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Abstract. Level set methods are a popular way to solve the image seg-
mentation problem in computer image analysis. A contour is implicitly
represented by the zero level of a signed distance function, and evolved
according to a motion equation in order to minimize a cost function.
This function defines the objective of the segmentation problem and also
includes regularization constraints. Gradient descent search is the de
facto method used to solve this optimization problem. Basic gradient de-
scent methods, however, are sensitive for local optima and often display
slow convergence. Traditionally, the cost functions have been modified
to avoid these problems. In this work, we instead propose using a mod-
ified gradient descent search based on resilient propagation (Rprop), a
method commonly used in the machine learning community. Our results
show faster convergence and less sensitivity to local optima, compared
to traditional gradient descent.
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1 Introduction

In order to find objects such as tumors in medical images or roads in satellite
images, an image segmentation problem has to be solved. One approach is to
use calculus of variations. In this context, a contour parameterizes an energy
functional defining the objective of the segmentation problem. The functional
depends on properties of the image such as gradients, curvatures and intensities,
as well as regularization terms, e.g. smoothing constraints. The goal is to find the
contour which, depending on the formulation, maximizes or minimizes the en-
ergy functional. In order to solve this optimization problem, the gradient descent
method is the de facto standard. It deforms an initial contour in the steepest
(gradient) descent of the energy. The equations of motion for the contour, and
the corresponding energy gradients, are derived using the Euler-Lagrange equa-
tion and the condition that the first variation of the energy functional should
vanish at a (local) optimum. Then, the contour is evolved to convergence us-
ing these equations. The use of a gradient descent search commonly leads to
problems with convergence to small local optima and slow/poor convergence in
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general. The problems are accentuated with noisy data or with a non-stationary
imaging process, which may lead to varying contrasts for example. The problems
may also be induced by bad initial conditions for certain applications. Tradition-
ally, the energy functionals have been modified to avoid these problems by, for
example, adding regularizing terms to handle noise, rather than to analyze the
performance of the applied optimization method. This is however discussed in
[1, 2], where the metric defining the notion of steepest descent (gradient) has
been studied. By changing the metric in the solution space, local optima due to
noise are avoided in the search path.

In contrast, we propose using a modified gradient descent search based on
resilient propagation (Rprop) [3][4], a method commonly used in the machine
learning community. In order to avoid the typical problems of gradient descent
search, Rprop provides a simple but effective modification which uses individual
(one per parameter) adaptive step sizes and considers only the sign of the gradi-
ent. This modification makes Rprop more robust to local optima and avoids the
harmful influence of the size of the gradient on the step size. The individual adap-
tive step sizes also allow for cost functions with very different behaviors along
different dimensions because there is no longer a single step size that should fit
them all. In this paper, we show how Rprop can be used for image segmentation
using level set methods. The results show faster convergence and less sensitivity
to local optima.

The paper will proceed as follows. In Section 2, we will describe gradient
descent with Rprop and give an example of a representative behavior. Then,
Section 3 will discuss the level set framework and how Rprop can be used to
solve segmentation problems. Experiments, where segmentations are made using
Rprop for gradient descent, are presented in Section 4 together with implementa-
tion details. In Section 5 we discuss the results of the experiments and Section 6
concludes the paper and presents ideas for future work.

2 Gradient descent with Rprop

Gradient descent is a very common optimization method which appeal lies in
the combination of its generality and simplicity. It can handle many types of
cost functions and the intuitive approach of the method makes it easy to im-
plement. The method always moves in the negative direction of the gradient,
locally minimizing the cost function. The steps of gradient descent are also easy
and fast to calculate since they only involve the first order derivatives of the cost
function. Unfortunately, gradient descent is known to exhibit slow convergence
and to be sensitive to local optima for many practical problems. Other, more
advanced, methods have been invented to deal with the weaknesses of gradient
descent, e.g. the methods of conjugate gradient, Newton, Quasi-Newton etc, see
[5]. Rprop, proposed by the machine learning community [3], provides an inter-
mediate level between the simplicity of gradient descent and the complexity of
these more theoretically sophisticated variants.
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Gradient descent may be expressed using a standard line search optimization:

xk+1 = xk + sk (1)
sk = αkpk (2)

where xk is the current iterate, sk is the next step consisting of length αk

and direction pk. To guarantee convergence, it is often required that pk be a
descent direction while αk gives a sufficient decrease in the cost function. A
simple realization of this is gradient descent which moves in the steepest descent
direction according to pk = −∇fk, where f is the cost function, while αk satisfies
the Wolfe conditions [5].

In standard implementations of steepest descent search, αk = α is a constant
not adapting to the shape of the cost-surface. Therefore if we set it too small, the
number of iterations needed to converge to a local optima may be prohibitive.
On the other hand, a too large value of α may lead to oscillations causing the
search to fail. The optimal α does not only depend on the problem at hand, but
varies along the cost-surface. In shallow regions of the surface a large α may be
needed to obtain an acceptable convergence rate, but the same value may lead to
disastrous oscillations in neighboring regions with larger gradients or in the pres-
ence of noise. In regions with very different behaviors along different dimensions
it may be hard to find an α that gives acceptable convergence performance.

The Resilient Propagation (Rprop) algorithm was developed [3] to overcome
these inherent disadvantages of standard gradient descent using adaptive step-
sizes Δk called update-values. There is one update-value per dimension in x, i.e.
dim(xk) = dim(Δk). However, the defining feature of Rprop is that the size of
the gradient is never used, only the signs of the partial derivatives are considered
in the update rule. There are other methods using both adaptive step-sizes and
the size of the gradient, but the unpredictable behavior of the derivatives often
counter the careful adaption of the step-sizes. Another advantage of Rprop,
very important in practical use, is the robustness of its parameters; Rprop will
work out-of-the-box in many applications using only the standard values of its
parameters [6].

We will now describe the Rprop algorithm briefly, but for implementation
details of Rprop we refer to [4]. For Rprop, we choose a search direction sk

according to:
sk = −sign (∇fk) ∗ Δk (3)

where Δk is a vector containing the current update-values, a.k.a. learning rates,
∗ denotes elementwise multiplication and sign(·) the elementwise sign function.
The individual update-value Δi

k for dimension i is calculated according to the
rule:

Δi
k =

⎧⎪⎨⎪⎩
min

(
Δi

k−1 · η+, Δmax

)
, ∇ifk · ∇ifk−1 > 0

max
(
Δi

k−1 · η−, Δmin

)
, ∇ifk · ∇ifk−1 < 0

Δi
k−1 , ∇ifk · ∇ifk−1 = 0

(4)

where ∇ifk denotes the partial derivative i in the gradient. Note that this is
Rprop without backtracking as described in [4]. The update rule will accelerate
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the update-value with a factor η+ when consecutive partial derivatives have the
same sign, decelerate with the factor η− if not. This will allow for greater steps
in favorable directions, causing the rate of convergence to be increased while
overstepping eventual local optima.

3 Energy optimization for segmentation

As discussed in the introduction, segmentation problems can be approached by
using the calculus of variations. Typically, an energy functional is defined repre-
senting the objective of the segmentation problem. The functional is described
in terms of the contour and the relevant image properties. The goal is to find
a contour that represents a solution which, depending on the formulation, max-
imizes or minimizes the energy functional. These extrema are found using the
Euler-Lagrange equation which is used to derive equations of motion, and the
corresponding energy gradients, for the contour [7]. Using these gradients, a gra-
dient descent search in contour space is commonly used to find a solution to
the segmentation problem. Consider, for instance, the derivation of the weighted
region (see [7]) described by the following functional:

E(C) =
∫∫

ΩC

f(x, y)dxdy (5)

where C is a 1D curve embedded in a 2D space, ΩC is the region inside of C, and
f(x, y) is a scalar function. This functional is used to maximize some quantity
given by f(x, y) inside C. If f(x, y) = 1 for instance, the area will be maximized.
Calculating the first variation of Eq. 5 yields the evolution equation:

∂C

∂t
= −f(x, y)n (6)

where n is the curve normal. If we anew set f(x, y) = 1, this will give a constant
flow in the normal direction, commonly known as the “balloon force”.

The contour is often implicitly represented by the zero level of a time de-
pendent signed distance function, known as the level set function. The level set
method was introduced by Osher and Sethian [8] and includes the advantages of
being parameter free, implicit and topologically adaptive. Formally, a contour
C is described by C = {x : φ(x, t) = 0}. The contour C is evolved in time
using a set of partial differential equations (PDEs). A motion equation for a
parameterized curve ∂C

∂t = γn is in general translated into the level set equation
∂φ
∂t = γ |∇φ|, see [7]. Consequently, Eq. 6 gives the familiar level set equation:

∂φ

∂t
= −f(x, y) |∇φ| (7)

3.1 Rprop for energy optimization using level set flow

When solving an image segmentation problem, we can represent the entire level
set function (corresponding to the image) as one vector, φ(tn). In order to per-
form a gradient descent search as discussed earlier, we can approximate the
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gradient as the finite difference between two time instances:

∇f(tn) ≈ φ(tn) − φ(tn−1)
Δt

(8)

where Δt = tn − tn−1 and ∇f is the gradient of a cost function f as discussed
in Section 2. Using the update values estimated by Rprop (as in Section 2), we
can update the level set function:

s(tn) = −sign

(
φ̃(tn) − φ(tn−1)

Δt

)
∗ Δ(tn) (9)

φ(tn) = φ(tn−1) + s(tn) (10)

where ∗ as before denotes elementwise multiplication. The complete procedure
works as follows:
Procedure UpdateLevelset

Given the level set function φ(tn−1), compute the next (intermediate)1

time step φ̃(tn). This is performed by evolving φ according to a PDE
(such as Eq. 7) using standard techniques (e.g. Euler integration).

Compute the approximate gradient by Eq. 8.2

Compute a step s(tn) according to Eq. 9. This step effectively modifies3

the gradient direction by using the Rprop derived update values.

Compute the next time step φ(tn) by Eq. 10. Note that this replaces the4

intermediate level set function computed in Step 1.

The procedure is very simple and can be used directly with any type of level
set implementation.

4 Experiments

We will now evaluate our idea by solving two example segmentation tasks using
a simple energy functional. Both examples use 1D curves in 2D images but
our approach also supports higher dimensional contours, e.g. 2D surfaces in 3D
volumes.

4.1 Implementation details

We have implemented Rprop in Matlab as described in [4]. The level set al-
gorithm has also been implemented in Matlab based on [9, 10]. Some notable
implementation details are:

– Any explicit or implicit time integration scheme can be used in Step 1. Due
to its simplicity, we have used explicit Euler integration which might require
several inner iterations in Step 1 to advance the level set function by Δt time
units.
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– The level set function is reinitialized (reset to a signed distance function)
after Step 1 and Step 4. This is typically performed using the fast marching
[11] or fast sweeping algorithms [12]. This is required for stable evolution in
time due to the use of explicit Euler integration in Step 1.

– The reinitializations of the level set function can disturb the adaptation of
the individual step sizes outside the contour, causing spurious ”islands” close
to the contour. In order to avoid them we set the maximum step size to a
low value once the target function integral has converged:(∫∫

ΩC(t)

f(x, y)dxdy −
∫∫

ΩC(t−k)

f(x, y)dxdy

)
< 0 (11)

where k denotes the time under which the target function integral should
not have increased.

4.2 Weighted region based flow

In order to test and evaluate our idea, we have used a simple energy functional to
control the segmentation. It is based on a weighted region term (Eq. 5) combined
with a penalty on curve length for regularization. The goal is to maximize:

E(C) =
∫∫

ΩC

f(x, y)dxdy − α

∮
C

ds (12)

where α is a regularization parameter adjusting the penalty of the curve length.
The target function f(x, y) is here the real part of a global phase image, derived
from the original image using the method in [13]. This method uses quadrature
filters [14] across multiple scales to generate a global phase image that represents
line structures. The function f(x, y) will have positive values on the inside of
linear structures, negative on the outside, and zero on the edges. A level set
PDE can be derived from Eq. 12 (see [7]) just as in section Section 3:

∂φ

∂t
= −f(x, y) |∇φ| + ακ |∇φ| (13)

where κ is the curvature of the contour.
We will now evaluate gradient descent with and without Rprop using Eq. 13

on a synthetic test image shown in Figure 1(a). The image illustrates a line-
like structure with a local dip in contrast. This dip results in a local optimum
in the contour space, see Figure 2, and will help us test the robustness of our
method. We let the target function f(x, y), see Figure 1(b), be the real part of
the global phase image as discussed above. The bright and dark colors indicate
positive and negative values respectively. Figure 2 shows the results after an
ordinary gradient search has converged. We define convergence as |∇f |∞ < 0.03
(using the L∞-norm), with ∇f given in Eq. 8. For this experiment we used
parameters α = 0.7 and we reinitialized the level set function every fifth iteration.
For comparison, Figure 3 shows the results after running our method using
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(a) Synthetic test image (b) Target function f(x, y)

Fig. 1. Synthetic test image spawning a local optima in the contour space.

default Rprop parameters η+ = 1.2, η− = 0.5, and other parameters set to
Δ0 = 2.5, smax = 30 and Δt = 5. Plots of the energy functional for both
experiments are shown in Figure 4. Here, we plot the weighted area term and the
length penalty term separately, to illustrate the balance between the two. Note
that the functional without Rprop in Figure 4(a) is monotonically increasing as
would be expected of gradient descent, while the functional with Rprop visits a
number of local maxima during the search. The effect of setting the maximum
step size to a low value at t = 160, as discussed above (Eq. 11), effectively cancels
the issue of spurious ”islands” close to the contour in only two iterations. As a

(a) t = 0 (b) t = 40 (c) t = 100 (d) t = 170 (e) t = 300 (f) t = 870

Fig. 2. Iterations without Rprop. (Time units per iteration: Δt = 5)

(a) t = 0 (b) t = 60 (c) t = 75 (d) t = 160 (e) t = 170 (f) t = 245

Fig. 3. Iterations using Rprop. (Time units per iteration: Δt = 5)

second test image we used a 458× 265 retinal image from the DRIVE database
[15], as seen in Figure 5. The target function f(x, y) is, as before, the real part
of the global phase image. Figure 5 shows the results after an ordinary gradient
search has converged using the parameter α = 0.15, reinitialization every tenth
time unit and with the initial condition given in Figure 5(a). We have again
used |∇f |∞ < 0.03 as convergence criteria. If we instead use Rprop together
with the parameters α = 0.15, Δ0 = 4, smax = 10 and Δt = 10, we get the
result in Figure 6. The energy functionals are plotted in Figure 7, showing the
convergence of both methods.
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(a) Without Rprop
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(b) With Rprop

Fig. 4. Plots of energy functionals for synthetic test image in Figure 1(a).

(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 100 (e) t = 500 (f) t = 970

Fig. 5. Iterations without Rprop. (Time units per iteration: Δt = 10)

(a) t = 0 (b) t = 40 (c) t = 80 (d) t = 200 (e) t = 600 (f) t = 990

Fig. 6. Iterations using Rprop. (Time units per iteration: Δt = 10)
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(a) Without Rprop
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Fig. 7. Plots of energy functionals for the retinal image as seen in Figure 5.

5 Discussion

The synthetic test image in Figure 1(a) spawns a local optimum in the contour
space when we apply the set of parameters used in our first experiment. The
standard gradient descent method converges as expected, see Figure 2, to this
local optimum. Gradient descent with Rprop, however, accelerates along the lin-
ear structure due to the stable sign of the gradient in this area. The adaptive
step-sizes of Rprop consequently grow large enough to overstep the local opti-
mum. This is followed by a fast convergence to the global optimum. The progress
of the method is shown in Figure 3.

Our second example evaluates our method using real data from a retinal
image. The standard gradient descent method does not succeed to segment blood
vessels where the signal to noise ratio is low. This is due to the local optima in
these areas, induced by noise and blood vessels with low contrast. Gradient
descent using Rprop, however, succeeds to segment practically all visible vessels,
see Figure 6. Observe that the quality and accuracy of the segmentation have
not been verified and is out of scope of this paper. The point of this experimental
segmentation was instead to highlight the advantages of Rprop in contrast to
the ordinary gradient descent.

6 Conclusions and future work

Image segmentation using the level set method involves optimization in contour
space. In this context, the working horse of optimization methods is the gra-
dient descent method. We have discussed the weaknesses of this method and
proposed using Rprop, a modified version of gradient descent based on resilient
propagation, commonly used in the machine learning community. In addition, we
have shown examples on how the solution is improved by Rprop, which adapts
its individual update values to the behavior of the cost surface. Using Rprop,
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the optimization gets less sensitive to local optima and the convergence rate is
improved. In contrast to much of the previous work, we have improved the so-
lution by changing the method of solving the optimization problem rather than
modifying the energy functional.

Future work includes further study of the general optimization problem of
image segmentation and verification of the segmentation quality in real applica-
tions. The issue of why the reinitializations disturb the adaptation of the step
sizes also has to be studied further.

References

1. Charpiat, G., Keriven, R., Pons, J.P., Faugeras, O.: Designing spatially coherent
minimizing flows for variational problems based on active contours. Computer
Vision, 2005. ICCV 2005. Tenth IEEE International Conference on 2 (Oct. 2005)
1403–1408 Vol. 2

2. Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Sobolev active contours. Interna-
tional Journal of Computer Vision 73(3) (2007) 345–366

3. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: The rprop algorithm. In: In Proceedings of the IEEE International Con-
ference on Neural Networks. (1993) 586–591

4. Riedmiller, M., Braun, H.: Rprop – description and implementation details. Tech-
nical report, Universitat Karlsruhe (1994)

5. Nocedal, J., Wright, S.J.: Numerical Optimization. 2nd edn. Springer (2006)
6. Schiffmann, W., Joost, M., Werner, R.: Comparison of optimized backpropagation

algorithms. In: Proc. of ESANN’93, Brussels. (1993) 97–104
7. Kimmel, R.: Fast edge integration. In: Geometric Level Set Methods in Imaging,

Vision and Graphics. Springer Verlag (2003)
8. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algo-

rithms based on Hamilton-Jacobi formulations. Journal of Computational Physics
79 (1988) 12–49

9. Osher, S., Fedkiw, R.: Level Set and Dynamic Implicit Surfaces. Springer-Verlag
New York Inc. (2003)

10. Peng, D., Merriman, B., Osher, S., Zhao, H.K., Kang, M.: A pde-based fast local
level set method. Journal of Computational Physics 155(2) (1999) 410–438

11. Sethian, J.: A fast marching level set method for monotonically advancing fronts.
In: Proceedings of the National Academy of Science. Volume 93. (1996) 1591–1595

12. Zhao, H.K.: A fast sweeping method for eikonal equations. Mathematics of Com-
putation (74) (2005) 603–627
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