

SCI/Fast 
Ethernet 200 2 1130 2002-12 51 

Cluster- 
Maxwell 

Intel Xeon 2.4 
GHz 

SCI/Gigabit 
Ethernet 40 2 209 2003-02 - 

Cluster - 
Stokes 

Intel P4 2.8 
GHz 

Gigabit 
Ethernet 32 1 98 2003-06 - 

Cluster-
Dunder 

Intel Xeon 3.4 
GHz 

Infiniband/ 
Gigabit Eth. 50 2 4402 2005-10 - 

Cluster- 
Darkstar 

Intel Xeon 3.4 
GHz 

Gigabit 
Ethernet 44 2 3802 2006-04 - 

                                                 
2 Estimated 
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6 Performance measurements 

In parallel processing speedup and efficiency are two important measures of the quality of 
the parallel algorithm.  

Let Ts be the time to run the serial algorithm on one processor and Tp the time by a parallel 
algorithm on N processors then  

Speedup = SN = Ts / Tp  

and the efficiency of the parallel algorithm is given by  

Efficiency = EN = SN / N  

In the parallel algorithm as well as in the code implementation there are a number of factors 
limiting the speedup.  

Software Overhead – Even with a completely equivalent algorithm, software overhead 
arises in the parallel implementation, i.e. there are generally more lines of code to be 
executed in the parallel program than in the sequential program.  

Load Balancing – Speedup is generally limited by the speed of the slowest node. So an 
important consideration is to ensure that each node performs the same amount of work, i.e. 
the system is load balanced.  

Communication Overhead – Assuming that communication and calculation cannot be 
overlapped, any time spent communicating the data between processors directly degrades the 
speedup. Because of this, a goal in the design of a parallel algorithm is to make the grain size 
(relative amount of work done between synchronizations - communications) as large as 
possible, while keeping all the processors busy. The effect of communication on speedup is 
reduced, in relative terms, as the grain size increases. 

Amdahl’s Law – This states that the speedup of a parallel algorithm is effectively limited by 
the number of operations which must be performed sequentially.  

The performance evaluation is performed with the Edge code using inviscid flow modelling, 
given by the Euler equations, around the highly resolved Gripen fighter with external stores. 
A depiction of the surface grid used in this evaluation is shown in Figure 7. The case is 
geometrically complex with detailed external stores placed underneath the wings. A total of 3 
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million points corresponding to approximately 18 million tetrahedral volume elements are 
needed for a full span model to adequately resolve the geometry and the flow features. A 
fully converged steady–state solution can be achieved in about 500 multi grid cycles. 
Computational models of this type and resolution are currently employed for configuration 
analysis, aerodynamic interference analysis and aerodynamic data generation. Often a large 
number of cases with different flow conditions are computed. In the present case the 
aerodynamic installation effect on the external stores is studied at transonic conditions with 
sideslip. Figure 7 also presents the pressure distribution on the upper side of the aircraft 
where a blue colour indicates low pressure regions. 

 

Figure 7 Transonic flow around the Gripen fighter, surface mesh (left) and pressure 
distribution (right).  

A fixed size problem is used as the focus is on industrial applications and the intention is to 
reproduce the situation in the design process. When the problem is parallelized over more 
processors two parts will influence the performance results more than the other. Firstly the 
computation to communication ratio will decrease as the partitioning introduces new internal 
boundaries between domains. Both the total amount of data communicated as well as the 
number of messages increase. The communication pattern becomes more fragmented and the 
mean message size decreases. Secondly, when more processors are added the total amount of 
fast cache memory also increases. This means that a larger part of the total problem will 
reside in the cache with a subsequent performance gain. This is called cache effect and can 
result in a super linear speedup, i.e. higher speedup numbers than number of processors.  

The parallel performance is analyzed in terms of computational performance and parallel 
efficiency on five of the more recent clusters: Stokes, Maxwell, Monolith, Dunder and 
Darkstar listed in Table 2. The performance is measured on the entire code (excluding I/O), 
rather than detailed instrumentation of selected code sections. This is done by collecting the 
number of floating point operations through hardware counters and measuring the wall clock 
time for the parallel runs. The objective is here to demonstrate some of the key issues of 
parallel performance and the impact of the cluster configuration. 

For the type of algorithm used in this study, the load balancing and the communication 
overhead items are the most crucial to deal with to obtain good parallel performance. There 
are virtually no serial parts in the code and the software overhead is small compared to the 
other two. This makes the interconnecting network crucial in the design of a parallel system. 
Analyzing the communication behaviour of the code reveals that the communication quickly 
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gets latency bound. In this example the mean transfer time for messages is affected by latency 
already at 8 processors. Comparing the performance on clusters with different networks 
clearly verifies this. Clusters with low latency networks deliver good parallel efficiency also 
for a large number of processors as presented in Figure 8. In comparison, clusters with 
Gigabit Ethernet show a decrease in parallel efficiency already after 8 processors. This is in 
good correlation with where the message transfer gets latency dominated. With 256 
processors on Monolith a total performance of 34 GFlops is achieved and using 64 processors 
on Dunder a performance of 26 GFlops is reached. The performance per processor differ a 
factor of 3. In comparison the theoretical processor speed only differs by 50 % and the 
remaining difference is mainly due to larger 2nd level cache on the Dunder system. This is 
also the reason behind the high efficiency values in Figure 8. Using a system that delivers 
more than 30 GFlops in application performance clearly affects the turn around time, which 
for this case is reduced to below 5 minutes. 

Figure 8 Parallel performance and parallel efficiency on different cluster configurations 

Much research has been devoted to load balancing and the finding in this study is that very 
good load balance can be obtained with a publicly available graph partitioner. In the simplest 
form an equal number of nodes are distributed between domains. When increasing the 
number of domains the communication (pattern and amount) also becomes important to 
balance between the domains. This is usually obtained by an additional constraint in the load 
balancing algorithm to balance (minimize) the number of boundary points. In this case a 
small performance gain is seen from 64 processors, plotted in Figure 9, using this additional 
constraint in the load balancing algorithm. The right figure presents the number of internal 
(communicated) boundary points per partition generated in the load balancing using k-Metis 
and p-Metis. The k-Metis algorithm generates partitions with less boundary points to 
communicate compared with p-Metis. This explains the improved performance above 32 
processors for the k-Metis case. Why k-Metis fails to produce 2 and 4 partitions with less 
boundary points is not fully understood. 
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Figure 9 Parallel speedup and boundary points in partitions using p-Metis and k-Metis 
algorithms.
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7 Summary of papers 

Paper I 

Two–equation turbulence models are introduced as high–end models in the aircraft design 
process. They deliver fairly good results for cruise conditions where the flow is attached or 
only moderately separated. For off–design cases where the flow shows larger separated 
regions they fail to predict the correct flow behaviour. Algebraic Reynolds Stress Models 
(EARSM) start to appear in the literature presenting improved results for aerospace 
applications. An EARSM is implemented in a structured multi block solver for evaluation of 
the performance on aircraft design applications. 

Computational results are compared with measurements for a transport wing and a transport 
aircraft configuration. In both cases significantly improved results are presented. The main 
reason for the improved flow prediction is the non-linear stress/strain relationship in the 
EARSM. Regions with adverse pressure gradients and separated flows are more realistically 
predicted compared with results from the linear two-equation model it is based upon (k-ω). 
The results clearly demonstrate that EARSM modelling is feasible in industrial applications 
and that the potential for increased accuracy in complex flow cases is high. 

The parallel implementation and load balancing strategy of the code is described and 
performance results from a number of parallel systems, including an early PC-cluster, are 
reported. 

Paper II 

With the introduction of PC-clusters cost-efficient high performance computer systems are 
more wide-spread. When designing a cluster there are a number of design choices to be 
made. The paper studies the impact on flow solver performance from a number of these 
alternatives as well as load balancing issues. A 3 million point unstructured CFD model is 
used as benchmark case. 

The two most important configuration components for high performance are the node 
configuration and the interconnecting network. Gigabit Ethernet is a cost-efficient alternative 
that performs well up to about 100 processors with current processor performance. With 
parallel application using more processors the need for low latency networks grow, even 
though with a significant cost increase. A way to reduce the number of connections, and 
thereby the cost, in the network is to use dual processor nodes. Dual processors have however 
limitations as the processors share the same memory bandwidth. In this study the 
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performance loss using dual processors is 20 %. This is still a cost-efficient alternative with 
high performance networks.  For clusters with Gigabit Ethernet single processor nodes are 
preferred unless the cluster size grow. Dual nodes can then be used to reduce network 
complexity and cost. 

Beside the hardware configuration, load balancing is also a significant issue for good parallel 
performance. Different load balancing algorithms are evaluated. Using moderate number of 
processors, up to 32, it is enough to balance only the number of grid points between the 
processors. Above 32 processors it is also important to keep the boundary points as few as 
possible and balance the communication load between the processors by using more 
advanced load balancing algorithms. 
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8 Conclusions 

This thesis has studied the industrial deployment of parallel computers as a mean to introduce 
more advanced flow modelling methods upstream in the aircraft design process. 

The most advanced flow modelling method used in aircraft design on a regular basis today is 
two–equation turbulence models. Introducing improved physical modelling through an 
EARSM significantly improved results are demonstrated on transport aircraft configurations. 
The non-linear stress/strain relationship in the EARSM performs superior to linear eddy-
viscosity models, especially in adverse gradient areas and close to separated regions often 
found in off-design conditions. 

The aerodynamic design is a long lead item in the aircraft development process. To reduce 
the turn around time, cost and development risks increased modelling capability must be 
introduced upstream in the development process. The main hurdle to introduce further 
advanced flow modelling at early stages is the turn around time for an analysis. This is 
usually addressed by using large parallel computers. With the recent success of Beowulf 
clusters cost–efficient high performing computers are made available to a larger community. 
By appropriate selection of the compute nodes and the network a cluster can be designed 
giving the best performance at a given cost on a chosen application suite.  

CFD solvers are memory intense applications and with dual processor nodes the memory 
bandwidth will be a limiting factor. Examples show a 20 % decrease in performance using 
dual nodes compared to single processor nodes. The cost difference between a dual node and 
two single nodes is roughly in the 20-25 % range. In typical design applications the 
communication is latency bound starting from approximately 8 processors. Obtaining good 
parallel performance for hundreds of processors will require a low latency network, which 
however is significantly more expansive than the Gigabit Ethernet alternative. Gigabit 
Ethernet is a cost-efficient alternative up to about 100 processors. Above that it performs 
poorly. 

The most appropriate cluster combination for this flow solver depends on the total size of the 
cluster. For a small cluster, up to 48 processors, single nodes with Gigabit Ethernet will be a 
cost-efficient solution. For larger clusters dual nodes are preferred. Depending on the 
parallelization strategy, number of processors per case, low latency networks can be required. 
The typical mesh size for a flow analysis around a complete aircraft is today in the range of 
3–20 million points and this is usually parallelized on 20–80 processors. This will be well 
suited to run efficiently on cluster configurations with Gigabit Ethernet. Using more than 80–
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100 processors per case will require low latency networks for efficiency. This conclusion is 
today recognized by the aerospace community as exemplified by the largest cluster in the 
aerospace industry; a 464 processor (dual nodes) cluster with Gigabit Ethernet installed at 
Airbus in Germany in 2005. 
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9 Outlook 

The use of Computational Fluid Dynamics and numerical multidisciplinary simulation and 
optimization will continue to grow in the aerospace industry. The goal of significantly 
reducing the development cost and time to market of a new aircraft will require an integrated 
design environment and use of the virtual product concept by further exploring the potential 
of computer simulations. To implement this vision several improvements are needed in the 
area of flow simulations.  

Turn around time: To use computational aerodynamics in the integrated design 
environment requires short turn around time for CFD simulations. Today the time needed to 
go from a CAD geometry to an Euler or a Navier–Stokes solution is several orders too large 
for use in the virtual product concept although parallel processing is common practice. 
Routine use of transient simulations, increasing grid resolution, generation of complete data 
sets (an upper bound of 200 thousand cases is mentioned by Jou [5]) will require CFD 
simulation time to be reduced at least 1–2 orders of magnitude. Improved solution schemes, 
massively parallel computers and improved implementation on these machines are all needed 
to meet this challenge. For instance, today most CFD codes achieve only 5–10 % of the 
theoretical performance of an x86–type processor. Better implementations and improved 
compilers can substantially improve the performance also on present parallel systems. Apart 
from the reduction in CPU time, numerical methods must be robust enough to avoid time–
consuming tuning of parameters in order to obtain a solution. This is crucial for a broad 
acceptance of CFD simulations by the aircraft design engineers, who will likely not be CFD 
experts. 

Increasing geometrical complexity and resolution will also affect the pre–processing and 
post–processing. The pre–processing (mesh generation) tools have improved over the last 
years reducing the mesh generation time for basic configurations significantly. However, 
there are still unresolved problems with fluid/structure coupling for transient simulation 
involving moving or deforming surfaces, e.g. control–surface movements. The re–import of 
optimized shapes into CAD systems also needs to be resolved. 

Post–processing is already today a time consuming task. In the future, the number of grid 
points will increase together with the number of computed cases and large transient 
simulations will become routine. Improvements in visualization tools are needed with fast 
data extraction tools, feature detection tools and better man–machine interface. Exploring 
results from maybe thousands of simulations will require automated tools that extract relevant 
features for further processing. Aerodynamic simulation results will primarily go into three 



Chapter 9 

 32 

different databases covering; performance, stability/control characteristics, and critical loads, 
thus providing the interface to other disciplines in the design process. 

Physical modelling: Bringing down the turn around time of CFD simulations is by itself not 
enough to reach the virtual product vision. The simulations must also improve in the 
predictions of the flow physics to capture the correct properties and functions of the product. 
Some of the challenging applications that need to be resolved in the coming years are 
outlined below.  

Navier–Stokes simulations are today performed on wing–body–pylon–nacelle configurations 
at design conditions (cruise conditions) where separated regions are either small or non–
existing. These computations provide the designer with valuable information about load 
distributions vital for the structural design. Often the critical design loads are found in off–
design conditions when the separated regions of the flow become more dominating. Thus an 
effective code must accurately capture all the important phenomena in separated flow, i.e. 
wall shear layers, free shear layers and vortices. 

Engine integration is another important task in aircraft design. The development of ultra–
high–bypass aero–engines with superior efficiency and low noise and emission presents the 
problem of the engines’ sheer size in relation to the aircraft. The effect of varying the engine 
positions, shape and size of nacelles and pylons, calculation of the jet effects and shed wakes 
over the associated airframe surfaces in cruise and high–lift configurations and speeds need 
to be investigated. Such advanced simulations, especially when coupled with optimization, 
will become invaluable aids to airframe and engine manufacturers in developing future 
products. 

The friction drag of a commercial aircraft amounts to more than 50% of the total drag, and 
therefore any means of reducing it translates into clear economical benefits in term of fuel 
savings, extended operational range and/or increased payload. Challenging areas for research 
are drag and thrust analysis of new aircraft, drag prediction of new wings and bodies, and the 
optimization of tail flow. The overall accuracy and reliability in the prediction of drag polar, 
drag rise in transonic flight and drag reduction technologies is a research topic currently of 
much interest.  

The simulation of unsteady phenomena, whether a pure aerodynamic phenomenon, e.g. 
dynamic stall or transonic buffeting, or a fluid–structural phenomena as flutter or a fluid–
solid body mechanics problem as store separation, is today very challenging. The 
computational effort is substantial making simulations far from routine. There are also 
deficiencies in the present physical models to properly deal with turbulence etc.  

To summarize, the challenge for the future is to enable the designer to base his decisions, 
with some degree of confidence, on simulations of the aerodynamic response of a complete 
aircraft configuration in manoeuvres that predicts maximum usable lift, the onset of buffet, 
off–design dynamic loads, and noise generation. 
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