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Abstract

This thesis deals with estimation of states and parameterarilinear and non-Gaussian
dynamic systems. Sequential Monte Carlo methods are masgdg to this end. These
methods rely on models of the underlying system, motivasimmge developments of the
model concept. One of the main reasons for the interest itinegar estimation is that
problems of this kind arise naturally in many important &mtions. Several applications
of nonlinear estimation are studied.

The models most commonly used for estimation are based chagttic difference
equations, referred to as state-space models. This tas@inly concerned with models
of this kind. However, there will be a brief digression frohist in the treatment of the
mathematically more intricate differential-algebraicuations. Here, the purpose is to
write these equations in a form suitable for statisticahaigrocessing.

The nonlinear state estimation problem is addressed usiqgestial Monte Carlo
methods, commonly referred to as particle methods. Whee ikex linear sub-structure
inherent in the underlying model, this can be exploited gy pbwerful combination of
the particle filter and the Kalman filter, presented by thegimadized particle filter. This
algorithm is also known as the Rao-Blackwellized partidteifiand it is thoroughly de-
rived and explained in conjunction with a rather generas<slaf mixed linear/nonlinear
state-space models. Models of this type are often used dyisiy positioning and tar-
get tracking applications. This is illustrated using saVexamples from the automotive
and the aircraft industry. Furthermore, the computatieoahplexity of the marginalized
particle filter is analyzed.

The parameter estimation problem is addressed for a relatieneral class of mixed
linear/nonlinear state-space models. The expectationmieation algorithm is used to
calculate parameter estimates from batch data. In devthisgalgorithm, the need to
solve a nonlinear smoothing problem arises, which is hahdéng a particle smoother.
The use of the marginalized particle filter for recursivegpagter estimation is also inves-
tigated.

The applications considered are the camera positioninglgmo arising from aug-
mented reality and sensor fusion problems originating femtomotive active safety sys-
tems. The use of vision measurements in the estimationgrold central to both appli-
cations. In augmented reality, the estimates of the casme@sition and orientation are
imperative in the process of overlaying computer generatgects onto the live video
stream. The objective in the sensor fusion problems arisiagitomotive safety systems
is to provide information about the host vehicle and its aundings, such as the posi-
tion of other vehicles and the road geometry. Informatiothaf kind is crucial for many
systems, such as adaptive cruise control, collision angieland lane guidance.






Sammanfattning

Denna avhandling behandlar skattning av tillstdnd ochrpaterar i olinjara och icke-
gaussiska system. For att dstadkomma detta anvands hiligdaasekventiella Monte
Carlo-metoder. Dessa metoder forlitar sig p& modeller dawudeerliggande systemet,
vilket motiverar vissa utvidgningar av modellkonceptet.d de viktigaste anledningarna
till intresset for olinjar skattning ar att problem av detlag uppstar naturligt i manga
viktiga tillampningar. Flera tillampade olinjara skatigsproblem studeras.

De modeller som anvands for skattning ar normalt baseradtopastiska differen-
sekvationer, vanligtvis kallade tillstandsmodeller. Bamvhandling anvander huvudsak-
ligen modeller av detta slag. Ett undantag utgérs dock av atematiskt mer komplice-
rade differential-algebraiska ekvationerna. Malet artialfall att skriva om ekvationerna
pa en form som lampar sig for statistisk signalbehandling.

Det olinjara tillstdndsskattningsproblemet angrips mgdphav sekventiella Monte
Carlo-metoder, dven kallade partikelmetoder. En linjdssswktur ingdende i den un-
derliggande modellen kan utnyttjas av den kraftfulla kamalion av partikelfiltret och
kalmanfiltret som tillhandahalls av det marginaliseradgikeafiltret. Denna algoritm gar
aven under namnet Rao-Blackwelliserat partikelfilter oeh barleds och forklaras for en
generell klass av tillstindsmodeller bestaende av savjardi, som olinjara ekvationer.
Modeller av denna typ anvands vanligen for att studeraipositings- och malféljnings-
tillampningar. Detta illustreras med flera exempel framéors- och flygindustrin. Vidare
analyseras aven berakningskomplexiteten for det maigaratle partikelfiltret.

Parameterskattningsproblemet angrips for en relativegghklass av blandade lin-
jara/olinjara tillstandsmodeller. “Expectation maximipn’-algoritmen anvands for att
berékna parameterskattningar fran data. Nar denna atgapipliceras uppstar ett olinjart
glattningsproblem, vilket kan I6sas med en partikelgiattAnvandandet av det margina-
liserade partikelfiltret for rekursiv parameterskattnimglersoks ocksa.

De tillampningar som betraktas ar ett kamerapositionspngblem harstammande
fran utokad verklighet och sensor fusionproblemet som t#ppsktiva sakerhetssystem
for fordon. En central del i bada dessa tillampningar ar adaadet av matningar fran
kamerabilder. For uttékad verklighet anvénds skattningasnkamerans position och ori-
entering for att i realtid 6verlagra datorgenererade dbjlknsekvenser. Syftet med sen-
sor fusionproblemet som uppstar i aktiva sakerhetssysterilar ar att tillhandahalla
information om den egna bilen och dess omgivning, sdsomadodions positioner och
vagens geometri. Information av detta slag ar nodvandigiitga system, sdsom adaptiv
farthallning, automatisk kollisionsundvikning och autatisk filféljning.
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Introduction

HIs thesis is concerned with the problem of estimating variawegjties in nonlinear
dynamic systems. The ability to handle this problem is oapayunt importance in
many practical applications. In order to understand howstesy, for instance, a car, an
aircraft, a spacecraft or a camera performs, we need to l@essto certain important
guantities associated with the system. Typically we do aweldirect access to these, im-
plying that they have to be estimated based on various nagssarements available from
the system. Both theoretical developments and applicatiemted studies are presented.
The interplay between the theory and application providésrésting and valuable in-
sights and it prevents us from developing fallacies coringrthe relative importance
of various theoretical concepts, allowing for a balanceswiFurthermore, it enables a
systematic treatment of the applications.

This first chapter illustrates the kind of problems that cartnandled using the theory
developed in this thesis, by explaining two applicationse Tirst applications stems from
the automotive industry, where the current developmenttivesafety systems require
better use of the available sensor information. The secpptcations deals with the
problem of estimating the position and orientation of a canasing information from
inertial sensors and computer vision. Mathematically kjpeg the two applications are
rather similar, they both result in nonlinear estimatioolgems. Another common char-
acteristic is that information from several different sensshave to be merged or fused.
Problems of this kind are commonly referred tosesisor fusiomproblems.

A unified approach to handle the sensor fusion problem arisiutomotive safety
systems is introduced in Section 1.1 and exemplified in 8ecti2. The second ap-
plication is introduced in Section 1.3. In Section 1.4 wevje a brief mathematical
background to the problem under study. The outline is pexbith Section 1.5. Finally,
the chapter is concluded with a statement of the contribatio Section 1.6.
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2 1 Introduction

1.1 Automotive Navigation — Strategy

The automotive industry is an industry in change, where tlvei$ is currently shifting
from mechanics to electronics and software. To quantifg #tatement the monetary
value of the software in a car is predicted to increase fiémin 2003, t013% in 2010
(Forssell and Gustafsson, 2004). The key reason for thistaatial increase is the rather
rapid development of automotive safety systems (Gustaf<X@05). This opens up for
many interesting applications and research opportunitigisin the field of estimation
theory.

Automotive safety systems are currently serving as a tdogiwal driver in the de-
velopment and application of estimation theory, very muthhe same way that the
aerospace industry has done in the past. In fact, the aut@matustry is currently
faced with several of the problems already treated by thespace industry, for example
collision avoidance and navigation. Hence, a lot can prighladgained in reusing results
from the latter in solving the problems currently under stigation in the former. The
development within the aerospace industry is reviewed bdeand Schmidt (1985).
Within the next10-20 years there will most certainly be similar reviews writtéreat-
ing the development within the automotive industry, indeedearly example of this is
Gustafsson (2005).

The broadest categorization of automotive safety systenrsterms ofpassiveand
active systems. Passive systems are designed to mitigate harffefaiseduring acci-
dents. Examples include seat belts, air bags and belt jgietemrs. The aim of active
systems is to prevent accidertisforethey occur. To mention some examples of active
systems, we have ABS (Anti-lock Braking System), ACC (AdapiCruise Control)
and collision avoidance. More thorough reviews of exis@ing future systems are given
in Eidehall (2004), Jansson (2005), Danielsson (2005)ta&sson (2005). There is an
interesting study by Eidehall (2004), where different pbigd active safety systems are
profiled with respect to accident statistics, system corifyi@and cost.

The current situation within the automotive industry istthach control system, read
active safety system, comes with the necessary sensorns.seasor belongs to a certain
control system and it is only used by this system. This effelst prevents other systems
from using the, potentially very useful, information delied by the sensor. This situation
is most likely to be changed in the future, concurrently wiita introduction of more con-
trol systems in cars. A unifying feature of all control systeis that they rely on accurate
staté information. As Gustafsson (2005) points out, it is curkemore important to have
accurate state information than advanced control algodtindeed, it is often sufficient
to employ simple P(1)D controllers. Hence, it is more impottwhat information to feed
back than how the actual feedback is performed.

The natural conclusion from the discussion above is thatddte from the differ-
ent sensors should be jointly analyzed to produce the basilije estimate of the state.
The state information can then be accessed by all contrégmsgsin the cars. This idea
is briefly illustrated in Figure 1.1. This approach is emgdyin the applied research

1Depending on which control system we are concerned withttite & obviously different. In the example
given in the subsequent section, the state contains infamabout the motion of the host vehicle and the
surrounding vehicles and the road geometry.
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Feature
Camera extraction
Steering angle
Host vehicle| \\heel speed Sensor
sensors IMU fusion
Etc. Estimates
: Radar .
Ranging Lid Detection
sensors 1aar processing
Ultrasonic
Position GPS
and maps| Map database

Figure 1.1: The most important factor enabling future automotive sa$gstems
is the availability of accurate information about the statbe process of obtaining
this information is to a large extent dependent on a unifiedttnent of the sensor
information, as illustrated in this figure. The aim of thisiser fusion approach
is to provide the best information possible for as many psegoas possible. In
Section 1.2 this strategy is exemplified using the sensdvslahfont.

project, SEF% where we take part. Similar ideas have previously beenesigd, for
instance by Streller et al. (2002). The figure does not claimontain an exhaustive list
of possible sensors, it is merely intended as an illustnagfdhe idea. For an introduction
to automotive sensors, see, for example, Danielsson (200@gboso (1993), Strobel
et al. (2005). In the subsequent section an explicit exanspgbeovided, where the idea
presented above has been employed and evaluated usingtauttadfic data.

1.2 Automotive Navigation — Example

The objective of this study is to calculate estimates of taelrgeometry, which are impor-
tant in several advanced control systems such as lane gaidand collision avoidance.
The sensors used to accomplish this are primarily radar ameé@, with appropriate im-
age processing provided by the supplier. Hence, the ideaieed here follows from
the general framework introduced in Figure 1.1. The resisiing authentic traffic data,
will illustrate the power of a model based sensor fusion apph. Here, information

2SEnsor Fusion for Safety systefBEFS) is an applied research project, with participamsifAB Volvo,
Volvo Car Corporation, Mecel, Chalmers University of Teclugy and Linkdping University. The financial
support is provided by the Intelligent Vehicle Safety Sysi€1VSS) program.
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from several sensors is used to obtain better performamnae separate use of the sensors
would allow for. The vision system delivers estimates ofried geometry, but the qual-
ity of these estimates is not sufficient for future automm®afety systems. The idea is
to improve the quality by using information available frohetmotion of the surrounding
vehicles, measured using the radar, together with infaoméitom the vision system. The
key assumption is that the leading vehicles will keep followthgir lane, and their lateral
movement can thus be used to support the otherwise difficottgss of road geometry
estimation. For example, when entering a curve as in Figiteéht vehicles ahead will
start moving to the right and thus there is a high probabithgt the road is turning to

Figure 1.2: When entering a curve, all vehicles start moving in the latéraction.
This information can be used to support the road geometiyata.

the right. This information, obtained from radar measunetsiecan be used to signifi-
cantly improve the rather crude road geometry estimates fte vision system. This
idea of jointly estimating the position of the surroundirgiicles and the road parameters
has previously been successfully applied, see, e.g., Blid@004), Dellaert and Thorpe
(1997), Zomotor and Franke (1997), but as will be explaimethe sequel the estimates
can be further enhanced.

In the subsequent sections this problem will be posed astiamegi®n problem, which
can be solved using the model based estimation algorithesepted in this thesis. First
of all a dynamic model is derived. More specifically, the tesg model is a mixed
linear/nonlinear state-space model, to be described ip€h&. The state estimation
problem arising from models in this form can be handled ugitiger the marginalized
particle filter, thoroughly derived in Paper A, or the exteddalman filter (EKF).

1.2.1 Dynamic Model

Dynamic motion models for various objects have been extelysstudied and the litera-
ture contains hundreds of papers describing different tspdearing names like constant
velocity model, constant acceleration model, coordin&tied model, etc. The resulting
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models are all expressed in the general classes introdncgtapter 2. There are sev-
eral surveys available, dealing with various motion modste, e.g., Bar-Shalom and Li
(1993), Li and Jilkov (2003, 2001), Blackman and Popoli (@99

For the present study we need models describing the motitimedfiost vehicle, the
surrounding vehicles and the road. In the host vehicle we la@cess to sensors mea-
suring wheel speed, yaw rate, steering wheel angle, et alloiws for a more detailed
model of the host vehicle, than what can be devised for th@snding vehicles. We will
make use of the model derived by Eidehall (2004). For thegmtediscussion it is only
the lateral motion model of the surrounding vehicles whihmportant. Further details
concerning the model are given in the Appendix of Paper |. 8sential feature of the
model is that it is based on a curved coordinate system, vihttached to the road. This
will enable the use of very simple models for the surroundielgicles. The key assump-
tion introduced above, that the surrounding vehicles wékpx following the same lane,
is in discrete-time expressed 9§1 = yi + wg, wy ~ N(0,Quat). Here,y' denotes the
lateral position of vehicleé andw; denotes Gaussian white noise which is used to account
for model uncertainties.

1.2.2 State Estimation

The resulting nonlinear state estimation problem can beedalising either the extended
Kalman filter (Eidehall and Gustafsson, 2004) or the malgied particle filter (Eidehall
et al., 2005). For the present study the extended Kalman fitte been employed. The
estimate of the road curvature during an exit phase of a danllestrated in Figure 1.3.
To facilitate comparison, the true reference signal anddhevision measurement of the

x10°

15 ---- HighQ‘a[
—_— Lolea(
1+ = Measured
True

Curvature [1/m]

-2.5

. . . .
4260 4265 4270 4275 4280
Time [s]

Figure 1.3: Comparison of estimation performance from two filters, orith\a
largeQa: and one with a small);;;.. The raw measurement signal from the image
processing unit is also included. Comparing this raw vigiegasurement to the
result from the filters clearly illustrates the power of a mbblased sensor fusion
approach.
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curvature are included as well. The true reference signalgeaerated using the method
proposed by Eidehall and Gustafsson (2006). Comparingaiisvision measurement
to the result from the filters clearly illustrates the powéaanodel based sensor fusion
approach. In this particular scenario there are two leadéigcles used to support the
curvature estimates, see Figure 1.2.

From Figure 1.3 it is clear that the filter with a low value @fy performs much
better, than the filter with a high value @iz, during the curve exit. This suggests that
the filter should be tuned using a low value @g;. However, at timel270 s, when the
road is straight, the performance of this filter deterigatéthe recorded video is studied,
see Figure 1.4, it can be seen that this performance degradatincides exactly with a

Figure 1.4: A snapshot from the video just after tim270 s, when the lane change
of the tracked vehicle commences.

lane change of one of the leading vehicles. Obviously, #me Ichange violates the key
assumption, that the leading vehicles will keep drivingi@ same lane. In fact, all lateral
movements, such as lane changes, performed by the leadifdjewwill be interpreted as
aturn in the road by the present approach. However, the titfieig a larger value ap)a
does not suffer from this problem. This is natural, sinceghér value of));; corresponds
to that the model allows for larger lateral movements of gagling vehicles. On the other
hand, since this model contains more noise than neceskarguglity of the estimates is
bad due to this. This is manifested by the time delay in thiene¢¢ during the curve exit
and its overall shaky behavior. This is actually an exampthefundamental limitation
present in all linear filters; the estimation performancea sompromise between noise
attenuation and tracking ability.

Based on the discussion above it is advisable to use a lowe ¥ahd) o when the key
assumption holds and a larger value €% when it does not hold. This can be achieved
by detecting vehicles which violate the key assumption, performs lane departures,
and adapt the model accordingly. This is further inveséigan Paper I, where it is shown
to result in significantly improved road geometry estimates
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1.3 Navigation for Augmented Reality

The following navigation application stems from the aresaofmented reality (AR),
where the idea is to overlay virtual, computer generatedaibjonto an authentic scene
in real time. This can be accomplished either by displayiregt in a see-through head-
mounted display or by superimposing them on the images fraranaera. There are
many applications for augmented reality, ranging from Hoaesting and film production,
to industrial maintenance, medicine, entertainment amdega see Figure 1.5 for some
examples. For a survey of the field, see, e.g., Azuma (199)ma et al. (2001).

(a) Visualization of virtual objects in a live (b) Assistance during maintenance.
broadcast. Courtesy of BBC R&D. Courtesy of Fraunhofer IGD.

FPe T ST

(c) Adding virtual graphics to sports scenes(d) Visualization of virtual recon-
Courtesy of BBC R&D. structions of archaeological sites.
Courtesy of Fraunhofer IGD.

Figure 1.5: Some examples illustrating the concept of augmented yealit

One of the key enabling technologies for augmented reality be able to determine
the position and orientation of the camera, with high accpiend low latency. To ac-
complish this there are several sensors which can be usetilyasleh and Foxlin (2002)
for an overview. Accurate information about the positiod anientation of the camera is
essential in the process of combining the real and the Viotjacts. Prior work in this re-
cent research area have mainly considered the problem invinoement which has been
prepared in advance with various artificial markers, seg, €homas et al. (1997), Caarls
et al. (2003), Yokokohiji et al. (2000), You and Neumann (200mhe current trend is to
shift from prepared to unprepared environments, which m#ke problem much harder.
On the other hand, the costly procedure of preparing the@mvient with markers will no
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IMU Angular velocity,
acceleration
Sensor Position and
Camera fusion orientation
Y
Computer Image coordinates
vision and corresponding
3D coordinates
3D scene
model

Figure 1.6: Schematic illustration of the approach. The sensor fusiodute is
basically a recursive nonlinear state estimator, usingrinétion from the inertial
measurement unit (IMU) and the computer vision system togtdman estimate of
the position and orientation of the camera.

longer be required. Furthermore, in outdoor situations gdgnerally not even possible to
prepare the environment with markers. The idea is to makefus&tural features, occur-
ring in the real scene, as markers. This problem of estimgdtia camera’s position and
orientation in an unprepared environment has previousiy laiscussed in the literature,
see, e.g., Simon and Berger (2002), Lepetit et al. (2003)c@e al. (2002), You et al.
(1999), Klein and Drummond (2003). Furthermore, the worlDavison (2003), Davi-
son et al. (2004) is interesting in this context. Despitatadl current research within the
area, the objective of estimating the position and origomaif a camera in an unprepared
environment still presents a challenging problem.

The problem introduced above can in fact be cast as a nonktega estimation prob-
lem. This work is performed within a consortium, called MABR(2005§, where the
objective is to solve this estimation problem in an unpredagnvironment, using the
information available in the camera images and the acd@asand angular velocities
delivered by an inertial measurement unit (IMU). A scheméitiistration of the approach
is given in Figure 1.6. The IMU, which is attached to the ceanprovides measurements
of the acceleration and the angular velocity of the cameha.dccelerometers and the gy-
roscopes used to obtain these measurements are of MEMSrtygging small, low cost
sensors. However, these sensors are only reliable on atsherscale, due to an inherent
drift. This drift is compensated for using information fratre computer vision system,

3Markerless real-time Tracking for Augmented Reality ImagetBysis (MATRIS) is the name of a sixth
framework research program, funded by the European Union, (Edftract number: 1ST02013. It is an
interdisciplinary applied research project with the fallng partners; Fraunhofer IGD, BBC R&D, Christian-
Albrechts University, Xsens Technologies B.V. and LinkigpUniversity.
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which consists of a 3D scene model and real time featureaidra The 3D model is
generated off-line using images of the scene or existing @#ddels (Koch et al., 2005).
It contains positions of various natural markers, which taen detected in the images
using feature extraction techniques. This allows the cderpusion system to deliver the
3D coordinates of a natural marker, together with the cpording coordinates for this
marker in the present image. This information is then usegétteer with the informa-
tion from the IMU in order to compute an estimate of the positand orientation of the
camera. This computation is performed in the sensor fudiockbn Figure 1.6. Hence,
sensor fusion is interpreted as the process of forming arogppte nonlinear state esti-
mation problem, which can be solved in real time, using tteglalble sensor information
as efficient as possible. For further details regardingdpizroach, see Paper G and Hol
(2005).

The simultaneous use of information present in images aodnration from inertial
sensors is currently under investigation within many bihesoof science and there exists
a vast amount of interesting application areas. In the ptevsection it was illustrated
that this is a sub-problem arising in the development ofmotive safety systems. A use-
ful prototype for investigating this problem has been depet in the MATRIS project,
see Figure 1.7. By using the data from this prototype togetiith the simultaneous lo-

Figure 1.7: This is a prototype developed in the MATRIS project. It cetsiof a
camera, an IMU and a low-power digital signal processorduee pre-processing
of the sensor signals. Courtesy of Xsens Technologies B.V.

calization and mapping (SLAM) ideas of Davison (2003) it@ldde possible to derive
rather good estimates. Furthermore, the presence of th@lneformation will probably
allow for the use of simple image processing. Perhaps verglsipoint-of-interest (POI)
detectors such as the Harris detector, introduced by HandsStephens (1988), can be
used. Another interesting observation elaborated uponusged (2003) is that the vision
measurements can be interpreted as bearing measureméigop€&ns up for reuse of
the research performed on the bearings-only problem, spe Karlsson and Gustafsson
(2005) for an introduction to this problem using radar, s@ral infrared measurements.
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1.4 Mathematical Background

In the previous sections two applications were introdutedh resulting in asensor fu-
sionproblem, where the objective is to utilize existing and affible sensors to extract as
much information as possible. The framework for nonlin¢atesestimation discussed in
this thesis provides a systematic approach to handle sérsion problems. This thesis
will, to a large extent, make use of a probabilistic framewiordealing with estimation
problems of this kind. Thexpressive powesf probability density functions opens up for
a rather systematic treatment of the estimation problenareithe main ideas can be con-
veyed, without getting lost in tedious matrix calculationore specifically, we will make
extensive use of the theory originating from the work of theylish Reverend Thomas
Bayes, published two years after his death in Bayes (1768).distinguishing feature of
the Bayesian theory is that all unknown variables are censilto be random variables.
In the classical theory, represented by Fisher (1912, 188&)his method ofnaximum
likelihood the parameters to be estimated are treated as unknown etsndtathe liter-
ature there is a lively debate, concerning the two viewoirdpresented by Bayes and
Fisher, which has been going on for almost a century now. Sgwod entry points into
this debate are provided by Box and Tiao (1992), Edwards21 ¥pall (1988), Robert
(2001). We will adopt a rather pragmatic viewpoint, implyithat the focus is on using
the best approach for each problem, without getting toolegbin the philosophical dis-
cussions inherent in the debate mentioned above. The Baytbhsory is extensively used
in discussing the state estimation theory. On the other,iéisder's method of maximum
likelihood is employed in solving certain system identifion problems. The probabilis-
tic framework for solving estimation problems is indeedyeowerful. However, despite
this, it is still fruitful to consider the estimation prolteas a deterministic problem of
minimizing errors. In fact, the two approaches are not agffart as one might first think.

The estimation problems are handled usimgdel baseahethods. The systems under
study are dynamic, implying that the models will mostly bedghamic nature as well.
More specifically, the models are primarily constituted tpchastic difference equations.
The most commonly used model is the nonlinear state-spadelmand various special
cases thereof. The nonlinear state-space model consiatsystem of nonlinear differ-
ence equations according to

Ter1 = f(xg, ug, 0) + wy, (System model) (1.1a)
yr = h(xg, ug, 0) + e, (Measurement model) (1.1b)

wherez; denotes the state variable,denotes the known input signéldenotes the static
parametersy; denotes the measurements,ande; denote the process and measurement
noise, respectively. Th&ystem mode(1.1a) describes the evolution of the state variables
over time, whereas theeasurement mod€l.1b) explains how the measurements relate
to the state variables. The dynamic model must describegbenéal properties of the
underlying system, but it must also be simple enough to make that it can be used
to devise an efficient estimation algorithm. In tackling tihanlinear state estimation
problem it is imperative to have a good model of the systemaatdhprobably more
important than in the linear case. If the model does not pe@in adequate description
of the underlying system, it is impossible to derive an appeate estimation algorithm.
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Itis, surprisingly enough, possible to derive expressfonshe complete solution to
the nonlinear state estimation problem. However, theredswvere limitation inherent
in these expressions, they involve multidimensional irgkgwhich only permit closed-
form solutions in certain special cases. The most imporsgetial case occurs when
all equations are linear and the noise terms are Gaussiahlj (The solution is in
this case provided by thi€alman filterintroduced by Kalman (1960). In the nonlinear,
non-Gaussian case approximate techniques have to be eedpldycommon idea is to
approximate the nonlinear model by a linear model and therthesKalman filter for this
linearized model, resulting in the extended Kalman filtehefe are many applications
where this renders acceptable performance, but there swecates where the resulting
state estimates diverge. Furthermore, conceptually dgtissatisfactory solution, since in
a way it is solving the wrong problem. A solution, which is ceptually more appealing
can be obtained by keeping the nonlinear model and tryingppocximate the optimal
solution. The reason is that the effort is now spent on tryingplve the correct problem.
There is a class of methods, referred tsagquential Monte Carlo methqgdsrailable for
doing this. A popular member of this class is the particlefjltntroduced by Gordon
et al. (1993). An attractive feature with these methodsssyas noted above, that they
provide an approximate solution to the correct problem, rather graoptimal solution
to the wrong problemThe sequential Monte Carlo methods constitute an impbptart
of this thesis. They will be employed both for the nonlineates estimation problem and
the nonlinear system identification problem.

1.5 Outline

There are two parts in this thesis. The objective of the fiast is to give a unified view of
the research reported in this thesis. This is accomplisiexkplaining how the different
publications in Part Il relate to each other and to the exgstiheory.

1.5.1 Outline of Part |

This thesis is concerned with estimation methods that eyngymamic models of the

underlying system in order to calculate the estimates. tleioto be able to use these
methods there is of course a need for appropriate matheahatmdels. This motivates

the discussion on various model classes in Chapter 2. Arrgtmeral account of the

state estimation theory is given in Chapter 3. The sequévitate Carlo methods are

then reviewed in Chapter 4. The nonlinear system identifingbroblem is treated in

Chapter 5, where special attention is devoted to the usesaftpectation maximization

algorithm. Finally, Chapter 6 provide concluding remarkssisting of conclusions and
some ideas for future research.

1.5.2 Outline of Part Il

This part consists of a collection of edited papers, intosdlibelow. Besides a short
summary of the paper, a paragraph briefly explaining thedrackd and the contribution
is provided. The background is concerned with how the rebezame about, whereas the
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contribution part states the contribution of the presettiti@u In Table 1.1 the papers are
grouped according to the nature of their main content.

Table 1.1: Grouping of the papers according to the nature of their maitient.

Content Paper
Theory, state estimation A B, C,D
Theory, system identification E, F
Applications G, H, I

Paper A: Marginalized Particle Filters for Mixed Linear/Nonlinear
State-Space Models

Schon, T., Gustafsson, F., and Nordlund, P.-J. (2005). Maliged particle
filters for mixed linear/nonlinear state-space modéfsEE Transactions on
Signal Processing3(7):2279-2289.

Summary: The particle filter offers a general numerical tool to apjmede the filtering
density function for the state in nonlinear and non-GausSitering problems. While the
particle filter is fairly easy to implement and tune, its mdiawback is that it is quite
computer intensive, with the computational complexityr@asing quickly with the state
dimension. One remedy to this problem is to marginalize lo@istates appearing linearly
in the dynamics. The result is that one Kalman filter is asgedi with each particle.
The main contribution in this paper is to derive the detaiisthe marginalized particle
filter for a general nonlinear state-space model. Sevembitant special cases occurring
in typical signal processing applications are also disedissThe marginalized particle
filter is applied to an integrated navigation system forraiftc It is demonstrated that the
complete high-dimensional system can be based on a pditieteusing marginalization
for all but three states. Excellent performance on real fliigtta is reported.

Background and contribution: The results from Nordlund (2002) have been extended
and improved. The author of this thesis wrote the major pfattie paper. The example,
where the theory is applied using authentic flight data, ésrésult of the Master’s thesis
by Frykman (2003), which the authors jointly supervised.

Paper B: Complexity Analysis of the Marginalized Particle Filter

Karlsson, R., Schon, T., and Gustafsson, F. (2005). Coritplaralysis of
the marginalized particle filter.[EEE Transactions on Signal Processing
53(11):4408-4411.

Summary: In this paper the computational complexity of the margiredi particle filter,
introduced in Paper A, is analyzed and a general method forpethis analysis is given.
The key is the introduction of the equivalent flop measurearirextensive Monte Carlo
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simulation different computational aspects are studiedl @mpared with the derived
theoretical results.

Background and contribution: Several applications of the marginalized particle filter
are discussed in Paper H. During this work the need for a tigirdheoretical investiga-
tion of the computational complexity of the algorithm wasndified, motivating the work
reported in this paper. This investigation was carried outlose co-operation with Dr.
Rickard Karlsson.

Paper C: A Modeling and Filtering Framework for Linear
Differential-Algebraic Equations

Schon, T., Gerdin, M., Glad, T., and Gustafsson, F. (2008a)odeling and
filtering framework for linear differential-algebraic egfions. InProceedings
of the 42nd Conference on Decision and Contkdui, Hawaii, USA.

Summary: General approaches to modeling, for instance using objeetted software,
lead to differential-algebraic equations (DAE). For segBmation using observed system
inputs and outputs in a stochastic framework similar to Kainfiltering, we need to
augment the DAE with stochastic disturbances, “processefigivhose covariance matrix
becomes the tuning parameter. In this paper we determireitigpace of possible causal
disturbances based on the linear DAE model. This subspaeentaes all degrees of
freedom in the filter design, and a Kalman filter algorithmiiseg.

Background and contribution: This paper is the result of work conducted in close co-
operation with Markus Gerdin. It provided a start for intuethg stochastic processes in
differential-algebraic equations. The results have régdieen refined by Gerdin et al.
(2005a). Finally, a paper presenting the resulting franmkviar system identification and
state estimation in linear differential-algebraic eqoiagi has been submitted to Automat-
ica (Gerdin et al., 2005b).

Paper D: A Note on State Estimation as a Convex Optimization
Problem

Schon, T., Gustafsson, F., and Hansson, A. (2003b). A nostate estima-
tion as a convex optimization problem. Rroceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Priogps®lume 6,
pages 61-64, Hong Kong.

Summary: We investigate the formulation of the state estimation [@mmbas a convex
optimization problem. The Kalman filter computes the maxima posteriori (MAP)
estimate of the state for linear state-space models witts§aim noise. We interpret the
Kalman filter as the solution to a convex optimization probl@nd show that the MAP
state estimator can be generalized to any noise with logas@ndensity function and any
combination of linear equality and convex inequality coaistts on the state.

Background: This work started as a project in a graduate course in corptismization
held by Dr. Anders Hansson. My thesis advisor Professorrir&listafsson came up
with the idea when he served as opponent for the thesis byrasale (2002).
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Paper E: Particle Filters for System Identification of State-Space
Models Linear in Either Parameters or States

Schoén, T. and Gustafsson, F. (2003). Particle filters fotesgsdentification

of state-space models linear in either parameters or stéteBroceedings
of the 13th IFAC Symposium on System Identificatigiages 1287-1292,
Rotterdam, The Netherlands. Invited paper.

Summary: The potential use of the marginalized particle filter for lioear system iden-
tification is investigated. Algorithms for systems whicle &near in either the parameters
or the states are derived. In these cases, marginalizatjgiea to the linear part, which
firstly significantly widens the scope of the patrticle filterrhore complex systems, and
secondly decreases the variance in the linear paramesees/sor fixed filter complex-
ity. This second property is illustrated in an example of aatlt model. The particular
case of freely parameterized linear state-space modeisnon in subspace identification
approaches, is bilinear in states and parameters, and tlus&ses above are satisfied.

Background and contribution: At the ERNSI (European Research Network System
Identification) workshop held in Le Croisic, France in 20@2neone mentioned that it
would be interesting to investigate if the particle filtendse useful for the system identi-
fication problem. This comment, together with the invitedssen on particle filters held
at the 13th IFAC Symposium on System Identification, in Rdten, the Netherlands,
served as catalysts for the work presented in this paper.

Paper F: Maximum Likelihood Nonlinear System Estimation

Schoén, T. B., Wills, A., and Ninness, B. (2006b). Maximunelikood non-
linear system estimation. |Rroceedings of the 14th IFAC Symposium on
System IdentificatiorNewcastle, Australia. Accepted for publication.

Summary: This paper is concerned with the parameter estimation ofagively gen-
eral class of nonlinear dynamic systems. A Maximum LikedtidML) framework is
employed in the interests of statistical efficiency, ang itlustrated how an Expectation
Maximization (EM) algorithm may be used to compute these Mtineates. An essen-
tial ingredient is the employment of particle smoothing noets to compute required
conditional expectations via a sequential Monte Carlo @@ghn. A simulation example
demonstrates the efficacy of these techniques.

Background and contribution: This work is a result of the author’s visit to the Univer-
sity of Newcastle in Newcastle, Australia during the pefi@bruary — May, 2005. It was

conducted in close co-operation with Dr. Adrian Wills and Brrett Ninness, both having

extensive experience in using the EM algorithm for systeentification, whereas the

author of this thesis has been working with sequential M@#do methods. We agreed
on that it would be interesting to try and combine those ideasder to tackle a certain

class of nonlinear system identification problems.
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Paper G: Integrated Navigation of Cameras for Augmented Reality

Schon, T. B. and Gustafsson, F. (2005). Integrated navigati cameras for
augmented reality. IRroceedings of the 16th IFAC world CongreBsague,
Czech Republic.

Summary: In augmented reality, the position and orientation of a ganneust be esti-
mated very accurately. This paper proposes a filtering @gbr,csimilar to integrated nav-
igation in aircraft, which is based on inertial measurerme primary sensor on which
dead-reckoning can be based. Features extracted from Hgeiare used as support-
ing information to stabilize the dead-reckoning. The iméggures are considered to be
sensor signals in a Kalman filter framework.

Background and contribution: This paper is a result of the MATRIS (2005) project,
which is an applied interdisciplinary research projecte Tontents is influenced by the
many interesting discussion held during the project mgstaround Europe.

Paper H: The Marginalized Particle Filter in Practice

Schoén, T. B., Karlsson, R., and Gustafsson, F. (2006a). Téamginalized
particle filter in practice. InProceedings of IEEE Aerospace Conference
Big Sky, MT, USA. Invited paper, accepted for publication.

Summary: This paper is a suitable primer on the marginalized parfittier, which is

a powerful combination of the particle filter and the Kalmdtefi It can be used when
the underlying model contains a linear sub-structure, estitip Gaussian noise. This
paper will illustrate several positioning and target tiagkapplications, solved using the
marginalized particle filter.

Background and contribution: In this paper we have tried to provide a unified inventory
of applications solved using the marginalized particlefilThe author of this thesis has
been involved in the theoretical background, the commnaticomplexity part and the
applications concerned with aircraft terrain-aided posihg, automotive target tracking
and radar target tracking.

Paper |. Lane Departure Detection for Improved Road Geometry
Estimation

Schon, T. B., Eidehall, A., and Gustafsson, F. (2005). Lamadure detec-
tion for improved road geometry estimation. Technical Repd H-ISY-R-
2714, Department of Electrical Engineering, Linkdping \msity, Sweden.
Submitted to the IEEE Intelligent Vehicle Sympositfokyo, Japan.

Summary: An essential part of future collision avoidance systems Isetable to predict
road curvature. This can be based on vision data, but thealateevement of leading
vehicles can also be used to support road geometry estimalibis paper presents a
method for detecting lane departures, including lane chsinof leading vehicles. This
information is used to adapt the dynamic models used in tiraa&on algorithm in order
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to accommodate for the fact that a lane departure is in pssgréhe goal is to improve

the accuracy of the road geometry estimates, which is affieloy the motion of leading

vehicles. The significantly improved performance is denraisd using sensor data from
authentic traffic environments.

Background and contribution: The idea for this paper was conceived during one of the
authors frequent visits to Goteborg. The work was perforinezdlose co-operation with
Andreas Eidehall.

Publication of related interest, but not included in thisdis:

Gerdin, M., Schon, T. B., Glad, T., Gustafsson, F., and Ljung(2005b).
On parameter and state estimation for linear differertigébraic equations.
Submitted to Automatica

Eidehall, A., Schon, T. B., and Gustafsson, F. (2005). Thegmalized par-
ticle filter for automotive tracking applications. FProceedings of the IEEE
Intelligent Vehicle Symposiuppages 369-374, Las Vegas, USA,

Schoén, T. (2003)On Computational Methods for Nonlinear Estimatidui
centiate Thesis No 1047, Department of Electrical EngingelLinkdping
University, Sweden.

1.6 Contributions

The main contributions are briefly presented below. Sinedtitle of this thesis isEsti-
mation of Nonlinear Dynamic Systems — Theory and Appliaagidhe contributions are
naturally grouped after theory and applications.

Theory

e The derivation of the marginalized patrticle filter for a mtlgeneral mixed lin-
ear/nonlinear state-space model. This is presented irr Pajogether with a thor-
ough explanation of the algorithm.

e The analysis of the computational complexity of the marigea particle filter,
presented in Paper B.

e Anew approach to incorporate white noise in linear difféisdralgebraic equations
is presented in Paper C. This provided the start for a frameaiowing for state
estimation and system identification in this type of models.

e Two algorithms are introduced to handle the system ideatiia problem occur-
ring in a class of nonlinear state-space models, with affarameter dependence.
In Paper E the marginalized particle filter is employed anBaper F an algorithm
based on a combination of the expectation maximizationréhgo and a particle
smoothing algorithm is derived.
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Applications

e Theidea of using feature displacements to obtain infolwnétiom vision measure-
ments is introduced in Paper G.

e Several applications of the marginalized particle filter discussed in Paper H.

e A new approach to estimate road geometry, based on charegtidat is presented
in Paper I.
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Models of Dynamic Systems

THE estimation theory discussed in this thesis is model basedcé] the need for an
appropriate model is imperative. By appropriate we meand@ettbat is well suited
for its intended purpose. In other words, when a model isldpeel it must always be
kept in mind what it should be used for. The model must desdtile essential proper-
ties of the underlying system, but it should also be simpleugh to make sure that it
can be used to devise an efficient estimation algorithm. dftthderlying model is not
appropriate it does not matter how good the estimation dfgoris. Hence, a reliable
model is essential to obtain good estimates. When we refemiacel, we mean a system
of equations describing the evolution of the states and ts@sorements associated with
the application. Other models are for instance impulseaesgs, transfer functions and
Volterra series.

The purpose of this chapter is to provide a hierarchicakdiaation of the most com-
mon model classes used here, starting with a rather ger@ralfation. In deriving
models for a specific application the need for solid backgdoknowledge of the appli-
cation should not be underestimated. Several examplesptitagion driven models are
given in the papers in Part II. These models are all instaottee general model classes
described in this chapter.

The most general model class considered isstbehastic differential-algebraic equa-
tions (SDAE), briefly introduced in Section 2.1. However, mostltd tnodels currently
used within the signal processing and automatic controhoonities are state-space mod-
els, which form an important special case of the SDAE modaeSdction 2.2 we prepare
for the state-space model, which is introduced in Secti8n Binally, Section 2.4 con-
cludes the chapter with a discussion on how to include whitseninto linear differential-
algebraic equations.

21
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2.1 Introduction

The current demand for modularity and more complex models fevored the approach
based orobject-oriented modelingvhere the model is obtained by connecting simple
sub-models, typically available from model libraries. Exdes of modeling tools of this
kind are Modelica, Dymola and Omola (Fritzson, 2004, Tjll2001, Mattsson et al.,
1998). The modeling software will then collect all the edoras involved and construct
a resulting model, which involves both differential andeddgpic equations. A general
formulation of such a model is given by

F(é‘(t), Z(ﬁ),ﬂ(t), Q,t) =0, (2.1)

where the dot denotes differentiation w.r.t. timedenotes the internal variable vectar,
denotes the external signatsdenotes a time-invariant parameter vector amtknotes
time. Finally, the dynamics are described by the possiblylinear functionF', which

is a differential-algebraic equatio(DAE)*. This introductory discussion is held using
continuous-time models, since that is typically where weeha start, due to the fact that
most physical phenomena are continuous. However, distireéemodels can be derived
from the continuous-time models. In (2.1) there are two irtgot types of external sig-
nalsw, which have to be treated separately. The first type is doeti byknown input
signals, denoted by. Typical examples include control signals or measuredithsinces.
The second type isnmeasuredhputs, denoted bw. These signals are typically used to
model unknown disturbances, which are described usindpastic processes.

A DAE that contains external variables described by staghasocesses will be re-
ferred to as a stochastic differential-algebraic equatidhere will always be elements
of uncertainty in the models, implying that we have to be abldandle SDAEs. As
of today there is no general theory available on how to da thiswever, several spe-
cial cases have been extensively studied. In Brenan et@6§land Ascher and Petzold
(1998) there is a thorough discussion on deterministieecgfitial-algebraic equations.
There has also been some work on stochastic differentigbaic equations (see, e.g.,
Winkler, 2003, Schein and Denk, 1998, Penski, 2000, RomaschWinkler, 2003), but
there is still a lot that remains to be done within this fieldn itrinsic property of the
differential-algebraic equation is that it may hide imflitifferentiations of the external
signalsa. This poses a serious problemdifis described by white noise, because the
derivative of white noise is not a well-defined mathematidgect. It is thus far from ob-
vious how stochastic processes should be included in thesdfequation. In Section 2.4
and Paper C a proposition is given for how to properly incoapowhite noise in linear
stochastic differential-algebraic equations.

Besides the model for how the system behaves, there is alsedafar a model de-
scribing how the noisy measurements are related to thenaiteariables, i.e., a measure-
ment model. Since we cannot measure infinitely often, thesorements are obtained at
discrete time instances according to (in the sequel it israsd that the sampling time is
1 for notational convenience)

H(y(tr), z(tr), u(ty), e(tx), 0,tr) = 0, (2.2)

10other common names for the model class described by (2.1) areinsgttems, descriptor systems, semi-
state systems, singular systems, generalized systems, ferdulifal equations on a manifold (Campbell, 1990).
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wherey € R"v denotes the measuremeatc R denotes the measurement noise,
denotes the discrete time index, aHddenotes a possibly nonlinear function describing
how the measurements are obtained. The measurement ecgtated in (2.2) is implicit,
as opposed to the more specific explicit measurement equatio

y(te) = h(z(tr), u(te), e(tr), 0, tx), (2.3)

which is the most common type. However, there are applioatimplying implicit mea-

surement equations. Examples of this involve positioniygtesns relying on map in-
formation, see, e.g., Gustafsson et al. (2002), Bergma@9j1Hall (2000), Svenzén
(2002). Furthermore, measurement equations derived frdommation in images are
sometimes in the form (2.2), which is exemplified in Paper c@llecting (2.1) and (2.2)
a rather general model class can be formulated, the staclé&trential-algebraic equa-
tion model.

Model 1 (Stochastic Differential-Algebraic Equation (SDAEB model)
The nonlinear stochastic differential-algebraic equatimdel is given by

F(2(¢), 2(t), u(t), w(t),0,t) = 0, (2.4a)
H(y(tk)aZ(tk)vu(t)ve(tk)’avtk) = 07 (24b)

wherew(t) ande(t) are stochastic processes.

For a mathematically stricter definition the theory of stastic differential equations and
It6 calculus can be used (Jazwinski, 1970, @ksendal, 200®)ever, the definition used
here will serve our purposes. As mentioned above the theohow to handle this quite
general stochastic DAE model is far from mature. Severatiapeases of Model 1 have
been extensively studied. The rest of this chapter is devimtalescribing some of the
most important discrete-time special cases. In fact, mioteomodels used in the signal
processing and the automatic control communities can bsidered to be special cases
of the rather general formulation in terms of differentiddiebraic equations given above.
There are of course many different ways to carry out suchsaifieation. We have chosen
a classification that we believe serves our purpose best.
An important special case of Model 1 arises whéh) can be explicitly solved for,

2(t) = f(z(t),u(t),w(t),d,1). (2.5)

The resulting model is then governed bwdinary differential equationfODE), rather
than by differential-algebraic equations. This model isnownly referred to as the
continuous-timestate-space modello conform with the existing literature the internal
variable is referred to as th&tate variablan this special case. Several nonlinear model
classes are reviewed by Pearson (1999).

2.2 Preparing for State-Space Models

The discussion is this section is heavily inspired by prdigltheory. The objective is
to provide a transition from the rather general SDAE modé&sussed in the previous
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section to the state-space models introduced in the subsegaction. Note that only
discrete-time models are considered and that the possiisterece of known input signals
u, is suppressed for brevity.

Thesystem modeiks the dynamic model describing the evolution of the stat@bées
over time. A fundamental property ascribed to the systemahisdthe Markov property.

Definition 2.1 (Markov property). A discrete-time stochastic procegs;} is said to
possess the Markov property if

p(zig1]zr, ..., xe) = p(Tiga|Te). (2.6)

In words this means that the realization of the process & tioontains all information
about the past, which is necessary in order to calculatautivesf behavior of the process.
Hence, if the present realization of the process is knowafuture is independent of the
past. This property is sometimes referred to asglreralized causality principléhe
future can be predicted from knowledge of the present (Jeski1970). The system
model can thus be described as

L1 pe(xt+1|$1> cee »l't) = p0($t+1|$t)7 (2.7)

where we have made use of the Markov property. The notai¢n) is used describe
a family of probability density functions, parameterizegé The probability density
functionpy(z.41|x:) describes the evolution of the state variable over time .elmegal it
can be non-Gaussian and include nonlinearities. Thelisttde is assumed to belong to a
probability density functiomy (), commonly referred to as thgrior. Furthermore, the
system model can be parameterized by the static parafeteiindicated in (2.7). If the
parameters are unknown, they have to be estimated beforadtiel can be used for its
intended purpose. The task of finding these parameters laste: available measure-
ments is known as thgystem identificationproblem, which is introduced in Chapter 5.
Furthermore, various aspects of the system identificatioblpm are discussed in Paper E
and Paper F.

The state processt; } is an unobserved (hidden) Markov process. Information sbou
this process is indirectly obtained from measurementsef@bsions)y; according to the
measurement model

Yt ~ po(ye|we). (2.8)

The observation proceds); } is assumed to be conditionally independent of the state
process{a;}, i.e.,

p@(yt|$1»- . a'IN) :pe(yt‘zt)a vt7 1 <t< N. (29)

Furthermore, the observations are assumed to be mutudipé@ndent over time,

N
Po(ts - unlae, - an) = [ [ po(wilae, .. an)
i=t

N
=[Ipewilz:s), vt 1<t<N. (2.10)
1=t
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where (2.9) is used to obtain the last equality. In certagksasuch as convergence
proofs, more advanced tools from measure theory (Chungt, Billingsly, 1995) might
be needed. This implies that the model has to be defined wéthimeasure theoretic
framework. We will not be concerned with measure theory istiesis, but the interested
reader can consult, e.g., Crisan (2001), Crisan and Do@66g] for discussions of this
kind. The above discussion is summarized by Model 2, redeioes thehidden Markov
model(HMM) (Doucet et al., 2000a).

Model 2 (Hidden Markov Model (HMM))
The hidden Markov model is defined by

Tet1 ~ po(Teq1|ae), (2.11a)
Yi ~ po(yelt), (2.11b)

wheref is used to denote a static parameter.

This model is rather general and in most applications it ficsent to use one of its
special cases. The natural first step in making the class nestective is to assume
explicit expressions for both the system model and the nieasnt model, resulting in
the state-space model.

2.3 State-Space Models

A state-space model is a model where the relationship betthednput signal, the output
signal and the noises is provided by a system of first-ordiéerdntial (or difference)
equations. The state vectoy contain all information there is to know about the system
up to and including time, which is needed to determine the future behavior of theegyst
given the input. Furthermore, state-space models cotestituery important special case
of Model 1, widely studied within the areas of signal progegs&nd systems and control
theory. The rest of this section is concerned with variougdrtant state-space models,
starting with the most general.

2.3.1 Nonlinear State-Space Models

The aim of this section is to provide an introduction to noeér, non-Gaussian state-
space models. It will also be illustrated that the resultimzdel is indeed a discrete-time
special case of Model 1. The assumption of explicit expoessior both the system model
and measurement model in (2.11) result in

J)t+1 - f('rh Wt, 97 t)y (212a)
Yt = h(mtaetaevt)7 (212b)

wherew; ande,; are independent random variables, commonly referred thegsrocess

noiseand themeasurement noiseespectively. The functiong andh in (2.12) describe

the evolution of the state variables and the measuremeatgiowe. The model is usually
restricted even further by assuming that the noise prosesger additively.
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Model 3 (Nonlinear state-space model with additive noise)

The nonlinear, discrete-time state-space model with aédibise is given by

Try1 = f($t797t) + we, (2133)
Yt = h($t79,t) + €4, (213b)

wherew,; ande, are assumed to be mutually independent noise processes.

Model 3 can be put in the form of Model 2 by the following obs#ion,

Do (Zf?t+1|5€t) = Pw; ($t+1 - f(ﬂft, 0, t)), (2-143)
Po (Yt|wt) = pe, (yr — h(4,0,1)). (2.14b)

There are theorems available describing how to obtain aimdlations when the noise
does not enter additively as in (2.13). For further detaflglus topic, see Gut (1995),
Jazwinski (1970).

The assumption that the observations are mutually indepgmder time (2.10) trans-
lates to mutual independence of the measurement apiseer time,

N N
pe(yta cee 7yN‘xta cee 7xN) = Hpe(yl“rt) = Hpez (yL - h(xia 9,7;)) (215)
i=t 1=t

Furthermore, using conditioning and the Markov propertyhaee

N-1 N-1
po(@s,.. . an) = [ po(@isalzi) = 1] pui(@iva = f(2.6,0)). (2.16)

1=

Hence, the process noisg should also be mutually independent over time. The above
discussion does in fact explain how the previous assumptianslate to the use of white
noise in Model 3. We could just as well have started from théeumoise assumption in
Model 3 and motivated the assumptions from this. In thediige the exact definition

of white noise differs. Papoulis (1991) refersuitiite noiseas a proces$w, }, which is
uncorrelated,

E {(w; — E{w})(ws — E{w,})"} =0, t# s. (2.17)

A stricter definition is given by Séderstrém (1994), whemapendence is required. This
is referred to astrictly white noise by Papoulis (1991). Furthermore, it is mostguased
that the mean value of a white noise sequence is zero. Welgiiellowing definition.

Definition 2.2 (White noise). A discrete-time stochastic process, } is said to be white
if it is independent over time, that is

p(wtv ws) = p(wt)p(ws)v t 7£ S. (218)
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In discussing linear and Gaussian systems it is sufficiengoire the process to be uncor-
related according to (2.17), since it is only the two first neoits that matter. However, in
discussing nonlinear, non-Gaussian systems higher orderemts have to be accounted
for as well, motivating the independence requirement. [tefin2.2 implies that all the
entities of the proceséw;} are mutually independent. Hence, there is no information
about the future realizations of the white noise processemtein the past realizations,
implying that white noise is totally unpredictable. The wdevhite noise can also be
motivated from a users perspective. When all systematicrimition about the studied
system has been incorporated in the model equations, thikedways remain some ran-
dom effects which cannot be accounted for. The fact thatenfitise is totally random,
without temporal correlation, implies that it provides aaganodel for these effects.

In studying the nonlinear system identification problem wi# eonsider a further
special case of Model 3. It is a nonlinear state-space madiere the dependence on the
static parameters is affine in nature.

Model 4 (Nonlinear state-space model with affine parameters)
A nonlinear state-space model, with affine parameter depreredis defined as

Tepr = fr(xe, ue, )0 + fae, ug, t) + wy, (2.19q)
Yr = hi(we,us, 0)0 + ho(we, ug, t) + ey, (2.19b)

wherew; ~ N (0,Q;) ande; ~ N(0, R;) are white noise sequences.

Note that, since this model class will be used for systemtifiestion, the known input
signalsu, are explicitly included. A key observation worth mentiogiis that, condi-
tioned on the nonlinear states this is a rather simple model, where the parameters can
be solved for using standard linear regression technidlieis. observation is utilized in
Paper F. The idea of using conditioning in order to obtain&mmodels naturally brings

us over to the next section dealing with mixed linear/nadinstate-space models.

2.3.2 Mixed Linear/Nonlinear State-Space Models

It is a very ambitious endeavor to solve the estimation @wisl arising when the under-
lying model is nonlinear. We have tried to approach this feabby studying certain

tractable sub-classes of the general nonlinear stateegpadel. An important part of
the thesis is in fact the derivation and application of eation algorithms especially de-
vised to exploit linear sub-structures inherent in the ulyiteg models. When such a
sub-structure is present it is instructive to partition stege variable according to

l
= (2) : (2.20)

wherex! denotes the linear state variables ariddenotes the nonlinear state variables.
Models allowing for the partitioning (2.20) will be refedr¢o asmixed linear/nonlinear
state-space modelshNhen there is a linear sub-structure present in the modelame ¢
take advantage of this in deriving algorithms to solve uasiestimation problems. The
most general mixed linear/nonlinear state-space modelisiigd in this thesis is summa-
rized in Model 5. Note that the possible dependence on unkrstatic parametei®has
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been suppressed for brevity. For a more thorough discussgarding this model, see
Paper A.

Model 5 (Mixed linear/nonlinear state-space model)

The mixed linear/nonlinear state-space model is given by

afy =[] )+ A" (@] )+ G (2], by, (2.21a)
ah oy = fl ) +A @), t)al +GH (el twl, (2.21b)
yr = h(z}, 1) —&—C’(az?,t)mi +e, (2.21c)

where the process noise is assumed white and Gaussiabutisttivith

! l In
wy = <zUUfL> ~N(0,Q:), Q= <(Q%)T Q}) . (2.223)

The measurement noise is assumed white and Gaussianutistiip ~ N(0, Ry). Fur-
thermore,rf) is Gaussian distributed) ~ N (zo, Py). The density of:{} can be arbitrary,
but it is assumed known.

Conditioned on the nonlinear states, the model describedeais lineaf. This can be
used in deriving estimation algorithms for models of thigey An interesting algorithm
for this is themarginalized patrticle filteor the Rao-Blackwellized particle filter (Doucet
et al., 2000a). It is briefly introduced in Section 4.4 anddlughly treated in Paper A.
Model 5 is quite general and in most applications it is siudfitito consider a special case
of it. A quite common and important special case is when theaadyics is linear and the
measurement equation is nonlinear.

Model 6 (Model 5 with linear dynamics and nonlinear measuremets)

A common special case of Model 5 occurs when the dynamicséafiand the measure-
ments are nonlinear.

ap = A} + APz + Gruy, (2.23a)
iy = Ap gy + Al + Gy, (2.23b)
Yt = h(l’?, t) + €, (223C)

wherew} ~ N(0,Q7) andw! ~ N(0,Q}). The distribution fore, can be arbitrary, but
it is assumed known.

In positioning and target tracking applications modelshig type are quite commonly
used. Several examples of this are given in Paper H and teeerafes therein. For more
information concerning various modeling issues, see, €.gstafsson et al. (2002), Bar-
Shalom and Li (1993), Li and Jilkov (2001, 2003).

2strictly speaking the model is affine, due to the possiblegues of the terny!.
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2.3.3 Linear State-Space Models

The most important special case of Model 3 is probably thealinf andh are linear
functions) state-space model, subject to Gaussian notse.rdason for this is probably
the fundamental work of Kalman in the 1960s on the predictiad linear quadratic
control, based on this model.

Model 7 (Linear state-space model with Gaussian noise)
The discrete-time linear state-space model, subject ta$au noise is given by

T = Ag(0)xy 4wy, (2.24a)
Yt = Ct(e).’lft + €t, (224b)

wherew; ~ N'(0,Q:(0)), e; ~ N'(0, Ry(0)), andE {wqel } = 0.

In Model 7 abovey,; is the Kronecker delta function, which @swhenevert # s, and

1, whent = s. Itis important to note that Model 7 is a bit more general thaeems at

a first glance. The reason is that if we have colored noisesss®s or a non-zero cross-
correlation between; ande, the model can be rewritten in the form (2.24). For details,
see Kailath et al. (2000).

The theory concerning linear state-space models is by né mature. For the de-
tails concerning linear system theory two good referencesRaigh (1996) and Kailath
(1980). For the linear state estimation problem Kailathl.e2900) is the standard ref-
erence. The parameter estimation problem is thorough#yeicein Ljung (1999), Soder-
strdm and Stoica (1989).

2.4 Linear Differential-Algebraic Equations

In the thesis, Model 3 and some of its special cases are usedseely. However, we
will also discuss possible extensions in terms of diffdedrgtlgebraic equations. The first
obstacle to overcome is to solve the problem of introductoglgstic processes into this
type of model. This is not as simple as it is with state-spacéats. In this section
the problem is briefly described and in Paper C a detailedgsafor how to solve this
problem is provided. These results have recently been tefind sharpened, see Gerdin
etal. (2005a,b). Thénear stochastic differential-algebraic equatisdefined in Model 8
below.

Model 8 (Linear stochastic differential-algebraic equation model)
The linear stochastic differential-algebraic equatiordelas given by

E0)2(t) + F(0)2(t) = Bu(0)w(t), (2.25a)
y(te) = C(0)z(tx) + e(tr), (2.25b)

whereE (0) might be singular and (t) ande(t;,) are white Gaussian noises.

The reason for incorporating white noise in linear DAES iattth opens up for using
the standard methods of statistical signal processing.eMpecifically, it allows for a
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systematic treatment of the two problems of estimating titerinal variables:(¢) and
static parameter@. The system identification problem is thoroughly treate@grdin
(2004) and Gerdin et al. (2005b) and estimation of the itievariables is discussed in
Paper C and Gerdin et al. (2005b). In the discrete-time cashinas already been done,
see, e.g., Dai (1987, 1989), Darouach et al. (1993), Dendiian(d 999), Nikoukhah et al.
(1998, 1999). However, models obtained from object-oedmnodeling languages are
mostly in continuous-time, further motivating the need éodble to introduce stochastic
processes in continuous-time DAE models.

The problem of introducing stochastic processes in lind&rdntial-algebraic equa-
tions boils down to making sure that the implicit differextibn ofw that may be hidden
in the equations does not lead to intractable mathematiijatts, such as differentiated
white noise. In order to understand this it is instructiverdarrite the equations in the
standard form provided by Theorem 2.1.

Theorem 2.1 (Standard form for Model 8)
Suppose that there exists a scalaisuch thatA\E + F' is invertible. Then there exist
nonsingular matriceg” and @ such that the transformation

PEQQ ™ '4(t) + PFQQ '2(t) = PB,w(t), (2.26)

allows us to writg(2.25)as

I 0 j?l(t) —-A 0 xl(t) . Gl
(o N) (:i:g(t)) i ( 0 I) (xg(t) =) @ (2.27)
where N is a matrix of nilpotency, i.e., N* = 0 for somek. (Q is used as a variable
substitutionz(t) = Q~1z(t) and P is multiplied from the left irf{2.25a))

Proof: Kronecker’'s canonical form (see Kailath, 1980, Gantmach®69) provides a
proof for the existence of this standard form. For a detgiledf see Gerdin (2004).

It is worth noting that although this standard form alwayssexit can indeed be
numerically hard to find the transformation matridésand(. However, using the ideas
from Varga (1992) this problem can be handled, see, e.gdiGé2004), Gerdin et al.
(2005b) for details regarding these numerical issues..252is rewritten according

.’i‘l(t) = Aﬂ?l(t) + le(t), (2288.)
k—1 ;
i d'w(t)
wa(t) = ; (~N)' G, (2.28b)
it can be seen that white noise is prevented from being éiffimted if
NGy =0. (2.29)

In Paper C this is utilized to derive conditions on the modas$s that imply that white
noise is not differentiated.



Nonlinear State Estimation

RECURSIVE nonlinear state estimation theory is the topic of the preskapter. As

previously mentioned, the state estimation problem is esfird mainly within a
probabilistic framework. More specifically, the approashhieavily influenced by the
Bayesian view of estimation. This implies that the compkiition to the estimation
problem is provided by the probability density functiptx;|Y). This density function

contains all available information about the state vagabDepending on the relation
between ands in p(z,|Ys) three different estimation problems are obtained

e Thefiltering problem,t = s.
e Thepredictionproblem,t > s.
e Thesmoothingproblem,t < s.

This chapter will illustrate how the expressive power of phebability density functions
opens up for a rather systematic treatment of the three gmubimentioned above. When

a representation fg#(z,|Ys) is obtained it can be used to estimate the expected value of
any functiong of the state variabledg(x;)) according to

I(g(20)) £ oy {9(e0)} = / g(z0)p(@|Ys) day. (3.1)

The chapter starts with a brief history of the estimatiorbpgm in Section 3.1. In Sec-
tion 3.2 the general solutions to the filtering, predictiord amoothing problems are
derived, in terms of probability density functions. Theadission then continues with
Section 3.3, where several of the most common estimatesd@introduced. The state
estimation problem arising from nonlinear systems is dised in Section 3.4. The com-
mon special case of linear models, subject to Gaussian isdisen treated in Section 3.5.
Change detection can be used to adapt the models accordihgriges in the underlying

31
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system, with better state estimates as result. This is thie tf Section 3.6. Finally,
the chapter is concluded with Section 3.7, where we providetarministic view of the
estimation problem and illustrate how this together withv@x optimization techniques
can be used to handle constraints present in the problem.

3.1 Brief History of the State Estimation Problem

The aim of this section is to provide a short historic accafrthe estimation problem.
We will merely skim the surface of this fascinating topict e will try to provide ade-
guate references for further studies. Some general refesaare Spall (1988), Jazwinski
(1970), Sorenson (1970), Mendel and Gieseking (1971).

The first attempts to systematically approach the estimagiioblem, as it is known
today, were taken by Gauss and Legendre in studying astioabproblems during the
late 18th and the early 19th century. More specifically, tiieg to estimate the positions
of planets and comets using telescopic measurements. @Geagsuse of the method of
least-squares for the first time in 1795 at the age8oHowever, it was not until 1809 that
he published his results in his bo@keoria Motus Corporum Celestiuf@auss, 1809). A
few years earlier, in 1805 Legendre had independently te¢kand published the method
in his bookNouvelles méthodes pour la determination des orbites degtes This gave
rise to a big dispute between Gauss and Legendre, concevhimgvas the inventor of the
least-squares method (Sorenson, 1970). A thorough discuskthe early contributions
to estimation theory is provided by Seal (1967) and Sore(s910).

The next major development in the study of the estimatioblera came in the 1940s,
with the filtering work of Wiener (1949) and Kolmogorov. Thiegth studied the problem
of extracting an interesting signal in a signal-plus-na@istting and independently solved
the problem, using a linear minimum mean-square technifjue solution is based on the
rather restrictive assumptions of access to an infinite atnofudata and that all involved
signals can be described as stationary stochastic pracegsging the 1940s and the
1950s much research was directed towards trying to relssetagssumptions and extend
the Wiener — Kolmogorov filtering theory. The breakthrougime with the Kalman filter,
introduced by Kalman (1968) It changed the conventional formulation of the estimation
problem and in doing so it moved the research into a completelv direction, away
from the theory of stationary stochastic processes. Thérnggdient in this turn was the
Kalman filter's inherent access to the powerful state-spiagery, that had recently been
developed within the automatic control community. The im@ot connection between
the estimation problem and the state-space theory had nemvdstablished.

The Kalman filter allows us to drop the assumptions of statiprsignals and ac-
cess to an infinite amount of data. Furthermore, Kalmantestpace approach naturally
lends itself to multivariable problems, whereas the Wieni€olmogorov theory and other
frequency domain techniques bump into severe problems thgeextension to the mul-
tivariable case is considered.

During the 1960s, 1970s and the 1980s many suggestions where on how to

1in the late 1800s, the Danish astronomer T. N. Thiele develagecursive procedure, for determining the
distance from Copenhagen to Lund. Interestingly enouglsdiigion was a special case of the Kalman filter
(Spall, 1988). A modern discussion of Thiele’s work is pr@ddy Lauritzen (1981) and Hald (1981).
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extend the Kalman filtering theory to handle more generainegion problems. In 1993
the particle filterwas first introduced by Gordon et al. (1993). It provides aesysitic
procedure for solving the nonlinear, non-Gaussian esiimatroblem. As Kailath (1974)
points out the Kalman filter was the new idea that allowed tékl fio move in a new,
fruitful direction after the Wiener — Kolmogorov theory. fAaps we can think of the
particle filter along the same line, as a new, fruitful directallowing us to tackle even
harder estimation problems.

3.2 Conceptual Solution

This section is concerned with the problem of calculatirggtobability density functions
relevant in solving the estimation problem. The discussiihbe rather general using
Model 2 defined in Section 2.3.1, briefly summarized in (302)convenience

Tep1 ~ p(Tea|ze), (3.2a)
Ye ~ p(yelze). (3.2b)
In the development that follows Bayes’ theorem and the Maproperty will be instru-

mental. The Markov property was previously defined in Dgbni2.1. Using the two
stochastic variables andy, Bayes’ theorem for probability density functions is giusn

_ pllo)p(z)  ply,z)
plely) = ply)  ply) 53

Consider the filtering density,

p(yt‘xhytfl)p(mt‘yvtfl)
xr Y = €T 7Y7 =
P( t| t) P( t|yt t 1) p(@/t|Yt—1)

_ p(yelz)p(e|Yio1)

_ , (3.4)
p(ye|Yi-1)
wherep(y:|Y;—1) can be calculated according to
pl¥ie) = [ pluanlYior)don = [ plunkoe Yiop(add Vi) doy
R Rnx
— [ plurlen)plal¥ics) da. (35)
Rne

Furthermore, in order to derive the expression for the oap ahead prediction density
p(z+1]Y:) the following equation is integrated w.rt;,

p(xt-s-la $t|Yt) = p($t+1\$ta Yt)P(fL't|Yt) = p(xt+1|xt)p(xt\Y2), (3.6)

resulting in the following expression

p(Te1]Yy) = /p($t+1|$t)p($t|3@)d9€t- (3.7)
Rz
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This equation is commonly referred to as tlkeapman—Kolmogorogquation (Jazwinski,
1970). Itis straightforward to generalize this idea to obtn expression for the-step
ahead prediction density. Rather than integragig; 1, x¢|Y;) w.r.t. z; we integrate

p(.’L‘t+k, e ,xt|}/;g) W.I.T. Xt:t+k‘71 = {1'1 E:fil. Hence,

p(Te4k]Y:) = /p($t+k>~--azt‘Yt)dzt:t-&-k—l

RF e
k
= [ TLprsslosioa)pl¥s) doeor. (3.8)
Rina =1
In deriving suitable expressions for the smoothing dersétyeral alternatives exist. Let
us first derive an expression for the marginal smoothingitepsz;|Yx) by observing
that

p(z|Yn) = / p(ze, i1 |YN) dogg, (3.9)
R"«
where
p(ﬂﬂt, l’t+1|YN) = P(l't|$t+1, YN)p(xt+1‘YN)~ (3.10)
Furthermore,

p($t|l’t+17 YN) = p(l’t‘ﬂcwla Y:, Yt+1:N)

P(Yeprn|we, 2ep1, Vo) p(we|wi, Yr)
B =p(@i|re41,Yy),  (3.11
P(Yir1:N|Teg1, Ye) (we]zeq1,Y2),  (3.11)

where the last equality follows from the fact that given ;, there is no further informa-
tion aboutY; ;. available inz;. Using this result the smoothing density (3.9) can be
written according to

p(ae|Yn) = /P($t|$t+1aYt)P($t+1|YN)dfft+1
Rz
_ / P(xyp1|ze, Yi)p(a|Yy)
B p(@e41|Y2)

P(@41|YN) dae s

2

T T T Y;
— p(w V) / p(i1|ze)p(ze1|YN) gy, (3.12)
p(reg1]Y:)

Another useful expression for the smoothing density isrreteto as thawo-filter for-
mula See Kitagawa (1994), Bresler (1986) for a detailed treatrmotthis formula.

Similar derivations to the ones given above can be foundnfstance in Ho and Lee
(1964), Jazwinski (1970), Kitagawa (1991). For future refee the main results are
collected in Theorem 3.1.
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Theorem 3.1
If the dynamic model is given K.2) the filter densityp(x;|Y;), the one step ahead
densityp(z;+1|Y?), and the marginal smoothing densijiyx;|Yx ) are given by

P(ye|we)p(e| Y1)

x| Yy) = 3.13a
p(zelY:) (Y| Yi—1) ( )
p(wesa]Vi) = / p(@est|en)p(zYs) da, (3.13b)
Rnz
p(zegi|ze)p(xe41|YN)

Yn) = Y; d , 3.13c
pal¥y) = playy) [ HELPRCOE - (3130)

R«

where

p(lYie1) = / p(ue0)p(eel Vo) e, (3.13d)

Rna

Given the complexity of the problem it is actually quite rekeble that we are able
to derive a result as the one given in Theorem 3.1 above. Hawihere is a severe prob-
lem with this solution, the multidimensional integralsahved only permit an analytical
solution in a few special cases. The most important speeis¢ ¢s when the dynamic
model is linear and the involved stochastic variables arenah which has been exten-
sively discussed in the literature over the last decadess iStdue to the fact that the
mathematics involved is tractable, but most importantlgiitges on the fact that there
are a vast amount of real world applications where this shease has been successfully
applied. However, most applications would perform bettéh& nonlinear estimation
problem could be properly solved. This would also allow utattkle more complicated
applications, which do not lend themselves to linear athors.

3.3 Point Estimates

The task of finding a point estimate can, in abstract termsabeas a problem of finding
a transformationn,;, which makes use of the information in the measurements tand t
known input signals to produce estimates of the states efést.

me: Uy x Yy — R™ (3.14)

All information available in the measurements has beenge®ed and inferred into the
density functiorp(x;|Ys). This density function can then be used to derive varioustpoi
estimates, which is normally what the used would expect fitoenestimation algorithm.
Typically, the application does not need the entire prdiigldensity function. Instead
it needs to know how the values of the various states evolee time and it also need a
quality assessment of these values. It is reasonable to that an estimate is useless, if
we do not know how good it is. Since a probabilistic framewsremployed, this opens
up for using the tools available in probability theory aratistics for assessing the quality
of estimates, such as covariances, confidence regions, éést
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This section is concerned with some of the most common mgpfi14) present in
the literature. Most of the estimates are indeed based awoxipgations of the probability
density function(z;|Y;), but the estimates can also be based on deterministic consid
erations. This approach to estimation is discussed in @e8ti7. For more information
about various estimates, see, e.g., Kailath et al. (20@@)idski (1970), Kay (1993),
Anderson and Moore (1979).

From a probabilistic point of view a rather appealing poistiraate is provided by
choosing the value that minimizes the variance of the esomarror, referred to as the
minimum varianc€MV) estimate

#MV 2 argmin E{Hx —&|? |y} (3.15)

where||z||? = T . Itis in fact possible to derive an explicit expression fustestimate.
E{ja-all [y} =E{@-2)" @- |y}

=E {xTx|y} — 28T E{z|y} + 272
= ||& = E{aly}I” + E{llz|*ly} — |1E {z]y}]” (3.16)

The two last terms in (3.16) are independent:@nd (3.16) is clearly minimized by

MV = E{zly} = /:cp(z|y) dzx. (3.17)

The above calculation explains the nam@nimum mean square err@MSE), which
is commonly used as an alternative name for the estimat&)(3.1

Another point estimate which suggests itself, within thelabilistic framework, is
the most probable outcome,

FMAP 2 argmax p(x|y) = arg max p(y|z)p(z), (3.18)

which is referred to as theiaximum a posteriofMAP) estimate. In the second equal-
ity of (3.18) Bayes’ theorem is employed, together with taetfthat the maximization
is performed overz. The prior density functionp(z) in (3.18) is within the classical
school assumed completely uninformative, giving rise @rttaximum likelihood(ML)
estimate,

#ME 2 argmax p(ylz). (3.19)

The method of maximum likelihood was introduced by Fish&1@, 1922). The max-

imum likelihood method is used extensively in the study okéain class of nonlinear
system identification problems, see Paper F.

3.4 Nonlinear Systems

Most of the problems encountered in practice are of a noatinature, which implies
that we have to be able to solve estimation problems in theegbof nonlinear systems.
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The nonlinear systems theory is, as opposed to its lineantequart, far from mature.
However, there is a flurry of results readily available, geg,, the monographs by Khalil
(2002) and Isidori (1989). When it comes to nonlinear estiomatheory the book by
Jazwinski (1970) is still very interesting reading.

There is a wealth of representations available when it caime®nlinear systems.
However, the most common representation, at least whemiesdo solving estimation
problems is given by Model 3, repeated here for convenience

Tiy1 = f(xe,t) +wy, wy ~ N(0,Q4), (3.20a)
yr = h(xe,t) + ey, er ~ N(0, Ry). (3.20b)

In discussing the implications of Theorem 3.1 we observat th general, there does not
exist any analytical solution to the nonlinear recursivinestion problem. This implies
that we are forced to approximations of some kind in ordepfmr@ach this problem. The
approximations suggested in literature this far, can rbubé divided into two different
classes, local and global. This distinction has previobslgn discussed, for instance by
Sorenson (1974) and Kulhavy (1996). The local approachcaxppates (3.20) using a
locally valid linear, Gaussian model. This is then used injeoction with the Kalman
filter to obtain the estimates. The idea underpinning théalapproach is indeed more
appealing. It makes use of the nonlinear model and triespgooapnate the solution pro-
vided in Theorem 3.1. Hence, it is a matter of either apprexing the model and using
the linear, Gaussian estimator or using the correct modehpproximate the optimal so-
lution. Despite the fact that there are a lot of differentlimear estimators available, the
local approach is still the most commonly used nonlinednegbr when it comes to ap-
plications. This approach is explained in more detail inghlesequent section. However,
in recent years the sequential Monte Carlo methods havegeahers interesting global
approaches, gaining more and more ground, both when it ctonteeory and when it
comes to applications.

3.4.1 Local Approximations

The idea employed in local methods is to approximate theimeat model by a linear,
Gaussian model. This model is only valid locally, but the idah filter can readily be
applied. The first approach along those lines was to linedhig model along a nominal
trajectory, resulting in thénearized Kalman filte(Kailath et al., 2000). An improvement
to this was suggested by S. F. Schnedil. They suggested that the linearization should
be performed around the current estimate, rather than draumominal trajectory. The
result is theextended Kalman filter(or more appropriately the Schmidt EKF) (Smith
et al., 1962, Schmidt, 1966). To the best of the authors kedgéd the paper by Smith
et al. (1962) describes the first practical application ef(gxtended) Kalman filter. More
specifically, the local approximation is obtained by lineiag the nonlinear model (3.20)
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by applying a first-order Taylor expansion around the curestimate,

. of(z,t .
J(we,t) = [y, t) + ff()l ) (¢ — Type), (3.21a)
=Tt
. Oh(z,t ~
h(l’t,t) ~ h(a:t‘t,l,t) + éx ) (It — xt\t71)~ (321b)
T=Ty|t—1
Using this approximation in (3.20) gives
Tip1 = (T t) — Felbyy + Fray + wy, (3.22a)
Ye = W(@y—1,t) — HyZyp—1 + Hex + ey, (3.22b)
where
F A Of(x,t) ’ o2 Oh(x,t) (3.23)
530 m:it\t 83: T=Fy|p—1

The approximate model given in (3.22) is a linear, Gaussiadehin x;, which implies
that the Kalman filter given in Corollary 3.1 can be appliedheTesult is the extended
Kalman filter, given in Algorithm 3.1.

Algorithm 3.1 (Extended Kalman Filter (EKF))

Consider Model 3, repeated (B.20) An approximate sub-optimal estimate for the filter
density functiorp(z.|Y;), obtained by linearization, is recursively given accogtia

P(xe]Ye) = N (2| L4y, Pope), (3.24a)
Dz [Ye) = N(@ | o p1pes Prrape), (3.24b)
where

Toje = Tee—1 + Ke (ye — M(Ey-1,1)) (3.25a)
Py = Pyy—1 — KeHy Py, (3.25h)
Toyre = f( @0, 1), (3.25c¢)
Py = Fe Py FF + Qy, (3.25d)
Ky = Py H} (H Py H + Ry)™", (3.25e)

with initial valuesi, o = 1 andP, )y = I1,. FurthermoreF, andH, are defined by
F=2 ((;; o m- 8héi’ 2 (3.26)

wo=ty) Te=Bejr_1

For a more thorough treatment of the EKF the reader is refeelazwinski (1970),
Anderson and Moore (1979), Kailath et al. (2000). An appigafocused discussion
is given in Sorenson (1985). One of the problems inherenthénBKF is that it might
diverge. The literature contains several more or E$&ocmethods trying to counteract
this phenomenon and to further enhance the general penfoera the EKF. To mention
a few examples we have, thierated EKFtreated by Kailath et al. (2000) and higher-
order Taylor expansions discussed by Bar-Shalom and Fortrfi088) and Gustafsson
(2000).
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3.4.2 Global Approximations

The solution to the nonlinear recursive estimation prohiegiven by Theorem 3.1. This
factis neglected by methods based on local model approxingatHowever, if we choose
to use this theorem the nonlinear models derived from thenyidg physics can be used
and rather than approximating the models, the optimal isolls approximated using

numerical methods. Over the years several different mstfmdperforming this approx-

imation have appeared. These methods are of two differaedskieither the probability

density functions of interest are parameterized by a finit@lper of parameters, which
are updated according to Theorem 3.1 or the integrals inrEne@.1 are handled using
numerical integration. Here, only a few of the most imparglobal approximations are
mentioned. For more references on this topic see, e.g.aKul{1L996), Bergman (1999),
Sorenson (1974).

One of the first approaches using an approximation based niteadet of parameters
is the Gaussian sunapproach by Sorenson and Alspach (1971), Alspach and Sworens
(1972), where the filtering density is approximated usingia ®f Gaussian densities
according to

N
plzefYe) ~ Z‘J“W( wL ) Y =1, gV zo0 v (@27)
=1

Another approximation is provided by tlp@int-mass filteoriginally suggested by Bucy
and Senne (1971) which, as the name reveals, approximatéiftenng density by a set
of points on a predefined grid,

N
p(z|Y) Zq( )5 (x — xgl)} qui) =1, q,gi) >0, Vi. (3.28)
i=1

This idea has been refined and generalized over the years fasiinstance piecewise
constant approximations and spline interpolations. Thatpuoass filter is thoroughly
treated in Bergman (1999), Bergman et al. (1999), whereadisis applied to the aircraft
navigation problem. Another approach which recently hgseaped is theunscented
Kalman filter(UKF), which is based on the unscented transform, discussadlier et al.
(2000), Julier and Uhimann (2004). The basic idea here iséoauset of grid points in
the state-space, chosen by the unscented transform.

There is another family of algorithms which makes use of ipi@tmodels in order to
derive an estimate. They use a set of models describingugbiehaviors of the underly-
ing system. This approach is common in target tracking apfins, where different ma-
neuvers of the tracked vehicle constitutes the differerdef® Examples of algorithms of
this type are thénteracting multiple mode{IMM) and thegeneralized pseudo-Bayesian
(GPB) approaches, which are thoroughly described by Bate®hand Li (1993), with
the target tracking application in mind. Yet another altion within this family is the
range parameterized extended Kalman fi(fPEKF) (Peach, 1995, Arulampalam and
Ristic, 2000), which is described and applied to a bearongg-tracking application by
Karlsson (2005).

Another approach, which can be interpreted as an extenéibe point-mass filter is
provided by thesequential Monte Carlo methqdsferred to as thparticle filter(Gordon
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etal., 1993, Kitagawa, 1996, Doucet et al., 2001a) in therfilg case. In these algorithms
the probability density function is also approximated bygas grid points. However, the
grid is not chosen deterministically, as is the case in poiass filters. Due to its relevance
for the present thesis the sequential Monte Carlo methaddiscussed in more detail in
Chapter 4. It is worth mentioning that there is a vast amodiiterature dealing with
different combinations and variations of the approachssutised above.

3.5 Linear Systems

The classic special case when it comes to estimation, andnsggsheory in general, is
constituted by linear systems subject to Gaussian noisepses. The theory concerned
with linear systems is by now rather mature, see, e.g., RUg96), Kailath (1980) for a
general treatment without stochastic processes. The lilye@amic model was introduced
as Model 7 in Section 2.3.3, but the equations, including @awmninput signak.;, are
repeated here for convenience,

Tey1 = Apry + Byug + wy, wy ~ N(0,Qy), (3.29a)
yr = Crxy + Dyuy + ey, er ~ N(0, Ry). (3.29b)

A solid treatment of the linear estimation problem is givgnkailath et al. (2000), the
fundamental innovation process is extensively used. lretstdnding linear estimation it
is advantageous to appeal to the geometrical intuitionclvis possible due to the fact
that linear estimation can be interpreted as projectiohBlbert spaces. There exist a vast
amount of literature dealing with the linear estimationipemn, and the Kalman filter in
particular, see, e.g., Kailath et al. (2000), Kay (1993¢wlaski (1970), Anderson and
Moore (1979), Sorenson (1985), Gustafsson (2000), WestHandson (1997), Harvey
(1989), Bryson and Ho (1975).

An important property of the linear model (3.29) is that ahdity functions involved
are Gaussian. This is due to the fact that a linear transfiwsmaf a Gaussian random
variable will result in a new Gaussian random variable. lenore, a Gaussian den-
sity function is completely parameterized by two parangettre first and second order
moments, i.e., the mean and the covariance. This impligsftitas assumed that the
underlying model is given by (3.29) the recursions in TheoBel can be recast as recur-
sive relations for the mean values and the covariances antob/ed probability density
functions. In Section 3.5.1 this is illustrated for the filtgy and the prediction densities,
which will result in an important corollary to Theorem 3.1.s&cond corollary is given
in Section 3.5.2, where the smoothing problem is considered

3.5.1 Filtering and Prediction

The special case obtained by assuming a linear, Gaussiaal f®#89) allows for an
explicit solution to the expressions given in Theorem 3.lhe Tiltering and one-step
ahead prediction solutions are given by the Kalman filtest fierived by Kalman (1960)
and Kalman and Bucy (1961). Before stating the theorem tketioa 7, , is introduced,
which denotes the estimate of the statat time¢ using the information available in the
measurements up to and including timen other words;, |, = E {z;|Y}.
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Corollary 3.1 (Kalman filter)

Consider(3.29)and assume that the initial state is distributech@as~ N (zo, Py). Then,
the estimates for the filtering density function and the dap ahead prediction density
function are both normal, according to

D] Yy) = N (2| Z4)0, Py, (3.30a)
p(xe1|Ye) = N(@ [ Ze1)6, Pryape)), (3.30b)
where
Tyje = Bep—1 + Kie(ye — Ciyp—1 — D), (3.31a)
Py = Byjp—1 — KiCy Py, (3.31b)
Typ1e = ArZy + Brug, (3.31c)
Py = AtPt\tAtT + Qs (3.31d)
Ky = Pyy_1C{ (CyPyy—1 CF + Ry) ™, (3.31e)

with initial valuesio|_, = Zo and Py = Py.

Proof: There are many different ways in which this result can be gdoin Appendix A
a proof based on the results of Theorem 3.1 is provided. Mpeeifically, the rele-
vant expressions from Theorem 3.1 are simplified using theosed linear, Gaussian
model (3.29). These calculations can also be found in Ho a&l (L964), Nordlund
(2002). For alternative proofs, see, e.g., Kailath et &0(®, Anderson and Moore (1979),
Gustafsson (2000). An interesting proof is given by Rao @0®here the Kalman filter
is obtained as the recursive solution to a weighted least+eg problem. O

The intuition for the Kalman filter is helped by thinking inrtes of time updates
and measurement updates. THeasurement update given in (3.31a) — (3.31b) and
the name derives from the fact that these are the equatioaesevithe information in the
present measuremegt is incorporated into the estimate. In (3.31a) this implres the
state estimate is adjusted as a weighted average of thepsegstimate and the new in-
formation available iny,. The uncertainty is reduced in (3.31b) as a direct consemuei
the fact that new information has been added. Furthermioedinbe updatecorresponds
to a prediction, implying an increased uncertainty (3.3Ti)e to the fact that the process
noisew, by definition, cannot be predicted the state evolution taioled simply by using
the deterministic part of the dynamic model, as in (3.31c).

An important, if not the most important, factor in making talman filter so funda-
mental is its applicability. The first application of the IK&n filter is probably the one
discussed by Smith et al. (1962). Furthermore, a good anekthéhteresting account
of the history concerning the development of the Kalmanrfdean engineering tool is
given by McGee and Schmidt (1985). The aerospace indusfginae the 1960s made
extensive use of the Kalman filter. In Chapter 1 it was meutibthat the same trend is
currently appearing in the automotive industry, due to thedifor more advanced driver
assistance functions. Since its first application the Kalffilger has been successively
applied within many different branches of science. Theetar now several applica-
tion oriented texts dealing with the Kalman filter, see, ,eB@ar-Shalom and Li (1993),
Bar-Shalom and Fortmann (1988), Brown and Hwang (1997 gr&am (1985).
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The linear observer theory developed by Luenberger (19881 )ican be considered
to be a deterministic version of the Kalman filter. In the #inebserver theory it ipostu-
latedthat the best way to construct the state estimate is to udeltbeing structure for
the estimator

jt—&-l = Atii't + Btut -+ Kt(yt — Cti't — Dtut). (332)

It is here important to observe a subtle, but important céffiee between the observer
theory and the Kalman filter theory. In the former the striet{8.32) of the estimator
is postulated, whereas in the latter this structure is aamuence of more elaborate as-
sumptions and calculations, see Theorem 3.1 and CorollaryTBese assumptions stems
from the fact that we made use of a probabilistic appréathkleriving the Kalman filter,
where the errors are modeled as well, not just the detertitiignamics. Furthermore,
this implies that the gain matrik’; is optimally? calculated in the Kalman filter, whereas
in the observerk,; has to be calculated “by hand” as a compromise between sgeed o
reconstruction and sensitivity to disturbances. From aenpoactical point of view one
might say that this compromise has been conveniently pdesined in terms of the de-
sign variables, which serve as tuning knobs in finding thé d@i® matrix for a particular
problem.

There are several applications where it is required to tatlek-step ahead predic-
tions, k > 1. For the general case thiestep ahead prediction is given by (3.8) and
if a linear, Gaussian model (3.29) is imposed it is Gausslars calculated simply by
iterating (3.31c) and (3.31d)times.

In applying the Kalman filter it is important to realize thaetcomputations are im-
plemented with finite-precision arithmetics, which givéserto round-off errors. This
implies that the covariance matrices might end up non-sytmecrend/or indefinite. The
solution to the first problem is simply to propagate only ith# matrix (the elements on
and below, or over, the main diagonal). The solution to tlemisd problem is to use a
square-root factorization of the covariance matrix. Henather than propagating the full
covariance matrix, we only propagate a square-root fa8ee Kailath et al. (2000) for
more details regarding this topic.

3.5.2 Smoothing

The linear filtering and prediction problems were first sdh®y Kalman (1960) and
Kalman and Bucy (1961). It was not until a few years later thatlinear smoothing
problem was first solved, see Rauch (1963), Rauch et al. j1®8$son and Frazier
(1963), Mayne (1966), Fraser and Potter (1969) for sevéffateint approaches. We will
in this section only be concerned with the fixed-interval sthing problem. The reason
is threefold. First, this is the most common case in apptioat Second, in the smooth-
ing application studied in this thesis we are confrontedhilie fixed-interval smoothing

2In Section 3.7.1 we will use a completely deterministic appho@ the estimation problem and discuss the
differences and similarities between a deterministic anchststic approach in more detail.

3The word optimal is a dangerous one. It is important to alwagp ke mind what is meant by optimal. The
estimates are optimal in the sense that they constitute thmalolution to the posed optimization problem.
Hence, it is imperative that the optimization problem is widefrmulated, otherwise the optimal solution might
note be so optimal after all.
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problent. Third, the solutions of the fixed-lag and the fixed-point sthing problems
follow from the solution of the fixed-interval problem (Kath et al., 2000).

The various approaches mentioned above for solving the timgoproblem all use
different arguments and as a result they produce quiterdiftealgorithms. However,
since the algorithms all solve the same problem they wiledglve same result, which
in turn implies that there must exist a close relationshigveen the various algorithms,
enabling a unified treatment. It is the fundamentadovation processhat makes such
a unifying treatment possible, this was first recognized lyld&h and Frost (1968). A
more recent discussion based on the innovation procesegen gi Kailath et al. (2000).
Some other interesting references treating the smoothoiggm are the survey papers by
Meditch (1973) and Kailath (1975), and the monograph by \a&i2001). The second
corollary to Theorem 3.1 will be the linear smoothing eqoragi (commonly referred to as
the Rauch-Tung-Striebel (RTS) formulas introduced by Raital. (1965)) given below.

Corollary 3.2 (Linear smoother) B
Consider(3.29)and assume that the initial state is distributedw@as~ N(zq, Py). Then,
the estimate for the smoothed density function is given by

P(@e|Yn) = N(2 | 24w, Pyyn), (3.33a)
where
Tyn = T + St(Beyr v — Teaape), (3.33b)
Pyn = Py + Se(Pepain — Pry1e) ST (3.33c)
St = PinAf P (3.33d)

wherez; 1|;, 4¢, Pry1)¢ and Py, are given by the Kalman filter. The initial state for the
smoother is provided by the Kalman filtéirg x and Py ).

Proof: See Kailath et al. (2000), Rauch et al. (1965). O

In order to obtain a numerically robust implementation @& folution to the smoothing
problem we have to resort to square-root factorizations. efaited treatment of such
factorizations is given by Gibson (2003).

In extending the results to the nonlinear, non-Gaussiag itas probably a good
idea to start from the general and indeed rather powerfutesgions provided by the
probability density functions. This will be the topic of Siew 4.5. More importantly,
that section will also discuss how the calculations can bépaed in practice and in
Paper F a successful application of the nonlinear smootdgngyithm is provided.

3.6 Improved Estimation Using Change Detection

Change detection is a well established research area c@uteith the problem of de-
tecting a change in the underlying system, see, e.g., Ggstaf(2000), Basseville and

4In Paper F a nonlinear fixed-interval smoothing problem hdmetsolved. It arises as a sub-problem when
the EM algorithm is employed to solve a certain class of nealirsystem identification problems.
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Nikiforov (1993), Kay (1998). This change might be due to anponent failure or a
change in the surrounding environment. Typically, the nidmployed in deriving vari-
ous estimates cannot cope with all situations that migkeakiut different models can be
derived for the different situations. In automotive tartgatking applications it is com-
mon to derive the model of the tracked vehicles based on thevgstion that they stay in
their own lanes. This assumption is valid most of the time wthen the tracked vehicles
depart from their lanes the model is no longer correct. Heanenteresting idea is to
make use of change detection ideas to detect the lane degsaemnd use a model that
describes this motion better during the lane departures Will improve the estimates,
since a more accurate model is used. The idea is illustratedgure 3.1, where the de-

n Estimate
Estimation Ty Detect Alarm‘
uy Algorithm etector

Figure 3.1: The estimation algorithm delivers residuals which are used in the
detector to decide whether or not a change has occurred hHsge is detected this
information is fed back for use in the estimation algorithm.

tector informs the estimation algorithm that a change hiesntglace. This information

is then used in the estimation algorithm by switching to tredet which best describes
the current situation. The change detector typically insif adistance measurend

a stopping rulesee Figure 3.2. The distance measure is used to asses&ndhetiange

I

|
€t Distance |5t |
Measure |
|

|

|

|

Figure 3.2: The components of the change detector are a distance measlige
stopping rule, where the latter consists of an averagingaahcesholding procedure.

has occurred or not. It is an important design variable, shauld be chosen with the
application in mind. Common standard choices are to useesidualss; = ¢; or the
squared residuals = 2. The stopping rule is used to give an alarm whenabgiliary
test statistiay; exceeds a certain threshold. One of the most powerful toolsltaining
a good stopping rule in change detection problems is pravitlethe cumulative sum
(CUSUM) algorithm, introduced by Page (1954).
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Algorithm 3.2 (CUSUM)

1. gt = gi—1 +5; — V.
2. If g, > h: Alarm, g, = 0 andt garm = t.
3. Ifg;<0:9,=0 andfcnange: t.

The auxiliary test statistig, is a cumulative sum of the distance measure, compensated
with adrift termv. This drift term is introduced to prevent positive driftdyieh otherwise
will result in false alarms. Similarly, negative drifts greevented by setting. = 0, when
gr < 0. The estimated change time is providedt];mnge A change is considered detected
wheng; exceeds a certain threshdldA rather detailed account of the CUSUM algorithm
and its application in state estimation problems is pravidg Gustafsson (2000).

In Paper | we provide an application where the estimatesignifisantly improved
by employing the change detection ideas briefly reviewedhis section. Furthermore,
the importance of choosing an appropriate distance meéasilitestrated.

3.7 Convex Optimization for State Estimation

The topic of this section is the use of convex optimizatiors@iving state estimation
problems. Methods based on convex optimization have betengxely used within the
automatic control community in order to accommodate forphesence of constraints,
using the method ahodel predictive controfMPC) (Maciejowski, 2002). However, the
interest has not been that intense when it comes to the stateatéion problem. Recently
this has started to change, see, e.g., Goodwin (2003), Goadwl. (2005), Rao (2000).

In Section 3.7.1 it is illustrated that the Kalman filter i® trecursive solution to a
certain weighted least-squares problem. This optimingti@blem can then be used as a
basis for extending the formulation to include constraagsvell. An intuitive motivation
for this approach is that if the constraints are neglected¢isulting problem is reduced
to the ordinary Kalman filter. This fact is utilized in Secti8.7.2 in order to illustrate
how certain constraints can be taken into account in soltfisgstimation problem.

3.7.1 Deterministic Approach to State Estimation

This section is devoted to a purely deterministic approacthé estimation problem.

In order to be able to convey the main message the discussiimited to the linear
problem. Removing the probabilistic framework previousiyiployed will in this case
simply imply that the noise terms, ande; in Model 7 should be regarded as errors of
unknown character. Given a set of measurem&nénd a guess of the initial statg, the

task is to determine the statgin such a way that it describes the obtained measurements
as well as possible. That is, we are faced with a problem ofiitting, where we want to
minimize the errorgw; }!_; and{e;}!_,, as well as the error in the initial guess,— zo.

If Gauss would have been faced with this problem sa@fiieyears ago, he would probably
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have suggested us to solve the following least-squaresgmmob

. _ t—1 2 t 2
H)l(ltn H$0 - xO”?s(;l + Ei:o Hwi”Q;l + Zi:o ||ei||R;1
s.t. Ti+1 — All'z + Wi, 1= 07 NN 7t - ]., (334)
yi = Cizi+ey, i=0,...,t,

where the weight matrice®); }:=}, { R, }_, and P, are design parameters. This is a con-
vex optimization problem, more specifically it isqaadratic prograntQP). The theory
on how to handle least-squares problems of this type is widbéished, see Bjorck (1996)
and the many references therein. The estimates obtained(8@4) are smoothed, ex-
cept for the estimate af;, which is the filtered estimate, since we only use measurtamen
up to and including time.

The optimization problem stated in (3.34) can also be mtat/&rom a probabilistic
point of view by considering the problem of deriving thiximum a posteriorestimates
for the state variables

X, = arg max p(X:|Yy), (3.35)
Xt

in Model 7. The probability density functign X;|Y;) is proportional top(Yz| X:)p(X:),
where

t
p(Ya| Xy) = H (yilzi) Hpel yi — Cizy), (3.36)
i=0
-1 =1
P(Xe) = pay (20 — To) [ [ p(@isa]2:) = pag (w0 — Zo) [ [ pw, (i1 — Avs),
i=0 i=0
(3.37)

according to the discussion in Section 2.3.1. Putting itagether we arrive at

t—1 t

P(Xi|Y) = cpay (x0 — Zo) pr,: (Tit1 — Asz;) pr (yi — Cizy), (3.38)

1=0 =1

wherec € R™* derives fromp(Y;). Due to the fact that the logarithmic function is strictly
monotone we may consider maximizithgg (p(X;|Y:)) just as well ap(X;|Y:). This
will, together with the assumption of Gaussian noise in&R.8ive rise to the optimization
problem stated in (3.34). The difference is that the weigatrives are now given by the
inverse covariance matrices.

It can be proved (Rao, 2000) that the recursive solution 84(3is provided by the
Kalman filter. The Kalman filter is in other words the recuessolution to the weighted
least-squares problem (3.34). This fact will be furthereited in the subsequent section,
where it is discussed how constraints can be included ingtimation problem in order
to obtain better estimates. An interesting historical actf the relationship between
the probabilistic formulation of the Kalman filter and therresponding deterministic
formulation is provided by Sorenson (1970).

Since we have departed from the probabilistic approactetiseno way of assessing
the statistical performance of the estimates. It is intergso note that regardless of
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how we formulate the estimation problem it will usually bdidwn to an optimization
problem in a purely deterministic framework. An importaiftetence is that the proba-
bilistic framework provides a systematic means for chapsire design parameters, i.e.,
the weight matrices.

3.7.2 Constrained State Estimation

The advantage of casting the estimation problem as a corpxiaation problem is
that it is straightforward to add certain constraints toptheblem. The theory on convex
optimization is by now rather mature and there is generap@ae software available
for solving the resulting problems. In this way prior infation about the state can be
utilized, e.qg., that the state is always positive or thatdbponents of the state should
sum to one, which is the case if the state is a vector of préibabi Constraints of this
type cannot be straightforwardly included in the standaathi@n filter. However, if we
use the optimization problem to which the Kalman filter is theursive solution, i.e.,
problem (3.34), it is straightforward to include the coasits. Here, the ideas are briefly
introduced. For a more thorough treatment, see Paper D gvamegxample on estimating
probabilities is provided. Performing state estimatioimg®ptimization techniques has
previously been discussed using quadratic programs innitaince Rao et al. (2001),
Rao (2000), Robertson and Lee (2002). For an introductiototestrained estimation
and its connection to model predictive control (Maciejoiv&02), see, e.g., Goodwin
(2003), Goodwin et al. (2005). Both these problems aredteat a more technical level
by Michalska and Mayne (1995).

The main message of convex optimization is that we shaolddiffer between lin-
ear and nonlinear optimization problems, but instead betwenvex and non-convex
problems. The class of convex problems is much larger thatrcthvered by linear prob-
lems, and for a convex problem any local optimum is also tbealoptimum. A convex
optimization problem is defined as

min  fo(z
x

st. filr) < 0, 1=0,...,m, (3.39)
afz = b, 1=0,...,n,
where the functiondy, .. ., f,, are convex and the equality constraints are linear. For a

thorough introduction to convex optimization, see Boyd ®¥addenberghe (2004). Moti-
vated by the discussion in the previous section the converaation filtering problem
can be defined according to Problem 1.

It is also worth stressing that it is straightforward to imd# other variables to be esti-
mated, such as, e.g., missing data into Problem 1. Besidesling them in the variables
to be estimated there is probably also a need to provide sesugmptions regarding how
they behave, which are typically implemented as consgaint

Another type of constraints that might be interesting totd@roblem 1 are those that
makes it possible to include model uncertainty. Let us asstinat we are uncertain about
the A-matrix in Problem 1, one way of expressing this is to say thatd-matrix should

5A useful and efficient software is YALMIP, developed by L6fgg2004). It provides direct access to
several of the standard numerical solvers for optimizati@blems, using a powerful MrLAB interface.
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belong to a set of some kind. Depending on the propertieso$ét different optimization
problems are obtained. This is in the literature referredd@obust estimation For
information about commonly used sets, the resulting ogttivn problems and how to
solve them, see, e.g., El Ghaoui and Lebret (1997), Boyd andi&berghe (2004).

Problem 1 (Convex optimization filtering)

Assume that the densitigs, (o), p, (w;), andp., (e;) are log-concave In the presence
of constraints in terms of a linear dynamic Model 7, the MAdBiraate is the solution
I+ = x to the following problem

t—1 t
max  10g(pa, (w0 — o)) + z; log(pu, (w:)) + z; log(pe, (e:))
1= 1=
s.t. Tiv1 = Az +w;, 1=0,...,t—1,
yi = Ciz;+ e, 1=0,...,t.

It is straightforward to add any convex constraints to tbisrfulation, and the resulting
problem can be solved using standard software.

The main concern with the formulation of the estimation fpeabgiven in Problem 1
is that the size of the optimization problem increases wittetas more and more mea-
surements are considered. This is unacceptable in prasitteve have to find a way of
bounding the number of variables. One way of doing this istive a recursive solution.
However, when additional constraints are included thisindeed be very hard. In Zhu
and Li (1999) a recursive solution is given for a special adderoblem 1 with additional
constraints.

Another way of bounding the number of variables in the optation problem is to use
moving horizon estimatioMHE) (Maciejowski, 2002, Goodwin et al., 2005), defined
in Problem 2. This is basically the same idea underpinningehpredictive control, i.e.,
the state is estimated using a fixed size, moving window a&f.datspecial case of this is
the windowed least-squares approach discussed by Gustd&300).

Problem 2 (Moving Horizon Estimation (MHE))

Assume that the densities,, (w;) andp., (e;) are log-concave. In the presence of con-
straints in terms of a linear dynamic model, the MHE-estanatthe solutiori:; = x, to
the following problem

t

max Flr)+ Y loglu(w)) + 3 loa(pe,(cr)

Xeora i=t—L i=t—L+1
s.t. Tiv1 = Ay +w;, t=t—L,...,t—1,
yi = Cizi+e, i=t—L+1,...,t,

whereF (z,_1,) contains information about the past.

6A function f : R™ — R is log-concavef f(x) > 0 for all z in the domain off andlog( f) is a concave
function (Boyd and Vandenberghe, 2004).
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The problem is now reduced to solving a convex optimizatimbfem with a fixed num-
ber of variables once every time a new measurement arrivewetr, it is important to
understand that the approach using MHE is, in general, ptiral, since the influence
of the past measurements is not necessarily taken careretdgrin F'(x;_1,).

The formulation used in Problem 2 can probably be useful falschange detection
and fault diagnosis. See Gustafsson (2001) for a similar icking the Kalman filter over
a sliding window of fixed size. In an extension to nonlineasteyns a solution might be
based on ideas similar to the innovation whiteness testefilter bank approach dis-
cussed in Gustafsson (2000, Chapteesd9). Furthermore, Problem 2 can be extended
to the nonlinear estimation problem, by using the nonlindadel 3 instead of the linear
Model 7. The resulting problem is much harder, since it is a-convex optimization
problem. Several useful entry points into the literatureraving horizon estimation for
nonlinear systems are given in Rao et al. (2001), Rao (2000).
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Sequential Monte Carlo Methods

QUENTIAL Monte Carlo methods, oparticle methodsdeal with the problem of

recursively estimating the probability density functipfx,|Ys). According to the
Bayesian viewp(z:|Y;) contains all statistical information available about tteesvari-
ablex;, based on the information in the measureméntsThis probability density func-
tion can then be used to form various state estimates accprali

I(g(xy) £ E{g(xn)|¥s} = / o(w)p(z|Ys) dey. @.1)
Rn e

The key ideaunderlying the sequential Monte Carlo methods is to remtethe proba-
bility density function by a set of samples (also referred$garticles, hence the name
particle methods) and its associated weights. The densitytibnp(z:|Ys) is approxi-
mated with an empirical density function,

M M
pa) =Y @ (w—-al)),  Ya’=1  @’zovi (42
=1

i=1

whered( - ) is the Dirac delta function anif“ denotes the weight associated with particle

azi‘li In obtaining this approximation we have to be able to ggegemdom numbers from
complicated distributions. The approximation (4.2) casodle obtained using stochastic
integration ideas, see, e.g., Geweke (1996), Bergman [888uch, slightly different,
approaches. Even though theory states that the approgimsat#.2) derived using se-
guential Monte Carlo methods are independent of state dienit matters in practice.
Problems due to high dimensional state variables previeatsge of the sequential Monte
Carlo methods. However, if there is a linear sub-structuadable in the model equations
the marginalized particle filter can be employed. It is imigot to note that the problem of
generating random numbers from complicated distributf@sspreviously been assessed
in a non-recursivesetting using thé/arkov chain Monte Carlo method8CMC).
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In Section 4.1 we will make the unrealistic assumption thatoan indeed generate
samples from the target density. The objective of this eacis$ to illustrate the idea
and to motivate Section 4.2, which is concerned with varioleas on how to handle
the fact that we cannot generate samples directly from tigettalensity. Three differ-
ent solutions to this problem are illustrated. One of thesgalled importance sampling
resampling and this approach is used to derive the partltde iin Section 4.3. In Sec-
tion 4.4 the marginalized particle filter is introduced. dndoe employed when there is a
linear, Gaussian sub-structure available in the modeltemng The solution to the non-
linear smoothing problem, using particle methods, is dised in Section 4.5. Finally,
the chapter concludes with Section 4.6 on how to obtain varestimates using (4.1).

4.1 Perfect Sampling

This section is concerned with the problem of calculatingestes (4.1) based on the
assumption that we have accesdfdndependent and identically distributed (i.i.d.) sam-
ples,{z()}M, from the target density(x). This assumption is unrealistic from a prac-
tical point of view. Nevertheless, it will allow us to illustte the key idea underlying the
sequential Monte Carlo methods. Using the sampl€8 } 2, an empirical estimate of
the density functior(x) can be formed according to

Mo _
b (@) = Y 770 (:v - x@)). (4.3)

i=1

Using this empirical density an estimateldfy(x)) is obtained as

M
. . 1 .
D 9(o) = [ gt (@)do =" 7o(a) (4.
=1
This estimate is unbiased and according togtreng law of large numberse have that
Jim Tar(g(x)) =5 I(g(x), (4.5)

where 225 denotes almost sure (a.s.) convergence (Doucet et al.ap0Gwve assume
thato? = I(g%*(z)) — I*(g(x)) < oo the central limit theorentan be applied, which
gives

tim VA (D(g(2) ~ I(g(x)) ) < N (0.0%). (4.6)

M — o0

where - denotes convergence in distribution (Doucet et al., 200H®nce, using a
large number of sample§z(")} M, we can easily estimate any quantity(x)), accord-
ing to (4.4).

The assumption underlying the above discussion is thatpbssible to obtain i.i.d.
samples front(z). However, in practice this assumption is very seldom vdliidorder
to use the ideas sketched above we need to be able to geramdtenr numbers from
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complicated distributions. There has been extensive relsegerformed regarding this
problem and there are several different methods that casdxbto tackle the problem.

Markov chain Monte Carlo methods are used to generate sarfipl@ probability
distributions (Robert and Casella, 1999, Gilks et al., 2998e basic idea is to generate
random numbers by simulating a Markov chain, which have déinget density as limit
distribution. The problem with MCMC methods is that they enteerently iterative, im-
plying that their use in solving recursive estimation pesbs is limited. Since we are
mainly concerned with the problem of recursive estimatianlvave to use alternative
methods. However, in the sections to come we will see thailagindeas can be used
to tackle the recursive problem. In the subsequent sectiore ©f the most popular se-
quential Monte Carlo methods will be reviewed inspired by fitamework introduced by
Tanizaki (2001).

4.2 Random Number Generation

The problem under consideration in this section is to geaesamples from some known
probability density function, referred to as therget densityt(x). However, since we
cannot generate samples fratfx) directly, the idea is to employ an alternate density
that is simple to draw samples from, referred to asshmpling densitys(x). The only
restriction imposed oR(z) is that its support should include the support@f)®. When

a samplet ~ s(x) is drawn the probability that it was in fact generated from thrget
density can be calculated. This probability can then be tselécide whether should

be considered to be a sample frafx) or not. This probability is referred to as the
acceptance probabilitand it is typically expressed as a functiongof), defined by the
following relationship,

t(z) x q(7)s(T). 4.7)

Depending on the exact details of how the acceptance pildigabicomputed different
methods are obtained. The three most common methods afly bxplained below. For
a more detailed explanation, see, e.g., Robert and Cad889), Gilks et al. (1996),
Tanizaki (2001). A comparison of the three methods is predidy Liu (1996).

4.2.1 Sampling Importance Resampling

Sampling importance resampling (SIR) is an extension ofdaa ireferred to agnpor-
tance samplingHence, we will start our brief exposition on SIR by explagpithe im-
portance sampling algorithm. In discussing this algoritive sampling densitg(z) is
typically referred to as thiznportance functionTo understand the idea behind importance
sampling, note that integrals in the form (4.1) can be reemit

I(g(x)) = / 0(2) 2 s(2) de. (4.8)

1The support of(z) includes the support afz) if Vo € R™=, t(z) > 0 = s(x) > 0.
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Based on the discussion in Section 4.1 it is now straighodwo obtain an estimate of
I(g(x)) by generatingy/ > 1 samples{z(")}, from s(x) and forming

1 .
hlg@) = 57 3 a@)ge ), @9

where

(1)
_E) oy
3(,7;(1))

are referred to as thienportance weightsIn most state estimation applications of the
importance sampling procedure the normalizing factor entdrget density is unknown.
This implies that the importance weights are only known ughie normalizing factor,
which can be resolved by normalizing the importance weights

g(z)
Zﬁﬂﬂﬂﬂf

whereq(z()) is defined in (4.10). This normalization will for finit&/ introduce a bias

in the estimate. However, from the strong law of large nuraltiee estimate is asymptot-
ically unbiased. Details regarding this and other thecatissues relating to the impor-
tance sampling algorithm are discussed by Geweke (1989)ha¥e now motivated the
following approximation of the target density

q(z") M (4.10)

)

Gz = i=1,...,M, (4.11)

M
ty(x) = Z G(z()s (:c - x(i)) . (4.12)

=1
The importance weights contains information about how @bt it is that the corre-
sponding sample was generated from the target density. eJléme importance weights
can be used as acceptance probabilities, which allows usrtergte approximately inde-
pendent sample§i(¥} M, from the target density function. The approximation(z)
given in (4.12) is defined using a finite number of samgdle$)} M . This implies that
the process of generating the samples from the target gidosittion is limited to these
samples. More specifically this is realized l®samplingamong the samples according
to

H(ﬂ”:zw):qumx i=1,..., M. (4.13)

The SIR idea was first introduced by Rubin (1988). In Algarith.1 the above discussion
is summarized by describing how to approximately genekétsamples from the target
density.

The sampling importance resampling algorithm is closdbteg to thebootstrappro-
cedure, introduced by Efron (1979). This relation is diseasin Smith and Gelfand
(1992), where an interpretation of Algorithm 4.1 is proxdde terms of a weighted boot-
strap resampling procedure. It is worthwhile to note thatrdsampling step (4.16) is the
key step when it comes to estimating density functions s#ely over time. This was
first realized by Gordon et al. (1993) and it will be descrilbedetail in Section 4.3.
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Algorithm 4.1 (Sampling Importance Resampling (SIR))

1. Generatd/ independent samplds )} | from s(x) and compute the importance
weights

g(@D) = t(@D)/s(zD),  i=1,..., M. (4.14)

The acceptance probabilities are now obtained by norntaliza
§(2?) = q@®)/ 3 qaD),  i=1,...,M. (4.15)
j=1

2. Generate a new set of samplg$§’ } M, by resampling according to

H(ﬂ“:xm):q@m% i=1,...,M. (4.16)

4.2.2 Acceptance — Rejection Sampling

A problem inherent in the SIR algorithm is that the producachgles are only approxi-
mately distributed as the target density. This problem tsengountered by acceptance —
rejection sampling, which will produce samples that arecéyalistributed according to
the target density. However, this algorithms suffers fravesal other drawbacks.

If there exists a constaiit > 0 such that

t(zr) < Ls(z), V=, (4.17)

then Algorithm 4.2 can be used to generafesamples from the target density. A more
detailed account of this algorithm is provided by Robert @adella (1999).

Algorithm 4.2 (Acceptance — rejection sampling)

1. Generate a random number,- s(x) and computg(z) = Lfig)

2. Accepti as a sample from(z) with probabilityq(z), i.e., Pr (29 = &) = ¢(%).
If Z is not accepted go back to step
3. Repeat stepand?2 fori =1,..., M.

This is the most efficient sampling method in the sense tleegéimerated samples are mu-
tually independentexactdraws fromt(x). However, as mentioned above, the algorithm
suffers from some major limitations. First of all we have talfan upper bound,, which
can be quite hard. Furthermore, once this upper bound hasfbeed it can be proved
(Andrieu et al., 2001) thakr (z acceptedl = 1/L, which typically is a very small num-
ber. This implies that from a practical point of view the aitfum is not very useful, since
on averagd. > 1 random numbers have to be generated in order to obtain ongesam
that is accepted. It is clear that we want &anvhich is as small as possible, motivating
the choice,. = sup, t(z)/s(x). Another, related issue is that there is no upper bound
on the number of iterations required, we can only state thaverage\/ L iterations are
needed. This should be compared with the SIR algorithm, lwjuist needV/ iterations.
When it comes to real time applications this will of course lmeagor problem.
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4.2.3 Metropolis — Hastings Independence Sampling

The Metropolis — Hastings algorithm is a quite general atbor for computing estimates
using the MCMC method. It was introduced by Hastings (19@8)a generalization of
the algorithm proposed by Metropolis et al. (1953). An idtrotion to the Metropolis —
Hastings algorithm is provided by Chib and Greenberg (198B¢ idea of the algorithm
is borrowed from acceptance — rejection sampling, in treggmerated samples are either
accepted or rejected. However, when a sample is rejectedutinent value is used as
a sample from the target density. The Metropolis — Hastingependencaampling
algorithm, which is a special case of the Metropolis — Hagialgorithm, is given in
Algorithm 4.3. For a more detailed account of MCMC methodseiation to sequential
Monte Carlo methods, see, e.g., Andrieu et al. (2001), Barg(h999).

Algorithm 4.3 (Metropolis — Hastings independence sampliny

1. Initialize withz(~") = z and sef = —L + 1.
2. Generate ~ s(z) and compute the acceptance probability

_ (t(&)s(z(D)

3. SetzY) = i with probabilityq. Otherwise set() = z(i=1),
4. Repeatstepand3 fori = —-L+2,..., M.

The initial L samples belongs to th®irn-inphase of the algorithm and they are automat-
ically rejected. The reason is that the simulation has tolréts stationary phase before
the samples can be considered to originate from the stayidre, the target, distribution.

A rather detailed analysis of Algorithm 4.3 is provided by (1996).

4.3 Particle Filter

Let us consider the filtering problem, where the target dgrisigiven by the filtering
density,t(x;) = p(x¢|Y;). In order to use the idea outlined in the previous sectios it i
necessary to choose an appropriate sampling des&ify and a corresponding accep-
tance probability. This is in fact quite simple, since fromy@s’ theorem and the Markov
property we have

P(ye|ze)p(ze|Yio1)
p(ytIYt—ﬁ

which suggests the following choices

p(x4|Y2) = p(xelys, Yio1) = o< p(yelze)p(xe| Y1),  (4.19)

p(@e]Yy) o< p(yelae) pla Y1) . (4.20)
—_—— —
t(xy) q(x¢) s(x¢)

The resemblance with (4.7) is obvious. Hence, we can empi@wlgorithms discussed
in Section 4.2 to obtain samples from the target density.s pinovides a rather gen-
eral framework for discussing particle filtering algoritanThe particle filter is typically



4.3 Particle Filter 57

derived completely within an importance sampling framewaee, e.g., Doucet et al.
(2000a), Liu and Chen (1998), Arulampalam et al. (2002),6802003) for derivations
of this kind. However, it is interesting, at least from a cepiual point of view, to note
that we could just as well have used acceptance — rejectioplsay, Metropolis — Hast-
ings independence sampling or some other method to germraretem numbers in order
to obtain alternative particle filtering algorithms. Thewd acceptance — rejection sam-
pling is discussed by Bglviken et al. (2001) and Hirzeler Kiidsch (1998). Based
on the appealing properties of the sampling importancenpbag idea we will choose
to employ this principle in deriving the particle filter. Bhimplies that the acceptance
probabilities{3® } M, are calculated according to

o _ q(xirt)fl) - p(ytlngt)fl) 4.21)

t T M ( M j ’
27 1‘1( t|]f) 1) Zj:lp(yt|x§|7t)—1>

wherexflf) 1 ~ p(z¢|Y;—1). These predicted partlcle{sc“ |}, are generated from

the underlylng dynamic model and the filtered pamcles ftbe previous time instance

{xt 1t—1 M . The details behind this can be understood from the follgvemiculation,
which is a result of using the time update (3.13b) in Theoreln 3

s(ze) = plae|Yioy) = / Pl )p(Ee-1]Yios) dpy

/ (@t|ze—1) Z (a:t 1_x£)1‘t 1) dzpy
= Z % /p(37t|l’t—1)(5 (l‘t—l - :cii_)l‘t_1> dzs_1
Z*P (il't|1't 1|t— 1) (4.22)

Hence, the predicted particles are obtained simply by pgske filtered particles through
the system dynamics.

According to (4.21) the acceptance probabilitfé”% depends on the likelihood func-
tion p(y:|x¢;—1). This makes sense, since the likelihood reveals how like#yobtained
measurement is, given the present state. The better arcesddicle explains the re-
ceived measurement, the higher the probability that thisgbawas in fact drawn from
the true density. Following Algorithm 4.1, a new set of paets {xi@}i]‘il approximat-
ing p(x:|Y:) is generated by resampling with replacement among thegieztparticles,
belonging to the sampling density

Pr(all) =alll ) =a?, i=1...M (4.23)
If this procedure is recursively repeated over time theofeihg approximation
M 1 ,
pladlY) = Y =26 (w0 - af])) (4.24)

i=1
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is obtained and we have in fact derived tbarticle filter algorithm, which is given in

Algorithm 4.4. It was first introduced by Gordon et al. (1993)ater it was indepen-
dently rediscovered by Kitagawa (1996) and Isard and BlaR9g§). Some early ideas
relating to the particle filter are given in Metropolis andabil (1949), Hammersley and
Morton (1954), Akashi and Kumamoto (1977), Handschin angiég1969), Handschin
(1970).

Algorithm 4.4 (Particle filter)

1. Initialize the partlcles{gco| UM~ pay(20) and set := 0.

2. Measurement update: calculate importance Wel{gjﬂ%} 1, according to

¢ —p (ytlxi\?_l) . i=1,..., M, (4.25)

and normallzelt =q @ / Zj 1 qgj)-

3. Resampling: draw/ particles, with replacement, according to

Pr(af) =2 ) =d?.  i=1l... (4.26)
4. Time update: predict new particles according to

2D~ (xt+1‘t|x§|it)) S i=1,..., M. (4.27)

5. Sett :=t + 1 and iterate from step.

First, the particle filter is initialized by drawing sampliesm the prior density function
Do (To). In the measurement update the new measurement is useddo agsobabil-
ity, represented by the normalized importance weight, themarticle. This probability
is calculated using the likelihood function, which desesthow likely it was to obtain
the measurement given the information available in thegartThe normalized impor-
tance weights and the corresponding particles constituspproximation of the filtering
density. The resampling step will then return particleschhare equally probable.The
time update is just a matter of predicting new particles ediog to the system model.
Furthermore, these predicted particles form the startaigtgor another iteration of the
algorithm. There are several books available on the subfearticle filtering, see Doucet
et al. (2001a), Ristic et al. (2004), Liu (2001).

4.3.1 Resampling Algorithms

The resampling step conS|sts of drawing a new set of passt{oiie1 “, with replacement

from the old partcheL{x in such a way that the probability of drawwzé't 1

tlt—1 z 1’
given by according to

Pr( () _ ) ),gfm, i=1,...,M. (4.28)

Lyt tlt—1
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Particle index

Figure 4.1: lllustrating the resampling step in the particle filter. Tteav set of parti-
cles is obtained by first generating sorted uniformly distributed random numbers,
three of which are shown by the dashed lines in the figure. daesthen associated
with a particle guided by the cumulative sum of the normalizeportance weights.
In the figure particle number 2 is chosen once and particlebaudhis chosen twice.

One way of achieving this is to use so callgithple random resamplingllustrated in
Figure 4.1. Here, the idea is to select the new particles Inypesing an ordered set of
uniformly distributed random numbet#(0, 1) to the cumulative sum of the normalized
importance weights. The resampling step can indeed bezeglaticcording to the idea
sketched in Figure 4.1, but there are more efficient algmstlavailable. The efficiency
is here determined by the resampling quality and the contipn& complexity. The re-
sampling quality is important for the overall quality of tastimate. Furthermore, a con-
siderable amount of the total computational complexity jagicle filter implementation
stems from the resampling step. This clearly motivates #aech for good resampling
algorithms.

There are several resampling algorithms proposed in theatitre. Thesimple ran-
dom resamplinglgorithm was explained above. For further elaboratiorardigg this
algorithm, see Bergman (1999), Doucet et al. (2000a). Eurtbre, there istratified
sampling(Kitagawa, 1996, Liu and Chen, 1998ystematic samplingKitagawa, 1996,
Arulampalam et al., 2002) an@sidual samplingLiu and Chen, 1998). These algorithms
are discussed and analyzed in detail by Hol (2004). Thetre$tihis study is that the
systematic resampling, given in Algorithm 4.5 is most appiette. This is in accordance
with the results reported by Arulampalam et al. (2002).

Despite the various embellishments of the resampling seepamnot escape the fact
that it will introduce a dependence among the differentiplag. This is due to the fact
that particles having large weights will be selected mames, since we are resampling
from a discrete probability density function, rather theonf a continuous. In the particle
filtering literature this problem is commonly referred tosanple impoverishmenthe-
oretically this is also a problem, since this dependenceesaknvergence results harder
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to obtain. There are several more or lasshocideas for how to cope with this problem.
One such idea is referred to emughening (Gordon et al., 1993) gittering (Fearnhead,
1998). The idea is to introduce an additional noise to ma&g#rticles differ more from
each other. Another idea, aiming at reducing the sample wemEshment problem, is to
resample from continuous approximations of the discretdaility density function.
This is referred to as theegularized patrticle filte(RPF) (Musso et al., 2001).

Algorithm 4.5 (Systematic sampling)

1. Generatéd! ordered numbers according to

(k—1)+a

i i~ U(0,1). (4.29)

Uk =

2. The resampled particles are obtained by produgingppies of particle:(), where

i—1 7
n; = the number ofy, € <Z i, th(s)] : (4.30)

s=1 s=1

4.3.2 Algorithm Modifications

The particle filter given in Algorithm 4.4 is rather simplejtiout loosing any of the

main components. In the literature there is an abundancarajus alternative particle
filtering algorithms. However, the underlying idea of alé#ie algorithms is captured in
Algorithm 4.4,

The essential resampling step leads to the problem of sampleverishment, moti-
vating the work considered with improving this part of thgaithm. An obvious idea,
is to refrain from resampling at each time step. This is frttiscussed by Bergman
(1999), where the effective sample size is used as a meaktine degeneracy of the
particles. Another particle filtering algorithm devisedeishance the resampling step is
the regularized particle filter mentioned above.

The importance of choosing a good importance function issstd by several au-
thors, see, e.g., Arulampalam et al. (2002). The importéumoetion p(z;41|x;) used in
Algorithm 4.4 has an obvious defect in the sense that the-sfadce is explored without
direct knowledge of the measuremept The idea of incorporating this information in
the importance function is explored in tlaexiliary particle filter(APF) introduced by
Pitt and Shephard (1999).

The idea of approximating the probability density functwith a Gaussian or a Gaus-
sian sum was first introduced by Sorenson (1970) and AlspadiSarenson (1972), see
Section 3.4.2. This idea has recently been used within &feafiltering framework. The
Gaussian patrticle filte(GPF), introduced by Kotecha and Djuric (2003a) approx@sat
the filtering and predictive density functions with Gaussikensities. Furthermore, the
Gaussian sum particle filtd'zSPF) is similar, save the fact that the approximations are
performed using a sum of Gaussian densities (Kotecha amitPA003Db).



4.3 Particle Filter 61

4.3.3 Implementation

The purpose of this section is to make the particle filter na@eessible to those who have
still not used it. Having read this section the reader willdisée to implement a particle
filter from scratch within five minutes. Before the implenegitn is given there are a
few steps in Algorithm 4.4 that are probably worth commegntiim step2 the importance
WeightSqF) are calculated using the likelihood function, which aca@ogdo (2.14b) is
given by

P(ye|we) = pe, (yr — h(w,1)). (4.31)

¢ from pz,pe|)). This

can be realized by first generating a sample of the procese,mdf) ~ pu, (wy). The
predicted particles are then given by

Furthermore, in step, the task is to generate samplet(ég

@ = @)+ w?, (4.32)

Tevrpe = T Ty

We are now ready to give the MLAB -implementation for Algorithm 4.4 using Model 3,
with Gaussian noise. The resampling is implemented usiggi#thm 4.5.

Code 1 (M ATLAB -code for Algorithm 4.4 using Model 3)

function [xhat] = PF(f, h, pe, Q PO, MYy)

n = size(PO, 2);

X = sqrtm(PO)*randn(n,M; % 1. Initialize particles
for t = 1:100

e = repmat(y(t),1,M - h(x); %2. Calculate weights

g = feval (pe, e); % The |ikelihood function

g = g/sun(q); % Normal i ze inportance wei ghts

xhat (t) = sum(repmat(q, n,1).*x, 2);

ind = resanpling(q); % 3. Resanpling

x = x(:,ind); % The new particles

x = feval (f,x,t)+sqgrtm Q*randn(n,M; % 4. Tine update
end

function [i] = resanpling(q)

qc = cunsun(q); Mel engt h( Q) ;
u=([0:M1]+rand(1))/M
i = zeros(1,M; k = 1;
for j = 1:M

while (qc(k)<u(j))

k = k + 1;
end
i(j) =k

end;
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The three first input arguments to tR€ function are the model equatiohs h and the
likelihood functionpe, which are defined asnl i ne-objects or m-files. The other input
arguments are the covariance matrix for the sfaiaitial state covariance matrir0, the
number of particledland finally the measuremenys The use of Code 1 is exemplified
below.

—— Example 4.1: State estimation using the particle filter
The purpose of this example is to show the particle filter ittoadn an easily acceSS|bIe
manner. The particle filter will be applied to estimate ttatest in the following system,

T 25x
Tip = Et + T ;% + 8cos(1.2t) + wy, (4.33a)
22
Y = % + e, (4.33b)

wherezy ~ N(0,5), w, ande; are mutually independent white Gaussian noise se-
quencesyw; ~ A (0,10) ande; ~ A (0,1). This is a discrete-time nonlinear time-varying
system with additive noise, i.e., Model 3 previously defiire@ection 2.3.1. This sys-
tem has been analyzed in many papers, see, e.g., Gordor{¥98), Kitagawa (1996),
Doucet (1998), Arulampalam et al. (2002).

The first step is to define the model, the parameters to useityidimd the design
parameters for the particle filter. Once this is done theesyss simulated and finally the
measurements from this simulation are used in the partitée o obtain the estimate of
the states. The MrLAB -code for this is given below.

M = 1000; % Nunber of particles

PO = 5; % Initial noise covariance

Q = 10; % Process noi se covari ance

R = 1, % Measur enment noi se covari ance
pe = inline(’ 1/ (2*pi*1)~(1/2)*exp(-(X. "2)/(2*1)) );

f = inline(’x./2+25*x./(1+x."2)+8*cos(1l.2*t)’ )

h =inline(’ (x.72)/20");

x(1) = sqrtm PO)*randn(1l); %lnitial state val ue

y(1) = feval (h,x(1)) + sgrtm Ry *randn(1);

for t = 2:100 % Si nul ate the system
x(t) = feval (f,x(t-1),t-1) + sgrtm( Q *randn(1);
y(t) = feval (h,x(t)) + sgrtm R)*randn(1);

end

xTrue = X;

xhat = PF(f, h, pe, Q PO, My);
pl ot (1: 100, xhat, " b--",1: 100, xTrue, ' r’);
xl abel (" Time');

Executing this code gives the result shown in Figure 4.2. ampalam et al. (2002)

for a detailed simulation study illustrating various difat particle filter algorithms.
| |
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Figure 4.2: The solid line corresponds to the true state and the dashedtéems
from the estimate provided by the patrticle filter given in &ighm 4.4. The under-
lying system is given in (4.33).

The implementation given in this section is very simplecsiiits purpose is to as
clearly as possible illustrate the particle filter. Thera i®olbox available, implemented
by Rosén (2005), which allows for more advanced particlerfilg applications.

4.4 Marginalized Particle Filter

In mathematics, and science in general for that mattergiftén advantageous to exploit
certain structures present in the problem under invesigatSequential Monte Carlo
methods are not an exception. If there is a linear, Gaussiassucture available in the
model equations this can be used to obtain estimates witar|aw at least not larger,
variance (Doucet et al., 2000a, 1999, Chen and Liu, 2000¢. réhason is that the corre-
sponding linear states can be optimally estimated usind<#tman filter. Applications
implying a high dimension of the state variable will effeelly prevent the use of the par-
ticle filter. However, if there is a linear sub-structure italsle the marginalized particle
filter can be used. Let us assume that there is a linear suttste available in the model,
the state vector can then be partitioned according to

l
= <§t> : (4.34)
t

wherez! andz} are used to denote the linear and the nonlinear state vesiatelspec-
tively. A rather general model class containing a linear-subcture was defined in
Model 5, Section 2.3.2. The basic idea underlying the maitgied particle filter is to
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split p(z%, X7*|Y;) according to
pla, X7 [Ye) = plag| X', Yo)p(X]'[Y5). (4.35)

This allows us to use the Kalman filter to optimally estiméte probability density func-
tion for the linear variables(z.| X7, Y;), if the noise is Gaussian. The probability density
function for the nonlinear state variablpEX;"|Y;) is estimated using the particle filter.
Using the state partition (4.34) it is possible to write J4with s = ¢, according to

1
Tolal Xi)) = / ( [ et X0t X)) dxi) p(X7) dX}
[ m(XP)p(X) dXp
= N e (4.36)
fp(Yt|Xt )p(Xt )dXt
where
m(X7) & / glad, XP)p(Vilal, X1)p(ah| X7 dat. (4.37)

Hence, we have analytically marginalized the linear stargables. This motivates the
namemarginalizationfor the procedure of using both the Kalman filter and the plarti
filter. Another name commonly used in the literatureRigo-Blackwellization(Casella
and Robert, 1996, Doucet et al., 2000a). The idea of usintea €ibnsisting of a Kalman
filter for the linear state variables and a particle filter fioe nonlinear state variables
is certainly not new. It has previously been discussed iritemature, see, e.g., Doucet
etal. (20004, 2001b), Chen and Liu (2000), Nordlund (208&%rieu and Doucet (2002).
Our contribution is the derivation of the marginalized aetfilter for the rather general
mixed linear/nonlinear state-space model defined as Madehis derivation is given in
Paper A. The resulting algorithm is schematically given lggkithm 4.6.

Algorithm 4.6 (Marginalized patrticle filter)

1. Initialization: Initialize the particles and set initizalues for the linear state vari-
ables, to be used in the Kalman filter.

2. Particle filter measurement update: evaluate the impecetaveights and normalize.
3. Resample with replacement.
4. Particle filter time update and Kalman filter

(a) Kalman filter measurement update.
(b) Particle filter time update: Predict new particles.
(c) Kalman filter time update.

5. lIterate from step.

The only difference from the standard particle filter (Aligom 4.1) is in stept, where
two additional steps are introduced. These two steps qunekto the efficient estimation
of the linear state variables using the Kalman filter.
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If the standard patrticle filter is used for all states the disien of the space in which
the particles live will ben,, = dimz;, whereas if the marginalized particle filter is
used the corresponding dimension will bg, = dimz7. Intuitively, sincedim z}' <
dim x; more particles have to be used to obtain good estimates ipdntcle filter is
used, than if the marginalized particle filter is used. Tinid further issues relating to the
computational complexity of the marginalized particlecfilare investigated in Paper B
and Karlsson et al. (2004).

The marginalized particle filter has been successfully usezkveral applications,
for instance in automotive target tracking (Eidehall et 2005), automotive positioning
(Svenzén, 2002), aircraft navigation (Nordlund, 2002demvater navigation (Karlsson
and Gustafsson, 2003), communications (Chen et al., 2088¢g\st al., 2002), nonlinear
system identification (Paper E, Li et al., 2003, Daly et &0%) and audio source separa-
tion (Andrieu and Godsill, 2000). Furthermore, in Paper élitarginalized particle filter
is described from a practitioners point of view, using selapplications.

45 Particle Smoother

The aim of this section is to derive an estimate of the smagthliensityp(x;|Yx) for

a fixed N and for all times,1 < ¢t < N, when the underlying model is nonlinear and
non-Gaussian. This is indeed a very hard problem. Howekerframework discussed
in Section 4.2 can be employed and will in fact provide a sysitic approach to the
problem. In scanning the literature it is interesting, aedhaps a bit surprising, to note
that although the particle filter theory is quite well esisiidd not much work has been in-
vested in the particle smoothing theory. Hence, this is abbpa fruitful area for research
during the coming years. The related Markov chain Monte cCaréthods are interest-
ing alternatives in tackling this problem, see, e.g., Genakd Tanizaki (1999) for some
work in this direction.

4.5.1 A Particle Smoothing Algorithm
In tackling the smoothing problem the target density is encss (Tanizaki, 2001)

Hxigr, ) = p(Tig1, | YN). (4.38)

Similarly to what was discussed in the Section 4.3 on partiitlers, we have to find
a suitable sampling density and the corresponding acoepfamobabilities to solve the
smoothing problem. First, note that

p($t+1, $t|YN) = p(l't|33t+17 YN)p(IEt+1 |YN)7 (4.39)
where

P(Yig1:n|Te, egr, Ye) (2|41, Y2)
p(Yepr:n|Ti41,Y7)
p(zep1]oe)p(aeYe) . (4.40)
p(rey1]Yy)

p(xt|Ti1, YN) = p(@e|Teg1, Yy, Yigr:n) =

= p(x¢|2i41,Ys) =
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Inserting (4.40) into (4.39) gives

plxigq|e
plevr ¥y = 2 by, (Vi) (4.41)
————— p(@41|Y2)
t(xgy1,20) g s(T41,24)
Q($t+17$t)

At time ¢ the sampling density can be used to generate samples. Intordied the
acceptance probabilitigsj”) } £, we have to calculate

p(ze1lze) (4.42)

q(x Ty) =
(@1, 2:) p(xe1]Ye)’

wherep(xs11]x) is implied by the underlying model anez;;|Y;) can be approxi-
mated using the result from the particle filter,

M
: . i
p(zea|Yy) = /P(It+1|xt)p(xt|yt)d$t = /P(It+1|17t) > 70 («'Et - zg@) dat

Mo _
R~ Z s (xt+1|;v£‘lg> (4.43)
i=1

The particles can now be resampled according to the acaaptaobabilities{g" } M,
in order to generate samples frgrtw,, 1, z:|Yx). The above discussion is summarized
in Algorithm 4.7, which was first introduced by Tanizaki (200

Algorithm 4.7 (Particle smoother)

1. Run the patrticle filter (Algorithm 4.4) and store the flﬁélparticleqngz M, t=
1,...,N.

2. Initialize the smoothed particles and importance weidgdtttime N according to
{erN = gi)IN’ql(\lle =1/M}M, andset :=t — 1.

3. Calculate Welghtgqt| N}M , according to
(@) (@)
i) p (“Tt:l\Nmtrt)
t|IN M (i
2j=1P (xt+1|N|xf|t)

and normallzejth = qth/ZJ L qtle
4. Resample the smoothed particles according to

Pr ((xgl\N’xE\?V) = (xz(fi)1|N7x1(€|jt))) = dﬁf}v (4.45)

5. Sett :=t — 1 and iterate from step.

(4.44)

This algorithm will be employed to handle the nonlinear sthow problem that arises in
using expectation maximization algorithm for nonlineastsyn identification. The idea
is briefly sketched in Section 5.3.2 and the details are givétaper F.
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4.5.2 Alternative Particle Smoothing Algorithm

The algorithm just derived belongs to a set of smoothingrélyos commonly referred

to asforward-backward smoothinglgorithms. The name stems from the fact that we first
perform a forward (filtering) pass to obtain an approximatbp(z;|Y;). We then issue

a backwards pass to obtain an approximation of the smootesitgp(z,|Yy ) based on
the information from the forward pass and (3.13c), repehézd for convenience,

p(ze1]ze)p(ze41[YN)
Vi) = plafy) [ PRI g (4.46)
R"w

This approach has also be elaborated upon by Doucet et @D&2MHrzeler and Kiinsch
(1998) and Kiinsch (2001).

Another set of smoothing algorithms are based ontth@filter formulg previously
mentioned in Section 3.2. This formula describes how thegmal smoothing density
can be computed by combining the output from two indepenfilézrss, according to

p(ze|Yn) o< p(@e|Yi1)p(Yen|ze)- (4.47)

The details for deriving a particle smoother based on thesiid provided in Kitagawa
(1996). Tanizaki's (2001) reinterpretation of the algamit provided by Kitagawa (1996)
allows us to fit this algorithm into the framework providedSaction 4.2.

The approaches discussed this far are concerned with tideprof estimating the
marginal smoothing density(x;|Yx). We can also try to approximate tf@nt smooth-
ing densityp(X v |Yx ). An algorithm for this is proposed in Doucet et al. (2000)d&ill
et al. (2004). The idea is to factp(X v |Yn ) according to

N—-1

p(Xn[Yn) = plan|Yn) ] pled Xesin, Yo). (4.48)
t=1

Using the Markov property inherent in the state-space maddiave

p(x| X1, YN) = p(@e| 241, Yr)

— p(xt;[';)(/;ii(j;;)lm) o p(e|Ye)p(@iq1|e). (4.49)

Hence, it is possible to approximaiéX v |Yy) based on the(z,|Y:) andp(ziyq|xy).
For details regarding the resulting algorithm, see Godtilal. (2004). Some further
embellishments to this algorithm are given in Fong et al0@pFong and Godsill (2001),
where it is discussed how marginalization can be used toe@arsmoothing algorithm
that exploits certain structural properties of the model.

4.6 Obtaining the Estimates

From the discussion above it is hopefully clear how to obtstimates of probability
density functiong (. |Y;). For instance, when = ¢ this corresponds to the filtering den-
sity, which is approximated using the particle filter. Tygllg, we are interested in some
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particular property of the underlying state variable, sasHor instance a point estimate
and its associated quality, provided by the covariance. prasent section will describe
how these estimates can be obtained using the approximatsitids. The approach can
readily be extended to other interesting features of theryidg state variable.

An minimum mean square error estimate of the mean value ofuhent state is
obtained by inserting(z;) = x in (4.1), resulting in

Ep(a:t\Ys) {iﬂt} = /l’tp(l’t|Ys) dxy. (4.50)

Using the following estimate of the probability density tion,

i (@]Y2) Zq; (2 =i, (4.51)

results in

. M
Ty = /ItﬁM(xth) day = / Tt th(l)ts (It - I ) day = Zq( g E|i (4.52)
=1
Similarly, an estimate of the covarianceof; is obtained using

9(xe) = (24 — Byps) (Tt — By15) T (4.53)

in (4.1), which after some calculations results in

R Mo , , T
DL A CHE AR N CHE AR (4.54)
=1

1=

From the two expressions (4.52) and (4.54) it is clear hovettienates are affected by the

information in the normalized importance weigkjfé). The more likely a certain particle
is, the more it influences the estimate, which is a quite measie fact.
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YSTEM identification deals with the problem of estimating mathtoad models of
dynamic systems using measurements of the inputs to anditpets from the sys-
tem. The difference to state estimation theory is that theablio be estimated is static,
which slightly changes the problem. However, both probleehg on the same theoreti-
cal basis. Similarly to the state estimation problem théesysdentification problem has
its roots in the work of Gauss (1809) and Fisher (1912). Mukcthe early work was
conducted within the fields of statistics, econometrics tme series analysis. It is the
paper by Astrdm and Bohlin (1965) that is used to mark the efasystem identification
as a separate field of science. The motivation came from tliedfeautomatic control,
where new powerful model based control strategies demasalebtimathematical models
of the underlying systems. An interesting historical actaf the system identification
problem is given by Deistler (2002). The development of thigesct within the automatic
control community during the past 40 years is reviewed byeBe(2003).

In Section 5.1 an overview of the system identification peablis provided. This
is followed by Section 5.2, where different methods for theded estimation process are
discussed. More specifically, it is shown that the expemtatiaximization algorithm pro-
vides a systematic procedure for separating one hard ggimgaoblem into two simpler
problems, which is useful for system identification. Fipalh Section 5.3 the expectation
maximization algorithm and particle methods are used teesoértain nonlinear system
identification problems.

5.1 System ldentification Problem
The system identification problem concerns estimation aficsparameters present in
dynamic models. This is accomplished using the informadivailable in measured input

and output signals from the underlying system. The systemtification problem is

69
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commonly split into the following sub-problems:

e Experiment design and data collection. This involves the selection of which
variables to measure, when the measurements should bemedand how to
manipulate the input signals. The objective of experimesigh is to obtain data
that provides as much information as possible about thevpeteas to be estimated.

e Model class selection.The problem of finding a suitable model class is the most
important and probably the most difficult choice in solvingidentification prob-
lem. Within the field of system identification a first, ratheracse, partition of
models is constituted bklack boxand gray box models. In a black box model
the equations and parameters do not have any physical nelevtihey are simply
adjusted to describe the data set as well as possible. Thebgramodel, on the
other hand, is based on knowledge of the underlying systemicdlly the model
equations are known, but there are unknown parametersdkiatth be identified.
Intuition and prior familiarity with the underlying systeane very useful in choos-
ing a suitable model class. This is true also when it comesattkibbox models.

e Model estimation. The objective is to determine the best model in the modesclas
using the information available in the observed data setis Ehthe part of the
system identification problem that is considered in thisithe

e Model validation. When the three steps discussed above have been performed we

have derived a model. However, an important question stitlains to be answered;
Is the model good enough for its intended purpose? The arsviis question is
obtained using model validation techniques. If the modis the model valida-
tion some of the choices made in the previous steps have tevised and a new
model should be estimated. After a few iterations we havesfudly arrived at an
acceptable model.

This is a very brief overview of the problems studied withire ffield of system iden-

tification, a more detailed account is provided in the moapgs by Ljung (1999) and

Soderstrom and Stoica (1989). There are also presentaaely concerned with the

nonlinear system identification problem, see, e.g., NéB&91), Pearson (1999). The
recent survey paper by Ljung (2006) provides an inventopefonlinear system iden-
tification problem.

5.2 Model Estimation

Depending on how the information present in the input sighal = {u;}, and the
output signal&’y = {y;}¥, isinferred on the parametefsdifferent estimation methods
are obtained. There are many different approaches to thislgm and in Section 5.2.1
a very brief overview of some of the most important estimatizethods is provided. In
Section 5.2.2 we give a more detailed account of the expewtataximization algorithm,
which is a potentially underestimated estimation methadtiiwithe field of system iden-
tification.
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5.2.1 Overview

Some of the most common methods used to estimate models epetiiction error
method(Ljung, 1999, Stderstrom and Stoica, 1989), siwspace methofWan Over-
schee and De Moor, 1996) and therrelation and spectral analysis methddging,
1999). Several of these methods, and the tools to analyrepiagormance have their
roots in, or at least strong connections to, the area of madlieal statistics.

The maximum likelihood methgdwhich is a special case of the prediction error
method, is quite commonly used in solving the system ideatifbin problem. It was
introduced by Fisher (1912, 1922) and it is based on the ratéeiral idea that the pa-
rameters should be chosen in such a way that the observedreeents aras likely as
possible More specifically, the following optimization problem iddressed

O(Yn) = arg max po(Yn), (5.1)
where (recall thaf  denotes the state variables of the underlying state-spadelin

po(Ya) = / po(Xn, Ya) dXy = / po(Yn| X )po(Xn) dXn

RNng RNng
N N
= / H yt‘xt H xt|$t 1 dXN (52)
RNna t=1 t=1

Alternatively,py (Y ) can be written as

N
po(Yn) = [ [ po(welYi-)- (5.3)
t=1

It is often convenient to study the log-likelihood

L(0) =logps(Yn), (5.4)

rather than the likelihood. In order to obtain an explicitiopzation problem, that can
be solved, we have to specify which model class we intendeo insthis thesis we only
consider state-space models in the context of system fabatitbn. However, due to the
need for more general models provided by differential{aige equations there has been
some work on extending the system identification theory tulleparameter estimation
in these models as well. See Gerdin (2004), Gerdin et al. 5@0f@r some work in this
direction.

It is interesting to see how the maximum likelihood metholadtes to the popular
prediction error method, where the estimate is obtaineth@salution to the following
optimization problem

Oy = arg min Vy(0,Yn,Un), (5.5a)

N
Vn(0,Yn,Un) = Z (5.5b)
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Here,z(t,6) = y+ — §: denotes the prediction error af(d ) is a suitably chosen positive
(norm) function. If it is chosen as

U(e(t,0)) = —log po(ye|Yi-1), (5.6)

the maximum likelihood method is obtained. Hence, the pteui error method is more
general than the maximum likelihood method. The use of atleems is discussed by
Ljung (1999). Once the objective function has been choséb.s) the optimization has
to be performed. This is often a non-convex optimizationbfgm, which typically is
tackled using some gradient-based search algorithm, sublewton’s method or one of
its variantd (Dennis and Schnabel, 1983). The iterations for the pammnestimates are
typically in the following form,

5i 3G i g\t d
=i ) () (o), 5.7)

Whereug\’,) is a scaling factor that denotes the step Iengthla}jhis a matrix that modifies
the search direction. An alternative, gradient-free, hmtuto the maximum likelihood
problem is provided by the expectation maximization alidponi, briefly introduced in the
subsequent section.

5.2.2 Expectation Maximization Algorithm

The expectation maximizatiofEM) algorithm, introducetiby Dempster et al. (1977),
presents an iterative approach for obtaining maximumihikeld estimates (5.1). Within
the area of applied statistics it is widely recognized ferdbustness. The strategy under-
lying the EM algorithm is to separate a difficult maximum likeod problem into two
linked problems, each of which is easier to solve than thgimal problem. The prob-
lems are separated usimgarginalization It is interesting to note that this is the same
underlying mechanism as in the marginalized particle fillexcussed in Section 4.4.
Thekey ideain the EM algorithm is to consider an extension to (5.1),

0(Xn,Yy) = arggnax po(Xn,YN). (5.8)

Here, an extra data séfy, commonly referred to as thecomplete datar the miss-
ing data has been introduced. Its choice is the essential desigablain devising an
EM algorithm and it should be chosen in such a way that sol&ng) is simple ifX y
were known. It is worth stressing that if the missing datahissen unwisely this might
very well lead to a harder problem than what we had to begih.withe connection
between (5.1) and (5.8) is provided by Bayes’ theorem,

logpe(Yn) = log pe(Xn, Yn) —logpe(Xn|YN). (5.9)

1There are some special cases (FIR, ARX model structures) hvgiie rise to a standard least-squares
problem. This can of course be solved explicitly, withoungsan iterative approach.

2The EM algorithm was discovered independently by diffemasearchers, see, e.g., Baum et al. (1970).
However, it was Dempster et al. (1977) who provided the firstesyatic treatment of the ideas and introduced
the nameExpectation Maximizatiomlgorithm.
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The problem separation is now obtained by marginalizin§)(8.r.t. the missing data.
Note that¢’ is used to denote the result from the previous iteration efalyorithm.
Since the left-hand side of (5.9) is independenXgf it is unaffected by the marginaliza-
tion. More specifically, the marginalization is carriedamffect by integrating (5.9) over
po—o(Xn|Yn). Note thatpy(Xn|Yn) denotes a family of density functions, parame-
terized by#, whereagy—¢ (X n|Y) denotes a specific member of this family, the one
obtained using = ¢'.

L(0) = logpe(Yn) = /logpe(XN»YN)pQ:G’(XND/N)dXN

—/10gpa(XN|YN)p9:9/(XN|YN)dXN

= Eo {logpo(Xn, YN)| YN} — Eg {log po(Xn|YN)| YN}, (5.10)
Q(0,6") V(6,07

whereEy { - |Yy} denotes the expected value wpd.o (X n|Yy). If the log-likelihood
function L is evaluated at two consecutive parameter vatuasd ¢’ the difference can
be written as

L(e) - L(9/> = (Q(ev 91) - Q(9/7 91)) + (V(9/7 91) - V(ea 9/>)a (511)
where we have made use of the definitions in (5.10). Condigesecond term in (5.11),

por (Xn|Yn)

(XnlYN)dX
pe(XN|YN)p9( w[Yiv) dXn
po(Xn|YN) }

= Ep, (xnivw) {_ o8 (XY

Itis interesting to note that(0’, 0’) —V (0, 0’) is in fact theKullback-Leibler information
which is commonly used as a measure of the agreement betwegarabability density
functions (Kullback and Leibler, 1951). Since the negalgarithm is a convex function,
Jensen’s inequalifycan be used

po(Xn|YN) } {pe(XN|YN) }
E _jog PEANIIN) L joep SN
Do (XleN){ gpe/(XN|YN) g por (XN |YN) pg;(XN‘YN)

——log [ po(XxlY)dXn =0, (513

V(©',0")—Vv(0,0") = /log

(5.12)

which effectively establishes that6’, ') — V(6,6") > 0 and therefore choosingfethat
satisfiesQ(6,0") > Q(#',0") implies thatL(¢) > L(#). Thatis, values of that increase
Q(6,0") beyond its value &’ also increase the underlying likelihood function of intre
This implies the expectation maximization algorithm siateAlgorithm 5.1.

To summarize, the EM algorithm provides a systematic proetbr separating one
hard problem into two simpler connected problems, usinggmalization. Given the

3Jensen’s inequality (Durrett, 1996) states thati§ a convex function then

E{f(z)} = f (E{z})
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Algorithm 5.1 (Expectation Maximization (EM))

Given an initial estimatéy, iterate the following until convergence.
E: Q(0,0;) = Eg, {log po(Xn,YN)|YN}
M: Op+1 = arg;nax Q(0,64)

many applications of the EM algorithm, within several otfields, it is surprising to see
how little attention this algorithm has attracted withire threas of system identification
and automatic control. A good entry point into the literatoegarding various applica-
tions of the EM algorithm is Moon (1996) and the referencesdim. An early applica-
tion, within the area of system identification, is given bgksson (1993). However, it is
only recently that a thorough investigation of its use hamlaitiated. A rather detailed
account of using the EM algorithm for estimating multivatalinear time-invariant state-
space models is given by Gibson and Ninness (2005) and G{26@3). These results
have been extended to bilinear system identification in @ilet al. (2005). Further-
more, in Paper F we further extend the results to identifyprameters in the nonlinear
Model 4, defined in Section 2.3.2. In an effort to make the Efbdathm available for
solving system identification problems a toolbox has beemldped by Ninness et al.
(2005).

5.3 Approaches Based on Particle Methods

The problems addressed within the field of system identifinaxist in many other fields
of science as well. This section is concerned with some neasicbn how to tackle
a certain class of nonlinear system identification probleisiag particle methods and
the EM algorithm. Hence, we will try to illustrate some neveas based on methods
extensively used in other communities for similar problems

There is a recent survey paper by Andrieu et al. (2004), whickides an overview
of the use of sequential Monte Carlo, or particle, methody#tem identification, change
detection and automatic control. The use of the expectatimximization within the field
of system identification has been reviewed above. When thapeer estimation prob-
lem is investigated using particle methods we have impficitade use of the Bayesian
approach. This approach has previously been employed tdiéhéime system identifi-
cation problem, see, e.g., McGhee and Walford (1968), Kraand Sorenson (1988),
Peterka (1981, 1979).

The two ideas briefly introduced in the subsequent sectiomg@ncerned with the
following class of nonlinear systems

Tt o f (iﬁt,ut,t) f (xtaut,t) w,
( yf) - (hi(xuut,t)) o <h§(mt,ut,t)) + (et) ; (5.14)

previously introduced as Model 4 in Section 2.3.1.



5.3 Approaches Based on Particle Methods 75

5.3.1 Marginalized Particle Filter

The strategy employed in this first approach is rather wetivkn. The idea is to augment
the states with the parameters into a new state vector (Rsarid Eykhoff, 1971, Ljung
and Soderstrém, 1983)

2 = @t) , (5.15)

By assuming a random walk variation for the parameters, \thtem identification prob-
lem can now be cast as a nonlinear state estimation problaiohwpens up for possible
use of all algorithms available for this problem. The rasgldynamic model is

Tip1 = fl (l’t, Ut t)et + f2($t, U, t) -+ Wy, (516&)
Orp1 = 0y + wl, (5.16b)
Yt = ha(wg, us, 1)0 + ha(wg, ug, ) + ey, (5.16¢)

which is a special case of Model 5, implying that the margaeal particle filter applies.
Hence, this algorithm can be used to obtain a solution to tbblem of identifying the

parameters in model (5.14). The details of the approachieea ¢n Paper E. A similar

approach was independently proposed by Li et al. (2003)ridndnd Godsill (2000) and
it has also been employed by Daly et al. (2005). This idea hagqusly been explored
by Ljung (1979), save the fact that the resulting state egton problem was handled
using the extended Kalman filter. The work by Kitagawa (199&Jso interesting in this
context, where the parameters are estimated using a smoather than a filter.

5.3.2 Expectation Maximization and the Particle Smoother

The second approach is based on the expectation maxinmzalgorithm, previously
introduced in Section 5.2.2. Consider model (5.14), if tta¢esvariables:; where known
the problem of estimating the parameténrsould be rather simple. It is a standard linear
regression problem. In agreement with previous applioatiof the EM algorithm for
parameter estimation (Gibson and Ninness, 2005), the mgiskta is defined to be the
state sequence&ly = {z1,...,2x}. When this choice has been made, the next step is
the calculation 0fQ(6, 0;), defined in (5.10). This requires computation of the exmkcte
value of functions of the state, conditional onYy. It is this calculation that constitutes
the main difference between addressing the nonlinear antirtbar problem using the
EM algorithm. In the linear case, the expectations are tatled using a linear smoother.
However, in the present context, we are faced with a nonliseeothing problem. This
problem will be handled using the particle smoother giveAlgorithm 4.7.

A detailed account of this approach is given in Paper F, winealso provide a
simulation. This simulation indicates that the approa@mnseto be (perhaps) surprisingly
robust to attraction to local minima. The mechanisms uydeglthis robustness are not
yet fully understood and it is indeed a very interestingadpr future research.



76 5 Nonlinear System Identification

5.3.3 Discussion

There is an important difference between the two approatiseassed above. It concerns
the way in which the data is processed. The solution usingidrginalized particle filter
is, as the name reveals, a filtering solution, which is sletédr an on-line solution. The
EM-based solution is on the other hand a smoothing solusioitable only for the off-
line situation. There is of course nothing that preventsuges of the on-line approach in
addressing the off-line problem. However, it will restiicw the algorithm is allowed to
access the data. The algorithm is only allowed to processdkte sequentially, further
implying that the data can only be accessed once. For tharloase this would not be a
problem, but in the nonlinear case this poses a major lifaitah the process of extracting
all useful information from the measurements. The algoritiased on the EM algorithm
and the particle smoother is, on the other hand, allowed dogss the data as many
times as is necessary, which allows the algorithm to analyae data more adequate,
with better estimates as a result. It should also be strahaethe first approach actually
tackles a harder problem than the second approach, naneetnthine nonlinear system
identification problem.

The interesting thing about the employment of the EM alaniis that the need for
particle methods arise naturally. This should be contdasiehe approach based on the
marginalized particle filter, where the use of particle methis more forced. It does not
arise as a result of using standard parameter estimatidmohgtbut rather as a result of
considering another problem.



Concluding Remarks

N this first part we have presented a framework for the resaaqmbrted in this thesis.
The aim has been to explain how the papers in Part |l relata¢h ether and to the
existing theory. In Section 6.1 the conclusions are givdrer& are many interesting ideas
for future research, some of which are discussed in Sectin 6

6.1 Conclusion

The work presented in this thesis has to a large extent déalistate and parameters es-
timation problems arising from the mixed linear/nonlinstate-space model, introduced
as Model 5. In Paper A it is explained how the marginalizedigarfilter can be used to
solve the problem of estimating the state in this model. &dumportant special cases of
the general model class are also discussed. In any praappétation of the algorithm
it is important to understand its computational complex®Paper B provides a system-
atic analysis of the computational complexity of the maatjzed particle filter, using the
equivalent flop measure. The marginalized particle filtelissussed from a practitioners
point of view in Paper H. This is accomplished by treatingaas positioning and target
tracking applications. Furthermore, in Paper E it is disedshow to use the marginalized
particle filter to solve certain system identification perhb.

The system identification problem is also discussed in Papehere it is described
how to estimate the parameters in a nonlinear state-spadelymwith affine parameter
dependence. The approach is based on a maximum likeliheodetwork, where the
resulting problem is solved using the expectation maxitiomaalgorithm and a particle
smoothing method. The latter is used to calculate the neaticonditional expectations
required by the expectation maximization algorithm.

All estimation algorithms discussed in this thesis are rhbdsed, stressing the need
for a good model. In Paper C we propose an idea on how to incatgavhite noise in

1



78 6 Concluding Remarks

differential-algebraic equations, enabling the use oftsastic signal processing to solve
various estimation problems. The main reason for studyiodets of this type is that they
occur as a natural description from object-oriented modesioftware. It is not uncom-
mon that the model contains constraints. An approach, basednvex optimization, to
handle this is presented in Paper D.

In Paper | a new approach for road geometry estimation, basedhange detection
methods, is given. The significantly improved performarscgeémonstrated using sensor
data from authentic traffic environments. The problem oinesting the position and
orientation of a camera is addressed in Paper G. The propg®dach is to support
the inertial measurements using vision measurements,eviherlatter are incorporated
in terms of feature displacements.

6.2 Future Research

The combination of the expectation maximization algoritand the particle smoother
deserves more attention. A systematic investigation ohyfpethesis that the expectation
maximization algorithm is robust towards getting trappebbcal minima would probably
yield interesting results. Gradient-based algorithmspao@e to getting trapped in local
minima, simply due to the fact that they are designed to sgaraninima. However, the
expectation maximization algorithm is not gradient-bagdbdre are other mechanisms
guiding the search for the best estimate. We will try to agply idea to problems of
larger size in order to get a better understanding for itdicgdmlity.

The last observation in the previous paragraph naturadigdeo the next topic for fu-
ture research. It would be interesting to investigate hawrious model classed intro-
duced in Chapter 2 relate to other commonly used model da3sgs would effectively
provide a mapping between various model classes and ajgepstimation algorithms.

The combination of information from vision measurementghvimformation from
other sensors, such as radar and IMU is discussed in Chapidrelpresent approach is
based on vision measurements, which are inéatitmatedrom computer vision systems.
Hence, in effect, two estimation problems are solved setiplbn It would be interesting
to investigate if a solution to the joint estimation probleam improve the quality of the
estimates.

The idea of combining measurements from an IMU with visiorasugements has
been considered by many researchers. The approach usesl timetsis is based on prob-
abilistic ideas. However, the problem can equally well bprapched using results from
the nonlinear observer theory, see, e.g., Rehbinder (2001gre is probably a lot to be
gained in trying to merge the ideas from these two branchesiehce in order to de-
rive better algorithms for nonlinear state estimationéstation. There are for instance
standard forms available in the nonlinear observer themnjch can prove to be useful
in combination with, for instance, particle filter ideas. give a concrete example of
this we mention the possible use of the nonlinear transfooms, discussed by Hou and
Pugh (1999), to transform a nonlinear state-space modelanixed linear/nonlinear
state-space model. The state in this transformed modelheamlie estimated using the
marginalized particle filter.



Appendix, Proof of Corollary 3.1

We will now set out to prove the Kalman filter simply by studyithe general solution
provided in Theorem 3.1 when the state is assumed to evob@ding to a model based
on linear transformation subject to Gaussian noise (definédodel 7). This will be
performed using the principle of induction. According t@ thssumptiong(z1|Yy) is
normal, p(z1]Yy) = N (z|Z1, Pr). Assume thap(z|Y;—1) = N(x|Zy—1, Pije—1).
The information in a new measurement can now be inferred ersthte estimate us-
ing (3.13a),

1

Pyl Yomr) (2) e ¥ 72, [let Ry et Py

87% ((yt*CtIt*DtUt)TRt_l(yt*Ctl’t*Dtut)+(It*f@t\tfl)TPt_‘tl,l(Uﬂt*ft,\tfl)) (A 1)

9

p(:]Yy) =

where (using marginalization)

1
(27)(n=tny)/2 | /det Ry det Py .

6_% ((yt_ctmt_Dt“t)TR:1(yt_ctl't_Dt7it)+(1't_-’it\t—l)TP7

L (ze—3
”til(. t t\t—l)) dl’t. (A2)

p(yeYi-1) = /

R"z
In order to be able to carry out the integration above we havsdlate the integration
variable,z;. To accomplish this we will perform a change of variables,

Tyjp—1 = Ty — Tyj—1, (A.3a)
€r = yr — CieZyp—1 — Dyuy. (A.3b)
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The exponent in (A.2) can in terms of the new variable (A.3\oié¢ten as
fatflptﬁl,lfftn—l + (et — Ctjt\t—l)TR;I(et — Ciyp—1) =
~ T — - _ -
Ti|t—1 Pt‘tlfl + Cth 1Ct 7CtTRt ' Tt|t—1 (A 4)
€t —R;7'C, R;! €t ' '

If we can write the center matrix in (A.4) as a block diagonatrix we have in fact
isolated the integration variable, singes independent af,. This can be accomplished
using a block diagonal factorization (see Kailath et alQ@pp. A) according to,

Pl + GBI G —CTRTY _ (1 —KN\" (P 0\ (I —K,
_R;lct R;l 0 I 0 5;1 0 I )

(A.5)
where (note tha$, * is a Schur complement)
Ky = (P, +CIR7IC)TIC R, (A.6a)
P =P, +CIRIC, (A.6b)
Syt =Ry = RGP + CFRTIC)TICE R (A.6C)
The matrix inversion lemniaallows us to rewrite (A.6) according to
Ky = Pyy_1C] (R + Cy Py, CF) 7, (A7)
Pyy = Pyp—1 — Pt\tflc;sr(Rt + CtPt\t—lctT)_lctPt\tfla (A.7b)
Sy = CyPyy—1Cf + Ry. (A.7¢)
Using the factorization (A.5) in (A.4) gives
Typp1 — Kiér ! Py 0 Typp1 — Kier
€t 0 St_l €
= (i‘t\tfl — Kth)TPtlitl(ii't‘tfl — Ktﬁt) + etTS;let. (A8)
The determinants in (A.2) can be written
1 Pt 0
— = detR; 'det P, , =det [ *It~! . A9
det Rydet Py, 0 SO e = < 0 R (A9)

Since the determinant of a triangular matrix with unit diagloequals one we can multi-
ply (A.9) with any such matrix without changing the value loé texpression. For exam-
ple (A.9) can be written as

dtI—Kt*TIOTPﬂ‘j_lo I 0\ /(I —K\ '
“\\o 1 —C, 1 o grY)\-c 1)\o 1 ’

(A.10)

1The matrix inversion lemma states that (Kailath et al., 2000)
(A-BCD)"'=A"'—-A"'D(C '+ DAT'B)"!'DA!
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which allows us to use the block triangular factorizationX)to write the determinant as

1 P00 1
— —det( "t = . All
det Rydet Py ( 0 Stl) det Py, det 5, (A.11)
Inserting (A.8) and (A.11) into (A.2) we obtain
1 1T o
,EefSt 16,5’ (A12)

Yiol) = o7 o
Pultior) = e

after marginalization w.r.tz;. This expression can now be used in (A.1), which results in

1 — Lz —2 Yz —2
p(l’t‘Yt) _ e 5 (e t|t)TPm( ¢ t\t)7 (A.13)

(2m)ne/2, /det Py,

where
Typp = Type—1 + Kie(ye — Coy—1 — Diuy). (A.14)
The time update (3.13b) can be written

1
Y;) = .
p(@e11]Y2) / (2m)n=/2 /7detQtdeth
Rz

6_% ((%4—1—Atmt—Bt"t)TQfl(ﬂ%-H—Atﬂft,—Btut)+(ﬂct—§?t\t)TP,,T,,l(xt—it\t))

dr;.  (A.15)

This integration can be carried out if the integration Valeax,, is isolated. This can be
accomplished by a change of variables,

Ty = T — Loy (A.16a)
Typ1e = Tep1 — Tyqape,  Wheredy = Ay + Biug. (A.16b)

Using the triangular block factorization that was used irbjAgives the following expres-
sion for the exponent of (A.15),

T 1= - ~ NTA—1/= -
Ty Py Toe + (Tppage — Aege)” Qp (Tgaye — Aelyye)

(V6 A6 B e
jt+1|t 0 I 0 Pt:-1|t 0 I i’t+1|t ’ ’

where
My = Py, — Py Ar(Qr + APy AT) 1 Ay Py, (A.18a)
Py = Atpt\tAtT + Qr, (A.18b)
Ly = Pt|tA?(Qt + AtPt“A?)_l. (A.18¢)

The integration (A.15) can now be performed, resulting in
1 _%}T

1.
A ‘t+1|tPt,+1\t‘/I:t+1‘t_ A.19
p@ea]Y?) (2m)n=/2 /det Pt+1\t6 A

The expressions (A.7a), (A.7b), (A.14), (A.16b) and (A.18bnstitute the Kalman filter
and hence the proof is complete. O
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