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Abstract

The demand for efficient and reliable high rate communication is ever in-
creasing. In this thesis we look at two different problems in such systems,
and their possible solutions.

In recent years orthogonal frequency division multiplexing (OFDM)
has gone from a promising data transmission technique to become a main-
stream technique used in several current and future standards. The main
attractive property of OFDM is that it is inherently resilient to multipath
reflections because of its long symbol time. However, this comes at the
cost of a relatively high sensitivity to carrier frequency offsets (CFOs).

In this thesis we present a technique for CFO estimation in OFDM sys-
tems that is based on locating the spectral minimas within so-called null
or virtual subcarriers embedded in the spectrum. The spectral minimas are
found iteratively over a number of symbols and is therefore mainly useful
for frequency offset tracking or in systems where an estimate is not imme-
diately required, such as in TV or radio broadcasting systems. However,
complexity wise the estimator is relatively easy to implement and it does
not need any extra redundancy beside a nonmodulated subcarrier. The
estimator performance is studied both in a channel with additive white
Gaussian noise and in a frequency selective channel environment.

A goal for many years has been to be able to implement as much as
possible of a radio system in the digital domain, the ultimate goal being
so called software defined radio (SDR). One important part of an SDR re-
ceiver is the high speed analog-to-digital converter (ADC) and one path
to reach this goal is to use a number of parallel, time-interleaved, ADCs.
Such ADCs are, however, sensitive to sampling instant offsets, DC offset
and gain offset.

This thesis also discusses iterative time-delay estimators (TDEs) utiliz-
ing adjustable fractional-delay filters. The TDEs could for example be used
to estimate and calibrate the relative delay between the ADCs comprising
the time interleaved ADC. TDEs using a direct correlator and an average
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squared difference function are compared. Furthermore, an analysis of the
effects of the batch length dependence is presented.
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I would like to thank my supervisor Håkan Johansson for always taking
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Abbreviations

Name Meaning

ADC Analog-to-Digital Converter

AWGN Additive White Gaussian Noise

CFO Carrier Frequency Offset

CIR Channel Impulse Response

CP Cyclic Prefix

DAC Digital-to-Analog Converter

DFT Discrete Fourier Transform

FD Fractional Delay

FFT Fast Fourier Transform

FIR Finite Impulse Response

ICI Inter-Carrier Interference

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

IQ In-phase and Quadrature

ISI Inter-Symbol Interference

LS Least Squares

ML Maximum Likelihood

NR Newton-Raphson
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Name Meaning

OFDM Orthogonal Frequency Division Multiplexing

RF Radio Frequency

RGN Recursive Gauss-Newton

SDR Software Defined Radio

SNR Signal to Noise Ratio

TDE Time Delay Estimation/Estimator

WLAN Wireless Local Area Network
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Chapter 1

Introduction

The demand for efficient and reliable high rate communication is ever in-
creasing. In this thesis we look at two different problems in such systems,
and propose possible solutions.

The first part is about carrier frequency offset (CFO) estimation in mul-
ticarrier modulation methods like for example Orthogonal Frequency Di-
vision Multiplexing (OFDM). The idea is to introduce null subcarriers and
estimate the offset by locating the center of the subcarrier.

The second, and larger, part is about subsample time delay estimation.
The proposed technique is iterative and is based on adjustable fractional
delay filters.

1.1 Applications

The research presented in this thesis has several applications, two of which
will be described briefly here. The first is carrier frequency offset estima-
tion in multicarrier systems and the second is delay estimation in time-
interleaved analog-to-digital converters (ADCs).

1.1.1 Multicarrier Modulation

In recent years multicarrier modulation and especially OFDM has received
much attention for its resilience to multipath fading. This resilience is
achieved by dividing the available bandwidth into densely packed, paral-
lel, sub bands with lower data rates. Lower data rate means longer symbols
and if the symbol length is long compared to the length of the multipath
channel the symbol is virtually unaffected by the channel. However, one
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2 Chapter 1. Introduction

downside of OFDM is its sensitivity to carrier frequency offset between the
transmitter and receiver.

The basic principle of an OFDM symbol is illustrated in Fig. 1.1. The
side lobes of each sub band are zero at the peak of the main lobes of the
other sub bands. It is easy to see that the sub bands would interfere with
each other in the receiver if a carrier frequency offset were present. Thus,
there is a need for a way to estimate the carrier frequency offset (CFO) in
the reciever and then try to compensate it.

During the years quite many frequency estimation methods have been
proposed. In this thesis we propose another method that works iteratively
in the frequency domain and which uses embedded, nonmodulated, sub
bands in the OFDM symbol to estimate the CFO. Its main advantage is that
it does not rely on the cyclic prefix (CP) or any other added redundancy,
beside the null subcarrier.
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The structure of an OFDM symbol in the frequency domain

Figure 1.1. Illustration of how the subcarriers can fit together without disturbing each
other in the frequency domain.
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1.1.2 Time-Interleaved Analog to Digital Converters

High-speed analog-to-digital converters (ADCs) are needed in many ap-
plications, e.g. in video cameras, radio transmitters/receivers, and medi-
cal applications. One way to achieve this is to interleave N ADCs in time
and theoretically get a N -fold speedup. However, in reality timing offsets,
DC offsets, unequal gain, etc, limit the performance.

An illustration of the basic principle of a two-fold time-interleaved
ADC can be seen in Fig. 1.2. If the output sample period is T , the sam-
ple period of the individual ADCs is equal to 2T and the desired delay
between the sampling instants is equal to T . Any time difference between
the sampling instants will introduce undesired frequencies in the digital
signal. This difference can be modeled as the unknown delays τ1 and τ2.
However, without loss of generality there is only a need to estimate the rel-
ative time delay τ1− τ2 and not the absolute delays. Calibration of the time
delay can either be done online or offline, depending on the application. In
a time-interleaved ADC the delays can be compensated as described in for
example [10].

Figure 1.2. An illustration of a time-interleaved ADC with unknown delays τ1 and τ2.

Other applications where time delay estimation is an essential part are
for example radar and sonar.
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1.2 Publications

The main contributions to this thesis are summarized in conjunction with
the publications below.

OFDM Carrier Frequency Offset Estimation

M. Olsson and H. Johansson, “Blind OFDM carrier
frequency offset estimation by locating null subcarri-
ers”, Proc. of 9th Int. OFDM-workshop, Dresden, Ger-
many, Sept. 2004

In this paper we present an OFDM CFO estimation algorithm that
works by locating the spectral minima within a null subcarrier. The spec-
trum is contracted and the minimum is found through an exhaustive
search. The resolution is limited by the number of points used.

M. Olsson and H. Johansson, “OFDM carrier fre-
quency offset estimation using null subcarriers”,
Proc. of 10th Int. OFDM-workshop, Hamburg, Ger-
many, Sept. 2005

In this paper the method in the previous paper is run in an iterative
mode using Newton-Raphson’s technique and the resolution is therefore
increased.

M. Olsson and H. Johansson, “An overview of OFDM
synchronization techniques”, Proc. National Conf. Ra-
dio Science, RVK’05, Linköping, Sweden, 2005

This OFDM overview paper was a contribution at the RVK’05 confer-
ence, Linköping.

Time-delay Estimation

M. Olsson, H. Johansson and, P. Löwenborg, “Time-
delay estimation using Farrow-based fractional-
delay FIR filters: Filter approximation vs. estimation
errors”, to appear in Proc. XIV European Signal Process-
ing Conf, EUSIPCO’06, Florence, Italy, Sept. 2006
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In this paper we present a CFO estimator using Farrow FIR fractional
delay filters, analytical derivatives and the Newton-Raphson technique.
An analysis of estimator offsets and how to optimize the fractional delay
filters are also provided.

M. Olsson, H. Johansson and, P. Löwenborg, “De-
lay estimation using adjustable fractional delay all-
pass filters”, to appear in Proc. Nordic Signal Processing
Symp., NORSIG’06, Reykjavik, Iceland, June 2006

In this paper we present a CFO estimator using all-pass IIR fractional
delay filters, analytical derivatives and the Newton-Raphson technique.
An analysis of estimator variance caused by batch truncation is also pro-
vided.

Scaling and Noise in Multistage Interpolators/Decimators

M. Olsson, P. Löwenborg and, H. Johansson, “Scaling
of Multistage Interpolators”, Proc. XII European Signal
Processing Conf., EUSIPCO’04, Vienna, Austria, Sept
2004

The work in this paper is outside the scope of this thesis. In the pa-
per we present a method to compute the scaling coefficients needed in a
fixed point implementation of multistage interpolators to reduce the risk
of overflow. The method is based on polyphase expansion and multirate
identities.

M. Olsson, P. Löwenborg and, H. Johansson, “Scal-
ing and Roundoff Noise in Multistage Interpolators
and Decimators”, Proc. Fourth Int. Workshop Spec-
tral Methods Multirate Signal Processing, SMMSP’04,
Vienna, Austria, Sept 2004

The work in this paper is outside the scope of this thesis. This paper is
an extension of the paper above and it also covers decimation and roundoff
noise.
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1.3 Outline of the Thesis

The thesis is basically divided into two parts, one about OFDM CFO esti-
mation and one about delay estimation. First, we begin with an introduc-
tion to OFDM CFO estimation, followed by a chapter about a proposed
CFO estimator. The next part begins with an introduction to subsample
delay estimation, followed by a chapter about a number of proposed delay
estimators and an analysis of the estimator errors. Finally we summarize
the thesis.



Chapter 2

Introduction to OFDM CFO
Estimation

2.1 Introduction

The demand for high data rate radio tranciever services is ever increas-
ing. In the single-carrier modulation case higher data rate means shorter
symbol times, which might lead to higher risk for intersymbol interference
(ISI) when the delay spread in the channel becomes large compared to the
symbol time.

Multicarrier modulation techniques such as orthogonal frequency divi-
sion multiplexing (OFDM) reduce this problem. OFDM splits a high rate
single carrier system into a number of parallel carriers with lower data rate,
providing a better resistance to multipath fading. However, among other
things, this comes at the cost of a higher sensitivity to a carrier frequency
offset (CFO) between the transmitter and receiver.

The outline of this chapter is as follows. We begin in the next section by
describing the system model used, followed by a more detailed overview
of some of the more common CFO estimation algorithms in the literature,
to illustrate some of the basic concepts.

2.2 System Model

The basic idea of OFDM is based on the observation that overlapping sub-
carriers can be placed closely together without interfering with each other
if the side lobes of the surrounding subcarriers are located in between the

7



8 Chapter 2. Introduction to OFDM CFO Estimation

other subcarriers. This is illustrated in Fig. 2.1.
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The structure of an OFDM symbol in the frequency domain

Figure 2.1. An illustration of how the subcarriers can fit together without disturbing
each other in the frequency domain.

An OFDM symbol is normally created in the frequency domain. The
data to be transmitted is mapped onto complex-valued numbers, repre-
senting certain phases and amplitudes. In Fig. 2.2 an illustration of an
OFDM symbol in the frequency and time domain can be seen. The outer
subcarriers are unused to allow a low pass filter with a wider transition
band after the digital-to-analog converter (DAC). The central subcarrier is
normally not used either since it corresponds to DC in the baseband. In the
next chapter we will introduce more unused or virtual subcarriers in the
frequency domain and use them to estimate the CFO.

The OFDM symbol in the frequency domain, represented as complex-
valued numbers, is transformed into the time domain using the inverse
discrete Fourier transform (IDFT). Assume that the total number of sub-
carriers is N , including the unused subcarriers, and that X(k) contains the
modulated complex data. The data is transformed into the time domain by
calculating the IDFT as

xN (n) =
1

N

N−1∑

k=0

X(k)W−nk
N (2.1)
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Figure 2.2. An OFDM symbol in the frequency domain.

where WN = e−j2π/N and n = 0, ..., N − 1. In reality, the IDFT is usually
implemented using the Inverse Fast Fourier Transform (IFFT) algorithm.

To form a complete OFDM symbol, a Cyclic Prefix (CP) is then added
in the time domain by copying the last NCP samples and inserting them in
front of the symbol, making the symbol N + NCP long, see Fig. 2.3. The
complete OFDM symbol, including the CP, can be written mathematically
as

s(n) = xN (n) n = −NCP, . . . , N − 2, N − 1 (2.2)

Figure 2.3. An OFDM symbol in the time-domain with a cyclic prefix.

The CP works both as a guard interval to prevent Inter-Symbol Inter-
ference (ISI) and as a way to ensure that the subcarriers remain orthogonal
in a situation where we have a multipath channel or a timing offset. It is
well known that the FFT requires cyclic convolution for the time and fre-
quency domain convolution-multiplication relation to be valid. The exten-
sion of the symbol with the cyclic prefix therefore reduces the equalization
to complex multiplications in the frequency domain. A downside of the
CP is that since it contains redundant data, the CP decreases the efficiency
of the transmission. Multicarrier systems without a cyclic prefix have been
proposed, see for example [26]. In such systems, however, the problems
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with ISI and channel equalization have to be dealt with by using a more
complex equalizer.

The complete OFDM symbol consists of complex-valued numbers and
before it can be transmitted through the air it is sent through an IQ-
modulator (In-phase/Quadrature). An IQ-modulator transforms the com-
plex signal into a real sum of two modulated and 90-degree phaseshifted
sinusoids. The signal also has to be moved up in frequency to the correct
frequency band. The details are beyond the scope of this thesis. For most
purposes it is sufficient to use the complex baseband model in all calcu-
lations regarding OFDM and ignore the RF (Radio Frequency) up conver-
sion.

The power spectral density of the transmitted OFDM signal is illus-
trated in Fig. 2.4. Note the null subcarrier in the middle.
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Figure 2.4. The mean power spectral density of 30 OFDM symbols.

In this thesis we have chosen to model the multipath channel as a fixed,
complex, FIR filter. In reality the channel is not static and a statistical model
might, depending on the situation, have to be employed. However, it is
common to assume that the channel is at least constant for one OFDM sym-
bol.

In Fig. 2.1 it was seen that the subcarriers are densely packed and it
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is easily understood that an offset in carrier frequency between the trans-
mitter and receiver would destroy the orthogonality of the subcarriers and
cause inter-carrier interference (ICI). It is therefore essential for an OFDM
receiver that the CFO is estimated and compensated. The offset compen-
sation can be done either in the time domain before the FFT or by directly
adjusting the carrier frequency oscillator. For a more thorough explanation
of the effects of a CFO see for example [22] or [23].

Mathematically the CFO can be seen as a multiplication of each sample
s(n) by ej2πǫn/N , where ǫ is the normalized CFO and N is the number of
subcarriers. The recieved samples can now be modeled as

r(n) = h ∗ s(n − θ)ej2πǫn/N + e(n) (2.3)

where h(n) is the Channel Impulse Response (CIR), θ is the unknown tim-
ing, ǫ is an unknown normalized CFO and e(n) is additive noise. We as-
sume that the noise is Gaussian and white. If a channel with only one path
and additive noise, a so-called Additive White Gaussian Noise (AWGN)
channel, is assumed, we let the CIR be equal to h(n) = 1. In the rest of this
section we assume such an AWGN channel.

In the receiver the corresponding inversed transmitter operations are
performed. First, remove the CP by letting

rN (n) =

{
r(n) for n = 0, 1, ..., N − 1

0 otherwise.

Here we have assumed no additive noise for clarity. The received samples
are then transformed into the frequency domain using the Discrete Fourier
Transform (DFT) by calculating

X(k) =
N−1∑

n=0

rN (n)Wnk
N . (2.4)

X(k) is then used to demodulate the data.

In Fig. 2.5 an overview of a simple OFDM system can be seen. A CFO
estimator and a corrector are usually applied before the FFT in the receiver.
Note that the model described in this section is simplified and we have
only considered one OFDM symbol at a time. When the channel is multi-
path with a long impulse response it can cause inter-symbol interferrence
(ISI), which is not considered in this model.



12 Chapter 2. Introduction to OFDM CFO Estimation

Figure 2.5. The basic structure of an OFDM system.

2.3 Previous Work

A number of CFO estimation algorithms have been presented in the litera-
ture. Some of them are quite simple, while some of them are more compu-
tationally demanding. In 1994 Moose [18] proposed a frequency domain
ML CFO estimator that uses two repeated, identical, symbols. This is in
practice a form of training symbol and hence lowers the capacity of the
communication scheme.

In 1997 van de Beek et al. [29] proposed a blind maximum likelihood
(ML) estimation algorithm that uses the redundancy introduced in the
cyclic prefix to estimate the CFO. However, the algorithm is derived for
an AWGN channel. In a multipath environment the cyclic prefix is more
or less destroyed which reduces the performance of the algorithm. Still, it
is one of the most widely used CFO estimation algorithms.

In 2001 Choi et al. [5] proposed an ML estimation algorithm that as-
sumed that the OFDM symbol is a Gaussian distributed signal, which is
asymptotically true for circularly modulated OFDM symbols. However, it
also assumes perfect second order knowledge of the channel statistics. In
2001 Chen and Wang [4] also presented a blind CFO estimation algorithm
based on two time oversampling.

In 1998 and 2000 Liu and Tureli [13], [27], presented algorithms that
use virtual or nonused subcarriers and techniques similar to the spectral
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analysis techniques used in algorithms such as MUSIC and ESPRIT. How-
ever, it requires multiple OFDM symbols to achieve good performance and
it uses singular value decomposition (SVD) which is computationally de-
manding.

In the next chapter we will present a technique for CFO estimation in
OFDM systems that is also based on locating the spectral minimas within
so-called null or virtual subcarriers embedded in the spectrum. The spec-
tral minimas are found iteratively over a number of symbols and is there-
fore mainly useful for frequency offset tracking or in systems where an
estimate is not immediately required, such as in TV or radio broadcast-
ing systems. However, complexity wise the estimator is relatively easy to
implement and it does not need any extra redundancy beside a nonmodu-
lated subcarrier.

We will continue with a short recap of maximum likelihood estima-
tion (MLE). After that we will describe some of the algorithms introduced
above in more detail, as an introduction to some of the techniques used in
the area of CFO estimation and as a reference when we in the next chapter
present our proposed CFO estimator.

2.3.1 Maximum Likelihood Estimation

The principle of maximum likelihood was introduced by Fisher (1912) and
is a method for parameter estimation. The idea behind it is to make the pa-
rameters θ as likely as possible by maximizing the joint probability function
fy(θ; y1, y2, . . . , yN ) when the observed N values are given by the vector y.
The maximum likelihood estimator is then given by [14]

θ̂ML(y) = arg max
θ

fy(θ;y). (2.5)

According to [1] ML-estimators are usually consistent and often result
in an estimate with a smaller variance compared to other non-biased es-
timators. It is not certain that an ML estimator is non-biased, but it can
usually be corrected to become non-biased. With a non-biased estimator
the estimate becomes equal to the true value after an infinite number of
samples have been observed, while a biased estimator still contains an off-
set.

Let P be the mean-square error matrix defined as

P = [θ̂(y) − θ0][θ̂(y) − θ0]
T (2.6)

where θ0 is the correct parameter vector. Now, it is interesting to note that
there exists a theoretical lower bound on the mean-square error matrix P
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that can be obtained with any non-biased estimator. This lower bound is
called the Cramér-Rao inequality (C-R) and can be written as

E[P ] ≥ M−1 (2.7)

where

M = E
[ d

dθ
log fy(θ;y)

][ d

dθ
log fy(θ;y)

]T ∣∣∣
θ=θ0

(2.8)

is called the Fisher information matrix. If the estimator is biased the C-R
inequality might or might not hold.

2.3.2 Time Domain Estimators

We will now look at two time domain algorithms. The first one is the most
common and well known algorithm, which is the maximum-likelihood es-
timator using the CP.

ML CFO and Timing Estimation with an AWGN channel

An ML timing and CFO estimator is derived in [29] that utilizes the redun-
dancy introduced by the CP. The log-likelihood function can, under the
assumption that the received samples r(n) are Gaussian, be written as

Λ(θ, ǫ) = |γ(θ)| cos(2πǫ + ∠γ(θ)) − ρΦ(θ) (2.9)

where

γ(m) =

m+Ng−1∑

n=m

r(n)r∗(n + N), (2.10)

is the complex correlation between Ng samples N samples apart and

Φ(m) =
1

2

m+Ng−1∑

n=m

|r(n)|2 + |r(n + N)|2 (2.11)

and

ρ =
σ2

s

σ2
s + σ2

n

=
SNR

SNR + 1
. (2.12)

The timing instant Θ that maximizes (2.9) can be found to be

Θ̂ML = arg max
Θ

{|γ(Θ)| − ρΦ(Θ)} . (2.13)
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When the timing is found the normalized CFO estimate can be calculated
as

ǫ̂ML = − 1

2π
∠γ(Θ̂ML) (2.14)

Since the CFO estimator depends on the angle of (2.10) it will be peri-
odic and therefore the upper limit on the CFO that can be estimated is

|∆f | ≤ 1

NTs
= ∆fmax (2.15)

where N is the delay between the correlated samples and Ts is the sam-
pling period. N is usually equal to the symbol length without the CP. If the
frequency offset is greater than ∆fmax the resulting estimate will be unable
to detect the part of the CFO that consists of an integer number times the
distance between the carriers.

One downside with algorithms that use the CP is that one of the reasons
for having a CP in the first place is to protect the symbol from Inter-Symbol
Interference (ISI) caused by a channel with multiple paths. Such algorithms
might hence perform badly in such an environment, seen for example in
[21].

ML Estimation in Rayleigh Fading Channels

Rayleigh fading is not taken into account in the algorithm above. In a prac-
tical situation there might be so much fading that the performance becomes
poor. In [5] an ML estimator is derived that also depends on the autocor-
relation of the received signal and thus indirectly on the autocorrelation of
the transmitted signal and the channel.

Assume that M consecutive samples r(n) are observed, where k ≤ n ≤
k + M − 1 and

r(n) = s(n)ej2πǫ/N + w(n), (2.16)

where s(n) are the samples at the receiver without the fractional frequency
offset ǫ.

Define Rss as

Rss ≡ Rs + σ2I (2.17)

where Rs is the autocorrelation of s(n) and σ2 is the variance of the added
white noise.
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Let ãm,n be the elements of R−1
ss . Under these assumptions the log-

likelihood cost function can be shown to be [5]

Λ(ǫ) =
M∑

m=1

M∑

n=1

r∗(m)r(n)ãm,nej2π(m−n)ǫ/N . (2.18)

Finding the CFO that maximizes (2.18) is rather difficult and therefore
a simpler estimator is proposed in [5], namely

ǫ̂N =
1

2π
(πsign(θN ) − θN ). (2.19)

where θN is given by θN = ∠
∑2L

n=1 r∗(n + N)r(n)ãn+N,n.
The proposed estimator above requires knowledge of the channel statis-

tics, i.e. the noise power, Doppler spread, delay spread and multipath in-
tensity profile, which makes it difficult to use as an initial CFO estimator.

2.3.3 Frequency Domain Estimators

We will look at a CFO estimation algorithm that is working in the fre-
quency domain.

With Known or Unknown Training Symbols

In [18] an ML estimator in the frequency domain is presented that relies on
the transmission of two identical symbols. First, compute the DFT of the
two symbols m = 1 and m = 2 as

Rm,k =
1

N

N−1∑

n=0

rm(n)e−j 2πnk
N (2.20)

where k is the subchannel number.
The CFO estimate can then be computed in closed form as

ǫ̂ =
1

2π
arctan

(∑N−1
k=0 ℑ[R2,kR

∗
1,k]∑N−1

k=0 ℜ[R2,kR
∗
1,k]

)
, (2.21)

The estimator above is used in [32] to calculate a coarse estimate using
the short training symbols in the IEEE802.11a preamble. The fine estimate
is performed after the demodulation by correlating the demodulated out-
put and the expected output, finding the maximum and shifting the posi-
tion accordingly.
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A downside with the algorithm is that it needs two identical symbols,
which in practice means that a training symbol has to be used. Any such
training symbol lowers the capacity, but depending on the specific require-
ments this may or may not be acceptable.
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Chapter 3

CFO Estimation Using Null
Subcarriers

3.1 Introduction

This chapter presents a novel algorithm for estimating the carrier fre-
quency offset (CFO) in an orthogonal frequency division multiplexing
(OFDM) receiver. The algorithm is based on locating the spectral minimas
within so called null or virtual subcarriers embedded in the spectrum.

We first proposed in [19] to do this by scaling an FFT so that its output
was the frequency components centralized around the null subcarrier and
then by locating the center of the null subcarrier by finding the spectral
minima using an exhaustive search. The performance of the algorithm is,
however, limited by the selected resolution of the frequency axis, i.e. the
width of the FFT used. In this chapter we present an expansion of that
algoritm that does not have this limitation. The expanded algorithm has
previously been described in [20].

A somewhat similar algorithm to the one presented in this chapter was
presented a few years ago in [13] and it also uses null subcarriers to esti-
mate the CFO. However, their approach is different and from the paper it
is not clear how the estimate is to be found in practice and at what com-
plexity.

The outline of this chapter is as follows. We begin with a summary of
the algorithm in [19], followed by a presentation of the expanded algorithm
proposed in [20]. Finally, we perform an evaluation of the algorithm using
simulations, followed by conclusions.

19
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3.2 CFO Estimation Using Null Subcarriers

As stated earlier, in an OFDM system it is common that unused subcarri-
ers are embedded in the spectrum, either as pilot subcarriers or as a null
subcarriers. Such an OFDM symbol is illustrated in Fig. 3.1.

Figure 3.1. An OFDM symbol with a null subcarrier at position k.

The idea behind the CFO estimation algorithm, which we first pre-
sented in [19], is to locate the center of such a null subcarrier. This can
be done in several ways. In the original paper it was done by contracting
the window of a DFT around each of the null subcarriers and estimating
the CFO by locating the minimum of the subcarrier spectrum, e.g. as an
exhaustive search or using interval halving.

The window can be contracted by writing a modified DFT equation as

Xδ(k) =
N−1∑

n=0

xN (n)e−j 2πδ
N

nk (3.1)

where δ = (0, 1] is the normalized window width. In this way a high res-
olution spectrum of the frequencies surrounding the central subcarrier is
acquired. An example of a contracted spectrum around the central subcar-
rier can be seen in Fig. 3.2. In this example a small CFO has been added to
the symbol and therefore the minimum is shifted somewhat to the left.

Note that the central subcarrier is used for convenience in this exam-
ple. In practice this subcarrier will represent the DC level in an OFDM
system and hence it cannot be used in a transmission system. However,
the spectrum can easily be shifted in the frequency domain by multiplying

the samples by ej 2π
N

kn in the time domain to shift the subcarrier −k to the
center.

To be able to compute the contracted spectrum with an FFT, the multi-
pliers in the FFT must be general or at least able to switch between a limited
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Figure 3.2. The spectrum of an OFDM symbol around a null subcarrier.

number of factor sets. Different window widths can be used, depending
on the amount of CFO, to maintain the smallest possible quantization of
the frequency axis.

Noise and different modulated data will affect the contracted spectrum
as can be seen in the upper part of Fig. 3.3. We assume that the noise is
white, or at least have a constant spectral density on a narrow band level,
and that the distribution of the modulated data is rectangular. The effect
of the noise can be decreased by calculating the average of the absolute
square of the spectrum. In the lower part of Fig. 3.3 the resulting averaged
spectrum amplitude can be seen.

The CFO estimate is then found by locaing the center of the null sub-
carrier. The most straightforward method to locate the center is to find
the minimum, e.g. by an exhaustive search or by using interval halving.
The resolution of the DFT can be increased by calculating the spectrum
for more frequencies. This corresponds to a non-square DFT matrix and
is mathematically equivalent to embedding zeros at the end of the batch
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Figure 3.3. The spectrum averaged over 10 symbols.

before it is transformed using an DFT.

The resolution of the estimator depends on the width δ and the number
of points L calculated in the FFT. The frequency axis is quantized into steps
that are

Bδ

L
Hz (3.2)

apart, where B is the available bandwidth. In Fig. 3.4 the Mean Squared
Error (MSE) for the estimator can be seen for δ = 0.02 and δ = 0.01. If δ
is made smaller the error floor is lowered, but the maximal CFO that can
be estimated is also lowered, however there is no point in using a higher
resolution than the actual noise. This is illustrated in Fig. 3.4, where an
obvious error floor is visible. The iterative estimator presented in the next
section can easily lower this floor by using more iterations.
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Figure 3.4. The MSE for different window widths δ using the CFO estimation method
based on a scaled FFT.

3.2.1 Proposed Estimator

We will now see how the estimate can be found iteratively and we propose
two variants, Method A and Method B.

The Fourier Transform (FT) of xN (n) is calculated as

X(ejωT ) =
∞∑

n=−∞

xN (n)e−jωTn =
N−1∑

n=0

xN (n)e−jωTn. (3.3)

Now, by calculating the FT for the discrete frequencies

ω = [0 + ǫ, ω0 + ǫ, ..., (N − 1)ω0 + ǫ] (3.4)

where ω0 = 2π
NT and ǫ is a normalized subcarrier offset, we see that we can

write the shifted Discrete Fourier Transform (DFT) as

XN (k + ǫ) = X(ej(k+ǫ)ω0T ) =
N−1∑

n=0

xN (n)W
n(k+ǫ)
N . (3.5)
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Using (3.5) we can find the frequency content of xN (n) at the fractional
subcarrier distance ǫ from subcarrier k. An estimate of the CFO, ǫ̂, is then
found (Method A) by minimizing the absolute square of (3.5),

ǫ̂ = min
−1<ǫ<1

|XN (k + ǫ)|2, (3.6)

This minimum can be found in an iterative manner by using the
well-known numerical minimization method Newton-Raphson. The ba-
sic method finds, in the one-dimensional case, the closest zero crossing of
a function. To use it for minimization we want to find the zero crossing of
the derivative. This way, instead of having to compute the spectrum for a
limited number of frequencies as in [19], only the first and second deriva-
tives have to be computed in order to find the estimate. The complexity
is lowered (fewer DFT sums to compute) and the accuracy increased (no
frequency quantization).

If we let

F (k + ǫ) = |XN (k + ǫ)|2 , (3.7)

the spectral minima can be found using the iterative estimator written as

ǫ̂p+1 = ǫ̂p −
F ′(k + ǫ̂p)

F ′′(k + ǫ̂p)
. (3.8)

An illustration of the minimization problem (3.6) can be seen in Fig. 3.5.
If the function F (k + ǫ) has an exactly quadratic shape the minimum is
found using only one iteration, however, in reality this is not the case and
a number of iterations are needed.

To compute the iterative step in (3.8) we need to compute the first and
second derivatives of F (k + ǫ) with respect to ǫ. The derivatives can be
found to be

F ′(k + ǫ) =X ′X∗ + (X∗)′X

=X ′X∗ + (X ′)∗X (3.9)

and

F ′′(k + ǫ) =X ′′X∗ + 2X ′(X∗)′ + (X∗)′′X

=X ′′X∗ + 2X ′(X ′)∗ + (X ′′)∗X. (3.10)

Note that the derivatives are still real, although they contain complex com-
ponents. Now, if we calculate the first and second derivative of (3.5) with
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Figure 3.5. Finding the minima using an iterative method.

respect to ǫ we get

X ′(k + ǫ) = −j
2π

N

N−1∑

n=1

nxN (n)Wn(k+ǫ) (3.11)

and

X ′′(k + ǫ) = −
(

2π

N

)2 N−1∑

n=1

n2xN (n)Wn(k+ǫ). (3.12)

As we can see, the only differences between (3.5), (3.11) and (3.12) are the
constants in front of the sums and the integers n and n2. These numbers
can be precalculated, but they still require two real multiplications.

To combat noise, averaging of F (k + ǫ), F ′(k + ǫ) and F ′′(k + ǫ) is intro-
duced before the iterative step is calculated. We found, as will be seen later,
that an average over a small number of instances will reduce the Mean-
Square Error (MSE) significantly.
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An alternative (Method B) to minimizing F (k + ǫ) is to introduce an-
other null subcarrier at −k and minimize

G(k + ǫ) = [X(k + ǫ) + jX(−k + ǫ)]

[X∗(k + ǫ) − jX∗(−k + ǫ)] (3.13)

instead, which can be rewritten as

G(k + ǫ) =|X(k + ǫ)|2 + |X(−k + ǫ)|2+
jX(−k + ǫ)X∗(k + ǫ) − jX(k + ǫ)X∗(−k + ǫ) (3.14)

Ideally, if X(k) and X(−k) were equal the last two terms would disappear.
In reality, they are not completely equal, but, as we will later see from sim-
ulations, the difference is sufficiently small to not affect the performance
significantly for small SNR. For higher SNR Method B reaches an error
floor and for an SNR larger than a certain value Method A performs bet-
ter. The main advantage of Method B, though, is that X(k+ǫ)+jX(−k+ǫ)
can be rewritten as

X(k + ǫ) + jX(−k + ǫ) = C
N−1∑

n=0

x(n) cos(
2π

N
kn − π

4
)W ǫn

N (3.15)

where C =
√

2(1 − j) is a constant. The complexity is reduced since half
of the multiplications in the sum are now a real value times a complex
value, which is easier to perform. The sequence cos(2π

N kn − π
4 ) for n =

0, 1, ..., N − 1 can be precalculated. At runtime this sequence is modulated
by multiplication with W ǫn

N . The derivatives of G(k + ǫ) can be found in
a way similar to how it was done for Method A. As we will see later the
cost is a somewhat lower performance and the need to use another null
subcarrier.

3.3 Complexity

In the original algorithm the complexity comes from an FFT calculation, an
absolute value computation, a center finding operation, and an averaging
function [19]. If we let L denote the number of points in the frequency
domain, the total number of operations that we have to perform is of order
4 L

N + 4 + 4 L
N log2 L real multiplications, 2 L

N + 2 L
N log2 L + 2 real additions,

and 1 comparison per sample. As will be seen from the simulations, L need
to be of the order of 4N for the resolution to be acceptable.
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The number of operations needed for the first algorithm (Method A)
proposed here can also be derived. Let P denote the number of iterations
and M the number of symbols to average F (k+δ), F ′(k+δ), and F ′′(k+δ)
over. If we assume that each complex multiplication requires four real mul-
tiplications1 and two real additions, the number of real multiplications and
additions needed per sample is approximately 8·P ·M ·N

M ·N = 8P . In addition
we have to compute Wnk

N and W δn
N . The first can be precalculated and the

latter would be needed anyway to correct the frequency offset. We will
later see from the simulations what parameters are required to get similar
performance.

The second algorithm proposed (Method B) reduces Wnk
N to Wnk

N +
jW−kn

N , see (3.15), which, beside a complex constant C, is real and thus
lowers the number of additions and multiplications needed. As we will
see later, this is at the cost of a somewhat lower performance.

3.4 Simulations

To evaluate the two variants of the algorithm a number of simulations
were performed. The OFDM symbols were generated using the same
parameters as are used in the IEEE802.11a/g standard for wireless LAN,
N = 64, NCP = 16, and the constellation used was Quadrature Phase Shift
Keying (QPSK). 16-QAM was also tested, but we observed no significant
change in performance. We have assumed an Additive White Gaussian
Noise (AWGN) channel for most of the simulations, except when it is ex-
plicitly stated otherwise. In the plots the MSE has been normalized with

respect to the squared subcarrier width
(

2π
N

)2
.

3.4.1 Convergence

The Newton-Raphson algorithm converges towards the first local mini-
mum it finds. The rate of convergence depends on a number of parameters,
like for example closeness to the minimum. The most important compo-
nent is the direction towards the minimum, which corresponds to the sign
of the first derivative. For a quadratic function the optimal step is the first
derivative divided by the second derivative, however, if the second deriva-
tive is small or even negative, the direction of the step might become incor-
rect, causing the algorithm to diverge. In practice, to avoid this we modify

1This can be reduced to three multiplications and five additions, seen from (a + jb)(c +
jd) = (ac − bc) + j[(a − b)(c − d) − (ac − bd)].
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(3.8) by taking the absolute value of F ′′(k + ǫ) and by adding a small value
∆.

In Fig. 3.6 an example of the convergence of the iterative algorithm
can be seen. The starting points were randomly chosen using an equal
distribution, the added noise was Gaussian and the SNR was 10 dB.
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Figure 3.6. Convergence

3.4.2 Performance

The following normalized MSE definition has been used

MSE =
1

Mc

∑Mc

k=1 (ǫ − ǫ̂(k))2

(
2π
N

)2 (3.16)

where Mc is the number of Monte-Carlo simulations, ǫ is the true CFO, ǫ̂ is
the estimate and N is the number of subcarriers.

In Fig. 3.7 we have compared the MSE of the original exhaustive search
algorithm and the iterative algorithm. The performance is similar up to



3.4. Simulations 29

about 11 dB. The error floor for the original algorithm depends on the win-
dow width and the number of points, in this case 0.02 and L = 256 points.

F (k + ǫ) was averaged 5 times in the frequency domain before the step
length was calculated. To illustrate the effect of the number of iterations
the algorithm was simulated with 3, 4, and 10 iterations. It can be seen that
for 3 iterations the performance of the two algorithms are very similar, but
the number of multiplications per sample for the original algorithm can be
estimated to 148 and to 24 for the proposed algorithm.

To avoid running the algorithm for too many iterations we can let it fin-
ish as soon as the step size is smaller than a constant or when the maximum
number of iterations have been used.
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Figure 3.7. The MSE vs SNR for an AWGN channel.

In Fig. 3.8 the normalized MSE for Method A and Method B can be
seen. 15 iterations were used. The MSE for the two algorithms are similar
up to approximately 20 dB. Increasing the number of iterations for Method

B does not affect the error floor.
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Figure 3.8. The MSE for Method A and Method B.

3.4.3 Multipath Environment

In a frequency selective multipath environment the amplitude and phase
for different frequencies are distorted. To evaluate the performance of
Method A in such an environment, we used the channel model number
two and three described in the HiperLan/2 standard [17]. Channel two
is a Rayleigh fading channel with length 16, which is equal to the length
of the CP. A comparison between Method A and the algorithm presented
in [29] is shown in Fig. 3.9. In the AWGN case the CP-based estimator
has a better performance, but with a Rayleigh-fading channel the CP is de-
stroyed and the performance goes down. In this simulation the length of
the CP and the channel is equal.

For channel three, a Rayleigh fading channel with length 21, the per-
formance goes down, see Fig. 3.10. This is becuase the channel is longer
than the CP and inter-symbol interference occurs. To limit the degradation
somewhat, the null subcarrier can be moved around randomly.

For the simulations we assumed that the channel was quasi-static,
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Figure 3.9. Performance comparison with AWGN and a Rayleigh fading channel of
length 16 samples for Method A and the CP-based estimator from [29].

meaning that it did not change within the symbols.

3.5 Conclusions

We have proposed a CFO estimation technique that uses null subcarriers
to find an estimate. The technique is based on the technique that we pre-
sented in [19]. The original algorithm estimated the CFO by finding the
spectral minimum within an unused null subcarrier using a scaled FFT,
however, the achievable resolution depended on the number of points in
the FFT.

Here we have instead used an iterative algorithm. From simulations
it has been seen that the error floor for one of the proposed algorithms
is lowered and depends mainly on the number of iterations used. Com-
plexity wise the new algorithm requires less operations and thus is more
efficient.

In simulations it was also seen that Method A is resilient to multipath
channels and that the performance is proportional to the number of itera-
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Figure 3.10. Plot showing the performance with and without random null subcarrier
position when the channel is a Rayleigh fading channel of length 21 samples.

tions used. The algorithm is also unaffected by timing errors as long as the
samples are taken within the undisturbed part of the CP.

The other proposed algorithm, Method B, has similar performance as
Method A up to an SNR equal to 20 dB, but at a lower complexity. How-
ever, at a higher SNR the performance of Method B is worse.



Chapter 4

Introduction to Time Delay
Estimation

4.1 Introduction

The need for time delay estimation (TDE) arise in many different fields, in-
cluding biomedicine, communications, geophysics, radar, and ultrasonics.

Two (or more) discrete-time signals, originally coming from one source
xa(t), might experience different delays. We model this as

x(n) = xa(nT ) + e1(n) (4.1)

v(n) = xa((n − D0)T ) + e2(n) (4.2)

where D0 is the unknown delay difference between the signals, T is the
sampling period and e(n) is additive noise. This model is shown in Fig.
4.1. It is assumed that e1(n) and e2(n) are uncorrelated with each other
and with xa(t). Furthermore, we assume that the delay D0 = ⌊D0⌋ + d0

consists of an integer delay ⌊D0⌋ and a subsample delay d0. In this thesis
we will only focus on the subsample delay and we assume that the integer
sample delay has already been taken care of in a proper manner using a
coarse estimator.

4.2 Time Delay Estimation

In the literature a number of approaches to TDE have been used. First, we
will look at two common cost functions, followed by interpolation meth-
ods and ways to find the estimates numerically.

33
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Figure 4.1. Two channels with an unknown delay d0 and additive noise.

4.2.1 Cost Functions

We will focus on the two most common time domain cost functions, first
the one that in the literature is called a Direct Correlator (DC) and then the
Averaged Squared Difference Function (ASDF). In the literature frequency
domain cost functions have also been proposed, for example the General-
ized Cross-Correlator (GCC) [11] and Generalized Least Square (GLS) [3],
but they are beyond the scope of this thesis.

Direct Correlator

Let

y(n, d) = x(n − d) (4.3)

be x(n) ideally delayed by the subsample delay d. In reality it is impossi-
ble to calculate y(n, d) exactly, but we will later look at different ways to
approximate the delay. Now, an estimate of the time delay can be found by
maximizing the so called direct correlation (DC) between y(n, d) and v(n),

d̂DC = max
d

FDC(d) (4.4)

where
FDC(d) = E{y(n, d)v(n)} = Rvd(d). (4.5)

and Rvd(d) is the correlation between v(n) and y(n, d) [8].
In [11] it is shown that the direct correlator TDE is the maximum likeli-

hood estimator (MLE) under certain conditions. The signal must however
be prefiltered using signal dependent filters, see [11].
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Average Squared Difference Function

Another time delay estimate is found by minimizing the averaged squared
difference function (ASDF), defined as

d̂ASDF = min
d

FASDF(d) (4.6)

where

FASDF(d) = E
{

(y(n, d) − v(n))2
}

= σ2
y + σ2

v − 2Rvd(d) (4.7)

and σ2
y and σ2

v are the variance of y(n, d) and v(n) [8].
From these equations it seems like the two cost functions, and hence the

estimators, are identical except for the constant noise variances. However,
this is not true in practice, as can be seen in for example [8] and in the
simulations in Section 5.6.

Practical Realization

In a practical realization we are of course restricted to finite batch lengths.
The expectations are approximated as mean values. The DC TDE estimator
for a finite batch length N can hence be written as

d̂DC = max
d

FDC(d) (4.8)

where the cost function is calculated as

FDC(d) =
1

N

n0+N−1∑

n=n0

y(n, d)v(n) (4.9)

where n0 is an arbitrary index number.
The ASDF TDE for a finite batch length N can similarly be written as

d̂ASDF = min
d

FASDF(d) (4.10)

where the cost function is calculated as

FASDF(d) =
1

N

n0+N−1∑

n=n0

(y(n, d) − v(n))2 (4.11)

and n0 is an arbitrary index number.
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4.2.2 Interpolation

To be able to minimize/maximize the cost function FASDF(d) or FDC(d) we
must somehow approximate the delayed samples of x(n), i.e. y(n, d) =
x(n − d). This situation is illustrated in Fig. 4.2.

Figure 4.2. Illustration of interpolated sample values that are delayed by d samples.

There are several possible ways to find interpolated sample values
y(n, d). One of the first that comes to mind is to use some kind of linear
interpolation. However, as we will see in the next chapter, this is far too
restricted. Instead of linear interpolation we could for example use higher
order interpolators such as splines, but it would still be quite difficult to get
control over the error and at the same time limit the estimator complexity.

Another way to solve the interpolation problem is to note that a filter
with a linear phase response would delay all frequencies equally. The ideal
transfer function of such a filter with a constant phase delay d is therefore
equal to

Hd(e
jω) = e−jωd. (4.12)

In recent years methods have been proposed [9], [30], [31], to design ad-
justable filters which approximate the linear phase response of (4.12), so
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called adjustable fractional delay (FD) filters. With the computing power
of today it is possible to use optimization tools to design the FD filters with
arbitrarily good performance at the cost of implementation complexity. In
the next chapter we will discuss how to design such FD filters.

4.2.3 Maximization/Minimization Methods

To find the time delay estimate, the cost functions must either be maxi-
mized or minimized. There are a number of common approaches to this
problem. The most straightforward solution would of course be to use a
full search. This method works, but the convergence would be slow. Other
methods include interval halving and multiresolution techniques.

In the next chapter we will look at better methods such as steepest
descent, recursive Gauss-Newton and the well known Newton-Raphson
method.

4.2.4 Fundamental Performance Limits

As it was stated earlier, it has been found that the DC TDE is the maximum
likelihood estimator (MLE) when the signals are prefiltered, however in
reality the DC estimator has several problems, as we will see later. For
example, it is much more sensitive to the truncation of the sample batches.

In [2] it is shown that the mean squared error for a bias-free TDE is
bounded by the Cramér-Rao lower bound (CRLB)

σ2
CRLB =

3

8π2

1 + 2SNR

SNR2

1

B3Tobs
(4.13)

where Tobs is the observation time and the SNR is constant for the signal
with bandwidth B. A problem with this bound is that it is only valid for
bias-free estimators and a biased estimator might actually have a smaller
mean squared error. However, it is possible to calculate the CRLB for a
biased estimator, but then it is not guaranteed to be valid for other biased
estimators.
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Chapter 5

Time Delay Estimation Using
Adjustable FD Filters

5.1 Introduction

In this chapter we will discuss time delay estimation using adjustable frac-
tional delay (FD) filters and investigate the effects of magnitude and phase
delay errors so that we know how to best design these filters.

In 1999 Dooley introduced a technique [6] utilizing Farrow-based digi-
tal FIR fractional delay filters [7] for time delay estimation (TDE). The use
of FD filters has two major advantages over other delay estimation tech-
niques working in the digital domain. First, it is eminently suitable to han-
dle delays that are fractions of the sampling interval. Second, it can handle
general band limited signals. This is in contrast to techniques that assume
a known input signal, like a sinusoidal signal [16]. However, no analysis
of the filter approximation errors versus estimation errors was provided in
[6]. Such an analysis will be provided in this chapter. Furthermore, a new
estimator using all-pass IIR fractional delay filters is introduced.

As stated earlier in Chapter 4, the two most common cost functions
used for TDE are the Direct Correlator and the Average Squared Difference
Function. To find the extreme value of these cost functions, and thus a de-
lay estimate, two techniques are used, Newton-Raphson (NR) and Recur-
sive Gauss-Newton (RGN). The convergence of Recursive Gauss-Newton
is slower, but depending on the application this may or may not be of im-
portance. NR needs both the first and second derivative of the cost func-
tion, whereas RGN needs the first derivative. Since the delay of adjustable
FD filters is governed by only one parameter their analytical derivatives

39
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can be derived. Thereby, the problems associated with the use of numeri-
cal derivatives are avoided.

The outline of this chapter is as follows. First we will look at methods
to find the extremum of the cost functions, followed by interpolation tech-
niques. We then analyze the estimators from an offset and variance point
of view. To verify the results we perform simulations and finally we draw
some conclusions.

5.2 Locating the Minimum/Maximum

The time delay estimate is found by locating the extremum of the cost
functions FDC(d) or FASDF(d), introduced in (4.9) and (4.11) in the previ-
ous chapter and repeated here for convenience:

FDC(d) =
1

N

n0+N−1∑

n=n0

y(n, d)v(n) (5.1)

FASDF(d) =
1

N

n0+N−1∑

n=n0

(y(n, d) − v(n))2 (5.2)

Simple ways to find the extrema are for example to use full search or in-
terval halving, but these methods suffer from slow convergence. More ef-
ficient ways, with approximately quadratic convergence, are Steepest De-
scent (SD), Newton-Raphson (NR), and Recursive Gauss-Newton (RGN).

5.2.1 Steepest Descent

The method of steepest descent (SD), which is also called the gradient de-
scent, minimizes a function by moving iteratively in the direction of the
downhill gradient.

In the one-dimensional case we are interested in, the iterative update
equation is

d̂n+1 = d̂n − µF ′(d̂n) (5.3)

where µ is the step size. The problem is: how to select the step size without
getting slow convergence or even divergence? Instead, we can use other
methods which attempt to find the optimum step length.
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5.2.2 Newton-Raphson

To find the minimum or maximum of a function FASDF(d) or FDC(d) with
respect to d, the well-known Newton Raphson (NR) algorithm can be used.
The algorithm is iterative and tends towards the closest zero of a function,
in this case the derivative of F (d).

To find the closest extremum in the one-dimensional case the iterative
NR update equation is

d̂n+1 = d̂n − F ′(d̂n)

F ′′(d̂n)
. (5.4)

If the starting point is close enough to the extremum, the estimate d̂n will
converge towards it.

Since the cost functions are almost quadratic with respect to d, the NR-
based algorithm will converge to the extremum after a small number of
iterations. For a perfectly quadratic function the ideal step length is equal

to 1/F ′′(d̂n) and only one iteration is needed, however, in a real situation a
few more, typically three or four, iterations might be needed to get a good
estimate.

The derivatives needed for (5.4) can be calculated analytically, for the
DC approach, as

F ′
DC(d) =

1

N

n0+N−1∑

n=n0

v(n)y′(n, d) (5.5)

and

F ′′
DC(d) =

1

N

n0+N−1∑

n=n0

v(n)y′′(n, d) (5.6)

and, for the ASDF approach, as

F ′
ASDF(d) =

2

N

n0+N−1∑

n=n0

(y(n, d) − v(n))y′(n, d) (5.7)

and

F ′′
ASDF(d) =

2

N

n0+N−1∑

n=n0

y′(n, d)2 + [y(n, d) − v(n)] y′′(n, d). (5.8)
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The principle of the iterative estimator is depicted in Fig. 5.1. The com-
putation of F ′(d) and F ′′(d) changes depending on the cost function used.
In Fig. 5.2 and 5.3 straightforward realizations of the derivatives of the
cost functions (5.5)–(5.8) are seen. In Section 5.3 we will see how we can
calculate y′(n, d) and y′′(n, d), depending on the type of interpolation filter
used.

Figure 5.1. TDE using Newton-Raphson.

Figure 5.2. Realization of the derivatives of the direct correlator (DC) cost function.

As we will see later, the second derivative F ′′(d) is fairly constant. To
reduce the computational complexity we might use this fact to calculate
the second derivative once and then use that value in the subsequent iter-
ations. Another way is to recursively approximate the second derivative
using the first order derivative.
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Figure 5.3. Realization of the derivatives of the average squared difference function
(ASDF) cost function.

5.2.3 Recursive Gauss-Newton

Another way to find the minimum is to use the so-called recursive Gauss-
Newton (RGN) technique, which was proposed for ASDF TDE in [24].
Compared to the Newton-Raphson algorithm the RGN uses an approxi-
mation of the second derivative.

For the ASDF cost function the approximation of the second derivative
F ′′

ASDF is calculated as

Rn+1 = λRn +
1

N

n0+N−1∑

n=n0

y′(n, d)2 (5.9)

where λ is a forgetting factor. If λ is close to 0, only a few of the previous
iterations are “remembered”. The iterative estimate is now calculated as

d̂n+1 = d̂n − F ′
ASDF(d̂n)

Rn
. (5.10)

Compared to the NR algorithm the RGN has a somewhat slower con-
vergence, but in some applications this might not be very important.

5.3 Interpolation Methods

To be able to perform TDE using the principles presented in the previous
section, approximations of intermittent sample values are needed, illus-
trated earlier in Fig. 4.2. The first method that probably comes to mind is
linear interpolation. As we will see linear interpolation however has severe
limitations.
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Better solutions are to use adjustable fractional delay (FD) filters. Such
a filter approximates an ideal delay y(n, d) = x(n − d). The frequency
function of such an ideal delay can be written as

Hd(e
jω) = e−jωd (5.11)

where d is the delay. However, an ideal interpolator is impossible to im-
plement in practice and therefore we define the non-ideal FD filter as

H(ejω, d) = A(ω, d)e−jω(d+d̃(ω,d)) (5.12)

where A(ω, d) = 1 + δ(ω, d) is the filter magnitude, which should nomi-
nally be 1, and d̃(ω, d) is the phase delay error. We will later discuss the
offset and variance of the TDE with respect to these errors. The idea to use
FD filters in TDE has previously been described in for example [6]. How-
ever, the effects of the nonidealities have not been analyzed before to our
knowledge.

We will now continue by looking at the first-order interpolation filter,
followed by the general FIR and IIR FD interpolation filters.

5.3.1 First Order Linear Interpolation

The simplest way to interpolate samples is to use linear interpolation. The
interpolated value of x(n) that has been delayed 0 < d < 1 can be written
as

y(n, d) =
x(n − 1) − x(n)

1
d + x(n) = (1 − d)x(n) + dx(n − 1). (5.13)

It is easy to realize that the linear interpolator can be seen as a first order
FIR filter with the transfer function

H(z, d) = (1 − d) + dz−1 (5.14)

and the respective frequency function,

H(ejω, d) = (1 − d) + de−jω. (5.15)

The magnitude error can then be calculated as

δ(ω, d) =
√

1 + 2d (1 − d) [cos ω − 1] − 1 (5.16)
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and the phase delay error as

d̃(ω, d) = − 1

ω
arg{H(d, ejω)} = (5.17)

=






1
ω arctan

(
d sin(ω)

1−d+d cos(ω)

)
− d when cos(ω) >= 1 − 1

d

1
ω

(
arctan

(
d sin(ω)

1−d+d cos(ω)

)
+ π

)
− d when cos(ω) < 1 − 1

d .

(5.18)

In Fig. 5.4 the phase delay and magnitude error for the first order in-
terpolator can be seen. The delay error grows quickly with ω and therefore
the first order interpolator is not a good choice.
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Figure 5.4. The phase delay error and magnitude error of the first order interpolator vs.
frequency.

5.3.2 Interpolation Using FIR FD Filters

Higher order FIR filters can be designed with approximately linear phase,
and hence an approximately equal delay for all frequencies. However, it is
usually too computationally costly to redesign the filters for each desired
delay. A solution to this is to use a structure proposed by Farrow in 1988
[7]. The basic idea is to approximate each coefficient in an FIR filter as a
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polynomial. The impulse response can be written as

h(n, d) =

P∑

p=0

gp(n)dp, n = 0, . . . , M (5.19)

where P is the order of the polynomial and gp(n) is the coefficient for the
p-th order term for the n-th value in the impulse response h(n, d).

The z-transform of (5.19) can be written as

H(z, d) =
M∑

n=0

h(n, d)z−n =
M∑

n=0




P∑

p=0

gp(n)dp



 z−n =

=
P∑

p=0

dp

[
M∑

n=0

gp(n)z−n

]
=

P∑

p=0

dpGp(z) (5.20)

where Gp(z) =
∑M

n=0 gp(n)z−n are identified as FIR subfilters. The corre-
sponding structure of this filter is the so-called Farrow structure shown in
Fig. 5.5.

Figure 5.5. The Farrow FIR FD structure.

In this thesis we will restrict the subfilters to be linear-phase FIR filters
of even order, say M , and with symmetric (anti-symmetric) impulse re-
sponses gp(n) for p even (p odd), i.e. gp(n) = gp(M−n)[gp(n) = −gp(M−n)]
for p even (p odd). The reason for using linear-phase filters is that they
are easier to implement, requiring fewer multiplications, than completely
general filters. Note that it is not necessary that the filter orders of the in-
dividual subfilters are equal. Furthermore, when the filters are even order
linear-phase filters, the inherent delay of H(z, d) is an integer, M/2. By in-
herent delay we mean the delay of the filter when d = 0. This is suitable
for the time delay estimation problem.
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From (5.20) and Fig. 5.5 it is seen that the filter output y(n, d) from the
FD filter can be written as

y(n, d) =
P∑

p=0

dpyp(n) (5.21)

where

yp(n) = gp(n) ∗ x(n). (5.22)

Now, the derivatives of y(n, d) with respect to d can be calculated analyti-
cally as

y′(n, d) =

P∑

p=1

pdp−1yp(n), P > 0 (5.23)

and

y′′(n, d) =
P∑

p=2

k(p − 1)dp−2yp(n), P > 1. (5.24)

If P = 1 the second derivative (5.24) will be equal to zero. These deriva-
tives can then be used in (5.5)–(5.8) to calculate the next iterative step in the
estimator. In Fig. 5.6 a straightforward implementation of the derivatives
(5.23) and (5.24) can be seen.

Figure 5.6. A straightforward realization of the derivatives of the FIR FD filter.

The magnitude of the FD filter can of course be calculated as
∣∣H(d, ejω)

∣∣,
but if the subfilters Gp(z) have been designed to have linear phase the mag-
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nitude of the FD filter can also be be written as [28]

|H(d, ejω)| =

∣∣∣∣∣∣

⌊P/2⌋∑

p=1

2pd2p−1G(2p)R(ω)+

+j

⌈P/2⌉∑

p=1

(2p − 1)d2p−2G(2p−1)R(ω)

∣∣∣∣∣∣
(5.25)

where G(2p)R(ω) and G(2p−1)R(ω) are the zero-phase frequency response of
Gp(z). This expression will be useful later when we want to compute the
analytical derivative of the filter magnitude A(ω, d) = 1 + δ(ω, d).

The phase delay is then computed from the definition of the phase de-
lay as

τ(ω, d) = − 1

ω
arg{H(d, ejω)}. (5.26)

If the subfilters have even order the inherent phase delay of H(z, d), i.e.
when d = 0, is equal to M/2. Using the expression above we can define the
phase delay error for an FIR FD filter as

d̃(ω, d) = τ(ω, d) − (M/2 + d). (5.27)

Designing the FIR FD Filters

A number of techniques to design the FIR subfilters Gp(z) exist, see for
example [12], [30], and [9]. In this thesis we will use an optimization ap-
proach similar to the one presented in [9]. The goal is to reduce the estima-
tor offset errors.

First we need to find a filter to use as an initial solution to the optimiza-
tion problem. In the case of an FIR FD filter this can be done by designing
the subfilters separately to approximate differentiators. For more details
regarding the initial filters see [9].

As we will later see in (5.59) in Section 5.4.1, the main cause of estimator
offset is the phase delay error d̃(ω, d), at least as long as the derivative of
the filter magnitude is small. Hence, if we limit the phase delay error and
the magnitude error (and indirectly the derivative of the magnitude) to be
smaller than a constant C, the estimator offset will be small. The minimax
problem can then be formulated as

minimize ǫ subject to
∣∣∣d̃(ω, d)

∣∣∣ < ǫ and |δ(w, d)| < C (5.28)
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over a range of ω and d. The fminimax-routine in MATLAB efficiently
implements a sequential quadratic programming method that is capable
of solving the minimax constraint problem in (5.28). However, the solution
is not guaranteed to be the global minimum as the problem is nonlinear.

As we will also see in Section 5.4.1, when the derivative of the magni-
tude error is nonzero the magnitude error δ(ω, d) and the frequency ω will
cause an additional estimator offset derr(ω, d). So, instead of choosing the
magnitude limit C “blindly” we can minimize the estimator offset directly
by minimizing the sum of d̃(ω, d) and derr(ω, d).

Formulated as a minimax problem this new problem can be written as

minimize ǫ subject to |d̃(ω, d) + derr(ω, d)| < ǫ (5.29)

which is solved over a range of d and ω.
As an example, two FIR FD filters were optimized, one using (5.28) and

the other using (5.29). The initial filter was found using the algorithm de-
scribed in [9], which does not require that the filter orders of the subfilters
are equal. The orders of the respective subfilters are [14 10 12 8 10 6 6].
The magnitude offset limitation was C = 0.01.

In Fig.5.7 and 5.8 the resulting magnitude A(ω, d) and phase delay er-
ror d̃(ω, d) and their derivatives for the two filters can be seen. The main
difference between the two filters is the magnitude. We will later see in
simulations how the estimator performs with these filters.

5.3.3 Interpolation Using All-pass IIR FD Filters

All-pass filters are filters with constant magnitude, which means that no
frequency is attenuated in the filter. However, even though the magnitude
is constant the filter has a non constant phase delay, meaning that not all
frequencies are delayed equally.

The transfer function of a general all-pass filter with order M can be
written as

HA(z) =
z−MA(z−1)

A(z)
(5.30)

where

A(z) = 1 +
M∑

m=1

amz−m. (5.31)

By selecting am appropriately, the all-pass filter can be given an approxi-
mately linear phase, i.e., a constant phase delay. Now, if we want the filter
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to be adjustable over a wide range of delays we can interpolate the filter
coefficients using a degree P polynomial [15],

am(d) =
P∑

p=0

Cpmdp. (5.32)

Using (5.32) we can rewrite (5.31) as

A(z, d) =
M∑

m=1




P∑

p=0

Cpmdp



 z−m. (5.33)

The phase delay of the filter for a certain delay d can be written as

τA(ω, d) = M − 2

ω
arctan

( ∑M
m=1 am(d) sin(mω)

1 +
∑M

m=1 am(d) cos(mω)

)
(5.34)

where am(d) is defined in (5.32). The inherent integer delay of the all-pass
filter is equal to M , which means that when d = 0 the phase delay is equal
to M . In Fig. 5.9 a realization of the IIR FD filter can be seen.

The difference equation corresponding to the all-pass FD filter (5.30) is
equal to

y(n, d) = x(n − M) +
P∑

p=0

M∑

m=1

dpCpm [x(n + m − M) − y(n − m, d)] .

(5.35)

The derivatives of (5.35) with respect to d are then calculated as

y′(n, d) =
P∑

p=1

M∑

m=1

dp
[
Cpm

p

d
(x(n + m − M)−

y(n − m, d)) − Cpmy′(n − m, d)
]

(5.36)

and

y′′(n, d) =
P∑

p=2

M∑

m=1

dp
[
Cpm

p

d2
(x(n + m − M)−

y(n − m, d)) − Cpmy′(n − m, d)
]
. (5.37)
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Figure 5.9. A direct-form realization of an IIR FD filter.



54 Chapter 5. Time Delay Estimation Using Adjustable FD Filters

An all-pass FD filter has an initial transient response when a signal is
applied to it that is, in theory, infinite in length. However, in practice the
transient response decays rather quickly when the filter is stable. The rate
of decay is direcly connected to the maximum pole radius of the filter and
a larger radius means a longer transient response.

To illustrate this, the transient response of two FD filters with different
maximal pole radii can be seen in Fig. 5.10. The first filter has a maximum
pole radius of 0.98 and a maximum phase delay error of 3.12 · 10−6. The
second filter has a maximum pole radius of 0.87 and a maximum phase de-
lay error of 3.31 · 10−6. The filter order was M = 8 and P = 5. As it is seen,
the worst case impulse response becomes longer when the pole radius is
larger and more samples must be discarded. A smaller maximum pole ra-
dius gives a somewhat larger maximum phase delay error, though. Note
that the transient responses have been generated by applying a sinusoid
to the filter and by subtracting the theoretic output from the filter output,
leaving only the ripple caused by the feedback in the filter.

In Fig. 5.11 a straightforward realization of the derivatives of the IIR
all-pass FD filter can be seen. The derivatives can then be used in either
an ASDF or a DC estimator. Because of the feedback inherent in the IIR
filter the computation of the derivatives of an all-pass IIR FD filter is more
complex than the derivatives of an Farrow FIR FD filter. However, if the
derivatives are implemented in hardware the different building blocks can
be shared and interleaved in time to lower the hardware cost.

Designing the IIR FD Filters

As when we designed FIR FD filters we will use a minimax optimization
approach to design the IIR FD filters and hence a good initial FD filter is
needed.

In 1971 Thiran presented a method to design recursive all-pole digital
filters with maximally flat group delay [25]. If the poles instead are used in
an all-pass filter we get twice the group delay, meaning that the delay-value
in the equations can be halved. The resulting closed form filter coefficient
expression for an M th-order all-pass filter with a constant delay D = d+M
is

am = (−1)m

(
M

m

)
M∏

n=0

D − M + n

D − M + m + n
for m = 0, 1, 2, ..., M. (5.38)

Since the expression is developed with a maximally flat group delay in
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Figure 5.10. Transient responses and maximum pole radius for two different filters.

mind, the phase delay for low frequencies is excellent, but for higher fre-
quencies the phase delay deviates more and more and the necessary filter
order has to be increased rapidly. These problems are similar to the limita-
tions of the Lagrange-interpolator method that can be used to design FIR
FD filters.

An example of a filter designed using Thiran’s method can be seen in
Fig. 5.12. The phase delay error is small for low frequencies, but increases
rapidly with frequency.

Another method which gives an initial filter with lower filter order is
the least-squares (LS) method described in [12]. We will briefly summarize
the idea behind it. The idea is to minimize the weighted least-squares cost
function over a frequency range [0 · · · απ] defined as

E =
1

π

∫ απ

0
W (ω)|d̃(ω)|2dω (5.39)
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Figure 5.11. A straightforward realization of the derivatives of an IIR FD filter.
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where W (ω) is a weight function and

d̃(ω) = −τid(ω, d) + τA(ω, d) =

= −(M + d) + (M − 2

ω
θ(ω, d)) (5.40)

is the difference between the ideal phase delay of an all-pass IIR FD filter
with the inherent phase delay M and the phase delay for an all-pass filter
defined in (5.30). By assuming constant coefficients and inserting (5.34)
into (5.40) we get

d̃(ω) = −d − 2

ω
θ(ω) = (5.41)

= −d − 2

ω
arctan

{∑M
m=0 am sin(mω)

∑M
m=0 am cos(mω)

}
. (5.42)

Using trigonometric identities this can be rewritten as

d̃(ω) = − 2

ω
arctan

{∑M
m=0 am sin(−ωd

2 − mω)
∑M

m=0 am cos(−ωd
d − mω)

}
. (5.43)

If we use the approximation arctan(x) ≈ x and insert (5.43) into (5.39)
we get

E2 =
1

π

∫ απ

0
W (ω)

∣∣∣∣∣

∑M
m=0 am sin(−ωd

2 − mω)
∑M

m=0 am cos(−ωd
d − mω)

∣∣∣∣∣

2

dω. (5.44)

The filter coefficients are both in the numerator and denominator, which
makes it difficult to find the optimum coefficients directly from E2. One
way to find suboptimal coefficients is to view the denominator as constant
and neglect it. This will lead to an offset from the correct optimum, but it is
noted in [12] that the offset is small and it is still good enough as an initial
filter.

If the denominator is neglected and we let

s =

[
sin

(
−ωd

2

)
sin

(
−ωd

2
− ω

)
· · · sin

(
−ωd

2
− Mω

) ]
(5.45)

and a = [a0 a1 a2 · · · aM ]T we can rewrite the cost function (5.44) using
vector notation as

E3 = a

[
4

π

∫ απ

0
W (ω)

sT s

ω2
dω

]
aT = aSaT . (5.46)
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We now let the weight function W (ω) be piecewise constant. If we let
W (ω) = 1 in the frequency range then the matrix elements of the matrix S

are equal to

Sk,l =
4

π

∫ απ

0

1

ω2
{cos[(k − l)ω] − cos[(N − (k + l + d))ω]} dω

k, l = 1, 2, . . . , P. (5.47)

The integral can not be solved analytically, we have to use either numerical
integration or some other approximations. We can use the fact that

∫
cos(ax)

x2
= −aD(ax) − cos(ax)

x
(5.48)

where

D(x) =

∫ x

0

sin t

t
dt =

∞∑

n=0

(−1)nx2n+1

(2n + 1)(2n + 1)
t ≥ 0. (5.49)

A good approximation of D(x) is obtained using a rather small number of
terms in the summation.

Now, let the first coefficient in the vector a be equal to 1 and define
a1 = [a1a2 . . . aN ]T as the rest of the coefficients. The cost function E3 can
now be written as

aSaT = [1aT
1 ]

[
s0 ST

1

s1 S1

][
1

a1

]

= aT
1 S1a1 + 2sT

1 a1 + s0. (5.50)

The minimum of this quadratic equation is equal to

a1 = −S−1
1 s1. (5.51)

Now we have the initial filter coefficients for a constant delay d, but
we also need to find the polynomials so that we can interpolate the filter
coefficients for different delays without having to redesign the filter for
every new d. This can for example be done using the well known least
squares fitting.
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Let Nd be the number of delay values that we have computed the initial
filter for and let each row in the matrix

A =





1 a1,1 a2,1 . . . aP,1

1 a1,2 a2,2 . . . aP,2
...

...
...

. . .
...

1 a1,Nd
a2,Nd

. . . aP,Nd




(5.52)

contain the filter coefficients for the different delays, found using the
method above. Furthermore we let the matrix

B =





d0
1 d1

1 . . . dP−1
1 dP

1

d0
2 d1

2 . . . dP−1
2 dP

2
...

...
...

. . .
...

d0
Nd

d1
Nd

. . . dP−1
Nd

dP
Nd




(5.53)

contain the different delays to the power of 0 to P . The least squares poly-
nomial fit can then be calculated as

C = (BTB)−1BA. (5.54)

Now when we have the initial filter we can optimize this filter further
using sequential quadratic programming. Let d̃ = (M +d)−τA(ω, d) be the
phase delay error. The minimax solution is then obtained by minimizing

minimize ǫ subject to |d̃| < ǫ (5.55)

over a range of ω and d. To preserve the stability of the filter we must check
that the poles remain inside the unit circle. As we saw before, the transient
response depends on the maximum pole radius and by forcing the poles
to have a distance margin from the unit circle we can reduce the transient
response.

It is noted in [12] that the method described above is not guaranteed to
converge if the order M of the initial filter is chosen too large and therefore
an iterative method is proposed instead. First, design a filter with order M .
Then, extend the order to M + 1 by adding a zero coefficient and use this
new filter as the starting point for the minimax optimization.

As an example an IIR FD filter with M = 8, P = 5 and ωmax = 0.75π
was optimized. The initial FD filter had a maximum phase delay error of
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3.8726 · 10−4 samples and can be seen in Fig. 5.13. The number of ripples
is related to the order M . As a side note, an IIR FD filter designed with
Thiran’s method and comparable phase delay error requires a filter order
M = 29.

After the initial FD filter has been optimized with respect to the phase
delay error, the maximum delay error was 9.4238 ·10−5. The resulting filter
can be seen in Fig. 5.14. One of the features of minimax optimization is that
the resulting FD filter becomes approximately equiripple, which is easily
seen in the figure.

5.4 Error Analysis

The interpolation errors and noise will affect the performance of the esti-
mator, we will now see how and to what amount. We have mainly consid-
ered narrow-band signals, but wideband signals are also covered briefly.
In an application where the TDE is used for calibration we can usually se-
lect the signal, e.g. as a sinusoid. The estimator is, however, not restricted
to single-frequency signals, as we will see in in Section 5.6.

We begin by looking at the estimator offset, which is mainly caused by
the phase delay error of the filter, but also by the magnitude offset. After
that we look at the estimator variance, which is mainly caused by additive
noise, but also by batch truncation.

5.4.1 Estimator Offset

Narrow-band Signals

We consider two types of FD filter errors, magnitude errors and time delay
errors. Let δ(d, ω0) denote the magnitude error and let d̃(d, ω0) denote the
delay error of the FD filter for a certain d and a certain ω0.

Now, if we assume that x(n) is sinusoidal, the output from the FD filter
at a frequency ω0 is

y(n, d) = (1 + δ(ω0, d)) sin(ω0(n − d − d̃(ω0, d))) (5.56)

and the reference signal v(n) is

v(n) = sin(ω0(n − d0)). (5.57)

Henceforth, the dependence of δ and δ′ on d and ω0 will be omitted in the
notation for the sake of simplicity. After inserting (5.56) and (5.57) into (5.7)
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and some simplifications we arrive at

F ′(ω0, d) = F ′
0(ω0, d) + F ′

N (ω0, d) (5.58)

where

F ′
0(ω0, d) = δ′[(1 + δ) − cos(ω0(d − d0 + d̃))]+

+ (1 + δ)ω0(1 + d̃′) sin(ω0(d − d0 + d̃)) (5.59)

does not depend on the batch length N and

F ′
N (ω0, d) =

1

N

[
(1 + δ)ω0(1 + d̃′) sin(ω0(−(d0 + d + d̃))−

− (1 + δ)2ω0(1 + d̃′) sin(ω0(−(d + d̃))+

+ δ′ cos(ω0(−(d0 + d + d̃))−

−(1 + δ)δ′ cos(ω0(−(d0 + d̃))
] sin(Nω0)

sin(ω0)
(5.60)

contains the terms that do.

In Section 5.4.2 we will see that if the initial phase of the signals is un-
known and random, F ′

N is also random with zero mean. If we assume that
N is so large that F ′

N can be approximated as zero, it can be seen that, if δ′

is zero, F ′
0 will be zero when d = d0 − d̃, irrespective of δ.

On the other hand, if δ′ is small, but not zero, the effect of a constant
magnitude error δ will affect the estimator. The effect of a delay error
derivative d̃′ is normally negligible since it tends to be small compared
to 1.

The iterative Newton-Raphson algorithm in (5.4) will, if the function is
behaving well, converge towards the zero of F ′

0. Unfortunately, it is im-
possible to directly from (5.59) analytically find the d that makes F ′

0 zero.
To find an approximation of the estimation error we do a first-order Taylor
expansion of the sine and cosine in F ′

0 and write it as

F ′
0 ≈ δ′(δ +

ω2
0

2
(d − d0 + d̃)2) − (1 + δ)(1 + d̃′)ω2

0(d − d0 + d̃). (5.61)

If 1+ d̃′ and 1+ δ are approximated by 1, we can solve for derr ≈ d−d0 and
get

derr ≈ − 1

δ′
+

1

ω0δ′

√
ω2

0 − 2(δ′)2δ − d̃. (5.62)
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This expression can be used to predict the final estimation error and to
design FD filters which take the error caused by magnitude errors into ac-
count. The first part becomes small when ω2

0 is large compared to 2(δ′)2δ
and the error will then be dominated by d̃. For small ω0, if δ or δ′ are not
zero, the error deviates more and more from d̃.

The derivative of δ for a Farrow FIR FD filter can be found analytically
by noting that the magnitude can be rewritten as [28]

|H(d, ejω)| =

∣∣∣∣∣∣

⌊L/2⌋∑

k=1

d2kG(2k)R(ωT )+

+j

⌈L/2⌉∑

k=1

d2k−1G(2k−1)R(ω)

∣∣∣∣∣∣

= |A(d) + jB(d)| = 1 + δ. (5.63)

Since the derivative of the magnitude is equal to the derivative of the mag-
nitude error we can calculate δ′ as

δ′ = 2
A(d)A′(d) + B(d)B′(d)√

A(d)2 + B(d)2
(5.64)

where A′(d) and B′(d) can be calculated as

A′(d) =

⌊L/2⌋∑

k=1

2kd2k−1G(2k)R(ωT ) (5.65)

and

B′(d) =

⌈L/2⌉∑

k=1

(2k − 1)d2k−2G(2k−1)R(ωT ). (5.66)

Since the magnitude of an all-pass FD filter is constant, the derivative
of the magnitude error δ′ = 0, which means that if an all-pass FD filter is
used the offset error simply becomes derr = d̃. To minimize the estimator
offset, all we have to do is minimize to d̃, see Section 5.3.3.

Wideband Signals

Now we will discuss what happens when a wideband signal is applied to
the estimator. An ideal bandlimited, but wideband, signal and its delayed
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version are difficult to generate synthetically. One way to generate an ap-
proximation is to delay the signal with an FD filter with a much smaller
error than the one used in the estimator. Another is to approximate a wide-
band signal using a sum of many sinusoids with random frequency and
phase. We will use such a signal to analyze the wideband offset and later
compare it in simulations.

As input signal we use a sum of K sinusoids at random frequencies,
with random phases ϕk and amplitudes A(ωk), according to

y(n, d) =
K∑

k=1

A(ωk) sin(ωk(n − d − d̃k(ωk, d)) + ϕk) (5.67)

and

v(n) =
K∑

k=1

sin(ωk(n − d0) + ϕk). (5.68)

To simplify the calculation we here assume that the derivatives of A and d̃
are so small that they can be neglected. The derivative of y(n, d) can then
be calculated as

y′(n, d) = −
K−1∑

k=0

Akωk cos(ωk(n − d − d̃k) + ϕ). (5.69)

The static part of the first derivative of F ′(d) can then be written as

F ′
0(d) = −

K−1∑

k=0

Ak sin(ωk(d0 − d − d̃k)) ≈ −
K−1∑

k=0

Akωk(d0 − d − d̃k). (5.70)

To analytically find the value for d where F ′
0(d) = 0 is difficult since d̃k can

only be expressed as the arctangent of an order P polynomial. However,
it is possible to calculate it numerically. It also turns out that the estimator
offset can be approximated quite well as the mean of d̃(ωk, d0) over the
frequencies ωk.

5.4.2 Estimator Variance

There are several causes for estimator variance. First we have the additive
noise, seen as e1 and e2 in Fig. 4.1. Another is the variance caused by
the truncation of signal batch length. In a fixed point implementation we
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will also have quantization noise, but it can be made arbitrarily small by
increasing the wordlengths.

The following analysis has mainly been performed using a signal con-
sisting of a single sinusoid, but we will also briefly look at wideband sig-
nals. This could be seen as a limitation of the results, but in many applica-
tions the signal can be freely selected and hence the results can be useful if
a sinusoid is chosen.

In this thesis we have treated the frequency of single frequency signals
as unknown, but fixed. If the frequency is allowed to vary randomly over
a frequency interval it will, because of the nonidealities in the FD filters,
introduce randomness in the estimate too. We will briefly discuss this in
this section.

Additive Noise

Additive noise is of course the main source of estimator variance. We have
not yet analyzed the relation between additive noise and estimator vari-
ance theoretically, but we will see the effects of additive noise in Section
5.6.

Limited Batch Length Effects for Sinusoids

In simulations it is seen that, when the noise becomes small, the DC algo-
rithm reaches an error floor. This was noted in [8] and it was explained
that it was due to the truncation of the estimation window. We will now
see why there is a difference between the DC and ASDF based estimators.

For this analysis we have assumed a sinusoidal input with unknown
frequency and a random initial phase ϕ. Let

v(n) = sin(ω(n − d0) + ϕ) (5.71)

be the reference signal with an unknown delay and let

y(n, d) = A(ω, d) sin(ω(n − d − d̃(ω, d)) + ϕ) (5.72)

be the output from the fractional delay filter, where A(ω, d) is the relative
magnitude of y(n, d) compared to v(n) and d̃(ω, d) is the phase delay error
of the FD filter.

Note that the relative magnitude A(ω, d) can be caused both by the fil-
ter, as is the case when an FIR FD filter is used as the interpolator, and/or
by mismatch in the system. In the case when an IIR FD filter is used we as-
sume that the relative magnitude is constant for all frequencies and delays.
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We have also assumed the we have no additive noise since this analysis
will mainly consider a situation where a finite batch length is the main
source of estimator variance.

We begin by studying the ASDF estimator. If we insert (5.71) and (5.72)
into (5.7) and assume that d̃′ and d̃′′ are negligible we get

F ′
ASDF(d) = F ′

0(d) + F ′
N (d) (5.73)

where

F ′
0(d) = Aω sin

(
ω
(
d0 − d − d̃

))
(5.74)

and

F ′
N (d) =

1

N

N−1∑

n=0

Aω
[
A sin(2ω(n + d + d̃) + 2ϕ)−

− sin(ω(2n + d0 + d + d̃) + 2ϕ)
]

(5.75)

and

F ′′(d) = F ′
0(d) + F ′

N (d) (5.76)

where

F ′′
0 (d) = Aω2 cos(ω(d0 − d − d̃)) (5.77)

and

F ′′
N (d) =

1

N

N−1∑

n=0

Aω2
[
2 cos2(ω(n + d + d̃) + 2ϕ)−

− 2A sin2(2ω(n + d + d̃) + 2ϕ)−

− cos(ω(2n + d0 + d + d̃) + 2ϕ)
]
. (5.78)

F ′
N and F ′′

N depend on the batch size N and tend toward 0 when N be-
comes large. However, since F ′

N and F ′′
N also depend on the random un-

known initial phase ϕ, they will contribute to the variance of the final esti-
mate.

In Fig. 5.15 an example of F ′
N for different N can be seen. When N

becomes large F ′
N decays to zero.
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Using trigonometric identities we can rewrite (5.75) as

F ′
N (d) =

1

N
Aω

sin(Nω)

sin(ω)

[
A sin

(
2ω

(
d + d̃ +

N − 1

2

)
+ 2ϕ

)
−

− sin

(
2ω

(
d0 + d + d̃

2
+

N − 1

2

)
+ 2ϕ

)]
.

(5.79)

We will now analyze F ′
N to see how it affect the variance of the final

estimate. If we calculate the mean of F ′
N and F ′′

N for a random phase ϕ we
get

E{F ′
N (d)} =

∫ 2π

0
F ′

N (d)dϕ = 0. (5.80)

The variance can then be calculated as

var{F ′
N} = E{(F ′

N − E{F ′
N})2} =

∫ 2π

0
(F ′

N (d))2dϕ = (5.81)

=

(
Aω sin(Nω)

N sin(ω)

)2(A2 + 1

2
− A cos(ω(d + d̃ − d0))

)
. (5.82)

When d + d̃ is close to d0 the variance of F ′
N can be approximated as

var{F ′
N} ≈

(
Aω sin(Nω)

N sin(ω)

)2 (A − 1)2

2
(5.83)

which is very small when A is close to 1. However, if A differs from 1, the
variance increases.

The variance for the first derivative of the DC cost function can analo-
gously be calculated then we get

var{F ′
N} =

(
Aω sin(Nω)

N sin(ω)

)2 1

2
. (5.84)

From this we see that the truncation induced variance for the DC estimator
is relatively insensitive to small magnitude errors, but larger compared to
the ASDF estimator.

Now we will see how the variance of F ′
N affects the the variance of the

estimator. Using the notation introduced in (5.75) and (5.78) the iterative
Newton-Raphson update equation (5.4) can be written as

d̂n+1 = d̂n − F ′
0 + F ′

N

F ′′
0 + F ′′

N

. (5.85)
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By using Taylor series expansion the second part of (5.85) can then be writ-
ten as

F ′
0 + F ′

N

F ′′
0 + F ′′

N

≈ F ′
0

F ′′
0

+
1

F ′′
0

F ′
N − F ′

0

(F ′′
0 )2

F ′′
N − 1

(F ′′
0 )2

F ′
NF ′′

N . (5.86)

The first term,
F ′

0

F ′′

0

, is the desired iterative step and it can be approxi-

mated as

F ′
0(dn)

F ′′
0 (dn)

= − sin(ω(d0 − dn − d̃))

ω cos(ω(d0 − dn − d̃))
≈

≈ dn − (d0 − d̃) (5.87)

which means that the iterative step ideally is the difference between the
current estimate dn and the unknown delay d0 minus the delay error d̃.
However, the remaining terms in (5.86) will contribute to the variance of
the estimate and will limit the obtainable accuracy of the estimator.

As we will later confirm in simulations, the main variance contributor
in (5.86) is the term 1

F ′′

0

F ′
N , i.e. a good approximation of the estimator vari-

ance induced by the finite batch length can be calculated using the second
term of (5.86) as

var{d̂} ≈ 1

(F ′′
0 )2

var{F ′
N}. (5.88)

In Fig. 5.16 the theoretical variance for the DC and ASDF estimator for
different N , a constant phase and frequency ω = 0.05π and A = 1.001 is
plotted. The variance for the ASDF estimator is much lower when A is
close to 1. If A = 1 the ASDF estimator would practically be unaffected by
N .

It is also seen that the variance sometimes drops significantly. That
happens at certain N ’s where the sums in F ′

N and F ′′
N adds up to zero.

However, since the frequency ω is generally not known exactly we cannot
always choose N that results in such a small variance.

Wideband Signals

For a wideband signal the limited batch length effect will also affect the
performance. We will later see in simulations that the ASDF estimator per-
forms better than the DC estimator for a wideband signal.

The performance is limited by the phase delay ripple of d̃(ω). An ex-
ample of phase delay ripple can be seen in Fig. 5.17, where the phase delay
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Figure 5.16. Example showing the theoretical variance for DC and ASDF estimators.
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of a FIR FD filter has been plotted. Assume that the frequency of the in-
put signals are random. Since the estimator offset is so closely related to
the phase delay error the estimate will also vary, as seen in Fig. 5.17, and
hence increase the estimator variance. It is hard to compute a closed form
expression for the variance caused by the phase delay ripple.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−3

−2

−1

0

1

2

3
x 10

−5

ω/π

Phase delay error - d̃(ω, 0.25)

Figure 5.17. Example of the phase delay error d̃(ω, d) for d=0.25.

5.5 Complexity

Let Mk denote the filter order of the FIR subfilter Gk(z). In Table 5.1 the
number of multiplications, additions and delays needed per iteration to
calculate y(n, d), y′(n, d), and y′′(n, d) for the FIR and IIR FD filters, i.e.
Newton-Raphson is assumed. When the DC (ASDF) cost function is used
an additional complexity of 2 multiplications and 2 additions (3 multiplica-
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tions and 5 additions) per sample is added to the expressions in the table.
Hence, the difference in complexity is small between the DC and ASDF
cost function.

FIR All-pass

Mults/sample 1
2

∑P
k=0 Mk + ⌊P

2 ⌋ + 3(P − 1) 3P (M + 3) − 4

Adds/sample
∑P

k=0 Mk + 3(P − 1) 3P (M + 1) + M − 4

Delay
∑P

k=0 Mk + ⌊P
2 ⌋ 4M

Table 5.1. The number of operations needed per sample for an FIR FD filter and an IIR
FD filter and Newton Raphson.

If Recursive Gauss-Newton is used instead of Newton-Raphson we do
not need to calculate the second derivative, although the number of re-
quired iterations increase. In Table 5.2 the complexity for the compuation
of y(n, d) and y′(n, d) is seen for this case. The additional cost for RGN is
2 multiplications and 3 additions per sample. The complexity per sample
is obviously lower than for Newton-Raphson, however more iterations are
needed.

FIR All-pass

Mults/sample 1
2

∑P
k=0 Mk + ⌊P

2 ⌋ + 2P − 1 2P (M + 2) + M − 2

Adds/sample
∑P

k=0 Mk + 2P − 1 2M(P + 1) + P − 1

Delay
∑P

k=0 Mk 3M

Table 5.2. The number of operations needed per sample with an FIR FD filter and an IIR
FD filter and Recursive Gauss-Newton.

To investigate the computational requirements for the different estima-
tors two filters were designed, using the previously described methods,
with approximate equal phase delay error, one FIR and one IIR all-pass
filter. In Table 5.3 the resulting filter orders for different estimator errors
are seen. Even though that required filter order is lower for the IIR based
estimator the required number of operations per sample is still higher com-
pared to the FIR based estimator. We will later see that the estimator using
the IIR FD filters has other advantages though, which might make the es-
timator useful in certain applications.
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Max est. error M P Iter Mult Add Delay

FIR NR 2.48 · 10−4 [10 6 8 4 4] 5 5 27 45 10

FIR RGN 1.10 · 10−4 [10 6 8 4 4] 5 10 25 39 10

All-Pass NR 1.84 · 10−4 6 5 5 131 107 24

All-Pass RGN 2.00 · 10−4 6 5 10 84 74 18

Table 5.3. The computational complexity for the different estimators. Operations per
sample.

5.6 Simulations

To verify the results a number of simulations have been performed. We
begin by looking at the estimator offset caused by phase delay and magni-
tude errors in the FD filters, followed by the variance of the estimate.

5.6.1 Estimator Offset

We will verify that the main source of estimator offset is caused by the
phase delay errors in the FD filter used. First we look at the offset when
we have a sinusoidal input and then a wideband input.

Sinusoidal Input

To verify the estimator offset analysis, a number of simulations were per-
formed. We have assumed that the frequency ω is unknown, but static.

To verify that the expression for the expected error is correct we sim-
ulated the estimator using Newton-Raphson for a number of frequencies
ω0 and delays d0. In Fig. 5.18 and 5.19 the estimated and simulated errors
are seen for the two example FIR FD filters designed in Section 5.3.2. The
batch length was N = 2000. The upper left plots show the phase delay
errors of the FD FIR filters. The upper right plot shows the predicted esti-
mator error, which is the sum of the phase delay error d̃(ω, d) and the offset
error derr(ω, d) caused by magnitude errors. The lower left and right plots
show the difference between the predicted estimator offset and the actual
estimator offset with and without derr(ω, d).

An alternative to Newton-Raphson is to use Recursive-Gauss-Newton.
The disadvantage, though, is that RGN usually needs more iterations to
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converge. In Fig. 5.20 an example of this can be seen, where RGN needs 8
iterations, while NR only needs 3 or 4. However, depending on the appli-
cation, this difference might not be important. The use of RGN in TDE was
first seen in [24].

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

iteration

d

Delay estimate d̂k

 

 
Newton−Raphson
Recursive Gauss−Newton

Figure 5.20. Illustrating the convergence time for NR and RGN. d0 = 0.25, ω0 = 0.25π,
no noise.

To further compare NR and RGN we ran the IIR all-pass ASDF estima-
tor using RGN for 5 and 10 iterations and compared the estimate with the
expected estimate d̃(ω, d). Furthermore we ran the IIR all-pass estimator
using NR for 5 iterations. The result can be seen in Fig. 5.21. Five iterations
are clearly too few when RGN is used, but for 10 iterations the estima-
tors are comparable and the maximum difference between the estimators
is 2.7 · 10−4 samples.

Since the derivative of the magnitude is equal to zero for an IIR all-pass
filter, the predicted estimator error is equal to the phase delay error d̃(ω, d)
of the FD filter. In Fig. 5.22 it can be seen that the predicted and simulated
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Figure 5.21. The difference between the estimate and the expected estimate d̃(ω, d) for the
estimator using RGN and NR, with different number of iterations.
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error are virtually identical. The maximum value of the the difference be-
tween the two is equal to 9.5 · 10−10. The difference is most likely caused
by the truncation of the batch length.
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Figure 5.22. The phase delay error and estimator error for an IIR FD filter.

5.6.2 Estimator Variance

There are several sources of variance in the estimate. First we have addi-
tive noise, which we will assume is Gaussian and white. Another source
of estimator variance is the limited batch length. In (5.82) and (5.84) ap-
proximations of the variance caused by the batch length truncation for the
ASDF and DC estimator were derived and we will verify the expressions
in simulations.

The differentiation naturally amplifies high frequency signals and at-
tenuates low frequencies. In Fig. 5.23 it can be seen how the noise is af-
fected by the first and second order derivation. As it will be seen later this
is not catastrophic, but it can be good to keep this in mind.

We will first study the case when we have a sinusoidal input, followed
by an examination of what occurs when we have a wideband signal.
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Figure 5.23. The spectrum of y(n, d), y′(n, d), and y′′(n, d) for the Farrow-based FD.
ω0 = 0.25π, d0 = 0.25, SNR = 10dB

Sinusoidal Input

Sinusoidal inputs were generated with constant frequency and random
phase. In Fig. 5.24, the estimator variance for different SNR and relative
magnitude A is plotted. The IIR all-pass FD filter based estimator was
used. The predicted variance caused by batch length truncation, calcu-
lated using (5.82) and (5.84) and shown as horizontal lines in Fig. 5.24,
corresponds well to the variance floors experienced in the simulation. If
the relative magnitude A is close to 1 the variance for the ASDF estimator
is much lower than the DC estimator.

Wideband Input

To verify that the estimator works for both a wide-band signal a signal
was generated by adding a number of sinusoids with random frequency
and random phase. A comparison of the resulting variance can be seen in
Fig. 5.25 for both the ASDF and DC estimators. As can be seen, the ASDF
method still has a much lower variance for wideband signals.

In Fig. 5.25 the estimator variance for single frequency signals are
shown too as a comparison. Compared to Fig. 5.24 where we have a rel-
ative magnitude A that differs from 1, the variance caused by the batch
length truncation for the ASDF estimator is nonexistent, as predicted in
(5.82).

The reason for the variance floor in the ASDF based estimator when a
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wideband signal is applied is the phase delay error ripple seen in Fig. 5.17.
The exact relationship needs more investigation.
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Figure 5.25. The variance for a wideband input.

5.7 Conclusions

We have presented novel methods to estimate the delay error between two
sets of samples using an adjustable FD filter. One advantage is that the
signals do not have to be known, only band limited. The method could
be used for example in time-interleaved analog-to-digital converters and
could easily be extended to more sets of samples.

The effects of magnitude and delay error have been studied theoreti-
cally and verified in simulations. An expression of the expected estimator
offset was derived and it was seen that the main contributor is the phase
delay error of the FD filter, but an additional offset is caused by the first
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derivative of the magnitude error. The derived expression can be used to
optimize the FD filters to be used in the estimator. Since the magnitude
error is zero in an IIR all-pass FD filter it is only necessary to optimize such
a filter with respect to the phase delay error.

Furthermore, the direct correlator (DC) and average squared difference
(ASDF) cost function were compared from an estimator variance point of
view. It was seen that the variance caused by sample batch length trunca-
tion is much smaller for the ASDF estimator than for the DC estimator. If
a constant magnitude error is present, both estimators will have a variance
floor, but the estimator based on an IIR all-pass FD filter has an advantage
because it is easier to control the magnitude error of such a filter.

It was also seen that if the number of iterations needed to find an esti-
mate is not critical we can use recursive Gauss-Newton instead of Newton-
Raphson to find the maximum/minimum for the cost functions.

5.7.1 Future Work

There are a couple of issues that we would like to investigate further. First,
we would like to extend the estimator to magnitude and DC offset esti-
mation. In this thesis we have only briefly covered magnitude offset and
it needs more investigation. Furthermore, we would like to explain the
estimator variance when we have a wideband signal instead of a single
frequency signal.

Initial results show that when gain estimation is introduced in the
ASDF estimator the variance caused by batch length truncation is reduced
significantly, especially in the estimator using an all-pass FD filter since all
the estimated gain is valid for all frequencies.
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Chapter 6

Summary

In this thesis we have studied basically two problems, namely frequency
and delay offsets, and proposed a number of possible estimation methods.

The CFO estimation method presented in Chapter 3 uses a null sub-
carrier to estimate the CFO iteratively. The estimator has some similarities
with the method presented in [13], although it is carried out differently.
One of the benefits with the proposed CFO estimator is that no extra re-
dundancy has to be added, besides the nonmodulated subcarrier. Further-
more, it does not rely on the cyclic prefix, which is often destroyed in a
multipath channel.

We have proposed an iterative time delay estimator using adjustable
fractional delay filters. The estimator works by minimizing a cost func-
tion by finding the closest zero of the first derivative of the respective cost
function.

We have shown that the average squared difference function performs
better than the direct correlator when it comes to estimator variance caused
by observation window truncation.

Furthermore, we have shown that TDE based on IIR all-pass FD filters
have some attractive properties. First, the expected error is equal to the
phase delay error, making it easy to design. A disadvantage, though, is that
the number of operations per sample is higher compared to an estimator
based on an FIR FD filter, even when the lower filter order is considered.

Finally we saw that if the number of iterations needed to acquire an
estimate is not critical, the recursive Gauss-Newton technique can be used
to somewhat reduce the number of operations needed.

85
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6.1 Future Work

A main line of future work will be in the area of time delay estimation.
There are several tracks that remain to be investigated. First, we would
like to generalize the estimator to more parameters, for example DC offset
and gain. We would also like to implement the estimator in hardware and
verify the predicted performance in practice, preferably running in an on-
line fashion.
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[31] J. Yli-Kaakinen and T. Saramäki. An algorithm for the optimization
of adjustable fractional-delay all-pass filters. In Proc. of the 2004 Int.
Symp. on Circ. and Syst., volume 3, pages 153–156, May 2004.

[32] C. J. You and H. Horng. Optimum frame and frequency synchroniza-
tion for OFDM systems. In Int. Conf. on Consumer Electronics, pages
226–227. IEEE, 2001.


