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Abstract

This thesis deals with estimation of states and parameters in nonlinear and non-Gaussian
dynamic systems. Sequential Monte Carlo methods are mainlyused to this end. These
methods rely on models of the underlying system, motivatingsome developments of the
model concept. One of the main reasons for the interest in nonlinear estimation is that
problems of this kind arise naturally in many important applications. Several applications
of nonlinear estimation are studied.

The models most commonly used for estimation are based on stochastic difference
equations, referred to as state-space models. This thesis is mainly concerned with models
of this kind. However, there will be a brief digression from this, in the treatment of the
mathematically more intricate differential-algebraic equations. Here, the purpose is to
write these equations in a form suitable for statistical signal processing.

The nonlinear state estimation problem is addressed using sequential Monte Carlo
methods, commonly referred to as particle methods. When there is a linear sub-structure
inherent in the underlying model, this can be exploited by the powerful combination of
the particle filter and the Kalman filter, presented by the marginalized particle filter. This
algorithm is also known as the Rao-Blackwellized particle filter and it is thoroughly de-
rived and explained in conjunction with a rather general class of mixed linear/nonlinear
state-space models. Models of this type are often used in studying positioning and tar-
get tracking applications. This is illustrated using several examples from the automotive
and the aircraft industry. Furthermore, the computationalcomplexity of the marginalized
particle filter is analyzed.

The parameter estimation problem is addressed for a relatively general class of mixed
linear/nonlinear state-space models. The expectation maximization algorithm is used to
calculate parameter estimates from batch data. In devisingthis algorithm, the need to
solve a nonlinear smoothing problem arises, which is handled using a particle smoother.
The use of the marginalized particle filter for recursive parameter estimation is also inves-
tigated.

The applications considered are the camera positioning problem arising from aug-
mented reality and sensor fusion problems originating fromautomotive active safety sys-
tems. The use of vision measurements in the estimation problem is central to both appli-
cations. In augmented reality, the estimates of the camera’s position and orientation are
imperative in the process of overlaying computer generatedobjects onto the live video
stream. The objective in the sensor fusion problems arisingin automotive safety systems
is to provide information about the host vehicle and its surroundings, such as the posi-
tion of other vehicles and the road geometry. Information ofthis kind is crucial for many
systems, such as adaptive cruise control, collision avoidance and lane guidance.
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Sammanfattning

Denna avhandling behandlar skattning av tillstånd och parameterar i olinjära och icke-
gaussiska system. För att åstadkomma detta används huvudsakligen sekventiella Monte
Carlo-metoder. Dessa metoder förlitar sig på modeller av det underliggande systemet,
vilket motiverar vissa utvidgningar av modellkonceptet. En av de viktigaste anledningarna
till intresset för olinjär skattning är att problem av dettaslag uppstår naturligt i många
viktiga tillämpningar. Flera tillämpade olinjära skattningsproblem studeras.

De modeller som används för skattning är normalt baserade påstokastiska differen-
sekvationer, vanligtvis kallade tillståndsmodeller. Denna avhandling använder huvudsak-
ligen modeller av detta slag. Ett undantag utgörs dock av de matematiskt mer komplice-
rade differential-algebraiska ekvationerna. Målet är i detta fall att skriva om ekvationerna
på en form som lämpar sig för statistisk signalbehandling.

Det olinjära tillståndsskattningsproblemet angrips med hjälp av sekventiella Monte
Carlo-metoder, även kallade partikelmetoder. En linjär substruktur ingående i den un-
derliggande modellen kan utnyttjas av den kraftfulla kombination av partikelfiltret och
kalmanfiltret som tillhandahålls av det marginaliserade partikelfiltret. Denna algoritm går
även under namnet Rao-Blackwelliserat partikelfilter och den härleds och förklaras för en
generell klass av tillståndsmodeller bestående av såväl linjära, som olinjära ekvationer.
Modeller av denna typ används vanligen för att studera positionerings- och målföljnings-
tillämpningar. Detta illustreras med flera exempel från fordons- och flygindustrin. Vidare
analyseras även beräkningskomplexiteten för det marginaliserade partikelfiltret.

Parameterskattningsproblemet angrips för en relativt generell klass av blandade lin-
jära/olinjära tillståndsmodeller. “Expectation maximization”-algoritmen används för att
beräkna parameterskattningar från data. När denna algoritm appliceras uppstår ett olinjärt
glättningsproblem, vilket kan lösas med en partikelglättare. Användandet av det margina-
liserade partikelfiltret för rekursiv parameterskattningundersöks också.

De tillämpningar som betraktas är ett kamerapositioneringsproblem härstammande
från utökad verklighet och sensor fusionproblemet som uppstår i aktiva säkerhetssystem
för fordon. En central del i båda dessa tillämpningar är användandet av mätningar från
kamerabilder. För utökad verklighet används skattningarna av kamerans position och ori-
entering för att i realtid överlagra datorgenererade objekt i filmsekvenser. Syftet med sen-
sor fusionproblemet som uppstår i aktiva säkerhetssystem för bilar är att tillhandahålla
information om den egna bilen och dess omgivning, såsom andra fordons positioner och
vägens geometri. Information av detta slag är nödvändig förmånga system, såsom adaptiv
farthållning, automatisk kollisionsundvikning och automatisk filföljning.
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1
Introduction

THIS thesis is concerned with the problem of estimating various quantities in nonlinear
dynamic systems. The ability to handle this problem is of paramount importance in

many practical applications. In order to understand how a system, for instance, a car, an
aircraft, a spacecraft or a camera performs, we need to have access to certain important
quantities associated with the system. Typically we do not have direct access to these, im-
plying that they have to be estimated based on various noisy measurements available from
the system. Both theoretical developments and applicationoriented studies are presented.
The interplay between the theory and application provides interesting and valuable in-
sights and it prevents us from developing fallacies concerning the relative importance
of various theoretical concepts, allowing for a balanced view. Furthermore, it enables a
systematic treatment of the applications.

This first chapter illustrates the kind of problems that can be handled using the theory
developed in this thesis, by explaining two applications. The first applications stems from
the automotive industry, where the current development of active safety systems require
better use of the available sensor information. The second applications deals with the
problem of estimating the position and orientation of a camera, using information from
inertial sensors and computer vision. Mathematically speaking, the two applications are
rather similar, they both result in nonlinear estimation problems. Another common char-
acteristic is that information from several different sensors have to be merged or fused.
Problems of this kind are commonly referred to assensor fusionproblems.

A unified approach to handle the sensor fusion problem arising in automotive safety
systems is introduced in Section 1.1 and exemplified in Section 1.2. The second ap-
plication is introduced in Section 1.3. In Section 1.4 we provide a brief mathematical
background to the problem under study. The outline is provided in Section 1.5. Finally,
the chapter is concluded with a statement of the contributions in Section 1.6.
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2 1 Introduction

1.1 Automotive Navigation – Strategy

The automotive industry is an industry in change, where the focus is currently shifting
from mechanics to electronics and software. To quantify this statement the monetary
value of the software in a car is predicted to increase from4% in 2003, to13% in 2010
(Forssell and Gustafsson, 2004). The key reason for this substantial increase is the rather
rapid development of automotive safety systems (Gustafsson, 2005). This opens up for
many interesting applications and research opportunitieswithin the field of estimation
theory.

Automotive safety systems are currently serving as a technological driver in the de-
velopment and application of estimation theory, very much in the same way that the
aerospace industry has done in the past. In fact, the automotive industry is currently
faced with several of the problems already treated by the aerospace industry, for example
collision avoidance and navigation. Hence, a lot can probably be gained in reusing results
from the latter in solving the problems currently under investigation in the former. The
development within the aerospace industry is reviewed by McGee and Schmidt (1985).
Within the next10–20 years there will most certainly be similar reviews written,treat-
ing the development within the automotive industry, indeedan early example of this is
Gustafsson (2005).

The broadest categorization of automotive safety systems is in terms ofpassiveand
active systems. Passive systems are designed to mitigate harmful effects during acci-
dents. Examples include seat belts, air bags and belt pretensioners. The aim of active
systems is to prevent accidentsbefore they occur. To mention some examples of active
systems, we have ABS (Anti-lock Braking System), ACC (Adaptive Cruise Control)
and collision avoidance. More thorough reviews of existingand future systems are given
in Eidehall (2004), Jansson (2005), Danielsson (2005), Gustafsson (2005). There is an
interesting study by Eidehall (2004), where different potential active safety systems are
profiled with respect to accident statistics, system complexity and cost.

The current situation within the automotive industry is that each control system, read
active safety system, comes with the necessary sensors. Each sensor belongs to a certain
control system and it is only used by this system. This effectively prevents other systems
from using the, potentially very useful, information delivered by the sensor. This situation
is most likely to be changed in the future, concurrently withthe introduction of more con-
trol systems in cars. A unifying feature of all control systems is that they rely on accurate
state1 information. As Gustafsson (2005) points out, it is currently more important to have
accurate state information than advanced control algorithms. Indeed, it is often sufficient
to employ simple P(I)D controllers. Hence, it is more important what information to feed
back than how the actual feedback is performed.

The natural conclusion from the discussion above is that thedata from the differ-
ent sensors should be jointly analyzed to produce the best possible estimate of the state.
The state information can then be accessed by all control systems in the cars. This idea
is briefly illustrated in Figure 1.1. This approach is employed in the applied research

1Depending on which control system we are concerned with the state is obviously different. In the example
given in the subsequent section, the state contains information about the motion of the host vehicle and the
surrounding vehicles and the road geometry.
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Figure 1.1: The most important factor enabling future automotive safety systems
is the availability of accurate information about the state. The process of obtaining
this information is to a large extent dependent on a unified treatment of the sensor
information, as illustrated in this figure. The aim of this sensor fusion approach
is to provide the best information possible for as many purposes as possible. In
Section 1.2 this strategy is exemplified using the sensors inbold font.

project, SEFS2, where we take part. Similar ideas have previously been suggested, for
instance by Streller et al. (2002). The figure does not claim to contain an exhaustive list
of possible sensors, it is merely intended as an illustration of the idea. For an introduction
to automotive sensors, see, for example, Danielsson (2005), Nwagboso (1993), Strobel
et al. (2005). In the subsequent section an explicit exampleis provided, where the idea
presented above has been employed and evaluated using authentic traffic data.

1.2 Automotive Navigation – Example

The objective of this study is to calculate estimates of the road geometry, which are impor-
tant in several advanced control systems such as lane guidance and collision avoidance.
The sensors used to accomplish this are primarily radar and camera, with appropriate im-
age processing provided by the supplier. Hence, the idea exemplified here follows from
the general framework introduced in Figure 1.1. The result,using authentic traffic data,
will illustrate the power of a model based sensor fusion approach. Here, information

2SEnsor Fusion for Safety systems(SEFS) is an applied research project, with participants from AB Volvo,
Volvo Car Corporation, Mecel, Chalmers University of Technology and Linköping University. The financial
support is provided by the Intelligent Vehicle Safety Systems (IVSS) program.



4 1 Introduction

from several sensors is used to obtain better performance, than separate use of the sensors
would allow for. The vision system delivers estimates of theroad geometry, but the qual-
ity of these estimates is not sufficient for future automotive safety systems. The idea is
to improve the quality by using information available from the motion of the surrounding
vehicles, measured using the radar, together with information from the vision system. The
key assumption is that the leading vehicles will keep followingtheir lane, and their lateral
movement can thus be used to support the otherwise difficult process of road geometry
estimation. For example, when entering a curve as in Figure 1.2 the vehicles ahead will
start moving to the right and thus there is a high probabilitythat the road is turning to

Figure 1.2: When entering a curve, all vehicles start moving in the lateral direction.
This information can be used to support the road geometry estimate.

the right. This information, obtained from radar measurements, can be used to signifi-
cantly improve the rather crude road geometry estimates from the vision system. This
idea of jointly estimating the position of the surrounding vehicles and the road parameters
has previously been successfully applied, see, e.g., Eidehall (2004), Dellaert and Thorpe
(1997), Zomotor and Franke (1997), but as will be explained in the sequel the estimates
can be further enhanced.

In the subsequent sections this problem will be posed as an estimation problem, which
can be solved using the model based estimation algorithms presented in this thesis. First
of all a dynamic model is derived. More specifically, the resulting model is a mixed
linear/nonlinear state-space model, to be described in Chapter 2. The state estimation
problem arising from models in this form can be handled usingeither the marginalized
particle filter, thoroughly derived in Paper A, or the extended Kalman filter (EKF).

1.2.1 Dynamic Model

Dynamic motion models for various objects have been extensively studied and the litera-
ture contains hundreds of papers describing different models, bearing names like constant
velocity model, constant acceleration model, coordinatedturn model, etc. The resulting
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models are all expressed in the general classes introduced in Chapter 2. There are sev-
eral surveys available, dealing with various motion models, see, e.g., Bar-Shalom and Li
(1993), Li and Jilkov (2003, 2001), Blackman and Popoli (1999).

For the present study we need models describing the motion ofthe host vehicle, the
surrounding vehicles and the road. In the host vehicle we have access to sensors mea-
suring wheel speed, yaw rate, steering wheel angle, etc. This allows for a more detailed
model of the host vehicle, than what can be devised for the surrounding vehicles. We will
make use of the model derived by Eidehall (2004). For the present discussion it is only
the lateral motion model of the surrounding vehicles which is important. Further details
concerning the model are given in the Appendix of Paper I. Theessential feature of the
model is that it is based on a curved coordinate system, whichis attached to the road. This
will enable the use of very simple models for the surroundingvehicles. The key assump-
tion introduced above, that the surrounding vehicles will keep following the same lane,
is in discrete-time expressed asyi

t+1 = yi
t + wt, wt ∼ N (0, Qlat). Here,yi denotes the

lateral position of vehiclei andwt denotes Gaussian white noise which is used to account
for model uncertainties.

1.2.2 State Estimation

The resulting nonlinear state estimation problem can be solved using either the extended
Kalman filter (Eidehall and Gustafsson, 2004) or the marginalized particle filter (Eidehall
et al., 2005). For the present study the extended Kalman filter has been employed. The
estimate of the road curvature during an exit phase of a curveis illustrated in Figure 1.3.
To facilitate comparison, the true reference signal and theraw vision measurement of the
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Figure 1.3: Comparison of estimation performance from two filters, one with a
largeQlat and one with a smallQlat. The raw measurement signal from the image
processing unit is also included. Comparing this raw visionmeasurement to the
result from the filters clearly illustrates the power of a model based sensor fusion
approach.
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curvature are included as well. The true reference signal was generated using the method
proposed by Eidehall and Gustafsson (2006). Comparing thisraw vision measurement
to the result from the filters clearly illustrates the power of a model based sensor fusion
approach. In this particular scenario there are two leadingvehicles used to support the
curvature estimates, see Figure 1.2.

From Figure 1.3 it is clear that the filter with a low value ofQlat performs much
better, than the filter with a high value ofQlat, during the curve exit. This suggests that
the filter should be tuned using a low value forQlat. However, at time4270 s, when the
road is straight, the performance of this filter deteriorates. If the recorded video is studied,
see Figure 1.4, it can be seen that this performance degradation coincides exactly with a

Figure 1.4: A snapshot from the video just after time4270 s, when the lane change
of the tracked vehicle commences.

lane change of one of the leading vehicles. Obviously, this lane change violates the key
assumption, that the leading vehicles will keep driving in the same lane. In fact, all lateral
movements, such as lane changes, performed by the leading vehicle will be interpreted as
a turn in the road by the present approach. However, the filterusing a larger value ofQlat

does not suffer from this problem. This is natural, since a higher value ofQlat corresponds
to that the model allows for larger lateral movements of the leading vehicles. On the other
hand, since this model contains more noise than necessary, the quality of the estimates is
bad due to this. This is manifested by the time delay in the estimate during the curve exit
and its overall shaky behavior. This is actually an example of the fundamental limitation
present in all linear filters; the estimation performance isa compromise between noise
attenuation and tracking ability.

Based on the discussion above it is advisable to use a low value forQlat when the key
assumption holds and a larger value forQlat when it does not hold. This can be achieved
by detecting vehicles which violate the key assumption, i.e., performs lane departures,
and adapt the model accordingly. This is further investigated in Paper I, where it is shown
to result in significantly improved road geometry estimates.
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1.3 Navigation for Augmented Reality

The following navigation application stems from the area ofaugmented reality (AR),
where the idea is to overlay virtual, computer generated objects onto an authentic scene
in real time. This can be accomplished either by displaying them in a see-through head-
mounted display or by superimposing them on the images from acamera. There are
many applications for augmented reality, ranging from broadcasting and film production,
to industrial maintenance, medicine, entertainment and games, see Figure 1.5 for some
examples. For a survey of the field, see, e.g., Azuma (1997), Azuma et al. (2001).

(a) Visualization of virtual objects in a live
broadcast. Courtesy of BBC R&D.

(b) Assistance during maintenance.
Courtesy of Fraunhofer IGD.

(c) Adding virtual graphics to sports scenes.
Courtesy of BBC R&D.

(d) Visualization of virtual recon-
structions of archaeological sites.
Courtesy of Fraunhofer IGD.

Figure 1.5: Some examples illustrating the concept of augmented reality.

One of the key enabling technologies for augmented reality is to be able to determine
the position and orientation of the camera, with high accuracy and low latency. To ac-
complish this there are several sensors which can be used, see Welch and Foxlin (2002)
for an overview. Accurate information about the position and orientation of the camera is
essential in the process of combining the real and the virtual objects. Prior work in this re-
cent research area have mainly considered the problem in an environment which has been
prepared in advance with various artificial markers, see, e.g., Thomas et al. (1997), Caarls
et al. (2003), Yokokohji et al. (2000), You and Neumann (2001). The current trend is to
shift from prepared to unprepared environments, which makes the problem much harder.
On the other hand, the costly procedure of preparing the environment with markers will no
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Figure 1.6: Schematic illustration of the approach. The sensor fusion module is
basically a recursive nonlinear state estimator, using information from the inertial
measurement unit (IMU) and the computer vision system to compute an estimate of
the position and orientation of the camera.

longer be required. Furthermore, in outdoor situations it is generally not even possible to
prepare the environment with markers. The idea is to make useof natural features, occur-
ring in the real scene, as markers. This problem of estimating the camera’s position and
orientation in an unprepared environment has previously been discussed in the literature,
see, e.g., Simon and Berger (2002), Lepetit et al. (2003), Genc et al. (2002), You et al.
(1999), Klein and Drummond (2003). Furthermore, the work byDavison (2003), Davi-
son et al. (2004) is interesting in this context. Despite allthe current research within the
area, the objective of estimating the position and orientation of a camera in an unprepared
environment still presents a challenging problem.

The problem introduced above can in fact be cast as a nonlinear state estimation prob-
lem. This work is performed within a consortium, called MATRIS (2005)3, where the
objective is to solve this estimation problem in an unprepared environment, using the
information available in the camera images and the accelerations and angular velocities
delivered by an inertial measurement unit (IMU). A schematic illustration of the approach
is given in Figure 1.6. The IMU, which is attached to the camera, provides measurements
of the acceleration and the angular velocity of the camera. The accelerometers and the gy-
roscopes used to obtain these measurements are of MEMS type,implying small, low cost
sensors. However, these sensors are only reliable on a shorttime scale, due to an inherent
drift. This drift is compensated for using information fromthe computer vision system,

3Markerless real-time Tracking for Augmented Reality Image Synthesis (MATRIS) is the name of a sixth
framework research program, funded by the European Union (EU), contract number: IST-002013. It is an
interdisciplinary applied research project with the following partners; Fraunhofer IGD, BBC R&D, Christian-
Albrechts University, Xsens Technologies B.V. and Linköping University.
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which consists of a 3D scene model and real time feature extraction. The 3D model is
generated off-line using images of the scene or existing CADmodels (Koch et al., 2005).
It contains positions of various natural markers, which arethen detected in the images
using feature extraction techniques. This allows the computer vision system to deliver the
3D coordinates of a natural marker, together with the corresponding coordinates for this
marker in the present image. This information is then used together with the informa-
tion from the IMU in order to compute an estimate of the position and orientation of the
camera. This computation is performed in the sensor fusion block in Figure 1.6. Hence,
sensor fusion is interpreted as the process of forming an appropriate nonlinear state esti-
mation problem, which can be solved in real time, using the available sensor information
as efficient as possible. For further details regarding thisapproach, see Paper G and Hol
(2005).

The simultaneous use of information present in images and information from inertial
sensors is currently under investigation within many branches of science and there exists
a vast amount of interesting application areas. In the previous section it was illustrated
that this is a sub-problem arising in the development of automotive safety systems. A use-
ful prototype for investigating this problem has been developed in the MATRIS project,
see Figure 1.7. By using the data from this prototype together with the simultaneous lo-

Figure 1.7: This is a prototype developed in the MATRIS project. It consists of a
camera, an IMU and a low-power digital signal processor, used for pre-processing
of the sensor signals. Courtesy of Xsens Technologies B.V.

calization and mapping (SLAM) ideas of Davison (2003) it should be possible to derive
rather good estimates. Furthermore, the presence of the inertial information will probably
allow for the use of simple image processing. Perhaps very simple point-of-interest (POI)
detectors such as the Harris detector, introduced by Harrisand Stephens (1988), can be
used. Another interesting observation elaborated upon by Huster (2003) is that the vision
measurements can be interpreted as bearing measurements. This opens up for reuse of
the research performed on the bearings-only problem, see, e.g., Karlsson and Gustafsson
(2005) for an introduction to this problem using radar, sonar and infrared measurements.
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1.4 Mathematical Background

In the previous sections two applications were introduced,both resulting in asensor fu-
sionproblem, where the objective is to utilize existing and affordable sensors to extract as
much information as possible. The framework for nonlinear state estimation discussed in
this thesis provides a systematic approach to handle sensorfusion problems. This thesis
will, to a large extent, make use of a probabilistic framework in dealing with estimation
problems of this kind. Theexpressive powerof probability density functions opens up for
a rather systematic treatment of the estimation problem, where the main ideas can be con-
veyed, without getting lost in tedious matrix calculations. More specifically, we will make
extensive use of the theory originating from the work of the English Reverend Thomas
Bayes, published two years after his death in Bayes (1763). The distinguishing feature of
the Bayesian theory is that all unknown variables are considered to be random variables.
In the classical theory, represented by Fisher (1912, 1922)and his method ofmaximum
likelihood the parameters to be estimated are treated as unknown constants. In the liter-
ature there is a lively debate, concerning the two viewpoints, represented by Bayes and
Fisher, which has been going on for almost a century now. Somegood entry points into
this debate are provided by Box and Tiao (1992), Edwards (1992), Spall (1988), Robert
(2001). We will adopt a rather pragmatic viewpoint, implying that the focus is on using
the best approach for each problem, without getting too involved in the philosophical dis-
cussions inherent in the debate mentioned above. The Bayesian theory is extensively used
in discussing the state estimation theory. On the other hand, Fisher’s method of maximum
likelihood is employed in solving certain system identification problems. The probabilis-
tic framework for solving estimation problems is indeed very powerful. However, despite
this, it is still fruitful to consider the estimation problem as a deterministic problem of
minimizing errors. In fact, the two approaches are not as farapart as one might first think.

The estimation problems are handled usingmodel basedmethods. The systems under
study are dynamic, implying that the models will mostly be ofdynamic nature as well.
More specifically, the models are primarily constituted by stochastic difference equations.
The most commonly used model is the nonlinear state-space model and various special
cases thereof. The nonlinear state-space model consists ofa system of nonlinear differ-
ence equations according to

xt+1 = f(xt, ut, θ) + wt, (System model) (1.1a)

yt = h(xt, ut, θ) + et, (Measurement model) (1.1b)

wherext denotes the state variable,ut denotes the known input signal,θ denotes the static
parameters,yt denotes the measurements,wt andet denote the process and measurement
noise, respectively. Thesystem model(1.1a) describes the evolution of the state variables
over time, whereas themeasurement model(1.1b) explains how the measurements relate
to the state variables. The dynamic model must describe the essential properties of the
underlying system, but it must also be simple enough to make sure that it can be used
to devise an efficient estimation algorithm. In tackling thenonlinear state estimation
problem it is imperative to have a good model of the system at hand, probably more
important than in the linear case. If the model does not provide an adequate description
of the underlying system, it is impossible to derive an appropriate estimation algorithm.
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It is, surprisingly enough, possible to derive expressionsfor the complete solution to
the nonlinear state estimation problem. However, there is asevere limitation inherent
in these expressions, they involve multidimensional integrals which only permit closed-
form solutions in certain special cases. The most importantspecial case occurs when
all equations are linear and the noise terms are Gaussian in (1.1). The solution is in
this case provided by theKalman filter introduced by Kalman (1960). In the nonlinear,
non-Gaussian case approximate techniques have to be employed. A common idea is to
approximate the nonlinear model by a linear model and then use the Kalman filter for this
linearized model, resulting in the extended Kalman filter. There are many applications
where this renders acceptable performance, but there are also cases where the resulting
state estimates diverge. Furthermore, conceptually it is not a satisfactory solution, since in
a way it is solving the wrong problem. A solution, which is conceptually more appealing
can be obtained by keeping the nonlinear model and trying to approximate the optimal
solution. The reason is that the effort is now spent on tryingto solve the correct problem.
There is a class of methods, referred to assequential Monte Carlo methods, available for
doing this. A popular member of this class is the particle filter, introduced by Gordon
et al. (1993). An attractive feature with these methods is, as was noted above, that they
providean approximate solution to the correct problem, rather thanan optimal solution
to the wrong problem. The sequential Monte Carlo methods constitute an important part
of this thesis. They will be employed both for the nonlinear state estimation problem and
the nonlinear system identification problem.

1.5 Outline

There are two parts in this thesis. The objective of the first part is to give a unified view of
the research reported in this thesis. This is accomplished by explaining how the different
publications in Part II relate to each other and to the existing theory.

1.5.1 Outline of Part I

This thesis is concerned with estimation methods that employ dynamic models of the
underlying system in order to calculate the estimates. In order to be able to use these
methods there is of course a need for appropriate mathematical models. This motivates
the discussion on various model classes in Chapter 2. A rather general account of the
state estimation theory is given in Chapter 3. The sequential Monte Carlo methods are
then reviewed in Chapter 4. The nonlinear system identification problem is treated in
Chapter 5, where special attention is devoted to the use of the expectation maximization
algorithm. Finally, Chapter 6 provide concluding remarks consisting of conclusions and
some ideas for future research.

1.5.2 Outline of Part II

This part consists of a collection of edited papers, introduced below. Besides a short
summary of the paper, a paragraph briefly explaining the background and the contribution
is provided. The background is concerned with how the research came about, whereas the
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contribution part states the contribution of the present author. In Table 1.1 the papers are
grouped according to the nature of their main content.

Table 1.1: Grouping of the papers according to the nature of their main content.

Content Paper
Theory, state estimation A, B, C, D
Theory, system identification E, F
Applications G, H, I

Paper A: Marginalized Particle Filters for Mixed Linear/Nonlinear
State-Space Models

Schön, T., Gustafsson, F., and Nordlund, P.-J. (2005). Marginalized particle
filters for mixed linear/nonlinear state-space models.IEEE Transactions on
Signal Processing, 53(7):2279–2289.

Summary: The particle filter offers a general numerical tool to approximate the filtering
density function for the state in nonlinear and non-Gaussian filtering problems. While the
particle filter is fairly easy to implement and tune, its maindrawback is that it is quite
computer intensive, with the computational complexity increasing quickly with the state
dimension. One remedy to this problem is to marginalize out the states appearing linearly
in the dynamics. The result is that one Kalman filter is associated with each particle.
The main contribution in this paper is to derive the details for the marginalized particle
filter for a general nonlinear state-space model. Several important special cases occurring
in typical signal processing applications are also discussed. The marginalized particle
filter is applied to an integrated navigation system for aircraft. It is demonstrated that the
complete high-dimensional system can be based on a particlefilter using marginalization
for all but three states. Excellent performance on real flight data is reported.

Background and contribution: The results from Nordlund (2002) have been extended
and improved. The author of this thesis wrote the major part of this paper. The example,
where the theory is applied using authentic flight data, is the result of the Master’s thesis
by Frykman (2003), which the authors jointly supervised.

Paper B: Complexity Analysis of the Marginalized Particle Filter

Karlsson, R., Schön, T., and Gustafsson, F. (2005). Complexity analysis of
the marginalized particle filter.IEEE Transactions on Signal Processing,
53(11):4408–4411.

Summary: In this paper the computational complexity of the marginalized particle filter,
introduced in Paper A, is analyzed and a general method to perform this analysis is given.
The key is the introduction of the equivalent flop measure. Inan extensive Monte Carlo
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simulation different computational aspects are studied and compared with the derived
theoretical results.

Background and contribution: Several applications of the marginalized particle filter
are discussed in Paper H. During this work the need for a thorough theoretical investiga-
tion of the computational complexity of the algorithm was identified, motivating the work
reported in this paper. This investigation was carried out in close co-operation with Dr.
Rickard Karlsson.

Paper C: A Modeling and Filtering Framework for Linear
Differential-Algebraic Equations

Schön, T., Gerdin, M., Glad, T., and Gustafsson, F. (2003a).A modeling and
filtering framework for linear differential-algebraic equations. InProceedings
of the 42nd Conference on Decision and Control, Maui, Hawaii, USA.

Summary: General approaches to modeling, for instance using object-oriented software,
lead to differential-algebraic equations (DAE). For stateestimation using observed system
inputs and outputs in a stochastic framework similar to Kalman filtering, we need to
augment the DAE with stochastic disturbances, “process noise”, whose covariance matrix
becomes the tuning parameter. In this paper we determine thesubspace of possible causal
disturbances based on the linear DAE model. This subspace determines all degrees of
freedom in the filter design, and a Kalman filter algorithm is given.

Background and contribution: This paper is the result of work conducted in close co-
operation with Markus Gerdin. It provided a start for introducing stochastic processes in
differential-algebraic equations. The results have recently been refined by Gerdin et al.
(2005a). Finally, a paper presenting the resulting framework for system identification and
state estimation in linear differential-algebraic equations has been submitted to Automat-
ica (Gerdin et al., 2005b).

Paper D: A Note on State Estimation as a Convex Optimization
Problem

Schön, T., Gustafsson, F., and Hansson, A. (2003b). A note onstate estima-
tion as a convex optimization problem. InProceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 6,
pages 61–64, Hong Kong.

Summary: We investigate the formulation of the state estimation problem as a convex
optimization problem. The Kalman filter computes the maximum a posteriori (MAP)
estimate of the state for linear state-space models with Gaussian noise. We interpret the
Kalman filter as the solution to a convex optimization problem, and show that the MAP
state estimator can be generalized to any noise with log-concave density function and any
combination of linear equality and convex inequality constraints on the state.

Background: This work started as a project in a graduate course in convex optimization
held by Dr. Anders Hansson. My thesis advisor Professor Fredrik Gustafsson came up
with the idea when he served as opponent for the thesis by Andersson (2002).
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Paper E: Particle Filters for System Identification of State-Space
Models Linear in Either Parameters or States

Schön, T. and Gustafsson, F. (2003). Particle filters for system identification
of state-space models linear in either parameters or states. In Proceedings
of the 13th IFAC Symposium on System Identification, pages 1287–1292,
Rotterdam, The Netherlands. Invited paper.

Summary: The potential use of the marginalized particle filter for nonlinear system iden-
tification is investigated. Algorithms for systems which are linear in either the parameters
or the states are derived. In these cases, marginalization applies to the linear part, which
firstly significantly widens the scope of the particle filter to more complex systems, and
secondly decreases the variance in the linear parameters/states for fixed filter complex-
ity. This second property is illustrated in an example of a chaotic model. The particular
case of freely parameterized linear state-space models, common in subspace identification
approaches, is bilinear in states and parameters, and thus both cases above are satisfied.

Background and contribution: At the ERNSI (European Research Network System
Identification) workshop held in Le Croisic, France in 2002 someone mentioned that it
would be interesting to investigate if the particle filter can be useful for the system identi-
fication problem. This comment, together with the invited session on particle filters held
at the 13th IFAC Symposium on System Identification, in Rotterdam, the Netherlands,
served as catalysts for the work presented in this paper.

Paper F: Maximum Likelihood Nonlinear System Estimation

Schön, T. B., Wills, A., and Ninness, B. (2006b). Maximum likelihood non-
linear system estimation. InProceedings of the 14th IFAC Symposium on
System Identification, Newcastle, Australia. Accepted for publication.

Summary: This paper is concerned with the parameter estimation of a relatively gen-
eral class of nonlinear dynamic systems. A Maximum Likelihood (ML) framework is
employed in the interests of statistical efficiency, and it is illustrated how an Expectation
Maximization (EM) algorithm may be used to compute these ML estimates. An essen-
tial ingredient is the employment of particle smoothing methods to compute required
conditional expectations via a sequential Monte Carlo approach. A simulation example
demonstrates the efficacy of these techniques.

Background and contribution: This work is a result of the author’s visit to the Univer-
sity of Newcastle in Newcastle, Australia during the periodFebruary – May, 2005. It was
conducted in close co-operation with Dr. Adrian Wills and Dr. Brett Ninness, both having
extensive experience in using the EM algorithm for system identification, whereas the
author of this thesis has been working with sequential MonteCarlo methods. We agreed
on that it would be interesting to try and combine those ideasin order to tackle a certain
class of nonlinear system identification problems.
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Paper G: Integrated Navigation of Cameras for Augmented Reality

Schön, T. B. and Gustafsson, F. (2005). Integrated navigation of cameras for
augmented reality. InProceedings of the 16th IFAC world Congress, Prague,
Czech Republic.

Summary: In augmented reality, the position and orientation of a camera must be esti-
mated very accurately. This paper proposes a filtering approach, similar to integrated nav-
igation in aircraft, which is based on inertial measurements as primary sensor on which
dead-reckoning can be based. Features extracted from the image are used as support-
ing information to stabilize the dead-reckoning. The imagefeatures are considered to be
sensor signals in a Kalman filter framework.

Background and contribution: This paper is a result of the MATRIS (2005) project,
which is an applied interdisciplinary research project. The contents is influenced by the
many interesting discussion held during the project meetings around Europe.

Paper H: The Marginalized Particle Filter in Practice

Schön, T. B., Karlsson, R., and Gustafsson, F. (2006a). The marginalized
particle filter in practice. InProceedings of IEEE Aerospace Conference,
Big Sky, MT, USA. Invited paper, accepted for publication.

Summary: This paper is a suitable primer on the marginalized particlefilter, which is
a powerful combination of the particle filter and the Kalman filter. It can be used when
the underlying model contains a linear sub-structure, subject to Gaussian noise. This
paper will illustrate several positioning and target tracking applications, solved using the
marginalized particle filter.

Background and contribution: In this paper we have tried to provide a unified inventory
of applications solved using the marginalized particle filter. The author of this thesis has
been involved in the theoretical background, the computational complexity part and the
applications concerned with aircraft terrain-aided positioning, automotive target tracking
and radar target tracking.

Paper I: Lane Departure Detection for Improved Road Geometry
Estimation

Schön, T. B., Eidehall, A., and Gustafsson, F. (2005). Lane departure detec-
tion for improved road geometry estimation. Technical Report LiTH-ISY-R-
2714, Department of Electrical Engineering, Linköping University, Sweden.
Submitted to the IEEE Intelligent Vehicle Symposium, Tokyo, Japan.

Summary: An essential part of future collision avoidance systems is to be able to predict
road curvature. This can be based on vision data, but the lateral movement of leading
vehicles can also be used to support road geometry estimation. This paper presents a
method for detecting lane departures, including lane changes, of leading vehicles. This
information is used to adapt the dynamic models used in the estimation algorithm in order
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to accommodate for the fact that a lane departure is in progress. The goal is to improve
the accuracy of the road geometry estimates, which is affected by the motion of leading
vehicles. The significantly improved performance is demonstrated using sensor data from
authentic traffic environments.

Background and contribution: The idea for this paper was conceived during one of the
authors frequent visits to Göteborg. The work was performedin close co-operation with
Andreas Eidehall.

Publication of related interest, but not included in this thesis:

Gerdin, M., Schön, T. B., Glad, T., Gustafsson, F., and Ljung, L. (2005b).
On parameter and state estimation for linear differential-algebraic equations.
Submitted to Automatica,

Eidehall, A., Schön, T. B., and Gustafsson, F. (2005). The marginalized par-
ticle filter for automotive tracking applications. InProceedings of the IEEE
Intelligent Vehicle Symposium, pages 369–374, Las Vegas, USA,

Schön, T. (2003).On Computational Methods for Nonlinear Estimation. Li-
centiate Thesis No 1047, Department of Electrical Engineering, Linköping
University, Sweden.

1.6 Contributions

The main contributions are briefly presented below. Since the title of this thesis isEsti-
mation of Nonlinear Dynamic Systems – Theory and Applications the contributions are
naturally grouped after theory and applications.

Theory

• The derivation of the marginalized particle filter for a rather general mixed lin-
ear/nonlinear state-space model. This is presented in Paper A together with a thor-
ough explanation of the algorithm.

• The analysis of the computational complexity of the marginalized particle filter,
presented in Paper B.

• A new approach to incorporate white noise in linear differential-algebraic equations
is presented in Paper C. This provided the start for a framework allowing for state
estimation and system identification in this type of models.

• Two algorithms are introduced to handle the system identification problem occur-
ring in a class of nonlinear state-space models, with affine parameter dependence.
In Paper E the marginalized particle filter is employed and inPaper F an algorithm
based on a combination of the expectation maximization algorithm and a particle
smoothing algorithm is derived.
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Applications

• The idea of using feature displacements to obtain information from vision measure-
ments is introduced in Paper G.

• Several applications of the marginalized particle filter are discussed in Paper H.

• A new approach to estimate road geometry, based on change detection, is presented
in Paper I.
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Topics in Nonlinear Estimation
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2
Models of Dynamic Systems

THE estimation theory discussed in this thesis is model based. Hence, the need for an
appropriate model is imperative. By appropriate we mean a model that is well suited

for its intended purpose. In other words, when a model is developed it must always be
kept in mind what it should be used for. The model must describe the essential proper-
ties of the underlying system, but it should also be simple enough to make sure that it
can be used to devise an efficient estimation algorithm. If the underlying model is not
appropriate it does not matter how good the estimation algorithm is. Hence, a reliable
model is essential to obtain good estimates. When we refer to amodel, we mean a system
of equations describing the evolution of the states and the measurements associated with
the application. Other models are for instance impulse responses, transfer functions and
Volterra series.

The purpose of this chapter is to provide a hierarchical classification of the most com-
mon model classes used here, starting with a rather general formulation. In deriving
models for a specific application the need for solid background knowledge of the appli-
cation should not be underestimated. Several examples of application driven models are
given in the papers in Part II. These models are all instancesof the general model classes
described in this chapter.

The most general model class considered is thestochastic differential-algebraic equa-
tions (SDAE), briefly introduced in Section 2.1. However, most of the models currently
used within the signal processing and automatic control communities are state-space mod-
els, which form an important special case of the SDAE model. In Section 2.2 we prepare
for the state-space model, which is introduced in Section 2.3. Finally, Section 2.4 con-
cludes the chapter with a discussion on how to include white noise into linear differential-
algebraic equations.

21
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2.1 Introduction

The current demand for modularity and more complex models have favored the approach
based onobject-oriented modeling, where the model is obtained by connecting simple
sub-models, typically available from model libraries. Examples of modeling tools of this
kind are Modelica, Dymola and Omola (Fritzson, 2004, Tiller, 2001, Mattsson et al.,
1998). The modeling software will then collect all the equations involved and construct
a resulting model, which involves both differential and algebraic equations. A general
formulation of such a model is given by

F (ż(t), z(t), ũ(t), θ, t) = 0, (2.1)

where the dot denotes differentiation w.r.t. time,z denotes the internal variable vector,ũ
denotes the external signals,θ denotes a time-invariant parameter vector andt denotes
time. Finally, the dynamics are described by the possibly nonlinear functionF , which
is a differential-algebraic equation(DAE)1. This introductory discussion is held using
continuous-time models, since that is typically where we have to start, due to the fact that
most physical phenomena are continuous. However, discrete-time models can be derived
from the continuous-time models. In (2.1) there are two important types of external sig-
nalsũ, which have to be treated separately. The first type is constituted byknown input
signals, denoted byu. Typical examples include control signals or measured disturbances.
The second type isunmeasuredinputs, denoted byw. These signals are typically used to
model unknown disturbances, which are described using stochastic processes.

A DAE that contains external variables described by stochastic processes will be re-
ferred to as a stochastic differential-algebraic equation. There will always be elements
of uncertainty in the models, implying that we have to be ableto handle SDAEs. As
of today there is no general theory available on how to do this. However, several spe-
cial cases have been extensively studied. In Brenan et al. (1996) and Ascher and Petzold
(1998) there is a thorough discussion on deterministic differential-algebraic equations.
There has also been some work on stochastic differential-algebraic equations (see, e.g.,
Winkler, 2003, Schein and Denk, 1998, Penski, 2000, Römischand Winkler, 2003), but
there is still a lot that remains to be done within this field. An intrinsic property of the
differential-algebraic equation is that it may hide implicit differentiations of the external
signalsũ. This poses a serious problem ifũ is described by white noise, because the
derivative of white noise is not a well-defined mathematicalobject. It is thus far from ob-
vious how stochastic processes should be included in this type of equation. In Section 2.4
and Paper C a proposition is given for how to properly incorporate white noise in linear
stochastic differential-algebraic equations.

Besides the model for how the system behaves, there is also a need for a model de-
scribing how the noisy measurements are related to the internal variables, i.e., a measure-
ment model. Since we cannot measure infinitely often, the measurements are obtained at
discrete time instances according to (in the sequel it is assumed that the sampling time is
1 for notational convenience)

H(y(tk), z(tk), u(tk), e(tk), θ, tk) = 0, (2.2)

1Other common names for the model class described by (2.1) are implicit systems, descriptor systems, semi-
state systems, singular systems, generalized systems, and differential equations on a manifold (Campbell, 1990).
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wherey ∈ Rny denotes the measurement,e ∈ Rne denotes the measurement noise,tk
denotes the discrete time index, andH denotes a possibly nonlinear function describing
how the measurements are obtained. The measurement equation stated in (2.2) is implicit,
as opposed to the more specific explicit measurement equation

y(tk) = h(z(tk), u(tk), e(tk), θ, tk), (2.3)

which is the most common type. However, there are applications implying implicit mea-
surement equations. Examples of this involve positioning systems relying on map in-
formation, see, e.g., Gustafsson et al. (2002), Bergman (1999), Hall (2000), Svenzén
(2002). Furthermore, measurement equations derived from information in images are
sometimes in the form (2.2), which is exemplified in Paper G. By collecting (2.1) and (2.2)
a rather general model class can be formulated, the stochastic differential-algebraic equa-
tion model.

Model 1 (Stochastic Differential-Algebraic Equation (SDAE) model)

The nonlinear stochastic differential-algebraic equation model is given by

F (ż(t), z(t), u(t), w(t), θ, t) = 0, (2.4a)

H(y(tk), z(tk), u(t), e(tk), θ, tk) = 0, (2.4b)

wherew(t) ande(tk) are stochastic processes.

For a mathematically stricter definition the theory of stochastic differential equations and
Itô calculus can be used (Jazwinski, 1970, Øksendal, 2000).However, the definition used
here will serve our purposes. As mentioned above the theory on how to handle this quite
general stochastic DAE model is far from mature. Several special cases of Model 1 have
been extensively studied. The rest of this chapter is devoted to describing some of the
most important discrete-time special cases. In fact, most of the models used in the signal
processing and the automatic control communities can be considered to be special cases
of the rather general formulation in terms of differential-algebraic equations given above.
There are of course many different ways to carry out such a classification. We have chosen
a classification that we believe serves our purpose best.

An important special case of Model 1 arises whenż(t) can be explicitly solved for,

ż(t) = f(z(t), u(t), w(t), θ, t). (2.5)

The resulting model is then governed byordinary differential equations(ODE), rather
than by differential-algebraic equations. This model is commonly referred to as the
continuous-timestate-space model. To conform with the existing literature the internal
variable is referred to as thestate variablein this special case. Several nonlinear model
classes are reviewed by Pearson (1999).

2.2 Preparing for State-Space Models

The discussion is this section is heavily inspired by probability theory. The objective is
to provide a transition from the rather general SDAE models discussed in the previous
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section to the state-space models introduced in the subsequent section. Note that only
discrete-time models are considered and that the possible existence of known input signals
ut is suppressed for brevity.

Thesystem modelis the dynamic model describing the evolution of the state variables
over time. A fundamental property ascribed to the system model is the Markov property.

Definition 2.1 (Markov property). A discrete-time stochastic process{xt} is said to
possess the Markov property if

p(xt+1|x1, . . . , xt) = p(xt+1|xt). (2.6)

In words this means that the realization of the process at time t contains all information
about the past, which is necessary in order to calculate the future behavior of the process.
Hence, if the present realization of the process is known, the future is independent of the
past. This property is sometimes referred to as thegeneralized causality principle, the
future can be predicted from knowledge of the present (Jazwinski, 1970). The system
model can thus be described as

xt+1 ∼ pθ(xt+1|x1, . . . , xt) = pθ(xt+1|xt), (2.7)

where we have made use of the Markov property. The notationpθ(x) is used describe
a family of probability density functions, parameterized by θ. The probability density
functionpθ(xt+1|xt) describes the evolution of the state variable over time. In general it
can be non-Gaussian and include nonlinearities. The initial state is assumed to belong to a
probability density functionpθ(x0), commonly referred to as theprior. Furthermore, the
system model can be parameterized by the static parameterθ, as indicated in (2.7). If the
parameters are unknown, they have to be estimated before themodel can be used for its
intended purpose. The task of finding these parameters basedon the available measure-
ments is known as thesystem identificationproblem, which is introduced in Chapter 5.
Furthermore, various aspects of the system identification problem are discussed in Paper E
and Paper F.

The state process{xt} is an unobserved (hidden) Markov process. Information about
this process is indirectly obtained from measurements (observations)yt according to the
measurement model,

yt ∼ pθ(yt|xt). (2.8)

The observation process{yt} is assumed to be conditionally independent of the state
process{xt}, i.e.,

pθ(yt|x1, . . . , xN ) = pθ(yt|xt), ∀t, 1 ≤ t ≤ N. (2.9)

Furthermore, the observations are assumed to be mutually independent over time,

pθ(yt, . . . , yN |xt, . . . , xN ) =

N∏

i=t

pθ(yi|xt, . . . , xN )

=

N∏

i=t

pθ(yi|xi), ∀t, 1 ≤ t ≤ N. (2.10)



2.3 State-Space Models 25

where (2.9) is used to obtain the last equality. In certain tasks, such as convergence
proofs, more advanced tools from measure theory (Chung, 1974, Billingsly, 1995) might
be needed. This implies that the model has to be defined withina measure theoretic
framework. We will not be concerned with measure theory in this thesis, but the interested
reader can consult, e.g., Crisan (2001), Crisan and Doucet (2002) for discussions of this
kind. The above discussion is summarized by Model 2, referred to as thehidden Markov
model (HMM) (Doucet et al., 2000a).

Model 2 (Hidden Markov Model (HMM))

The hidden Markov model is defined by

xt+1 ∼ pθ(xt+1|xt), (2.11a)

yt ∼ pθ(yt|xt), (2.11b)

whereθ is used to denote a static parameter.

This model is rather general and in most applications it is sufficient to use one of its
special cases. The natural first step in making the class morerestrictive is to assume
explicit expressions for both the system model and the measurement model, resulting in
the state-space model.

2.3 State-Space Models

A state-space model is a model where the relationship between the input signal, the output
signal and the noises is provided by a system of first-order differential (or difference)
equations. The state vectorxt contain all information there is to know about the system
up to and including timet, which is needed to determine the future behavior of the system,
given the input. Furthermore, state-space models constitute a very important special case
of Model 1, widely studied within the areas of signal processing and systems and control
theory. The rest of this section is concerned with various important state-space models,
starting with the most general.

2.3.1 Nonlinear State-Space Models

The aim of this section is to provide an introduction to nonlinear, non-Gaussian state-
space models. It will also be illustrated that the resultingmodel is indeed a discrete-time
special case of Model 1. The assumption of explicit expressions for both the system model
and measurement model in (2.11) result in

xt+1 = f(xt, wt, θ, t), (2.12a)

yt = h(xt, et, θ, t), (2.12b)

wherewt andet are independent random variables, commonly referred to as theprocess
noiseand themeasurement noise, respectively. The functionsf andh in (2.12) describe
the evolution of the state variables and the measurements over time. The model is usually
restricted even further by assuming that the noise processes enter additively.
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Model 3 (Nonlinear state-space model with additive noise)

The nonlinear, discrete-time state-space model with additive noise is given by

xt+1 = f(xt, θ, t) + wt, (2.13a)

yt = h(xt, θ, t) + et, (2.13b)

wherewt andet are assumed to be mutually independent noise processes.

Model 3 can be put in the form of Model 2 by the following observation,

pθ (xt+1|xt) = pwt
(xt+1 − f(xt, θ, t)), (2.14a)

pθ (yt|xt) = pet
(yt − h(xt, θ, t)). (2.14b)

There are theorems available describing how to obtain similar relations when the noise
does not enter additively as in (2.13). For further details on this topic, see Gut (1995),
Jazwinski (1970).

The assumption that the observations are mutually independent over time (2.10) trans-
lates to mutual independence of the measurement noiseet over time,

pθ(yt, . . . , yN |xt, . . . , xN ) =

N∏

i=t

pθ(yi|xi) =

N∏

i=t

pei
(yi − h(xi, θ, i)). (2.15)

Furthermore, using conditioning and the Markov property wehave

pθ(xt, . . . , xN ) =

N−1∏

i=t

pθ(xi+1|xi) =

N−1∏

i=t

pwi
(xi+1 − f(xi, θ, i)). (2.16)

Hence, the process noisewt should also be mutually independent over time. The above
discussion does in fact explain how the previous assumptions translate to the use of white
noise in Model 3. We could just as well have started from the white noise assumption in
Model 3 and motivated the assumptions from this. In the literature the exact definition
of white noise differs. Papoulis (1991) refers towhite noiseas a process{wt}, which is
uncorrelated,

E
{
(wt − E {wt})(ws − E {ws})T

}
= 0, t 6= s. (2.17)

A stricter definition is given by Söderström (1994), where independence is required. This
is referred to asstrictly white noise by Papoulis (1991). Furthermore, it is mostly assumed
that the mean value of a white noise sequence is zero. We give the following definition.

Definition 2.2 (White noise). A discrete-time stochastic process{wt} is said to be white
if it is independent over time, that is

p(wt, ws) = p(wt)p(ws), t 6= s. (2.18)
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In discussing linear and Gaussian systems it is sufficient torequire the process to be uncor-
related according to (2.17), since it is only the two first moments that matter. However, in
discussing nonlinear, non-Gaussian systems higher order moments have to be accounted
for as well, motivating the independence requirement. Definition 2.2 implies that all the
entities of the process{wt} are mutually independent. Hence, there is no information
about the future realizations of the white noise process present in the past realizations,
implying that white noise is totally unpredictable. The useof white noise can also be
motivated from a users perspective. When all systematic information about the studied
system has been incorporated in the model equations, there will always remain some ran-
dom effects which cannot be accounted for. The fact that white noise is totally random,
without temporal correlation, implies that it provides a good model for these effects.

In studying the nonlinear system identification problem we will consider a further
special case of Model 3. It is a nonlinear state-space model,where the dependence on the
static parameters is affine in nature.

Model 4 (Nonlinear state-space model with affine parameters)
A nonlinear state-space model, with affine parameter dependence is defined as

xt+1 = f1(xt, ut, t)θ + f2(xt, ut, t) + wt, (2.19a)

yt = h1(xt, ut, t)θ + h2(xt, ut, t) + et, (2.19b)

wherewt ∼ N (0, Qt) andet ∼ N (0, Rt) are white noise sequences.

Note that, since this model class will be used for system identification, the known input
signalsut are explicitly included. A key observation worth mentioning is that, condi-
tioned on the nonlinear statesxt this is a rather simple model, where the parameters can
be solved for using standard linear regression techniques.This observation is utilized in
Paper F. The idea of using conditioning in order to obtain simpler models naturally brings
us over to the next section dealing with mixed linear/nonlinear state-space models.

2.3.2 Mixed Linear/Nonlinear State-Space Models

It is a very ambitious endeavor to solve the estimation problems arising when the under-
lying model is nonlinear. We have tried to approach this problem by studying certain
tractable sub-classes of the general nonlinear state-space model. An important part of
the thesis is in fact the derivation and application of estimation algorithms especially de-
vised to exploit linear sub-structures inherent in the underlying models. When such a
sub-structure is present it is instructive to partition thestate variable according to

xt =

(
xl

t

xn
t

)
, (2.20)

wherexl
t denotes the linear state variables andxn

t denotes the nonlinear state variables.
Models allowing for the partitioning (2.20) will be referred to asmixed linear/nonlinear
state-space models. When there is a linear sub-structure present in the model we can
take advantage of this in deriving algorithms to solve various estimation problems. The
most general mixed linear/nonlinear state-space model discussed in this thesis is summa-
rized in Model 5. Note that the possible dependence on unknown static parametersθ has
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been suppressed for brevity. For a more thorough discussionregarding this model, see
Paper A.

Model 5 (Mixed linear/nonlinear state-space model)

The mixed linear/nonlinear state-space model is given by

xn
t+1 = fn(xn

t , t)+An(xn
t , t)xl

t+Gn(xn
t , t)wn

t , (2.21a)

xl
t+1 = f l(xn

t , t) +Al(xn
t , t)xl

t +Gl(xn
t , t)wl

t, (2.21b)

yt = h(xn
t , t) +C(xn

t , t)xl
t +et, (2.21c)

where the process noise is assumed white and Gaussian distributed with

wt =

(
wl

t

wn
t

)
∼ N (0, Qt), Qt =

(
Ql

t Qln
t

(Qln
t )T Qn

t

)
. (2.22a)

The measurement noise is assumed white and Gaussian distributedet ∼ N (0, Rt). Fur-
thermore,xl

0 is Gaussian distributedxl
0 ∼ N (x̄0, P̄0). The density ofxn

0 can be arbitrary,
but it is assumed known.

Conditioned on the nonlinear states, the model described above is linear2. This can be
used in deriving estimation algorithms for models of this type. An interesting algorithm
for this is themarginalized particle filteror the Rao-Blackwellized particle filter (Doucet
et al., 2000a). It is briefly introduced in Section 4.4 and thoroughly treated in Paper A.
Model 5 is quite general and in most applications it is sufficient to consider a special case
of it. A quite common and important special case is when the dynamics is linear and the
measurement equation is nonlinear.

Model 6 (Model 5 with linear dynamics and nonlinear measurements)

A common special case of Model 5 occurs when the dynamics is linear and the measure-
ments are nonlinear.

xn
t+1 = An

n,tx
n
t + An

l,tx
l
t + Gn

t wn
t , (2.23a)

xl
t+1 = Al

n,tx
n
t + Al

l,tx
l
t + Gl

tw
l
t, (2.23b)

yt = h(xn
t , t) + et, (2.23c)

wherewn
t ∼ N (0, Qn

t ) andwl
t ∼ N (0, Ql

t). The distribution foret can be arbitrary, but
it is assumed known.

In positioning and target tracking applications models of this type are quite commonly
used. Several examples of this are given in Paper H and the references therein. For more
information concerning various modeling issues, see, e.g., Gustafsson et al. (2002), Bar-
Shalom and Li (1993), Li and Jilkov (2001, 2003).

2Strictly speaking the model is affine, due to the possible presence of the termf l.
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2.3.3 Linear State-Space Models

The most important special case of Model 3 is probably the linear (f andh are linear
functions) state-space model, subject to Gaussian noise. The reason for this is probably
the fundamental work of Kalman in the 1960s on the predictionand linear quadratic
control, based on this model.

Model 7 (Linear state-space model with Gaussian noise)

The discrete-time linear state-space model, subject to Gaussian noise is given by

xt+1 = At(θ)xt + wt, (2.24a)

yt = Ct(θ)xt + et, (2.24b)

wherewt ∼ N (0, Qt(θ)), et ∼ N (0, Rt(θ)), andE
{
wte

T
t

}
= 0.

In Model 7 above,δts is the Kronecker delta function, which is0 whenevert 6= s, and
1, whent = s. It is important to note that Model 7 is a bit more general thanit seems at
a first glance. The reason is that if we have colored noise processes or a non-zero cross-
correlation betweenwt andet the model can be rewritten in the form (2.24). For details,
see Kailath et al. (2000).

The theory concerning linear state-space models is by now quite mature. For the de-
tails concerning linear system theory two good references are Rugh (1996) and Kailath
(1980). For the linear state estimation problem Kailath et al. (2000) is the standard ref-
erence. The parameter estimation problem is thoroughly treated in Ljung (1999), Söder-
ström and Stoica (1989).

2.4 Linear Differential-Algebraic Equations

In the thesis, Model 3 and some of its special cases are used extensively. However, we
will also discuss possible extensions in terms of differential-algebraic equations. The first
obstacle to overcome is to solve the problem of introducing stochastic processes into this
type of model. This is not as simple as it is with state-space models. In this section
the problem is briefly described and in Paper C a detailed proposal for how to solve this
problem is provided. These results have recently been refined and sharpened, see Gerdin
et al. (2005a,b). Thelinear stochastic differential-algebraic equationis defined in Model 8
below.

Model 8 (Linear stochastic differential-algebraic equation model)

The linear stochastic differential-algebraic equation model is given by

E(θ)ż(t) + F (θ)z(t) = Bw(θ)w(t), (2.25a)

y(tk) = C(θ)z(tk) + e(tk), (2.25b)

whereE(θ) might be singular andw(t) ande(tk) are white Gaussian noises.

The reason for incorporating white noise in linear DAEs is that it opens up for using
the standard methods of statistical signal processing. More specifically, it allows for a
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systematic treatment of the two problems of estimating the internal variablesz(t) and
static parametersθ. The system identification problem is thoroughly treated inGerdin
(2004) and Gerdin et al. (2005b) and estimation of the internal variables is discussed in
Paper C and Gerdin et al. (2005b). In the discrete-time case much has already been done,
see, e.g., Dai (1987, 1989), Darouach et al. (1993), Deng andLiu (1999), Nikoukhah et al.
(1998, 1999). However, models obtained from object-oriented modeling languages are
mostly in continuous-time, further motivating the need to be able to introduce stochastic
processes in continuous-time DAE models.

The problem of introducing stochastic processes in linear differential-algebraic equa-
tions boils down to making sure that the implicit differentiation ofw that may be hidden
in the equations does not lead to intractable mathematical objects, such as differentiated
white noise. In order to understand this it is instructive torewrite the equations in the
standard form provided by Theorem 2.1.

Theorem 2.1 (Standard form for Model 8)
Suppose that there exists a scalarλ such thatλE + F is invertible. Then there exist
nonsingular matricesP andQ such that the transformation

PEQQ−1ż(t) + PFQQ−1z(t) = PBww(t), (2.26)

allows us to write(2.25)as
(

I 0
0 N

)(
ẋ1(t)
ẋ2(t)

)
+

(
−A 0
0 I

)(
x1(t)
x2(t)

)
=

(
G1

G2

)
w(t), (2.27)

whereN is a matrix of nilpotencyk, i.e.,Nk = 0 for somek. (Q is used as a variable
substitution,x(t) = Q−1z(t) andP is multiplied from the left in(2.25a).)

Proof: Kronecker’s canonical form (see Kailath, 1980, Gantmacher, 1959) provides a
proof for the existence of this standard form. For a detailedproof see Gerdin (2004).

It is worth noting that although this standard form always exists it can indeed be
numerically hard to find the transformation matricesP andQ. However, using the ideas
from Varga (1992) this problem can be handled, see, e.g., Gerdin (2004), Gerdin et al.
(2005b) for details regarding these numerical issues. If (2.25) is rewritten according

ẋ1(t) = Ax1(t) + G1w(t), (2.28a)

x2(t) =

k−1∑

i=0

(−N)iG2
diw(t)

dti
, (2.28b)

it can be seen that white noise is prevented from being differentiated if

NG2 = 0. (2.29)

In Paper C this is utilized to derive conditions on the model class that imply that white
noise is not differentiated.
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Nonlinear State Estimation

RECURSIVE nonlinear state estimation theory is the topic of the present chapter. As
previously mentioned, the state estimation problem is addressed mainly within a

probabilistic framework. More specifically, the approach is heavily influenced by the
Bayesian view of estimation. This implies that the completesolution to the estimation
problem is provided by the probability density functionp(xt|Ys). This density function
contains all available information about the state variable. Depending on the relation
betweent ands in p(xt|Ys) three different estimation problems are obtained

• Thefiltering problem,t = s.

• Thepredictionproblem,t > s.

• Thesmoothingproblem,t < s.

This chapter will illustrate how the expressive power of theprobability density functions
opens up for a rather systematic treatment of the three problems mentioned above. When
a representation forp(xt|Ys) is obtained it can be used to estimate the expected value of
any functiong of the state variables,I(g(xt)) according to

I(g(xt)) , Ep(xt|Ys) {g(xt)} =

∫

Rnx

g(xt)p(xt|Ys) dxt. (3.1)

The chapter starts with a brief history of the estimation problem in Section 3.1. In Sec-
tion 3.2 the general solutions to the filtering, prediction and smoothing problems are
derived, in terms of probability density functions. The discussion then continues with
Section 3.3, where several of the most common estimates (3.1) are introduced. The state
estimation problem arising from nonlinear systems is discussed in Section 3.4. The com-
mon special case of linear models, subject to Gaussian noiseis then treated in Section 3.5.
Change detection can be used to adapt the models according tochanges in the underlying

31
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system, with better state estimates as result. This is the topic of Section 3.6. Finally,
the chapter is concluded with Section 3.7, where we provide adeterministic view of the
estimation problem and illustrate how this together with convex optimization techniques
can be used to handle constraints present in the problem.

3.1 Brief History of the State Estimation Problem

The aim of this section is to provide a short historic accountof the estimation problem.
We will merely skim the surface of this fascinating topic, but we will try to provide ade-
quate references for further studies. Some general references are Spall (1988), Jazwinski
(1970), Sorenson (1970), Mendel and Gieseking (1971).

The first attempts to systematically approach the estimation problem, as it is known
today, were taken by Gauss and Legendre in studying astronomical problems during the
late 18th and the early 19th century. More specifically, theytried to estimate the positions
of planets and comets using telescopic measurements. Gaussmade use of the method of
least-squares for the first time in 1795 at the age of18. However, it was not until 1809 that
he published his results in his bookTheoria Motus Corporum Celestium(Gauss, 1809). A
few years earlier, in 1805 Legendre had independently invented and published the method
in his bookNouvelles méthodes pour la determination des orbites des comètes. This gave
rise to a big dispute between Gauss and Legendre, concerningwho was the inventor of the
least-squares method (Sorenson, 1970). A thorough discussion of the early contributions
to estimation theory is provided by Seal (1967) and Sorenson(1970).

The next major development in the study of the estimation problem came in the 1940s,
with the filtering work of Wiener (1949) and Kolmogorov. Theyboth studied the problem
of extracting an interesting signal in a signal-plus-noisesetting and independently solved
the problem, using a linear minimum mean-square technique.The solution is based on the
rather restrictive assumptions of access to an infinite amount of data and that all involved
signals can be described as stationary stochastic processes. During the 1940s and the
1950s much research was directed towards trying to relax those assumptions and extend
the Wiener – Kolmogorov filtering theory. The breakthrough came with the Kalman filter,
introduced by Kalman (1960)1. It changed the conventional formulation of the estimation
problem and in doing so it moved the research into a completely new direction, away
from the theory of stationary stochastic processes. The keyingredient in this turn was the
Kalman filter’s inherent access to the powerful state-spacetheory, that had recently been
developed within the automatic control community. The important connection between
the estimation problem and the state-space theory had now been established.

The Kalman filter allows us to drop the assumptions of stationary signals and ac-
cess to an infinite amount of data. Furthermore, Kalman’s state-space approach naturally
lends itself to multivariable problems, whereas the Wiener– Kolmogorov theory and other
frequency domain techniques bump into severe problems whenthe extension to the mul-
tivariable case is considered.

During the 1960s, 1970s and the 1980s many suggestions wheregiven on how to

1In the late 1800s, the Danish astronomer T. N. Thiele developed a recursive procedure, for determining the
distance from Copenhagen to Lund. Interestingly enough hissolution was a special case of the Kalman filter
(Spall, 1988). A modern discussion of Thiele’s work is provided by Lauritzen (1981) and Hald (1981).
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extend the Kalman filtering theory to handle more general estimation problems. In 1993
the particle filter was first introduced by Gordon et al. (1993). It provides a systematic
procedure for solving the nonlinear, non-Gaussian estimation problem. As Kailath (1974)
points out the Kalman filter was the new idea that allowed the field to move in a new,
fruitful direction after the Wiener – Kolmogorov theory. Perhaps we can think of the
particle filter along the same line, as a new, fruitful direction allowing us to tackle even
harder estimation problems.

3.2 Conceptual Solution

This section is concerned with the problem of calculating the probability density functions
relevant in solving the estimation problem. The discussionwill be rather general using
Model 2 defined in Section 2.3.1, briefly summarized in (3.2) for convenience

xt+1 ∼ p(xt+1|xt), (3.2a)

yt ∼ p(yt|xt). (3.2b)

In the development that follows Bayes’ theorem and the Markov property will be instru-
mental. The Markov property was previously defined in Definition 2.1. Using the two
stochastic variablesx andy, Bayes’ theorem for probability density functions is givenby

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y, x)

p(y)
. (3.3)

Consider the filtering density,

p(xt|Yt) = p(xt|yt, Yt−1) =
p(yt|xt, Yt−1)p(xt|Yt−1)

p(yt|Yt−1)

=
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (3.4)

wherep(yt|Yt−1) can be calculated according to

p(yt|Yt−1) =

∫

Rnx

p(yt, xt|Yt−1) dxt =

∫

Rnx

p(yt|xt, Yt−1)p(xt|Yt−1) dxt

=

∫

Rnx

p(yt|xt)p(xt|Yt−1) dxt. (3.5)

Furthermore, in order to derive the expression for the one step ahead prediction density
p(xt+1|Yt) the following equation is integrated w.r.t.xt,

p(xt+1, xt|Yt) = p(xt+1|xt, Yt)p(xt|Yt) = p(xt+1|xt)p(xt|Yt), (3.6)

resulting in the following expression

p(xt+1|Yt) =

∫

Rnx

p(xt+1|xt)p(xt|Yt) dxt. (3.7)
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This equation is commonly referred to as theChapman–Kolmogorovequation (Jazwinski,
1970). It is straightforward to generalize this idea to obtain an expression for thek-step
ahead prediction density. Rather than integratingp(xt+1, xt|Yt) w.r.t. xt we integrate
p(xt+k, . . . , xt|Yt) w.r.t. Xt:t+k−1 = {xi}t+k−1

i=t . Hence,

p(xt+k|Yt) =

∫

Rknx

p(xt+k, . . . , xt|Yt) dxt:t+k−1

=

∫

Rknx

k∏

i=1

p(xt+i|xt+i−1)p(xt|Yt) dxt:t+k−1. (3.8)

In deriving suitable expressions for the smoothing densityseveral alternatives exist. Let
us first derive an expression for the marginal smoothing density p(xt|YN ) by observing
that

p(xt|YN ) =

∫

Rnx

p(xt, xt+1|YN ) dxt+1, (3.9)

where

p(xt, xt+1|YN ) = p(xt|xt+1, YN )p(xt+1|YN ). (3.10)

Furthermore,

p(xt|xt+1, YN ) = p(xt|xt+1, Yt, Yt+1:N )

=
p(Yt+1:N |xt, xt+1, Yt)p(xt|xt+1, Yt)

p(Yt+1:N |xt+1, Yt)
= p(xt|xt+1, Yt), (3.11)

where the last equality follows from the fact that givenxt+1, there is no further informa-
tion aboutYt+1:N available inxt. Using this result the smoothing density (3.9) can be
written according to

p(xt|YN ) =

∫

Rnx

p(xt|xt+1, Yt)p(xt+1|YN ) dxt+1

=

∫

Rnx

p(xt+1|xt, Yt)p(xt|Yt)

p(xt+1|Yt)
p(xt+1|YN ) dxt+1

= p(xt|Yt)

∫

Rnx

p(xt+1|xt)p(xt+1|YN )

p(xt+1|Yt)
dxt+1. (3.12)

Another useful expression for the smoothing density is referred to as thetwo-filter for-
mula. See Kitagawa (1994), Bresler (1986) for a detailed treatment of this formula.

Similar derivations to the ones given above can be found for instance in Ho and Lee
(1964), Jazwinski (1970), Kitagawa (1991). For future reference the main results are
collected in Theorem 3.1.
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Theorem 3.1
If the dynamic model is given by(3.2) the filter densityp(xt|Yt), the one step ahead
densityp(xt+1|Yt), and the marginal smoothing densityp(xt|YN ) are given by

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (3.13a)

p(xt+1|Yt) =

∫

Rnx

p(xt+1|xt)p(xt|Yt) dxt, (3.13b)

p(xt|YN ) = p(xt|Yt)

∫

Rnx

p(xt+1|xt)p(xt+1|YN )

p(xt+1|Yt)
dxt+1, (3.13c)

where

p(yt|Yt−1) =

∫

Rnx

p(yt|xt)p(xt|Yt−1) dxt. (3.13d)

Given the complexity of the problem it is actually quite remarkable that we are able
to derive a result as the one given in Theorem 3.1 above. However, there is a severe prob-
lem with this solution, the multidimensional integrals involved only permit an analytical
solution in a few special cases. The most important special case is when the dynamic
model is linear and the involved stochastic variables are normal, which has been exten-
sively discussed in the literature over the last decades. This is due to the fact that the
mathematics involved is tractable, but most importantly ithinges on the fact that there
are a vast amount of real world applications where this special case has been successfully
applied. However, most applications would perform better if the nonlinear estimation
problem could be properly solved. This would also allow us totackle more complicated
applications, which do not lend themselves to linear algorithms.

3.3 Point Estimates

The task of finding a point estimate can, in abstract terms, becast as a problem of finding
a transformationmt, which makes use of the information in the measurements and the
known input signals to produce estimates of the states of interest.

mt : Us × Ys → Rnx (3.14)

All information available in the measurements has been processed and inferred into the
density functionp(xt|Ys). This density function can then be used to derive various point
estimates, which is normally what the used would expect fromthe estimation algorithm.
Typically, the application does not need the entire probability density function. Instead
it needs to know how the values of the various states evolve over time and it also need a
quality assessment of these values. It is reasonable to claim that an estimate is useless, if
we do not know how good it is. Since a probabilistic frameworkis employed, this opens
up for using the tools available in probability theory and statistics for assessing the quality
of estimates, such as covariances, confidence regions, tests, etc.
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This section is concerned with some of the most common mappings (3.14) present in
the literature. Most of the estimates are indeed based on approximations of the probability
density functionsp(xt|Ys), but the estimates can also be based on deterministic consid-
erations. This approach to estimation is discussed in Section 3.7. For more information
about various estimates, see, e.g., Kailath et al. (2000), Jazwinski (1970), Kay (1993),
Anderson and Moore (1979).

From a probabilistic point of view a rather appealing point estimate is provided by
choosing the value that minimizes the variance of the estimation error, referred to as the
minimum variance(MV) estimate

x̂MV , arg min
x̂

E
{
‖x − x̂‖2 ∣∣y

}
(3.15)

where‖x‖2 = xT x. It is in fact possible to derive an explicit expression for this estimate.

E
{
‖x̂ − x‖2 ∣∣y

}
= E

{
(x − x̂)

T
(x − x̂)

∣∣y
}

= E
{
xT x

∣∣y
}
− 2x̂T E {x|y} + x̂T x̂

= ‖x̂ − E {x|y}‖2
+ E

{
‖x‖2|y

}
− ‖E {x|y}‖2 (3.16)

The two last terms in (3.16) are independent ofx̂ and (3.16) is clearly minimized by

x̂MV = E {x|y} =

∫
xp(x|y) dx. (3.17)

The above calculation explains the name,minimum mean square error(MMSE), which
is commonly used as an alternative name for the estimate (3.17).

Another point estimate which suggests itself, within the probabilistic framework, is
the most probable outcome,

x̂MAP , arg max
x

p(x|y) = arg max
x

p(y|x)p(x), (3.18)

which is referred to as themaximum a posteriori(MAP) estimate. In the second equal-
ity of (3.18) Bayes’ theorem is employed, together with the fact that the maximization
is performed overx. The prior density functionp(x) in (3.18) is within the classical
school assumed completely uninformative, giving rise to the maximum likelihood(ML)
estimate,

x̂ML , arg max
x

p(y|x). (3.19)

The method of maximum likelihood was introduced by Fisher (1912, 1922). The max-
imum likelihood method is used extensively in the study of a certain class of nonlinear
system identification problems, see Paper F.

3.4 Nonlinear Systems

Most of the problems encountered in practice are of a nonlinear nature, which implies
that we have to be able to solve estimation problems in the context of nonlinear systems.
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The nonlinear systems theory is, as opposed to its linear counterpart, far from mature.
However, there is a flurry of results readily available, see,e.g., the monographs by Khalil
(2002) and Isidori (1989). When it comes to nonlinear estimation theory the book by
Jazwinski (1970) is still very interesting reading.

There is a wealth of representations available when it comesto nonlinear systems.
However, the most common representation, at least when it comes to solving estimation
problems is given by Model 3, repeated here for convenience

xt+1 = f(xt, t) + wt, wt ∼ N (0, Qt), (3.20a)

yt = h(xt, t) + et, et ∼ N (0, Rt). (3.20b)

In discussing the implications of Theorem 3.1 we observed that, in general, there does not
exist any analytical solution to the nonlinear recursive estimation problem. This implies
that we are forced to approximations of some kind in order to approach this problem. The
approximations suggested in literature this far, can roughly be divided into two different
classes, local and global. This distinction has previouslybeen discussed, for instance by
Sorenson (1974) and Kulhavý (1996). The local approach approximates (3.20) using a
locally valid linear, Gaussian model. This is then used in conjunction with the Kalman
filter to obtain the estimates. The idea underpinning the global approach is indeed more
appealing. It makes use of the nonlinear model and tries to approximate the solution pro-
vided in Theorem 3.1. Hence, it is a matter of either approximating the model and using
the linear, Gaussian estimator or using the correct model and approximate the optimal so-
lution. Despite the fact that there are a lot of different nonlinear estimators available, the
local approach is still the most commonly used nonlinear estimator when it comes to ap-
plications. This approach is explained in more detail in thesubsequent section. However,
in recent years the sequential Monte Carlo methods have emerged as interesting global
approaches, gaining more and more ground, both when it comesto theory and when it
comes to applications.

3.4.1 Local Approximations

The idea employed in local methods is to approximate the nonlinear model by a linear,
Gaussian model. This model is only valid locally, but the Kalman filter can readily be
applied. The first approach along those lines was to linearize the model along a nominal
trajectory, resulting in thelinearized Kalman filter(Kailath et al., 2000). An improvement
to this was suggested by S. F. Schmidtet.al.They suggested that the linearization should
be performed around the current estimate, rather than around a nominal trajectory. The
result is theextended Kalman filter(or more appropriately the Schmidt EKF) (Smith
et al., 1962, Schmidt, 1966). To the best of the authors knowledge the paper by Smith
et al. (1962) describes the first practical application of the (extended) Kalman filter. More
specifically, the local approximation is obtained by linearizing the nonlinear model (3.20)
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by applying a first-order Taylor expansion around the current estimate,

f(xt, t) ≈ f(x̂t|t, t) +
∂f(x, t)

∂x

∣∣∣∣
x=x̂t|t

(xt − x̂t|t), (3.21a)

h(xt, t) ≈ h(x̂t|t−1, t) +
∂h(x, t)

∂x

∣∣∣∣
x=x̂t|t−1

(xt − x̂t|t−1). (3.21b)

Using this approximation in (3.20) gives

xt+1 = f(x̂t|t, t) − Ftx̂t|t + Ftxt + wt, (3.22a)

yt = h(x̂t|t−1, t) − Htx̂t|t−1 + Htxt + et, (3.22b)

where

Ft ,
∂f(x, t)

∂x

∣∣∣∣
x=x̂t|t

, Ht ,
∂h(x, t)

∂x

∣∣∣∣
x=x̂t|t−1

. (3.23)

The approximate model given in (3.22) is a linear, Gaussian model inxt, which implies
that the Kalman filter given in Corollary 3.1 can be applied. The result is the extended
Kalman filter, given in Algorithm 3.1.

Algorithm 3.1 (Extended Kalman Filter (EKF))
Consider Model 3, repeated in(3.20). An approximate sub-optimal estimate for the filter
density functionp(xt|Yt), obtained by linearization, is recursively given according to

p̂(xt|Yt) = N (x | x̂t|t, Pt|t), (3.24a)

p̂(xt+1|Yt) = N (x | x̂t+1|t, Pt+1|t), (3.24b)

where

x̂t|t = x̂t|t−1 + Kt

(
yt − h(x̂t|t−1, t)

)
, (3.25a)

Pt|t = Pt|t−1 − KtHtPt|t−1, (3.25b)

x̂t+1|t = f(x̂t|t, t), (3.25c)

Pt+1|t = FtPt|tF
T
t + Qt, (3.25d)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1, (3.25e)

with initial valuesx̂1|0 = x̄1 andP1|0 = Π̄1. Furthermore,Ft andHt are defined by

Ft =
∂f(x, t)

∂x

∣∣∣∣
xt=x̂t|t

, Ht =
∂h(x, t)

∂x

∣∣∣∣
xt=x̂t|t−1

. (3.26)

For a more thorough treatment of the EKF the reader is referred to Jazwinski (1970),
Anderson and Moore (1979), Kailath et al. (2000). An application focused discussion
is given in Sorenson (1985). One of the problems inherent in the EKF is that it might
diverge. The literature contains several more or lessad hocmethods trying to counteract
this phenomenon and to further enhance the general performance of the EKF. To mention
a few examples we have, theiterated EKFtreated by Kailath et al. (2000) and higher-
order Taylor expansions discussed by Bar-Shalom and Fortmann (1988) and Gustafsson
(2000).
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3.4.2 Global Approximations

The solution to the nonlinear recursive estimation problemis given by Theorem 3.1. This
fact is neglected by methods based on local model approximations. However, if we choose
to use this theorem the nonlinear models derived from the underlying physics can be used
and rather than approximating the models, the optimal solution is approximated using
numerical methods. Over the years several different methods for performing this approx-
imation have appeared. These methods are of two different kinds, either the probability
density functions of interest are parameterized by a finite number of parameters, which
are updated according to Theorem 3.1 or the integrals in Theorem 3.1 are handled using
numerical integration. Here, only a few of the most important global approximations are
mentioned. For more references on this topic see, e.g., Kulhavý (1996), Bergman (1999),
Sorenson (1974).

One of the first approaches using an approximation based on a finite set of parameters
is theGaussian sumapproach by Sorenson and Alspach (1971), Alspach and Sorenson
(1972), where the filtering density is approximated using a sum of Gaussian densities
according to

p(xt|Yt) ≈
N∑

i=1

q
(i)
t N

(
x | x̂(i)

t|t , P
(i)
t|t

)
,

N∑

i=1

q
(i)
t = 1, q

(i)
t ≥ 0, ∀i. (3.27)

Another approximation is provided by thepoint-mass filteroriginally suggested by Bucy
and Senne (1971) which, as the name reveals, approximates the filtering density by a set
of points on a predefined grid,

p(xt|Yt) ≈
N∑

i=1

q
(i)
t δ

(
xt − x

(i)
t

)
,

N∑

i=1

q
(i)
t = 1, q

(i)
t ≥ 0, ∀i. (3.28)

This idea has been refined and generalized over the years using for instance piecewise
constant approximations and spline interpolations. The point-mass filter is thoroughly
treated in Bergman (1999), Bergman et al. (1999), where it isalso applied to the aircraft
navigation problem. Another approach which recently has appeared is theunscented
Kalman filter(UKF), which is based on the unscented transform, discussedin Julier et al.
(2000), Julier and Uhlmann (2004). The basic idea here is to use a set of grid points in
the state-space, chosen by the unscented transform.

There is another family of algorithms which makes use of multiple models in order to
derive an estimate. They use a set of models describing various behaviors of the underly-
ing system. This approach is common in target tracking applications, where different ma-
neuvers of the tracked vehicle constitutes the different models. Examples of algorithms of
this type are theinteracting multiple model(IMM) and thegeneralized pseudo-Bayesian
(GPB) approaches, which are thoroughly described by Bar-Shalom and Li (1993), with
the target tracking application in mind. Yet another algorithm within this family is the
range parameterized extended Kalman filter(RPEKF) (Peach, 1995, Arulampalam and
Ristic, 2000), which is described and applied to a bearings-only tracking application by
Karlsson (2005).

Another approach, which can be interpreted as an extension of the point-mass filter is
provided by thesequential Monte Carlo methods, referred to as theparticle filter(Gordon
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et al., 1993, Kitagawa, 1996, Doucet et al., 2001a) in the filtering case. In these algorithms
the probability density function is also approximated by a set of grid points. However, the
grid is not chosen deterministically, as is the case in point-mass filters. Due to its relevance
for the present thesis the sequential Monte Carlo methods are discussed in more detail in
Chapter 4. It is worth mentioning that there is a vast amount of literature dealing with
different combinations and variations of the approaches discussed above.

3.5 Linear Systems

The classic special case when it comes to estimation, and systems theory in general, is
constituted by linear systems subject to Gaussian noise processes. The theory concerned
with linear systems is by now rather mature, see, e.g., Rugh (1996), Kailath (1980) for a
general treatment without stochastic processes. The linear dynamic model was introduced
as Model 7 in Section 2.3.3, but the equations, including a known input signalut, are
repeated here for convenience,

xt+1 = Atxt + Btut + wt, wt ∼ N (0, Qt), (3.29a)

yt = Ctxt + Dtut + et, et ∼ N (0, Rt). (3.29b)

A solid treatment of the linear estimation problem is given by Kailath et al. (2000), the
fundamental innovation process is extensively used. In understanding linear estimation it
is advantageous to appeal to the geometrical intuition, which is possible due to the fact
that linear estimation can be interpreted as projections inHilbert spaces. There exist a vast
amount of literature dealing with the linear estimation problem, and the Kalman filter in
particular, see, e.g., Kailath et al. (2000), Kay (1993), Jazwinski (1970), Anderson and
Moore (1979), Sorenson (1985), Gustafsson (2000), West andHarrison (1997), Harvey
(1989), Bryson and Ho (1975).

An important property of the linear model (3.29) is that all density functions involved
are Gaussian. This is due to the fact that a linear transformation of a Gaussian random
variable will result in a new Gaussian random variable. Furthermore, a Gaussian den-
sity function is completely parameterized by two parameters, the first and second order
moments, i.e., the mean and the covariance. This implies that if it is assumed that the
underlying model is given by (3.29) the recursions in Theorem 3.1 can be recast as recur-
sive relations for the mean values and the covariances of theinvolved probability density
functions. In Section 3.5.1 this is illustrated for the filtering and the prediction densities,
which will result in an important corollary to Theorem 3.1. Asecond corollary is given
in Section 3.5.2, where the smoothing problem is considered.

3.5.1 Filtering and Prediction

The special case obtained by assuming a linear, Gaussian model (3.29) allows for an
explicit solution to the expressions given in Theorem 3.1. The filtering and one-step
ahead prediction solutions are given by the Kalman filter, first derived by Kalman (1960)
and Kalman and Bucy (1961). Before stating the theorem the notation x̂t|s is introduced,
which denotes the estimate of the statex at timet using the information available in the
measurements up to and including times. In other words,̂xt|s = E {xt|Ys}.
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Corollary 3.1 (Kalman filter)
Consider(3.29)and assume that the initial state is distributed asx0 ∼ N (x̄0, P̄0). Then,
the estimates for the filtering density function and the one step ahead prediction density
function are both normal, according to

p̂(xt|Yt) = N (x | x̂t|t, Pt|t), (3.30a)

p̂(xt+1|Yt) = N (x | x̂t+1|t, Pt+1|t)), (3.30b)

where

x̂t|t = x̂t|t−1 + Kt(yt − Ctx̂t|t−1 − Dtut), (3.31a)

Pt|t = Pt|t−1 − KtCtPt|t−1, (3.31b)

x̂t+1|t = Atx̂t|t + Btut, (3.31c)

Pt+1|t = AtPt|tA
T
t + Qt, (3.31d)

Kt = Pt|t−1C
T
t (CtPt|t−1C

T
t + Rt)

−1, (3.31e)

with initial valuesx̂0|−1 = x̄0 andP0|−1 = P̄0.

Proof: There are many different ways in which this result can be proved. In Appendix A
a proof based on the results of Theorem 3.1 is provided. More specifically, the rele-
vant expressions from Theorem 3.1 are simplified using the imposed linear, Gaussian
model (3.29). These calculations can also be found in Ho and Lee (1964), Nordlund
(2002). For alternative proofs, see, e.g., Kailath et al. (2000), Anderson and Moore (1979),
Gustafsson (2000). An interesting proof is given by Rao (2000), where the Kalman filter
is obtained as the recursive solution to a weighted least-squares problem.

The intuition for the Kalman filter is helped by thinking in terms of time updates
and measurement updates. Themeasurement updateis given in (3.31a) – (3.31b) and
the name derives from the fact that these are the equations where the information in the
present measurementyt is incorporated into the estimate. In (3.31a) this implies that the
state estimate is adjusted as a weighted average of the previous estimate and the new in-
formation available inyt. The uncertainty is reduced in (3.31b) as a direct consequence of
the fact that new information has been added. Furthermore, the time updatecorresponds
to a prediction, implying an increased uncertainty (3.31d). Due to the fact that the process
noisewt, by definition, cannot be predicted the state evolution is obtained simply by using
the deterministic part of the dynamic model, as in (3.31c).

An important, if not the most important, factor in making theKalman filter so funda-
mental is its applicability. The first application of the Kalman filter is probably the one
discussed by Smith et al. (1962). Furthermore, a good and indeed interesting account
of the history concerning the development of the Kalman filter as an engineering tool is
given by McGee and Schmidt (1985). The aerospace industry has since the 1960s made
extensive use of the Kalman filter. In Chapter 1 it was mentioned that the same trend is
currently appearing in the automotive industry, due to the need for more advanced driver
assistance functions. Since its first application the Kalman filter has been successively
applied within many different branches of science. There are by now several applica-
tion oriented texts dealing with the Kalman filter, see, e.g., Bar-Shalom and Li (1993),
Bar-Shalom and Fortmann (1988), Brown and Hwang (1997), Sorenson (1985).
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The linear observer theory developed by Luenberger (1966, 1971) can be considered
to be a deterministic version of the Kalman filter. In the linear observer theory it ispostu-
lated that the best way to construct the state estimate is to use thefollowing structure for
the estimator

x̂t+1 = Atx̂t + Btut + Kt(yt − Ctx̂t − Dtut). (3.32)

It is here important to observe a subtle, but important difference between the observer
theory and the Kalman filter theory. In the former the structure (3.32) of the estimator
is postulated, whereas in the latter this structure is a consequence of more elaborate as-
sumptions and calculations, see Theorem 3.1 and Corollary 3.1. These assumptions stems
from the fact that we made use of a probabilistic approach2 in deriving the Kalman filter,
where the errors are modeled as well, not just the deterministic dynamics. Furthermore,
this implies that the gain matrixKt is optimally3 calculated in the Kalman filter, whereas
in the observerKt has to be calculated “by hand” as a compromise between speed of
reconstruction and sensitivity to disturbances. From a more practical point of view one
might say that this compromise has been conveniently parameterized in terms of the de-
sign variables, which serve as tuning knobs in finding the best gain matrix for a particular
problem.

There are several applications where it is required to calculate k-step ahead predic-
tions, k > 1. For the general case thek-step ahead prediction is given by (3.8) and
if a linear, Gaussian model (3.29) is imposed it is Gaussian.It is calculated simply by
iterating (3.31c) and (3.31d)k times.

In applying the Kalman filter it is important to realize that the computations are im-
plemented with finite-precision arithmetics, which gives rise to round-off errors. This
implies that the covariance matrices might end up non-symmetric and/or indefinite. The
solution to the first problem is simply to propagate only halfthe matrix (the elements on
and below, or over, the main diagonal). The solution to the second problem is to use a
square-root factorization of the covariance matrix. Hence, rather than propagating the full
covariance matrix, we only propagate a square-root factor.See Kailath et al. (2000) for
more details regarding this topic.

3.5.2 Smoothing

The linear filtering and prediction problems were first solved by Kalman (1960) and
Kalman and Bucy (1961). It was not until a few years later thatthe linear smoothing
problem was first solved, see Rauch (1963), Rauch et al. (1965), Bryson and Frazier
(1963), Mayne (1966), Fraser and Potter (1969) for several different approaches. We will
in this section only be concerned with the fixed-interval smoothing problem. The reason
is threefold. First, this is the most common case in applications. Second, in the smooth-
ing application studied in this thesis we are confronted with the fixed-interval smoothing

2In Section 3.7.1 we will use a completely deterministic approach to the estimation problem and discuss the
differences and similarities between a deterministic and stochastic approach in more detail.

3The word optimal is a dangerous one. It is important to always keep in mind what is meant by optimal. The
estimates are optimal in the sense that they constitute the optimal solution to the posed optimization problem.
Hence, it is imperative that the optimization problem is wisely formulated, otherwise the optimal solution might
note be so optimal after all.
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problem4. Third, the solutions of the fixed-lag and the fixed-point smoothing problems
follow from the solution of the fixed-interval problem (Kailath et al., 2000).

The various approaches mentioned above for solving the smoothing problem all use
different arguments and as a result they produce quite different algorithms. However,
since the algorithms all solve the same problem they will give the same result, which
in turn implies that there must exist a close relationship between the various algorithms,
enabling a unified treatment. It is the fundamentalinnovation processthat makes such
a unifying treatment possible, this was first recognized by Kailath and Frost (1968). A
more recent discussion based on the innovation process is given in Kailath et al. (2000).
Some other interesting references treating the smoothing problem are the survey papers by
Meditch (1973) and Kailath (1975), and the monograph by Weinert (2001). The second
corollary to Theorem 3.1 will be the linear smoothing equations (commonly referred to as
the Rauch-Tung-Striebel (RTS) formulas introduced by Rauch et al. (1965)) given below.

Corollary 3.2 (Linear smoother)
Consider(3.29)and assume that the initial state is distributed asx0 ∼ N (x̄0, P̄0). Then,
the estimate for the smoothed density function is given by

p̂(xt|YN ) = N (x | x̂t|N , Pt|N ), (3.33a)

where

x̂t|N = x̂t|t + St(x̂t+1|N − x̂t+1|t), (3.33b)

Pt|N = Pt|t + St(Pt+1|N − Pt+1|t)S
T
t , (3.33c)

St = Pt|tA
T
t P−1

t+1|t, (3.33d)

wherex̂t+1|t, x̂t|t, Pt+1|t andPt|t are given by the Kalman filter. The initial state for the
smoother is provided by the Kalman filter (x̂N |N andPN |N ).

Proof: See Kailath et al. (2000), Rauch et al. (1965).

In order to obtain a numerically robust implementation of the solution to the smoothing
problem we have to resort to square-root factorizations. A detailed treatment of such
factorizations is given by Gibson (2003).

In extending the results to the nonlinear, non-Gaussian case it is probably a good
idea to start from the general and indeed rather powerful expressions provided by the
probability density functions. This will be the topic of Section 4.5. More importantly,
that section will also discuss how the calculations can be performed in practice and in
Paper F a successful application of the nonlinear smoothingalgorithm is provided.

3.6 Improved Estimation Using Change Detection

Change detection is a well established research area concerned with the problem of de-
tecting a change in the underlying system, see, e.g., Gustafsson (2000), Basseville and

4In Paper F a nonlinear fixed-interval smoothing problem has tobe solved. It arises as a sub-problem when
the EM algorithm is employed to solve a certain class of nonlinear system identification problems.
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Nikiforov (1993), Kay (1998). This change might be due to a component failure or a
change in the surrounding environment. Typically, the models employed in deriving vari-
ous estimates cannot cope with all situations that might arise, but different models can be
derived for the different situations. In automotive targettracking applications it is com-
mon to derive the model of the tracked vehicles based on the assumption that they stay in
their own lanes. This assumption is valid most of the time, but when the tracked vehicles
depart from their lanes the model is no longer correct. Hence, an interesting idea is to
make use of change detection ideas to detect the lane departures and use a model that
describes this motion better during the lane departure. This will improve the estimates,
since a more accurate model is used. The idea is illustrated in Figure 3.1, where the de-

-ut

-yt

Estimation
Algorithm

-Estimate

-εt
Detector -Alarm

6

Figure 3.1: The estimation algorithm delivers residualsεt, which are used in the
detector to decide whether or not a change has occurred. If a change is detected this
information is fed back for use in the estimation algorithm.

tector informs the estimation algorithm that a change has taken place. This information
is then used in the estimation algorithm by switching to the model which best describes
the current situation. The change detector typically consists of adistance measureand
a stopping rule, see Figure 3.2. The distance measure is used to assess whether a change

-εt Distance
Measure

-st Averaging -gt Thresholding -Alarm

Stopping rule

Figure 3.2: The components of the change detector are a distance measureand a
stopping rule, where the latter consists of an averaging anda thresholding procedure.

has occurred or not. It is an important design variable, thatshould be chosen with the
application in mind. Common standard choices are to use the residualsst = εt or the
squared residualsst = ε2

t . The stopping rule is used to give an alarm when theauxiliary
test statisticgt exceeds a certain threshold. One of the most powerful tools for obtaining
a good stopping rule in change detection problems is provided by thecumulative sum
(CUSUM) algorithm, introduced by Page (1954).
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Algorithm 3.2 (CUSUM)

1. gt = gt−1 + st − ν.

2. If gt > h: Alarm, gt = 0 andtalarm = t.

3. If gt < 0: gt = 0 andt̂change= t.

The auxiliary test statisticgt is a cumulative sum of the distance measure, compensated
with adrift term ν. This drift term is introduced to prevent positive drifts, which otherwise
will result in false alarms. Similarly, negative drifts areprevented by settinggt = 0, when
gt < 0. The estimated change time is provided byt̂change. A change is considered detected
whengt exceeds a certain thresholdh. A rather detailed account of the CUSUM algorithm
and its application in state estimation problems is provided by Gustafsson (2000).

In Paper I we provide an application where the estimates are significantly improved
by employing the change detection ideas briefly reviewed in this section. Furthermore,
the importance of choosing an appropriate distance measureis illustrated.

3.7 Convex Optimization for State Estimation

The topic of this section is the use of convex optimization insolving state estimation
problems. Methods based on convex optimization have been extensively used within the
automatic control community in order to accommodate for thepresence of constraints,
using the method ofmodel predictive control(MPC) (Maciejowski, 2002). However, the
interest has not been that intense when it comes to the state estimation problem. Recently
this has started to change, see, e.g., Goodwin (2003), Goodwin et al. (2005), Rao (2000).

In Section 3.7.1 it is illustrated that the Kalman filter is the recursive solution to a
certain weighted least-squares problem. This optimization problem can then be used as a
basis for extending the formulation to include constraintsas well. An intuitive motivation
for this approach is that if the constraints are neglected the resulting problem is reduced
to the ordinary Kalman filter. This fact is utilized in Section 3.7.2 in order to illustrate
how certain constraints can be taken into account in solvingthe estimation problem.

3.7.1 Deterministic Approach to State Estimation

This section is devoted to a purely deterministic approach to the estimation problem.
In order to be able to convey the main message the discussion is limited to the linear
problem. Removing the probabilistic framework previouslyemployed will in this case
simply imply that the noise termswt andet in Model 7 should be regarded as errors of
unknown character. Given a set of measurementsYt and a guess of the initial statēx0, the
task is to determine the statext in such a way that it describes the obtained measurements
as well as possible. That is, we are faced with a problem of curve fitting, where we want to
minimize the errors{wi}t−1

i=0 and{ei}t
i=0, as well as the error in the initial guess,x0− x̄0.

If Gauss would have been faced with this problem some200 years ago, he would probably
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have suggested us to solve the following least-squares problem

min
Xt

‖x0 − x̄0‖2
P̄−1

0

+
∑t−1

i=0 ‖wi‖2
Q−1

i
+
∑t

i=0 ‖ei‖2
R−1

i

s.t. xi+1 = Aixi + wi, i = 0, . . . , t − 1,
yi = Cixi + ei, i = 0, . . . , t,

(3.34)

where the weight matrices{Qi}t−1
i=0, {Ri}t

i=0 andP̄0 are design parameters. This is a con-
vex optimization problem, more specifically it is aquadratic program(QP). The theory
on how to handle least-squares problems of this type is well established, see Björck (1996)
and the many references therein. The estimates obtained from (3.34) are smoothed, ex-
cept for the estimate ofxt, which is the filtered estimate, since we only use measurements
up to and including timet.

The optimization problem stated in (3.34) can also be motivated from a probabilistic
point of view by considering the problem of deriving themaximum a posterioriestimates
for the state variables

X̂t = arg max
Xt

p(Xt|Yt), (3.35)

in Model 7. The probability density functionp(Xt|Yt) is proportional top(Yt|Xt)p(Xt),
where

p(Yt|Xt) =

t∏

i=0

p(yi|xi) =

t∏

i=0

pei
(yi − Cixi), (3.36)

p(Xt) = px0
(x0 − x̄0)

t−1∏

i=0

p(xi+1|xi) = px0
(x0 − x̄0)

t−1∏

i=0

pwi
(xi+1 − Atxi),

(3.37)

according to the discussion in Section 2.3.1. Putting it alltogether we arrive at

p(Xt|Yt) = cpx0
(x0 − x̄0)

t−1∏

i=0

pwi
(xi+1 − Aixi)

t∏

i=1

pei
(yi − Cixi), (3.38)

wherec ∈ R+ derives fromp(Yt). Due to the fact that the logarithmic function is strictly
monotone we may consider maximizinglog (p(Xt|Yt)) just as well asp(Xt|Yt). This
will, together with the assumption of Gaussian noise in (3.38), give rise to the optimization
problem stated in (3.34). The difference is that the weight matrices are now given by the
inverse covariance matrices.

It can be proved (Rao, 2000) that the recursive solution to (3.34) is provided by the
Kalman filter. The Kalman filter is in other words the recursive solution to the weighted
least-squares problem (3.34). This fact will be further exploited in the subsequent section,
where it is discussed how constraints can be included in the estimation problem in order
to obtain better estimates. An interesting historical account of the relationship between
the probabilistic formulation of the Kalman filter and the corresponding deterministic
formulation is provided by Sorenson (1970).

Since we have departed from the probabilistic approach there is no way of assessing
the statistical performance of the estimates. It is interesting to note that regardless of
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how we formulate the estimation problem it will usually boildown to an optimization
problem in a purely deterministic framework. An important difference is that the proba-
bilistic framework provides a systematic means for choosing the design parameters, i.e.,
the weight matrices.

3.7.2 Constrained State Estimation

The advantage of casting the estimation problem as a convex optimization problem is
that it is straightforward to add certain constraints to theproblem. The theory on convex
optimization is by now rather mature and there is general purpose software5 available
for solving the resulting problems. In this way prior information about the state can be
utilized, e.g., that the state is always positive or that thecomponents of the state should
sum to one, which is the case if the state is a vector of probabilities. Constraints of this
type cannot be straightforwardly included in the standard Kalman filter. However, if we
use the optimization problem to which the Kalman filter is therecursive solution, i.e.,
problem (3.34), it is straightforward to include the constraints. Here, the ideas are briefly
introduced. For a more thorough treatment, see Paper D, where an example on estimating
probabilities is provided. Performing state estimation using optimization techniques has
previously been discussed using quadratic programs in for instance Rao et al. (2001),
Rao (2000), Robertson and Lee (2002). For an introduction toconstrained estimation
and its connection to model predictive control (Maciejowski, 2002), see, e.g., Goodwin
(2003), Goodwin et al. (2005). Both these problems are treated at a more technical level
by Michalska and Mayne (1995).

The main message of convex optimization is that we shouldnot differ between lin-
ear and nonlinear optimization problems, but instead between convex and non-convex
problems. The class of convex problems is much larger than that covered by linear prob-
lems, and for a convex problem any local optimum is also the global optimum. A convex
optimization problem is defined as

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 0, . . . ,m,
aT

i x = bi, i = 0, . . . , n,

(3.39)

where the functionsf0, . . . , fm are convex and the equality constraints are linear. For a
thorough introduction to convex optimization, see Boyd andVandenberghe (2004). Moti-
vated by the discussion in the previous section the convex optimization filtering problem
can be defined according to Problem 1.

It is also worth stressing that it is straightforward to include other variables to be esti-
mated, such as, e.g., missing data into Problem 1. Besides including them in the variables
to be estimated there is probably also a need to provide some assumptions regarding how
they behave, which are typically implemented as constraints.

Another type of constraints that might be interesting to addto Problem 1 are those that
makes it possible to include model uncertainty. Let us assume that we are uncertain about
theA-matrix in Problem 1, one way of expressing this is to say thattheA-matrix should

5A useful and efficient software is YALMIP, developed by Löfberg (2004). It provides direct access to
several of the standard numerical solvers for optimization problems, using a powerful MATLAB interface.
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belong to a set of some kind. Depending on the properties of this set different optimization
problems are obtained. This is in the literature referred toas robust estimation. For
information about commonly used sets, the resulting optimization problems and how to
solve them, see, e.g., El Ghaoui and Lebret (1997), Boyd and Vandenberghe (2004).

Problem 1 (Convex optimization filtering)

Assume that the densitiespx0
(x0), pwi

(wi), andpei
(ei) are log-concave6. In the presence

of constraints in terms of a linear dynamic Model 7, the MAP-estimate is the solution
x̂t = xt to the following problem

max
Xt

log(px0
(x0 − x̄0)) +

t−1∑

i=0

log(pwi
(wi)) +

t∑

i=0

log(pei
(ei))

s.t. xi+1 = Aixi + wi, i = 0, . . . , t − 1,
yi = Cixi + ei, i = 0, . . . , t.

It is straightforward to add any convex constraints to this formulation, and the resulting
problem can be solved using standard software.

The main concern with the formulation of the estimation problem given in Problem 1
is that the size of the optimization problem increases with time as more and more mea-
surements are considered. This is unacceptable in practiceand we have to find a way of
bounding the number of variables. One way of doing this is to derive a recursive solution.
However, when additional constraints are included this canindeed be very hard. In Zhu
and Li (1999) a recursive solution is given for a special caseof Problem 1 with additional
constraints.

Another way of bounding the number of variables in the optimization problem is to use
moving horizon estimation(MHE) (Maciejowski, 2002, Goodwin et al., 2005), defined
in Problem 2. This is basically the same idea underpinning model predictive control, i.e.,
the state is estimated using a fixed size, moving window of data. A special case of this is
the windowed least-squares approach discussed by Gustafsson (2000).

Problem 2 (Moving Horizon Estimation (MHE))

Assume that the densitiespwi
(wi) andpei

(ei) are log-concave. In the presence of con-
straints in terms of a linear dynamic model, the MHE-estimate is the solution̂xt = xt to
the following problem

max
Xt−L:t

F (xt−L) +
t−1∑

i=t−L

log(pwi
(wi)) +

t∑

i=t−L+1

log(pei
(ei))

s.t. xi+1 = Aixi + wi, i = t − L, . . . , t − 1,
yi = Cixi + ei, i = t − L + 1, . . . , t,

whereF (xt−L) contains information about the past.

6A functionf : R
n → R is log-concaveif f(x) > 0 for all x in the domain off andlog(f) is a concave

function (Boyd and Vandenberghe, 2004).
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The problem is now reduced to solving a convex optimization problem with a fixed num-
ber of variables once every time a new measurement arrives. However, it is important to
understand that the approach using MHE is, in general, sub-optimal, since the influence
of the past measurements is not necessarily taken care of correctly inF (xt−L).

The formulation used in Problem 2 can probably be useful alsofor change detection
and fault diagnosis. See Gustafsson (2001) for a similar idea using the Kalman filter over
a sliding window of fixed size. In an extension to nonlinear systems a solution might be
based on ideas similar to the innovation whiteness test of the filter bank approach dis-
cussed in Gustafsson (2000, Chapters8 and9). Furthermore, Problem 2 can be extended
to the nonlinear estimation problem, by using the nonlinearModel 3 instead of the linear
Model 7. The resulting problem is much harder, since it is a non-convex optimization
problem. Several useful entry points into the literature onmoving horizon estimation for
nonlinear systems are given in Rao et al. (2001), Rao (2000).
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4
Sequential Monte Carlo Methods

SEQUENTIAL Monte Carlo methods, orparticle methods, deal with the problem of
recursively estimating the probability density functionp(xt|Ys). According to the

Bayesian viewp(xt|Ys) contains all statistical information available about the state vari-
ablext, based on the information in the measurementsYs. This probability density func-
tion can then be used to form various state estimates according to

I (g(xt)) , E {g(xt)|Ys} =

∫

Rnx

g(xt)p(xt|Ys) dxt. (4.1)

The key ideaunderlying the sequential Monte Carlo methods is to represent the proba-
bility density function by a set of samples (also referred toas particles, hence the name
particle methods) and its associated weights. The density functionp(xt|Ys) is approxi-
mated with an empirical density function,

p(xt|Ys) ≈
M∑

i=1

q̃
(i)
t δ

(
xt − x

(i)
t|s

)
,

M∑

i=1

q̃
(i)
t = 1, q̃

(i)
t ≥ 0, ∀i, (4.2)

whereδ( · ) is the Dirac delta function and̃q(i)
t denotes the weight associated with particle

x
(i)
t|s. In obtaining this approximation we have to be able to generate random numbers from

complicated distributions. The approximation (4.2) can also be obtained using stochastic
integration ideas, see, e.g., Geweke (1996), Bergman (1999) for such, slightly different,
approaches. Even though theory states that the approximations (4.2) derived using se-
quential Monte Carlo methods are independent of state dimension, it matters in practice.
Problems due to high dimensional state variables prevents the use of the sequential Monte
Carlo methods. However, if there is a linear sub-structure available in the model equations
the marginalized particle filter can be employed. It is important to note that the problem of
generating random numbers from complicated distributionshas previously been assessed
in anon-recursivesetting using theMarkov chain Monte Carlo methods(MCMC).

51
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In Section 4.1 we will make the unrealistic assumption that we can indeed generate
samples from the target density. The objective of this section is to illustrate the idea
and to motivate Section 4.2, which is concerned with variousideas on how to handle
the fact that we cannot generate samples directly from the target density. Three differ-
ent solutions to this problem are illustrated. One of these is called importance sampling
resampling and this approach is used to derive the particle filter in Section 4.3. In Sec-
tion 4.4 the marginalized particle filter is introduced. It can be employed when there is a
linear, Gaussian sub-structure available in the model equations. The solution to the non-
linear smoothing problem, using particle methods, is discussed in Section 4.5. Finally,
the chapter concludes with Section 4.6 on how to obtain various estimates using (4.1).

4.1 Perfect Sampling

This section is concerned with the problem of calculating estimates (4.1) based on the
assumption that we have access toM independent and identically distributed (i.i.d.) sam-
ples,{x(i)}M

i=1 from the target densityt(x). This assumption is unrealistic from a prac-
tical point of view. Nevertheless, it will allow us to illustrate the key idea underlying the
sequential Monte Carlo methods. Using the samples{x(i)}M

i=1 an empirical estimate of
the density functiont(x) can be formed according to

t̂M (x) =

M∑

i=1

1

M
δ
(
x − x(i)

)
. (4.3)

Using this empirical density an estimate ofI(g(x)) is obtained as

ÎM (g(x)) =

∫
g(x)t̂M (x) dx =

M∑

i=1

1

M
g(x(i)). (4.4)

This estimate is unbiased and according to thestrong law of large numberswe have that

lim
M→∞

ÎM (g(x))
a.s.−→ I(g(x)), (4.5)

where
a.s.−→ denotes almost sure (a.s.) convergence (Doucet et al., 2001a). If we assume

that σ2 = I(g2(x)) − I2(g(x)) < ∞ the central limit theoremcan be applied, which
gives

lim
M→∞

√
M
(
ÎM (g(x)) − I(g(x))

)
d−→ N

(
0, σ2

)
, (4.6)

where
d−→ denotes convergence in distribution (Doucet et al., 2001a). Hence, using a

large number of samples,{x(i)}M
i=1, we can easily estimate any quantityI(g(x)), accord-

ing to (4.4).
The assumption underlying the above discussion is that it ispossible to obtain i.i.d.

samples fromt(x). However, in practice this assumption is very seldom valid.In order
to use the ideas sketched above we need to be able to generate random numbers from
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complicated distributions. There has been extensive research performed regarding this
problem and there are several different methods that can be used to tackle the problem.

Markov chain Monte Carlo methods are used to generate samples from probability
distributions (Robert and Casella, 1999, Gilks et al., 1996). The basic idea is to generate
random numbers by simulating a Markov chain, which have the target density as limit
distribution. The problem with MCMC methods is that they areinherently iterative, im-
plying that their use in solving recursive estimation problems is limited. Since we are
mainly concerned with the problem of recursive estimation we have to use alternative
methods. However, in the sections to come we will see that similar ideas can be used
to tackle the recursive problem. In the subsequent section some of the most popular se-
quential Monte Carlo methods will be reviewed inspired by the framework introduced by
Tanizaki (2001).

4.2 Random Number Generation

The problem under consideration in this section is to generate samples from some known
probability density function, referred to as thetarget densityt(x). However, since we
cannot generate samples fromt(x) directly, the idea is to employ an alternate density
that is simple to draw samples from, referred to as thesampling densitys(x). The only
restriction imposed ons(x) is that its support should include the support oft(x)1. When
a samplēx ∼ s(x) is drawn the probability that it was in fact generated from the target
density can be calculated. This probability can then be usedto decide whether̄x should
be considered to be a sample fromt(x) or not. This probability is referred to as the
acceptance probability, and it is typically expressed as a function ofq(x̄), defined by the
following relationship,

t(x̄) ∝ q(x̄)s(x̄). (4.7)

Depending on the exact details of how the acceptance probability is computed different
methods are obtained. The three most common methods are briefly explained below. For
a more detailed explanation, see, e.g., Robert and Casella (1999), Gilks et al. (1996),
Tanizaki (2001). A comparison of the three methods is provided by Liu (1996).

4.2.1 Sampling Importance Resampling

Sampling importance resampling (SIR) is an extension of an idea referred to asimpor-
tance sampling. Hence, we will start our brief exposition on SIR by explaining the im-
portance sampling algorithm. In discussing this algorithmthe sampling densitys(x) is
typically referred to as theimportance function. To understand the idea behind importance
sampling, note that integrals in the form (4.1) can be rewritten

I(g(x)) =

∫

Rnx

g(x)
t(x)

s(x)
s(x) dxt. (4.8)

1The support ofs(x) includes the support oft(x) if ∀x ∈ R
nx , t(x) > 0 ⇒ s(x) > 0.
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Based on the discussion in Section 4.1 it is now straightforward to obtain an estimate of
I(g(x)) by generatingM ≫ 1 samples{x(i)}M

i=1 from s(x) and forming

ÎM (g(x)) =
1

M

M∑

i=1

q(x(i))g(x(i)), (4.9)

where

q(x(i)) =
t(x(i))

s(x(i))
, i = 1, . . . ,M, (4.10)

are referred to as theimportance weights. In most state estimation applications of the
importance sampling procedure the normalizing factor in the target density is unknown.
This implies that the importance weights are only known up tothis normalizing factor,
which can be resolved by normalizing the importance weights,

q̃(x(i)) =
q(x(i))

∑M
j=1 q(x(j))

, i = 1, . . . ,M, (4.11)

whereq(x(i)) is defined in (4.10). This normalization will for finiteM introduce a bias
in the estimate. However, from the strong law of large numbers the estimate is asymptot-
ically unbiased. Details regarding this and other theoretical issues relating to the impor-
tance sampling algorithm are discussed by Geweke (1989). Wehave now motivated the
following approximation of the target density

t̂M (x) =

M∑

i=1

q̃(x(i))δ
(
x − x(i)

)
. (4.12)

The importance weights contains information about how probable it is that the corre-
sponding sample was generated from the target density. Hence, the importance weights
can be used as acceptance probabilities, which allows us to generate approximately inde-
pendent samples{x̃(i)}M

i=1 from the target density function. The approximationt̂M (x)
given in (4.12) is defined using a finite number of samples{x(i)}M

i=1. This implies that
the process of generating the samples from the target density function is limited to these
samples. More specifically this is realized byresamplingamong the samples according
to

Pr
(
x̃(i) = x(j)

)
= q̃(x(j)), i = 1, . . . ,M. (4.13)

The SIR idea was first introduced by Rubin (1988). In Algorithm 4.1 the above discussion
is summarized by describing how to approximately generateM samples from the target
density.

The sampling importance resampling algorithm is closely related to thebootstrappro-
cedure, introduced by Efron (1979). This relation is discussed in Smith and Gelfand
(1992), where an interpretation of Algorithm 4.1 is provided in terms of a weighted boot-
strap resampling procedure. It is worthwhile to note that the resampling step (4.16) is the
key step when it comes to estimating density functions recursively over time. This was
first realized by Gordon et al. (1993) and it will be describedin detail in Section 4.3.
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Algorithm 4.1 (Sampling Importance Resampling (SIR))

1. GenerateM independent samples{x(i)}M
i=1 from s(x) and compute the importance

weights

q(x(i)) = t(x(i))/s(x(i)), i = 1, . . . ,M. (4.14)

The acceptance probabilities are now obtained by normalization

q̃(x(i)) = q(x(i))/

M∑

j=1

q(x(j)), i = 1, . . . ,M. (4.15)

2. Generate a new set of samples{y(i)}M
i=1 by resampling according to

Pr
(
x̃(i) = x(j)

)
= q̃(x(j)), i = 1, . . . ,M. (4.16)

4.2.2 Acceptance – Rejection Sampling

A problem inherent in the SIR algorithm is that the produced samples are only approxi-
mately distributed as the target density. This problem is not encountered by acceptance –
rejection sampling, which will produce samples that are exactly distributed according to
the target density. However, this algorithms suffers from several other drawbacks.

If there exists a constantL > 0 such that

t(x) ≤ Ls(x), ∀x, (4.17)

then Algorithm 4.2 can be used to generateM samples from the target density. A more
detailed account of this algorithm is provided by Robert andCasella (1999).

Algorithm 4.2 (Acceptance – rejection sampling)

1. Generate a random number,x̃ ∼ s(x) and computeq(x̃) = t(x̃)
Ls(x̃) .

2. Acceptx̃ as a sample fromt(x) with probabilityq(x̃), i.e.,Pr
(
x(i) = x̃

)
= q(x̃).

If x̃ is not accepted go back to step1.

3. Repeat step1 and2 for i = 1, . . . ,M .

This is the most efficient sampling method in the sense that the generated samples are mu-
tually independent,exactdraws fromt(x). However, as mentioned above, the algorithm
suffers from some major limitations. First of all we have to find an upper bound,L, which
can be quite hard. Furthermore, once this upper bound has been found it can be proved
(Andrieu et al., 2001) thatPr (x̃ accepted) = 1/L, which typically is a very small num-
ber. This implies that from a practical point of view the algorithm is not very useful, since
on averageL ≫ 1 random numbers have to be generated in order to obtain one sample
that is accepted. It is clear that we want anL which is as small as possible, motivating
the choice,L = supx t(x)/s(x). Another, related issue is that there is no upper bound
on the number of iterations required, we can only state that on averageML iterations are
needed. This should be compared with the SIR algorithm, which just needM iterations.
When it comes to real time applications this will of course be amajor problem.
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4.2.3 Metropolis – Hastings Independence Sampling

The Metropolis – Hastings algorithm is a quite general algorithm for computing estimates
using the MCMC method. It was introduced by Hastings (1970),as a generalization of
the algorithm proposed by Metropolis et al. (1953). An introduction to the Metropolis –
Hastings algorithm is provided by Chib and Greenberg (1995). The idea of the algorithm
is borrowed from acceptance – rejection sampling, in that the generated samples are either
accepted or rejected. However, when a sample is rejected thecurrent value is used as
a sample from the target density. The Metropolis – Hastingsindependencesampling
algorithm, which is a special case of the Metropolis – Hastings algorithm, is given in
Algorithm 4.3. For a more detailed account of MCMC methods inrelation to sequential
Monte Carlo methods, see, e.g., Andrieu et al. (2001), Bergman (1999).

Algorithm 4.3 (Metropolis – Hastings independence sampling)

1. Initialize withx(−L) = x̄ and seti = −L + 1.

2. Generatẽx ∼ s(z) and compute the acceptance probability

q = min

(
t(x̃)s(x(i−1))

t(x(i−1))s(x̃)
, 1

)
(4.18)

3. Setx(i) = x̃ with probabilityq. Otherwise setx(i) = x(i−1).

4. Repeat step2 and3 for i = −L + 2, . . . ,M .

The initialL samples belongs to theburn-in phase of the algorithm and they are automat-
ically rejected. The reason is that the simulation has to reach its stationary phase before
the samples can be considered to originate from the stationary, i.e., the target, distribution.
A rather detailed analysis of Algorithm 4.3 is provided by Liu (1996).

4.3 Particle Filter

Let us consider the filtering problem, where the target density is given by the filtering
density,t(xt) = p(xt|Yt). In order to use the idea outlined in the previous section it is
necessary to choose an appropriate sampling densitys(xt) and a corresponding accep-
tance probability. This is in fact quite simple, since from Bayes’ theorem and the Markov
property we have

p(xt|Yt) = p(xt|yt, Yt−1) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
∝ p(yt|xt)p(xt|Yt−1), (4.19)

which suggests the following choices

p(xt|Yt)︸ ︷︷ ︸
t(xt)

∝ p(yt|xt)︸ ︷︷ ︸
q(xt)

p(xt|Yt−1)︸ ︷︷ ︸
s(xt)

. (4.20)

The resemblance with (4.7) is obvious. Hence, we can employ the algorithms discussed
in Section 4.2 to obtain samples from the target density. This provides a rather gen-
eral framework for discussing particle filtering algorithms. The particle filter is typically
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derived completely within an importance sampling framework, see, e.g., Doucet et al.
(2000a), Liu and Chen (1998), Arulampalam et al. (2002), Schön (2003) for derivations
of this kind. However, it is interesting, at least from a conceptual point of view, to note
that we could just as well have used acceptance – rejection sampling, Metropolis – Hast-
ings independence sampling or some other method to generaterandom numbers in order
to obtain alternative particle filtering algorithms. The use of acceptance – rejection sam-
pling is discussed by Bølviken et al. (2001) and Hürzeler andKünsch (1998). Based
on the appealing properties of the sampling importance resampling idea we will choose
to employ this principle in deriving the particle filter. This implies that the acceptance
probabilities{q̃(i)}M

i=1 are calculated according to

q̃
(i)
t =

q
(
x

(i)
t|t−1

)

∑M
j=1 q

(
x

(j)
t|t−1

) =
p
(
yt|x(i)

t|t−1

)

∑M
j=1 p

(
yt|x(j)

t|t−1

) , (4.21)

wherex
(i)
t|t−1 ∼ p(xt|Yt−1). These predicted particles{x(i)

t|t−1}M
i=1 are generated from

the underlying dynamic model and the filtered particles fromthe previous time instance
{x(i)

t−1|t−1}M
i=1. The details behind this can be understood from the following calculation,

which is a result of using the time update (3.13b) in Theorem 3.1.

s(xt) = p(xt|Yt−1) =

∫
p(xt|xt−1)p(xt−1|Yt−1) dxt−1

≈
∫

p(xt|xt−1)
M∑

i=1

1

M
δ
(
xt−1 − x

(i)
t−1|t−1

)
dxt−1

=

M∑

i=1

1

M

∫
p(xt|xt−1)δ

(
xt−1 − x

(i)
t−1|t−1

)
dxt−1

=
M∑

i=1

1

M
p
(
xt|x(i)

t−1|t−1

)
. (4.22)

Hence, the predicted particles are obtained simply by passing the filtered particles through
the system dynamics.

According to (4.21) the acceptance probabilitiesq̃
(i)
t depends on the likelihood func-

tion p(yt|xt|t−1). This makes sense, since the likelihood reveals how likelythe obtained
measurement is, given the present state. The better a certain particle explains the re-
ceived measurement, the higher the probability that this particle was in fact drawn from
the true density. Following Algorithm 4.1, a new set of particles{x(i)

t|t}M
i=1 approximat-

ing p(xt|Yt) is generated by resampling with replacement among the predicted particles,
belonging to the sampling density

Pr
(
x

(i)
t|t = x

(j)
t|t−1

)
= q̃

(j)
t , i = 1, . . . ,M. (4.23)

If this procedure is recursively repeated over time the following approximation

p(xt|Yt) ≈
M∑

i=1

1

M
δ
(
xt − x

(i)
t|t

)
(4.24)
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is obtained and we have in fact derived theparticle filter algorithm, which is given in
Algorithm 4.4. It was first introduced by Gordon et al. (1993). Later it was indepen-
dently rediscovered by Kitagawa (1996) and Isard and Blake (1998). Some early ideas
relating to the particle filter are given in Metropolis and Ulam (1949), Hammersley and
Morton (1954), Akashi and Kumamoto (1977), Handschin and Mayne (1969), Handschin
(1970).

Algorithm 4.4 (Particle filter)

1. Initialize the particles,{x(i)
0|−1}M

i=1 ∼ px0
(x0) and sett := 0.

2. Measurement update: calculate importance weights{q(i)
t }M

i=1 according to

q
(i)
t = p

(
yt|x(i)

t|t−1

)
, i = 1, . . . ,M, (4.25)

and normalizẽq(i)
t = q

(i)
t /

∑M
j=1 q

(j)
t .

3. Resampling: drawM particles, with replacement, according to

Pr
(
x

(i)
t|t = x

(j)
t|t−1

)
= q̃

(j)
t , i = 1, . . . ,M. (4.26)

4. Time update: predict new particles according to

x
(i)
t+1|t ∼ p

(
xt+1|t|x(i)

t|t

)
, i = 1, . . . ,M. (4.27)

5. Sett := t + 1 and iterate from step2.

First, the particle filter is initialized by drawing samplesfrom the prior density function
px0

(x0). In the measurement update the new measurement is used to assign a probabil-
ity, represented by the normalized importance weight, to each particle. This probability
is calculated using the likelihood function, which describes how likely it was to obtain
the measurement given the information available in the particle. The normalized impor-
tance weights and the corresponding particles constitute an approximation of the filtering
density. The resampling step will then return particles which are equally probable.The
time update is just a matter of predicting new particles according to the system model.
Furthermore, these predicted particles form the starting point for another iteration of the
algorithm. There are several books available on the subjectof particle filtering, see Doucet
et al. (2001a), Ristic et al. (2004), Liu (2001).

4.3.1 Resampling Algorithms

The resampling step consists of drawing a new set of particles{x(i)
t|t}M

i=1 with replacement

from the old particles{x(i)
t|t−1}M

i=1, in such a way that the probability of drawingx(i)
t|t−1 is

given byq̃
(i)
t according to

Pr
(
x

(i)
t|t = x

(j)
t|t−1

)
= q̃

(j)
t , i = 1, . . . ,M. (4.28)
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Figure 4.1: Illustrating the resampling step in the particle filter. Thenew set of parti-
cles is obtained by first generatingM sorted uniformly distributed random numbers,
three of which are shown by the dashed lines in the figure. These are then associated
with a particle guided by the cumulative sum of the normalized importance weights.
In the figure particle number 2 is chosen once and particle number 4 is chosen twice.

One way of achieving this is to use so calledsimple random resampling, illustrated in
Figure 4.1. Here, the idea is to select the new particles by comparing an ordered set of
uniformly distributed random numbersU(0, 1) to the cumulative sum of the normalized
importance weights. The resampling step can indeed be realized according to the idea
sketched in Figure 4.1, but there are more efficient algorithms available. The efficiency
is here determined by the resampling quality and the computational complexity. The re-
sampling quality is important for the overall quality of theestimate. Furthermore, a con-
siderable amount of the total computational complexity in aparticle filter implementation
stems from the resampling step. This clearly motivates the search for good resampling
algorithms.

There are several resampling algorithms proposed in the literature. Thesimple ran-
dom resamplingalgorithm was explained above. For further elaboration regarding this
algorithm, see Bergman (1999), Doucet et al. (2000a). Furthermore, there isstratified
sampling(Kitagawa, 1996, Liu and Chen, 1998),systematic sampling(Kitagawa, 1996,
Arulampalam et al., 2002) andresidual sampling(Liu and Chen, 1998). These algorithms
are discussed and analyzed in detail by Hol (2004). The result of this study is that the
systematic resampling, given in Algorithm 4.5 is most appropriate. This is in accordance
with the results reported by Arulampalam et al. (2002).

Despite the various embellishments of the resampling step we cannot escape the fact
that it will introduce a dependence among the different particles. This is due to the fact
that particles having large weights will be selected many times, since we are resampling
from a discrete probability density function, rather than from a continuous. In the particle
filtering literature this problem is commonly referred to assample impoverishment. The-
oretically this is also a problem, since this dependence makes convergence results harder
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to obtain. There are several more or lessad hocideas for how to cope with this problem.
One such idea is referred to asroughening (Gordon et al., 1993) orjittering (Fearnhead,
1998). The idea is to introduce an additional noise to make the particles differ more from
each other. Another idea, aiming at reducing the sample impoverishment problem, is to
resample from continuous approximations of the discrete probability density function.
This is referred to as theregularized particle filter(RPF) (Musso et al., 2001).

Algorithm 4.5 (Systematic sampling)

1. GenerateM ordered numbers according to

uk =
(k − 1) + ũ

M
, ũ ∼ U(0, 1). (4.29)

2. The resampled particles are obtained by producingni copies of particlex(i), where

ni = the number ofuk ∈
(

i−1∑

s=1

q̃
(s)
t ,

i∑

s=1

q̃
(s)
t

]
. (4.30)

4.3.2 Algorithm Modifications

The particle filter given in Algorithm 4.4 is rather simple, without loosing any of the
main components. In the literature there is an abundance of various alternative particle
filtering algorithms. However, the underlying idea of all these algorithms is captured in
Algorithm 4.4.

The essential resampling step leads to the problem of sampleimpoverishment, moti-
vating the work considered with improving this part of the algorithm. An obvious idea,
is to refrain from resampling at each time step. This is further discussed by Bergman
(1999), where the effective sample size is used as a measure of the degeneracy of the
particles. Another particle filtering algorithm devised toenhance the resampling step is
the regularized particle filter mentioned above.

The importance of choosing a good importance function is stressed by several au-
thors, see, e.g., Arulampalam et al. (2002). The importancefunctionp(xt+1|xt) used in
Algorithm 4.4 has an obvious defect in the sense that the state-space is explored without
direct knowledge of the measurementyt. The idea of incorporating this information in
the importance function is explored in theauxiliary particle filter(APF) introduced by
Pitt and Shephard (1999).

The idea of approximating the probability density functionwith a Gaussian or a Gaus-
sian sum was first introduced by Sorenson (1970) and Alspach and Sorenson (1972), see
Section 3.4.2. This idea has recently been used within a particle filtering framework. The
Gaussian particle filter(GPF), introduced by Kotecha and Djuric (2003a) approximates
the filtering and predictive density functions with Gaussian densities. Furthermore, the
Gaussian sum particle filter(GSPF) is similar, save the fact that the approximations are
performed using a sum of Gaussian densities (Kotecha and Djuric, 2003b).
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4.3.3 Implementation

The purpose of this section is to make the particle filter moreaccessible to those who have
still not used it. Having read this section the reader will beable to implement a particle
filter from scratch within five minutes. Before the implementation is given there are a
few steps in Algorithm 4.4 that are probably worth commenting. In step2 the importance
weightsq

(i)
t are calculated using the likelihood function, which according to (2.14b) is

given by

p(yt|xt) = pet
(yt − h(xt, t)). (4.31)

Furthermore, in step4, the task is to generate samplesx
(i)
t+1|t from p(xt+1|t|x(i)

t|t). This

can be realized by first generating a sample of the process noise,w(i)
t ∼ pwt

(wt). The
predicted particles are then given by

x
(i)
t+1|t = f(x

(i)
t|t , t) + w

(i)
t . (4.32)

We are now ready to give the MATLAB -implementation for Algorithm 4.4 using Model 3,
with Gaussian noise. The resampling is implemented using Algorithm 4.5.

Code 1 (M ATLAB -code for Algorithm 4.4 using Model 3)

function [xhat] = PF(f,h,pe,Q,P0,M,y)
n = size(P0,2);
x = sqrtm(P0)*randn(n,M); % 1. Initialize particles
for t = 1:100

e = repmat(y(t),1,M) - h(x); % 2. Calculate weights
q = feval(pe,e); % The likelihood function
q = q/sum(q); % Normalize importance weights
xhat(t) = sum(repmat(q,n,1).*x,2);
ind = resampling(q); % 3. Resampling
x = x(:,ind); % The new particles
x = feval(f,x,t)+sqrtm(Q)*randn(n,M); % 4. Time update

end

function [i] = resampling(q)
qc = cumsum(q); M=length(q);
u = ([0:M-1]+rand(1))/M;
i = zeros(1,M); k = 1;
for j = 1:M

while (qc(k)<u(j))
k = k + 1;

end
i(j) = k;

end;
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The three first input arguments to thePF function are the model equationsf, h and the
likelihood functionpe, which are defined asinline-objects or m-files. The other input
arguments are the covariance matrix for the stateQ, initial state covariance matrixP0, the
number of particlesM and finally the measurementsy. The use of Code 1 is exemplified
below.

Example 4.1: State estimation using the particle filter
The purpose of this example is to show the particle filter in action in an easily accessible
manner. The particle filter will be applied to estimate the states in the following system,

xt+1 =
xt

2
+

25xt

1 + x2
t

+ 8 cos(1.2t) + wt, (4.33a)

yt =
x2

t

20
+ et, (4.33b)

wherex0 ∼ N (0, 5), wt and et are mutually independent white Gaussian noise se-
quences,wt ∼ N (0, 10) andet ∼ N (0, 1). This is a discrete-time nonlinear time-varying
system with additive noise, i.e., Model 3 previously definedin Section 2.3.1. This sys-
tem has been analyzed in many papers, see, e.g., Gordon et al.(1993), Kitagawa (1996),
Doucet (1998), Arulampalam et al. (2002).

The first step is to define the model, the parameters to use withit, and the design
parameters for the particle filter. Once this is done the system is simulated and finally the
measurements from this simulation are used in the particle filter to obtain the estimate of
the states. The MATLAB -code for this is given below.

M = 1000; % Number of particles
P0 = 5; % Initial noise covariance
Q = 10; % Process noise covariance
R = 1; % Measurement noise covariance
pe = inline(’1/(2*pi*1)^(1/2)*exp(-(x.^2)/(2*1))’);
f = inline(’x./2+25*x./(1+x.^2)+8*cos(1.2*t)’,’x’,’t’);
h = inline(’(x.^2)/20’);

x(1) = sqrtm(P0)*randn(1); % Initial state value
y(1) = feval(h,x(1)) + sqrtm(R)*randn(1);
for t = 2:100 % Simulate the system

x(t) = feval(f,x(t-1),t-1) + sqrtm(Q)*randn(1);
y(t) = feval(h,x(t)) + sqrtm(R)*randn(1);

end
xTrue = x;

xhat = PF(f,h,pe,Q,P0,M,y);
plot(1:100,xhat,’b--’,1:100,xTrue,’r’);
xlabel(’Time’);

Executing this code gives the result shown in Figure 4.2. SeeArulampalam et al. (2002)
for a detailed simulation study illustrating various different particle filter algorithms.
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Figure 4.2: The solid line corresponds to the true state and the dashed line stems
from the estimate provided by the particle filter given in Algorithm 4.4. The under-
lying system is given in (4.33).

The implementation given in this section is very simple, since its purpose is to as
clearly as possible illustrate the particle filter. There isa toolbox available, implemented
by Rosén (2005), which allows for more advanced particle filtering applications.

4.4 Marginalized Particle Filter

In mathematics, and science in general for that matter, it isoften advantageous to exploit
certain structures present in the problem under investigation. Sequential Monte Carlo
methods are not an exception. If there is a linear, Gaussian sub-structure available in the
model equations this can be used to obtain estimates with lower, or at least not larger,
variance (Doucet et al., 2000a, 1999, Chen and Liu, 2000). The reason is that the corre-
sponding linear states can be optimally estimated using theKalman filter. Applications
implying a high dimension of the state variable will effectively prevent the use of the par-
ticle filter. However, if there is a linear sub-structure available the marginalized particle
filter can be used. Let us assume that there is a linear sub-structure available in the model,
the state vector can then be partitioned according to

xt =

(
xl

t

xn
t

)
, (4.34)

wherexl
t andxn

t are used to denote the linear and the nonlinear state variables, respec-
tively. A rather general model class containing a linear sub-structure was defined in
Model 5, Section 2.3.2. The basic idea underlying the marginalized particle filter is to
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split p(xl
t,X

n
t |Yt) according to

p(xl
t,X

n
t |Yt) = p(xl

t|Xn
t , Yt)p(Xn

t |Yt). (4.35)

This allows us to use the Kalman filter to optimally estimate the probability density func-
tion for the linear variablesp(xl

t|Xn
t , Yt), if the noise is Gaussian. The probability density

function for the nonlinear state variablesp(Xn
t |Yt) is estimated using the particle filter.

Using the state partition (4.34) it is possible to write (4.1), with s = t, according to

I(g(xl
t,Xt)) =

1

p(Yt)

∫ (∫
g(xl

t,X
n
t )p(Yt|xl

t,X
n
t )p(xl

t|Xn
t ) dxl

t

)
p(Xn

t ) dXn
t

=

∫
m(Xn

t )p(Xn
t ) dXn

t∫
p(Yt|Xn

t )p(Xn
t ) dXn

t

, (4.36)

where

m(Xn
t ) ,

∫
g(xl

t,X
n
t )p(Yt|xl

t,X
n
t )p(xl

t|Xn
t ) dxl

t. (4.37)

Hence, we have analytically marginalized the linear state variables. This motivates the
namemarginalizationfor the procedure of using both the Kalman filter and the particle
filter. Another name commonly used in the literature isRao-Blackwellization(Casella
and Robert, 1996, Doucet et al., 2000a). The idea of using a filter consisting of a Kalman
filter for the linear state variables and a particle filter forthe nonlinear state variables
is certainly not new. It has previously been discussed in theliterature, see, e.g., Doucet
et al. (2000a, 2001b), Chen and Liu (2000), Nordlund (2002),Andrieu and Doucet (2002).
Our contribution is the derivation of the marginalized particle filter for the rather general
mixed linear/nonlinear state-space model defined as Model 5. This derivation is given in
Paper A. The resulting algorithm is schematically given in Algorithm 4.6.

Algorithm 4.6 (Marginalized particle filter)

1. Initialization: Initialize the particles and set initial values for the linear state vari-
ables, to be used in the Kalman filter.

2. Particle filter measurement update: evaluate the importance weights and normalize.

3. Resample with replacement.

4. Particle filter time update and Kalman filter

(a) Kalman filter measurement update.

(b) Particle filter time update: Predict new particles.

(c) Kalman filter time update.

5. Iterate from step2.

The only difference from the standard particle filter (Algorithm 4.1) is in step4, where
two additional steps are introduced. These two steps correspond to the efficient estimation
of the linear state variables using the Kalman filter.
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If the standard particle filter is used for all states the dimension of the space in which
the particles live will benxt

= dimxt, whereas if the marginalized particle filter is
used the corresponding dimension will benxn

t
= dim xn

t . Intuitively, sincedimxn
t <

dim xt more particles have to be used to obtain good estimates if theparticle filter is
used, than if the marginalized particle filter is used. This and further issues relating to the
computational complexity of the marginalized particle filter are investigated in Paper B
and Karlsson et al. (2004).

The marginalized particle filter has been successfully usedin several applications,
for instance in automotive target tracking (Eidehall et al., 2005), automotive positioning
(Svenzén, 2002), aircraft navigation (Nordlund, 2002), underwater navigation (Karlsson
and Gustafsson, 2003), communications (Chen et al., 2000, Wang et al., 2002), nonlinear
system identification (Paper E, Li et al., 2003, Daly et al., 2005) and audio source separa-
tion (Andrieu and Godsill, 2000). Furthermore, in Paper H the marginalized particle filter
is described from a practitioners point of view, using several applications.

4.5 Particle Smoother

The aim of this section is to derive an estimate of the smoothing densityp(xt|YN ) for
a fixedN and for all times,1 ≤ t ≤ N , when the underlying model is nonlinear and
non-Gaussian. This is indeed a very hard problem. However, the framework discussed
in Section 4.2 can be employed and will in fact provide a systematic approach to the
problem. In scanning the literature it is interesting, and perhaps a bit surprising, to note
that although the particle filter theory is quite well established not much work has been in-
vested in the particle smoothing theory. Hence, this is probably a fruitful area for research
during the coming years. The related Markov chain Monte Carlo methods are interest-
ing alternatives in tackling this problem, see, e.g., Geweke and Tanizaki (1999) for some
work in this direction.

4.5.1 A Particle Smoothing Algorithm

In tackling the smoothing problem the target density is chosen as (Tanizaki, 2001)

t(xt+1, xt) = p(xt+1, xt|YN ). (4.38)

Similarly to what was discussed in the Section 4.3 on particle filters, we have to find
a suitable sampling density and the corresponding acceptance probabilities to solve the
smoothing problem. First, note that

p(xt+1, xt|YN ) = p(xt|xt+1, YN )p(xt+1|YN ), (4.39)

where

p(xt|xt+1, YN ) = p(xt|xt+1, Yt, Yt+1:N ) =
p(Yt+1:N |xt, xt+1, Yt)p(xt|xt+1, Yt)

p(Yt+1:N |xt+1, Yt)

= p(xt|xt+1, Yt) =
p(xt+1|xt)p(xt|Yt)

p(xt+1|Yt)
. (4.40)
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Inserting (4.40) into (4.39) gives

p(xt+1, xt|YN )︸ ︷︷ ︸
t(xt+1,xt)

=
p(xt+1|xt)

p(xt+1|Yt)︸ ︷︷ ︸
q(xt+1,xt)

p(xt|Yt)p(xt+1|YN )︸ ︷︷ ︸
s(xt+1,xt)

(4.41)

At time t the sampling density can be used to generate samples. In order to find the
acceptance probabilities{q̃(i)}M

i=1 we have to calculate

q̃(xt+1, xt) =
p(xt+1|xt)

p(xt+1|Yt)
, (4.42)

wherep(xt+1|xt) is implied by the underlying model andp(xt+1|Yt) can be approxi-
mated using the result from the particle filter,

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt) dxt =

∫
p(xt+1|xt)

M∑

i=1

1

M
δ
(
xt − x

(i)
t|t

)
dxt

≈
M∑

i=1

1

M
p
(
xt+1|x(i)

t|t

)
. (4.43)

The particles can now be resampled according to the acceptance probabilities{q̃(i)}M
i=1

in order to generate samples fromp(xt+1, xt|YN ). The above discussion is summarized
in Algorithm 4.7, which was first introduced by Tanizaki (2001).

Algorithm 4.7 ( Particle smoother)

1. Run the particle filter (Algorithm 4.4) and store the filtered particles{x(i)
t|t}M

i=1, t =
1, . . . , N .

2. Initialize the smoothed particles and importance weights at timeN according to
{x(i)

N |N = x
(i)
N |N , q̃

(i)
N |N = 1/M}M

i=1 and sett := t − 1.

3. Calculate weights{q(i)
t|N}M

i=1 according to

q
(i)
t|N =

p
(
x

(i)
t+1|N |x(i)

t|t

)

∑M
j=1 p

(
x

(i)
t+1|N |x(j)

t|t

) (4.44)

and normalizẽq(i)
t|N = q

(i)
t|N/

∑M
j=1 q

(j)
t|N .

4. Resample the smoothed particles according to

Pr
((

x
(i)
t+1|N , x

(i)
t|N

)
=
(
x

(j)
t+1|N , x

(j)
t|t

))
= q̃

(j)
t|N . (4.45)

5. Sett := t − 1 and iterate from step3.

This algorithm will be employed to handle the nonlinear smoothing problem that arises in
using expectation maximization algorithm for nonlinear system identification. The idea
is briefly sketched in Section 5.3.2 and the details are givenin Paper F.
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4.5.2 Alternative Particle Smoothing Algorithm

The algorithm just derived belongs to a set of smoothing algorithms commonly referred
to asforward-backward smoothingalgorithms. The name stems from the fact that we first
perform a forward (filtering) pass to obtain an approximation of p(xt|Yt). We then issue
a backwards pass to obtain an approximation of the smoothed densityp(xt|YN ) based on
the information from the forward pass and (3.13c), repeatedhere for convenience,

p(xt|YN ) = p(xt|Yt)

∫

Rnx

p(xt+1|xt)p(xt+1|YN )

p(xt+1|Yt)
dxt+1. (4.46)

This approach has also be elaborated upon by Doucet et al. (2000a), Hürzeler and Künsch
(1998) and Künsch (2001).

Another set of smoothing algorithms are based on thetwo-filter formula, previously
mentioned in Section 3.2. This formula describes how the marginal smoothing density
can be computed by combining the output from two independentfilters, according to

p(xt|YN ) ∝ p(xt|Yt−1)p(Yt:N |xt). (4.47)

The details for deriving a particle smoother based on this idea is provided in Kitagawa
(1996). Tanizaki’s (2001) reinterpretation of the algorithm provided by Kitagawa (1996)
allows us to fit this algorithm into the framework provided inSection 4.2.

The approaches discussed this far are concerned with the problem of estimating the
marginal smoothing densityp(xt|YN ). We can also try to approximate thejoint smooth-
ing densityp(XN |YN ). An algorithm for this is proposed in Doucet et al. (2000b), Godsill
et al. (2004). The idea is to factorp(XN |YN ) according to

p(XN |YN ) = p(xN |YN )

N−1∏

t=1

p(xt|Xt+1:N , YN ). (4.48)

Using the Markov property inherent in the state-space modelwe have

p(xt|Xt+1:N , YN ) = p(xt|xt+1, Yt)

=
p(xt|Yt)p(xt+1|xt)

p(xt+1|Yt)
∝ p(xt|Yt)p(xt+1|xt). (4.49)

Hence, it is possible to approximatep(XN |YN ) based on thep(xt|Yt) andp(xt+1|xt).
For details regarding the resulting algorithm, see Godsillet al. (2004). Some further
embellishments to this algorithm are given in Fong et al. (2002), Fong and Godsill (2001),
where it is discussed how marginalization can be used to derive a smoothing algorithm
that exploits certain structural properties of the model.

4.6 Obtaining the Estimates

From the discussion above it is hopefully clear how to obtainestimates of probability
density functionsp(xt|Ys). For instance, whens = t this corresponds to the filtering den-
sity, which is approximated using the particle filter. Typically, we are interested in some
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particular property of the underlying state variable, suchas for instance a point estimate
and its associated quality, provided by the covariance. Thepresent section will describe
how these estimates can be obtained using the approximated densities. The approach can
readily be extended to other interesting features of the underlying state variable.

An minimum mean square error estimate of the mean value of thecurrent state is
obtained by insertingg(xt) = xt in (4.1), resulting in

Ep(xt|Ys) {xt} =

∫
xtp(xt|Ys) dxt. (4.50)

Using the following estimate of the probability density function,

p̂M (xt|Ys) =

M∑

i=1

q̃
(i)
t δ

(
xt − x

(i)
t|s

)
, (4.51)

results in

x̂t|s =

∫
xtp̂M (xt|Ys) dxt =

∫
xt

M∑

i=1

q̃
(i)
t δ

(
xt − x

(i)
t|s

)
dxt =

M∑

i=1

q̃
(i)
t x

(i)
t|s. (4.52)

Similarly, an estimate of the covariance ofx̂t|t is obtained using

g(xt) = (xt − x̂t|s)(xt − x̂t|s)
T (4.53)

in (4.1), which after some calculations results in

P̂t|s =

M∑

i=1

q̃
(i)
t

(
x

(i)
t|s − x̂t|s

)(
x

(i)
t|s − x̂t|s

)T

. (4.54)

From the two expressions (4.52) and (4.54) it is clear how theestimates are affected by the
information in the normalized importance weightsq̃

(i)
t . The more likely a certain particle

is, the more it influences the estimate, which is a quite reasonable fact.



5
Nonlinear System Identification

SYSTEM identification deals with the problem of estimating mathematical models of
dynamic systems using measurements of the inputs to and the outputs from the sys-

tem. The difference to state estimation theory is that the object to be estimated is static,
which slightly changes the problem. However, both problemsrely on the same theoreti-
cal basis. Similarly to the state estimation problem the system identification problem has
its roots in the work of Gauss (1809) and Fisher (1912). Much of the early work was
conducted within the fields of statistics, econometrics andtime series analysis. It is the
paper by Åström and Bohlin (1965) that is used to mark the start of system identification
as a separate field of science. The motivation came from the field of automatic control,
where new powerful model based control strategies demandedsolid mathematical models
of the underlying systems. An interesting historical account of the system identification
problem is given by Deistler (2002). The development of the subject within the automatic
control community during the past 40 years is reviewed by Gevers (2003).

In Section 5.1 an overview of the system identification problem is provided. This
is followed by Section 5.2, where different methods for the model estimation process are
discussed. More specifically, it is shown that the expectation maximization algorithm pro-
vides a systematic procedure for separating one hard estimation problem into two simpler
problems, which is useful for system identification. Finally, in Section 5.3 the expectation
maximization algorithm and particle methods are used to solve certain nonlinear system
identification problems.

5.1 System Identification Problem

The system identification problem concerns estimation of static parameters present in
dynamic models. This is accomplished using the informationavailable in measured input
and output signals from the underlying system. The system identification problem is
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commonly split into the following sub-problems:

• Experiment design and data collection. This involves the selection of which
variables to measure, when the measurements should be performed and how to
manipulate the input signals. The objective of experiment design is to obtain data
that provides as much information as possible about the parameters to be estimated.

• Model class selection.The problem of finding a suitable model class is the most
important and probably the most difficult choice in solving an identification prob-
lem. Within the field of system identification a first, rather coarse, partition of
models is constituted byblack boxandgray box models. In a black box model
the equations and parameters do not have any physical relevance, they are simply
adjusted to describe the data set as well as possible. The gray box model, on the
other hand, is based on knowledge of the underlying system. Typically the model
equations are known, but there are unknown parameters that have to be identified.
Intuition and prior familiarity with the underlying systemare very useful in choos-
ing a suitable model class. This is true also when it comes to black box models.

• Model estimation. The objective is to determine the best model in the model class,
using the information available in the observed data set. This is the part of the
system identification problem that is considered in this thesis.

• Model validation. When the three steps discussed above have been performed we
have derived a model. However, an important question still remains to be answered;
Is the model good enough for its intended purpose? The answerto this question is
obtained using model validation techniques. If the model fails the model valida-
tion some of the choices made in the previous steps have to be revised and a new
model should be estimated. After a few iterations we have hopefully arrived at an
acceptable model.

This is a very brief overview of the problems studied within the field of system iden-
tification, a more detailed account is provided in the monographs by Ljung (1999) and
Söderström and Stoica (1989). There are also presentationssolely concerned with the
nonlinear system identification problem, see, e.g., Nelles(2001), Pearson (1999). The
recent survey paper by Ljung (2006) provides an inventory ofthe nonlinear system iden-
tification problem.

5.2 Model Estimation

Depending on how the information present in the input signals UN = {ui}N
i=1 and the

output signalsYN = {yi}N
i=1 is inferred on the parametersθ, different estimation methods

are obtained. There are many different approaches to this problem and in Section 5.2.1
a very brief overview of some of the most important estimation methods is provided. In
Section 5.2.2 we give a more detailed account of the expectation maximization algorithm,
which is a potentially underestimated estimation method within the field of system iden-
tification.
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5.2.1 Overview

Some of the most common methods used to estimate models are the prediction error
method(Ljung, 1999, Söderström and Stoica, 1989), thesubspace method(Van Over-
schee and De Moor, 1996) and thecorrelation and spectral analysis methods(Ljung,
1999). Several of these methods, and the tools to analyze their performance have their
roots in, or at least strong connections to, the area of mathematical statistics.

The maximum likelihood method, which is a special case of the prediction error
method, is quite commonly used in solving the system identification problem. It was
introduced by Fisher (1912, 1922) and it is based on the rather natural idea that the pa-
rameters should be chosen in such a way that the observed measurements areas likely as
possible. More specifically, the following optimization problem is addressed

θ̂(YN ) = arg max
θ

pθ(YN ), (5.1)

where (recall thatXN denotes the state variables of the underlying state-space model)

pθ(YN ) =

∫

RNnx

pθ(XN , YN ) dXN =

∫

RNnx

pθ(YN |XN )pθ(XN ) dXN

=

∫

RNnx

N∏

t=1

pθ(yt|xt)

N∏

t=1

pθ(xt|xt−1) dXN . (5.2)

Alternatively,pθ(YN ) can be written as

pθ(YN ) =

N∏

t=1

pθ(yt|Yt−1). (5.3)

It is often convenient to study the log-likelihood

L(θ) = log pθ(YN ), (5.4)

rather than the likelihood. In order to obtain an explicit optimization problem, that can
be solved, we have to specify which model class we intend to use. In this thesis we only
consider state-space models in the context of system identification. However, due to the
need for more general models provided by differential-algebraic equations there has been
some work on extending the system identification theory to handle parameter estimation
in these models as well. See Gerdin (2004), Gerdin et al. (2005b) for some work in this
direction.

It is interesting to see how the maximum likelihood method relates to the popular
prediction error method, where the estimate is obtained as the solution to the following
optimization problem

θ̂N = arg min
θ

VN (θ, YN , UN ), (5.5a)

VN (θ, YN , UN ) =
1

N

N∑

t=1

l (ε(t, θ)). (5.5b)
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Here,ε(t, θ) = yt − ŷt denotes the prediction error andl( · ) is a suitably chosen positive
(norm) function. If it is chosen as

l(ε(t, θ)) = − log pθ(yt|Yt−1), (5.6)

the maximum likelihood method is obtained. Hence, the prediction error method is more
general than the maximum likelihood method. The use of othernorms is discussed by
Ljung (1999). Once the objective function has been chosen in(5.5) the optimization has
to be performed. This is often a non-convex optimization problem, which typically is
tackled using some gradient-based search algorithm, such as Newton’s method or one of
its variants1 (Dennis and Schnabel, 1983). The iterations for the parameter estimates are
typically in the following form,

θ̂i+1
N = θ̂

(i)
N + µ

(i)
N

(
R

(i)
N

)−1
(

d

d θ
VN (θ, YN , UN )

)
, (5.7)

whereµ
(i)
N is a scaling factor that denotes the step length andR

(i)
N is a matrix that modifies

the search direction. An alternative, gradient-free, solution to the maximum likelihood
problem is provided by the expectation maximization algorithm, briefly introduced in the
subsequent section.

5.2.2 Expectation Maximization Algorithm

The expectation maximization(EM) algorithm, introduced2 by Dempster et al. (1977),
presents an iterative approach for obtaining maximum likelihood estimates (5.1). Within
the area of applied statistics it is widely recognized for its robustness. The strategy under-
lying the EM algorithm is to separate a difficult maximum likelihood problem into two
linked problems, each of which is easier to solve than the original problem. The prob-
lems are separated usingmarginalization. It is interesting to note that this is the same
underlying mechanism as in the marginalized particle filter, discussed in Section 4.4.

Thekey ideain the EM algorithm is to consider an extension to (5.1),

θ̂(XN , YN ) = arg max
θ

pθ(XN , YN ). (5.8)

Here, an extra data setXN , commonly referred to as theincomplete dataor themiss-
ing data, has been introduced. Its choice is the essential design variable in devising an
EM algorithm and it should be chosen in such a way that solving(5.8) is simple ifXN

were known. It is worth stressing that if the missing data is chosen unwisely this might
very well lead to a harder problem than what we had to begin with. The connection
between (5.1) and (5.8) is provided by Bayes’ theorem,

log pθ(YN ) = log pθ(XN , YN ) − log pθ(XN |YN ). (5.9)

1There are some special cases (FIR, ARX model structures), which give rise to a standard least-squares
problem. This can of course be solved explicitly, without using an iterative approach.

2The EM algorithm was discovered independently by differentresearchers, see, e.g., Baum et al. (1970).
However, it was Dempster et al. (1977) who provided the first systematic treatment of the ideas and introduced
the nameExpectation Maximizationalgorithm.
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The problem separation is now obtained by marginalizing (5.9) w.r.t. the missing data.
Note thatθ′ is used to denote the result from the previous iteration of the algorithm.
Since the left-hand side of (5.9) is independent ofXN it is unaffected by the marginaliza-
tion. More specifically, the marginalization is carried into effect by integrating (5.9) over
pθ=θ′(XN |YN ). Note thatpθ(XN |YN ) denotes a family of density functions, parame-
terized byθ, whereaspθ=θ′(XN |YN ) denotes a specific member of this family, the one
obtained usingθ = θ′.

L(θ) = log pθ(YN ) =

∫
log pθ(XN , YN )pθ=θ′(XN |YN ) dXN

−
∫

log pθ(XN |YN )pθ=θ′(XN |YN ) dXN

= Eθ′ {log pθ(XN , YN )|YN}︸ ︷︷ ︸
Q(θ,θ′)

−Eθ′ {log pθ(XN |YN )|YN}︸ ︷︷ ︸
V(θ,θ′)

, (5.10)

whereEθ′{ · |YN} denotes the expected value w.r.t.pθ=θ′(XN |YN ). If the log-likelihood
functionL is evaluated at two consecutive parameter valuesθ andθ′ the difference can
be written as

L(θ) − L(θ′) =
(
Q(θ, θ′) −Q(θ′, θ′)

)
+
(
V(θ′, θ′) − V(θ, θ′)

)
, (5.11)

where we have made use of the definitions in (5.10). Consider the second term in (5.11),

V(θ′, θ′) − V(θ, θ′) =

∫
log

pθ′(XN |YN )

pθ(XN |YN )
pθ′(XN |YN ) dXN

= Epθ′ (XN |YN )

{
− log

pθ(XN |YN )

pθ′(XN |YN )

}
. (5.12)

It is interesting to note thatV(θ′, θ′)−V(θ, θ′) is in fact theKullback-Leibler information,
which is commonly used as a measure of the agreement between two probability density
functions (Kullback and Leibler, 1951). Since the negativelogarithm is a convex function,
Jensen’s inequality3 can be used

Epθ′ (XN |YN )

{
− log

pθ(XN |YN )

pθ′(XN |YN )

}
≥ − log Epθ′ (XN |YN )

{
pθ(XN |YN )

pθ′(XN |YN )

}

= − log

∫
pθ(XN |YN ) dXN = 0, (5.13)

which effectively establishes thatV(θ′, θ′)−V(θ, θ′) ≥ 0 and therefore choosing aθ that
satisfiesQ(θ, θ′) ≥ Q(θ′, θ′) implies thatL(θ) ≥ L(θ′). That is, values ofθ that increase
Q(θ, θ′) beyond its value atθ′ also increase the underlying likelihood function of interest.
This implies the expectation maximization algorithm stated in Algorithm 5.1.

To summarize, the EM algorithm provides a systematic procedure for separating one
hard problem into two simpler connected problems, using marginalization. Given the

3Jensen’s inequality (Durrett, 1996) states that iff is a convex function then

E{f(x)} ≥ f (E{x})
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Algorithm 5.1 (Expectation Maximization (EM))

Given an initial estimateθ0, iterate the following until convergence.

E: Q(θ, θk) = Eθk
{log pθ(XN , YN )|YN}

M: θk+1 = arg max
θ

Q(θ, θk)

many applications of the EM algorithm, within several otherfields, it is surprising to see
how little attention this algorithm has attracted within the areas of system identification
and automatic control. A good entry point into the literature regarding various applica-
tions of the EM algorithm is Moon (1996) and the references therein. An early applica-
tion, within the area of system identification, is given by Isaksson (1993). However, it is
only recently that a thorough investigation of its use has been initiated. A rather detailed
account of using the EM algorithm for estimating multivariable linear time-invariant state-
space models is given by Gibson and Ninness (2005) and Gibson(2003). These results
have been extended to bilinear system identification in Gibson et al. (2005). Further-
more, in Paper F we further extend the results to identify theparameters in the nonlinear
Model 4, defined in Section 2.3.2. In an effort to make the EM algorithm available for
solving system identification problems a toolbox has been developed by Ninness et al.
(2005).

5.3 Approaches Based on Particle Methods

The problems addressed within the field of system identification exist in many other fields
of science as well. This section is concerned with some new ideas on how to tackle
a certain class of nonlinear system identification problemsusing particle methods and
the EM algorithm. Hence, we will try to illustrate some new ideas based on methods
extensively used in other communities for similar problems.

There is a recent survey paper by Andrieu et al. (2004), whichprovides an overview
of the use of sequential Monte Carlo, or particle, methods insystem identification, change
detection and automatic control. The use of the expectationmaximization within the field
of system identification has been reviewed above. When the parameter estimation prob-
lem is investigated using particle methods we have implicitly made use of the Bayesian
approach. This approach has previously been employed to handle the system identifi-
cation problem, see, e.g., McGhee and Walford (1968), Kramer and Sorenson (1988),
Peterka (1981, 1979).

The two ideas briefly introduced in the subsequent sections are concerned with the
following class of nonlinear systems

(
xt+1

yt

)
=

(
f1(xt, ut, t)
h1(xt, ut, t)

)
θ +

(
f2(xt, ut, t)
h2(xt, ut, t)

)
+

(
wt

et

)
, (5.14)

previously introduced as Model 4 in Section 2.3.1.
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5.3.1 Marginalized Particle Filter

The strategy employed in this first approach is rather well-known. The idea is to augment
the states with the parameters into a new state vector (Åström and Eykhoff, 1971, Ljung
and Söderström, 1983)

zt =

(
xt

θ

)
. (5.15)

By assuming a random walk variation for the parameters, the system identification prob-
lem can now be cast as a nonlinear state estimation problem, which opens up for possible
use of all algorithms available for this problem. The resulting dynamic model is

xt+1 = f1(xt, ut, t)θt + f2(xt, ut, t) + wt, (5.16a)

θt+1 = θt + wθ
t , (5.16b)

yt = h1(xt, ut, t)θ + h2(xt, ut, t) + et, (5.16c)

which is a special case of Model 5, implying that the marginalized particle filter applies.
Hence, this algorithm can be used to obtain a solution to the problem of identifying the
parameters in model (5.14). The details of the approach are given in Paper E. A similar
approach was independently proposed by Li et al. (2003), Andrieu and Godsill (2000) and
it has also been employed by Daly et al. (2005). This idea has previously been explored
by Ljung (1979), save the fact that the resulting state estimation problem was handled
using the extended Kalman filter. The work by Kitagawa (1998)is also interesting in this
context, where the parameters are estimated using a smoother rather than a filter.

5.3.2 Expectation Maximization and the Particle Smoother

The second approach is based on the expectation maximization algorithm, previously
introduced in Section 5.2.2. Consider model (5.14), if the state variablesxt where known
the problem of estimating the parametersθ would be rather simple. It is a standard linear
regression problem. In agreement with previous applications of the EM algorithm for
parameter estimation (Gibson and Ninness, 2005), the missing data is defined to be the
state sequence,XN , {x1, . . . , xN}. When this choice has been made, the next step is
the calculation ofQ(θ, θk), defined in (5.10). This requires computation of the expected
value of functions of the statext, conditional onYN . It is this calculation that constitutes
the main difference between addressing the nonlinear and the linear problem using the
EM algorithm. In the linear case, the expectations are calculated using a linear smoother.
However, in the present context, we are faced with a nonlinear smoothing problem. This
problem will be handled using the particle smoother given inAlgorithm 4.7.

A detailed account of this approach is given in Paper F, wherewe also provide a
simulation. This simulation indicates that the approach seems to be (perhaps) surprisingly
robust to attraction to local minima. The mechanisms underlying this robustness are not
yet fully understood and it is indeed a very interesting topic for future research.
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5.3.3 Discussion

There is an important difference between the two approachesdiscussed above. It concerns
the way in which the data is processed. The solution using themarginalized particle filter
is, as the name reveals, a filtering solution, which is suitable for an on-line solution. The
EM-based solution is on the other hand a smoothing solution,suitable only for the off-
line situation. There is of course nothing that prevents theuse of the on-line approach in
addressing the off-line problem. However, it will restricthow the algorithm is allowed to
access the data. The algorithm is only allowed to process thedata sequentially, further
implying that the data can only be accessed once. For the linear case this would not be a
problem, but in the nonlinear case this poses a major limitation in the process of extracting
all useful information from the measurements. The algorithm based on the EM algorithm
and the particle smoother is, on the other hand, allowed to process the data as many
times as is necessary, which allows the algorithm to analyzethat data more adequate,
with better estimates as a result. It should also be stressedthat the first approach actually
tackles a harder problem than the second approach, namely the on-line nonlinear system
identification problem.

The interesting thing about the employment of the EM algorithm is that the need for
particle methods arise naturally. This should be contrasted to the approach based on the
marginalized particle filter, where the use of particle methods is more forced. It does not
arise as a result of using standard parameter estimation methods, but rather as a result of
considering another problem.



6
Concluding Remarks

IN this first part we have presented a framework for the researchreported in this thesis.
The aim has been to explain how the papers in Part II relate to each other and to the

existing theory. In Section 6.1 the conclusions are given. There are many interesting ideas
for future research, some of which are discussed in Section 6.2.

6.1 Conclusion

The work presented in this thesis has to a large extent dealt with state and parameters es-
timation problems arising from the mixed linear/nonlinearstate-space model, introduced
as Model 5. In Paper A it is explained how the marginalized particle filter can be used to
solve the problem of estimating the state in this model. Several important special cases of
the general model class are also discussed. In any practicalapplication of the algorithm
it is important to understand its computational complexity. Paper B provides a system-
atic analysis of the computational complexity of the marginalized particle filter, using the
equivalent flop measure. The marginalized particle filter isdiscussed from a practitioners
point of view in Paper H. This is accomplished by treating various positioning and target
tracking applications. Furthermore, in Paper E it is discussed how to use the marginalized
particle filter to solve certain system identification problems.

The system identification problem is also discussed in PaperF, where it is described
how to estimate the parameters in a nonlinear state-space model, with affine parameter
dependence. The approach is based on a maximum likelihood framework, where the
resulting problem is solved using the expectation maximization algorithm and a particle
smoothing method. The latter is used to calculate the nonlinear conditional expectations
required by the expectation maximization algorithm.

All estimation algorithms discussed in this thesis are model based, stressing the need
for a good model. In Paper C we propose an idea on how to incorporate white noise in
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differential-algebraic equations, enabling the use of stochastic signal processing to solve
various estimation problems. The main reason for studying models of this type is that they
occur as a natural description from object-oriented modeling software. It is not uncom-
mon that the model contains constraints. An approach, basedon convex optimization, to
handle this is presented in Paper D.

In Paper I a new approach for road geometry estimation, basedon change detection
methods, is given. The significantly improved performance is demonstrated using sensor
data from authentic traffic environments. The problem of estimating the position and
orientation of a camera is addressed in Paper G. The proposedapproach is to support
the inertial measurements using vision measurements, where the latter are incorporated
in terms of feature displacements.

6.2 Future Research

The combination of the expectation maximization algorithmand the particle smoother
deserves more attention. A systematic investigation of thehypothesis that the expectation
maximization algorithm is robust towards getting trapped in local minima would probably
yield interesting results. Gradient-based algorithms areprone to getting trapped in local
minima, simply due to the fact that they are designed to search for minima. However, the
expectation maximization algorithm is not gradient-based, there are other mechanisms
guiding the search for the best estimate. We will try to applythe idea to problems of
larger size in order to get a better understanding for its applicability.

The last observation in the previous paragraph naturally leads to the next topic for fu-
ture research. It would be interesting to investigate how the various model classed intro-
duced in Chapter 2 relate to other commonly used model classes. This would effectively
provide a mapping between various model classes and appropriate estimation algorithms.

The combination of information from vision measurements with information from
other sensors, such as radar and IMU is discussed in Chapter 1. The present approach is
based on vision measurements, which are in factestimatesfrom computer vision systems.
Hence, in effect, two estimation problems are solved sequentially. It would be interesting
to investigate if a solution to the joint estimation problemcan improve the quality of the
estimates.

The idea of combining measurements from an IMU with vision measurements has
been considered by many researchers. The approach used in this thesis is based on prob-
abilistic ideas. However, the problem can equally well be approached using results from
the nonlinear observer theory, see, e.g., Rehbinder (2001). There is probably a lot to be
gained in trying to merge the ideas from these two branches ofscience in order to de-
rive better algorithms for nonlinear state estimation/observation. There are for instance
standard forms available in the nonlinear observer theory,which can prove to be useful
in combination with, for instance, particle filter ideas. Togive a concrete example of
this we mention the possible use of the nonlinear transformations, discussed by Hou and
Pugh (1999), to transform a nonlinear state-space model into a mixed linear/nonlinear
state-space model. The state in this transformed model can then be estimated using the
marginalized particle filter.



A
Appendix, Proof of Corollary 3.1

We will now set out to prove the Kalman filter simply by studying the general solution
provided in Theorem 3.1 when the state is assumed to evolve according to a model based
on linear transformation subject to Gaussian noise (definedin Model 7). This will be
performed using the principle of induction. According to the assumptionsp(x1|Y0) is
normal,p(x1|Y0) = N (x | x̄1, P̄1). Assume thatp(xt|Yt−1) = N (x | x̂t|t−1, Pt|t−1).
The information in a new measurement can now be inferred on the state estimate us-
ing (3.13a),

p(xt|Yt) =
1

p(yt|Yt−1)(2π)(nx+ny)/2
√

det Rt det Pt|t−1

·

e
− 1

2

“

(yt−Ctxt−Dtut)
T R−1

t (yt−Ctxt−Dtut)+(xt−x̂t|t−1)
T P−1

t|t−1
(xt−x̂t|t−1)

”

, (A.1)

where (using marginalization)

p(yt|Yt−1) =

∫

Rnx

1

(2π)(nx+ny)/2
√

det Rt det Pt|t−1

·

e
− 1

2

“

(yt−Ctxt−Dtut)
T R−1

t (yt−Ctxt−Dtut)+(xt−x̂t|t−1)
T P−1

t|t−1
(xt−x̂t|t−1)

”

dxt. (A.2)

In order to be able to carry out the integration above we have to isolate the integration
variable,xt. To accomplish this we will perform a change of variables,

x̃t|t−1 = xt − x̂t|t−1, (A.3a)

ǫt = yt − Ctx̂t|t−1 − Dtut. (A.3b)
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The exponent in (A.2) can in terms of the new variable (A.3) bewritten as

x̃T
t|t−1P

−1
t|t−1x̃t|t−1 + (ǫt − Ctx̃t|t−1)

T R−1
t (ǫt − Ctx̃t|t−1) =

(
x̃t|t−1

ǫt

)T (
P−1

t|t−1 + CtR
−1
t Ct −CT

t R−1
t

−R−1
t Ct R−1

t

)(
x̃t|t−1

ǫt

)
. (A.4)

If we can write the center matrix in (A.4) as a block diagonal matrix we have in fact
isolated the integration variable, sinceǫt is independent ofxt. This can be accomplished
using a block diagonal factorization (see Kailath et al., 2000, App. A) according to,
(

P−1
t|t−1 + CtR

−1
t Ct −CT

t R−1
t

−R−1
t Ct R−1

t

)
=

(
I −Kt

0 I

)T (
P−1

t|t 0

0 S−1
t

)(
I −Kt

0 I

)
,

(A.5)

where (note thatS−1
t is a Schur complement)

Kt = (P−1
t|t−1 + CT

t R−1
t Ct)

−1CT
t R−1

t , (A.6a)

P−1
t|t = P−1

t|t−1 + CT
t R−1

t Ct, (A.6b)

S−1
t = R−1

t − R−1
t Ct(P

−1
t|t−1 + CT

t R−1
t Ct)

−1CT
t R−1

t . (A.6c)

The matrix inversion lemma1 allows us to rewrite (A.6) according to

Kt = Pt|t−1C
T
t (Rt + CtPt|t−1C

T
t )−1, (A.7a)

Pt|t = Pt|t−1 − Pt|t−1C
T
t (Rt + CtPt|t−1C

T
t )−1CtPt|t−1, (A.7b)

St = CtPt|t−1C
T
t + Rt. (A.7c)

Using the factorization (A.5) in (A.4) gives
(

x̃t|t−1 − Ktǫt

ǫt

)T (
Pt|t 0
0 S−1

t

)(
x̃t|t−1 − Ktǫt

ǫt

)

= (x̃t|t−1 − Ktǫt)
T P−1

t|t (x̃t|t−1 − Ktǫt) + ǫT
t S−1

t ǫt. (A.8)

The determinants in (A.2) can be written

1

det Rt det Pt|t−1
= detR−1

t det P−1
t|t−1 = det

(
P−1

t|t−1 0

0 R−1
t

)
. (A.9)

Since the determinant of a triangular matrix with unit diagonal equals one we can multi-
ply (A.9) with any such matrix without changing the value of the expression. For exam-
ple (A.9) can be written as

det

((
I −Kt

0 I

)−T (
I 0

−Ct I

)T (
P−1

t|t−1 0

0 R−1
t

)(
I 0

−Ct I

)(
I −Kt

0 I

)−1
)

,

(A.10)

1The matrix inversion lemma states that (Kailath et al., 2000)

(A − BCD)−1 = A−1 − A−1D(C−1 + DA−1B)−1DA−1
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which allows us to use the block triangular factorization (A.5) to write the determinant as

1

detRt det Pt|t−1
= det

(
P−1

t|t 0

0 S−1
t

)
=

1

det Pt|t det St
. (A.11)

Inserting (A.8) and (A.11) into (A.2) we obtain

p(yt|Yt−1) =
1

(2π)ny/2
√

det St

e−
1
2 ǫT

t S−1
t ǫt , (A.12)

after marginalization w.r.t.xt. This expression can now be used in (A.1), which results in

p(xt|Yt) =
1

(2π)nx/2
√

det Pt|t

e
− 1

2 (xt−x̂t|t)
T P−1

t|t
(xt−x̂t|t), (A.13)

where

x̂t|t = x̂t|t−1 + Kt(yt − Ctx̂t|t−1 − Dtut). (A.14)

The time update (3.13b) can be written

p(xt+1|Yt) =

∫

Rnx

1

(2π)nx/2
√

det Qt det Pt|t

·

e
− 1

2

“

(xt+1−Atxt−Btut)
T Q−1

t (xt+1−Atxt−Btut)+(xt−x̂t|t)
T P−1

t|t
(xt−x̂t|t)

”

dxt. (A.15)

This integration can be carried out if the integration variable,xt, is isolated. This can be
accomplished by a change of variables,

x̃t|t = xt − x̂t|t, (A.16a)

x̃t+1|t = xt+1 − x̂t+1|t, wherex̂t+1|t = Atx̂t|t + Btut. (A.16b)

Using the triangular block factorization that was used in (A.5) gives the following expres-
sion for the exponent of (A.15),

x̃T
t|tP

−1
t|t x̃t|t + (x̃t+1|t − Atx̃t|t)

T Q−1
t (x̃t+1|t − Atx̃t|t)

=

(
x̃t|t

x̃t+1|t

)T (
I −Lt

0 I

)T (
M−1

t 0
0 P−1

t+1|t

)(
I −Lt

0 I

)(
x̃t|t

x̃t+1|t

)
, (A.17)

where

Mt = Pt|t − Pt|tAt(Qt + AtPt|tA
T
t )−1AtPt|t, (A.18a)

Pt+1|t = AtPt|tA
T
t + Qt, (A.18b)

Lt = Pt|tA
T
t (Qt + AtPt|tA

T
t )−1. (A.18c)

The integration (A.15) can now be performed, resulting in

p(xt+1|Yt) =
1

(2π)nx/2
√

det Pt+1|t

e
− 1

2 x̃T
t+1|tP

−1
t+1|t

x̃t+1|t . (A.19)

The expressions (A.7a), (A.7b), (A.14), (A.16b) and (A.18b) constitute the Kalman filter
and hence the proof is complete.
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