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Abstract

In this thesis we explore in particular the dynamics of a special type of quasi-
particle in π-conjugated materials termed polaron, the origin of which is intimately
related to the strong interactions between the electronic and the vibrational degrees
of freedom within these systems. In order to conduct such studies with the par-
ticular focus of each appended paper, we simultaneously solve the time-dependent
Schrödinger equation and the lattice equation of motion with a three-dimensional
extension of the famous Su–Schrieffer–Heeger (ssh) model Hamiltonian. In partic-
ular, we demonstrate in Paper I the applicability of the method to model transport
dynamics in molecular crystals in a region were neither band theory nor perturba-
tive treatments such as the Holstein model and extended Marcus theory apply. In
Paper II we expand the model Hamiltonian to treat the revolution of phenylene
rings around the σ-bonds and demonstrate the great impact of stochastic ring
torsion on the intra-chain mobility in conjugated polymers using poly[phenylene
vinylene] (ppv) as a model system. Finally, in Paper III we go beyond the original
purpose of the methodology and utilize its great flexibility to study radiationless
relaxations of hot excitons.
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CHAPTER

ONE

Introduction

For the past forty years the semiconductor industry has relied on innovative im-
provements of inorganic silicon and gallium arsenide based technologies to fuel its
unparalleled market growth. In recent years, however, efforts have been made to
incorporate also organic materials into these architectures. At first, they where
utilized only as sacrificial stencils (photoresists) and passive insulators and took
no active role in the electronic functioning of devices. Today, however, conjugated
organic materials and nanocrystals are utilized as the active components in such
promising fields as pixel-resolved full color organic light emitting diode (oled) dis-
plays, organic field effect transistors (ofet) integrated circuits, and photovoltaic
cells. At present the speed, heating, and power efficiency of these devices are all
limited by the transportation of charge through the active organic layer(s)22 and
a detailed understanding of the basic properties that govern these processes is
therefore essential for further material improvements.

1.1 Adiabaticity

In this thesis we will explore the microscopic physics of organic systems numerically
with the aid of theoretical models. Since these usually rely on the non-relativistic
time-(in)dependent Schrödinger equation, which is analytically solvable only for
two body problems, several approximations are often required to obtain cost ef-
fective schemes for calculating the relevant molecular properties to within a rea-
sonable level of accuracy. An important concept often invoked during these efforts
is that of adiabaticity, which basically implies that there are two sets of variables
which describe the system of interest and that the system can be well characterized
by the eigenstates defined at each fixed value of one set of variables which changes
slowly compared to the other set.32 This slowly varying set of variables are called
adiabatic parameters and if such parameters can be identified, it will greatly fa-
cilitate the description and understanding of both the static properties and the
dynamical behavior of the system since the system then would stay mostly in the
same so-called adiabatic (eigen)state. In the regions where the rapidly changing
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2 Introduction

variables cannot fully follow the changes of the adiabatic parameters, so-called
nonadiabatic transitions among the adiabatic states are induced, and the dynam-
ics becomes more complex.

One of the most well known examples of adiabatic approximations is the Born–
Oppenheimer approximation. It relies on the fact that the lighter electrons very
rapidly readjust their motions to match the motion of the much slower nuclei. The
inter-nuclear coordinates, collectively denoted as R, can therefore be considered a
very good adiabatic parameter. This enables a separation of electronic and nuclear
coordinates in the instantaneous state of the molecule, where the electronic state
only depends on R in a parametric sense. In most cases this is a good approx-
imation and the adiabatic states generally describe the molecule well. In some
regions of R, however, two or more of such so-called Born–Oppenheimer states
might come close together. At these positions, a small amount of energy change is
enough to induce a nonadiabatic transition between the adiabatic electronic states.
The transition can actually be achieved rather easily by gaining that energy from
the nuclear motion. Various molecular spectroscopic processes, molecular colli-
sions, and chemical reactions can all be described by the concept of nonadiabatic
transitions.

1.2 Outline of Research

The work presented in the papers in this thesis is implicitly yet intimately related
to the concept of (non)adiabaticity. Explicitly, however, it is the excitation and
conduction of charge that is the focus of my research. In an organic material
these properties are strongly correlated to the geometrical configuration of the
system as well as to the electronic interactions between its constituent parts; e.g.,
between molecules in a molecular solid. The stronger the interactions are, the
more delocalized are the constituent charge carriers and the more adiabatic the
system becomes (see Section 2.3). The microscopic physics of these and similar
processes are explored in single crystal pentacene (Paper I) and poly[phenylene
vinylene] molecules (Paper II), both of which belong to the special class of organic
materials termed π-conjugated systems. In the case of the former system additional
studies of excitation dynamics has been performed (Paper III).

1.3 Outline of Thesis

Following this brief introduction, the second chapter of the thesis is devoted to the
unique charge carrying species of π-conjugated systems and specifically on how
the dynamics of one of these, the polarons, relates to the concept of adiabaticity.
In the third chapter, a model that enables the simultaneous study of electron-
lattice dynamics and the associated adiabaticity in terms of the time-evolution of
occupied eigenstates is developed. This constitutes the methodological framework
for the three papers presented in the second part of the thesis, briefly introduced
in the fourth and final chapter of the first part.



CHAPTER

TWO

Storage and Transport of Charge

The materials of relevance for this thesis belong to the special class of so-called
π-conjugated hydrocarbon systems for which the valence electrons of constituent
sp2-hybridized carbon atoms display local σ- and π-orbital symmetry with respect
to one inter-nuclear axis (as defined, e.g., in Ref. [4]). In particular, this means that
three of the four valence electrons of carbon are involved in the covalent bonds
that define the molecular backbone, while the remaining valence electron occu-
pies the 2pz-orbital directed parallel to the local surface normal of the molecular
plane. While the former electrons remain localized to the region of their associated
bonds, the state of the later electrons may extend throughout the system due to
the significant orbital overlap between neighboring 2pz-orbitals. These electrons,
termed π-electrons due to the π-symmetry of the 2pz-orbital, will have energies
much closer to the Fermi level than their σ counterparts for which the gap between
the σ-bonding and anti-bonding states is large compared to phonon and charge
carrier energies. Consequently, it is often sufficient to treat only the π-electrons
when considering the electronic structure of these systems.

2.1 Electronic Structure of Conjugated Polymers

One of the simplest hydrocarbons known to display this type of electron structure
is polyacetylene, [ch]n. In its transoid form, assuming equal c-c bond lengths and
a quasi one-dimensional structure, each unit of repetition would contribute one
electron in a 2pz-orbital to the π-electron system. Since spin degeneracy allows
for two electrons to occupy every 2pz-orbital this would render the π-band half
filled and place the system in a metallic state. In reality, however, it turns out
that intrinsic trans-polyacetylene (t -pa) display semiconductive properties. This
is because the uniform one-dimensional chain of atoms is unstable against so-called
Peierls-distortions35 and thus lower its total energy by spontaneous dimerization.
The band structure of the perfectly conjugated molecule as obtained, e.g., within
the Su–Schrieffer–Heeger (ssh) model,39 verify that a fully occupied band and a
completely empty band, separated by an (Peierls) energy gap of 1.4 eV, is obtained.

3



4 Storage and Transport of Charge

2.2 Charge Storage in Conjugated Polymers

In conjugated polymers it is the strong electron(hole)-lattice interactions that is
responsible for the dimerization of the molecular backbone. These interactions
are also responsible for the existence of unusual self-trapped charge carrier species
that manifest themselves upon doping or electrical charging as self-localized elec-
tronic states with energy levels within the otherwise forbidden band gap.1 It is
instructive to introduce these through successive doping of a finite sized trans-
polyacetylene chain. In its ground state both chain ends are terminated by double
bonds.38 The stable configuration of such a system when extending over an odd
number of ch-units must therefore contain a region across which the bond length
alternation is changed. Situated in the middle of the chain, the single energy level
localized by the corresponding misfit potential must, due to charge conjugation
symmetry, reside in the middle of the band gap. This topological defect between
two degenerate ground state phases in trans-polyacetylene is called a soliton.

Due to spin degeneracy the first electron (hole) injected into this system will
occupy the mid-gap level, thus forming a negatively (positively) charged soliton.
The addition of a second electron to the system of a negatively charged soliton
will, however, induce lattice distortions and cause an occupied state in the valence
band and an unoccupied state in the conduction band to migrate into the band
gap to form two new localized states. The combination of the localized charge
and the lattice deformation is called a polaron. Yet again, when a third electron
is added to the system the polaron will relax to a soliton–antisoliton pair with
energy levels in the middle of the band gap since the relaxation energy is less than
the increase in energy required to create either an extra polaron or a bipolaron,
the later in which case the third electron simply enters the empty polaron state.

Note that for degenerate ground state molecules with an even number of bonds,
as well as for nondegenerate ground state molecules, the polaron is the stable state
for single charge injection. Further injection of also a second identical charge will
lead to the formation of a soliton–antisoliton pair in the former case and a bipolaron
in the later.

2.3 (Non-)Adiabatic Polarons

The research presented in Papers I and II in this thesis deals exclusively with the
field induced dynamics in singly charged nondegenerate ground state molecules,
i.e., with the dynamics of polarons. Originally, the term polaron referred to a self-
trapped electronic carrier in an ionic (polar) material. For these systems the energy
of the charge carrier depends on the positions of a solid’s ions through long-range
electron-lattice Coulomb interactions (sometimes referred to as Frölich interac-
tions). However, while retaining the term polaron, models of self-interaction also
consider the short range interactions between electrons and atoms associated with

1The notion of self-trapped carriers was introduced by Landau in 1933 for otherwise free

charge carriers being bound within potential wells produced by the displacements of atoms from

their carrier-free equilibrium positions.24



2.3 (Non-)Adiabatic Polarons 5

covalent bonding.15 In what follows, we will consider only these later interactions
since they are the dominant ones in most π-conjugated systems.

Studies of self-trapping within a short-range interaction are often based on the
Holstein molecular crystal model (mcm).19 In particular, a tight-binding electron
moving through a one-dimensional lattice of diatomic molecular sites is envisioned,
which interacts with the local vibrational mode of deviation in each sites internu-
clear separation from equilibrium. The corresponding model Hamiltonian read

H = −tM
∑

i,j

c†icj − g
∑

i

c†ic
i(ai + a†i ) + ω0

∑

i

a†iai, (2.1)

where ci (c†i ) and ai (a†i ) are, respectively, destruction (creation) operators for
fermions and for local vibrations of frequency ω0 for the internuclear separation
distance on site i, tM is the electron inter-site resonance integral, and g is an
electron-phonon (e-ph) coupling constant.

Within this model, the setting in of a polaronic regime is directly related
to the magnitude of two parameters which are often introduced in this field:
λ ≡ g2/(2tMω0), which measures the energetic convenience to form a bound state,
and α ≡ g/ω0, which controls the number of excited phonons to which the charge
couple. For polarons to form both conditions λ > 1 and α > 1 have to be satisfied,
corresponding to (1) a lattice deformation energy gain, Ep = −g2/ω0, larger than
the loss of bare kinetic energy (of the order of half the bandwidth, ∼ −2tM ) and

(2) a strong reduction of the effective hopping matrix element due to a sizeable
local displacement of the nuclear positions. However, from the definitions of λ and
α one can immediately recognize that since λ = (α2/2) · (ω0/tM ), a crucial role
is played by the adiabatic ratio ω0/tM . In essence, this ratio tells us weather it
is the electrons (ω0 � tM ) or the phonons (ω0 � tM ) that constitutes the faster
subsystem of the two. When ω0 � tm the electrons very rapidly readjust their
motions to match the motion of the much slower nuclei and the adiabatic approx-
imation (see Section 1.1) may be used to describe the self-trapped states. In this
case the condition for a large λ is more difficult to realize than α > 1 and polaron
formation will therefore be determined by the more restrictive λ > 1 condition.
The opposite is true when the system is in the nonadiabatic regime, i.e., when
ω0 � tm.

The Holstein model was originally proposed as a conceptual aid to describe a
type of small polaron that may be formed when a carrier is confined to a transition-
metal ion of a transition-metal oxide. Self-trapped carriers in molecular solids are,
however, frequently much larger than those envisioned by the mcm and often
encompasses many atoms. In particular, rather than being confined to a point,
a carrier on a real molecule generally sloshes amongst its atoms in response to
their motions.14 This property can be captured with the previously mentioned Su–
Schrieffer–Heeger (ssh) model in which the e-ph coupling is due to the dependence
of the resonance integral on the relative distance between two adjacent ions.39

Within this picture, λ still determines the energetic advantage in deforming the
lattice and losing kinetic energy, but α was shown by Capone et al.11 to be directly
related to λ regardless of the value of the adiabatic ratio ω0/tM . The value of
λ therefore simultaneously determines how well both conditions (1) and (2) are



6 Storage and Transport of Charge

satisfied, and it will be the relevant parameter for the description of the system
for any value of ω0/tM .

In terms of λ, or rather Ep/J , where J ≡ −2tM , three carrier type ”regimes”
may be identified for molecular solids. On the one hand we have the systems
with weak intermolecular interactions (J � Ep) for which the small Holstein
polaron localized to a single molecule is stable, and on the other hand we have the
systems with strong intermolecular interactions (J � Ep) for which the energy
gain of self-trapping is negligible and localized carrier states therefore unstable.
For systems in the intermediate regime (J ∼ Ep) the polaron is delocalized over
several molecular units and the electron probability density can sample an even
larger region in space. The transition region in particular is sampled in Paper I
using modulated values of J for intrinsic single crystal pentacene.

Note that similar conditions as (1) and (2) apply also to the case of intra-
molecular self-trapping for which the atomic resolved ssh model is even better
suited. However, since the inter-atomic bare hopping, t, within a molecule is quite
strong, the adiabatic approxmation do, in general, apply. Polarons formed within
these type of systems are therefore often strongly delocalized; e.g., in t-pa the
polaron extends over 40 sites.8 However, in the case when there is revolution of
molecular segments around individual bonds, the hopping reduce to such levels
that there might be a transition into the nonadiabatic regime (see Paper II).

2.4 (Non-)Adiabatic Polaron Transport

There are distinctly different mechanisms involved in the transport of a nonadia-
batic, highly localized small polaron as compared to the conduction of the adiabatic
extended state free carrier and although we are interested in the dynamics of po-
larons in the intermediate regime, a brief review is in order. In the later case the
process may be described by standard textbook band transport theory,23 while in
the former case hopping theory applies, the fundamental mechanism of which in-
volve phonon-assisted tunneling of carriers from occupied to unoccupied localized
donor states. This process is well described by extended Marcus theory,6 but due
to its simplicity the transfer rates derived by Miller and Abrahams27 for impurity
conduction in disordered semiconductors are often used in models of electronic
hopping transport. For example, the pioneering study by Bässler5 of the hopping
mobility (µ) in disordered organic solids with a Gaussian distributed density of
states (dos) relies on Miller–Abrahams transfer rates for inter-state hopping with
which a fairly good agreement with observed temperature and field dependen-
cies on µ was retrieved. However, analyzing the carrier concentration dependence
in semiconducting materials within the framework of six existing semianalythical
models,3,5,26,28,37,40 a much more general, as well as accurate, description of the
hopping mobility in the zero field limit was recently given by Coehorn et al.12

Combining Eq. (30) in Ref [12] with Eq. (6) in Ref. [34], the later of which ex-
presses the field dependence in terms of a field-dependent multiplication factor,
a very compact description for the mobility up to intermediate field strengths is
obtained for organic solids with a Gassian dos.



CHAPTER

THREE

Model and Method

When the dynamics of π-conjugated systems was discussed in terms of extended
state adiabatic transport and localized state nonadiabatic transport in Section 2.4,
no theory for the intermediate transition region between these two limiting cases
was suggested. That is because, to the best of our knowledge, there is no single
model capable of covering this broad regime. To explore the microscopic physics of
the transport processes within this regime as well as the transition from adiabatic
to nonadiabatic dynamics, which is the main focus of Paper I, we have extended
the methodology used by Johanson and Stafström21 and precedingly by Block and
Streitwolf.7 Due to its great flexibility it has also been applied to the cases of intra-
molecular transport dynamics in Paper II and excitation dynamics in Paper III.

3.1 General Considerations

The methodology relies on the simultaneous numerical solution of the time-dependent
Schrödinger equation,

i~|Ψ̇(t)〉 = Ĥel|Ψ(t)〉, (3.1)

and the lattice equation of motion,

Mir̈i = −∇ri
〈Ψ|Ĥ |Ψ〉 − λṙi. (3.2)

Here, Ĥ (Ĥel) is the (electronic) molecular Hamiltonian, ri andMi the position and
mass of the i:th atom, respectively, and λ a viscous damping constant appended to
allow for heat to dissipate from the system. These calculations may be performed
using state of the art numerical differential equation solvers, provided that the
wave function |Ψ〉 is expanded as a linear combination of known basis functions.
However, the evaluation and handling of the large number of two-electron integrals
that would arise from a fully quantum mechanical treatment of Ĥel even for small
basis sets of moderately sized systems exclude ab initio treatments of most realistic
systems. Instead, we are restricted to work with more cost efficient approximative
treatments of Ĥ .

7



8 Model and Method

3.2 Model Hamiltonian

For the π-conjugated materials, the gap between σ bonding and anti-bonding
states is large compared to that of the π-states. We therefore assume that the σ-
electrons can be treated classically and that the stretching, bending, and twisting
of bonds from the undimerized state only contribute to the lattice energy part
of the Hamiltonian, Ĥlatt. Since these geometrical changes are expected to be
small we expand the σ-bonding energies to second order around the undimerized
reference state. The lattice Hamiltonian then read

Ĥlatt =
K1

2

∑

i>j

′

(rij − a)2 +
K2

2

∑

i>j>k

′

(φj − φ0)
2 +

K3

2

∑

i>j>k>l

′

(θk − θ0)
2, (3.3)

whereK1,K2 andK3 are harmonic force-constants for the stretching, bending, and
twisting of bond lengths rij , bond angles φj , and dihedral angles θk, respectively,
when compared to the reference values a, φ0 and θ0 of the undimerized reference
system. The primes indicate that all summations run over nearest neighbors only.

So far we have not discussed the π-electrons of the carbon valence 2pz-orbitals.
The bonding and anti-bonding states associated with these electrons appear much
closer to the band gap and are hence the likely participants in phonon, exciton,
and polaron formation. Their contribution to the Hamiltonian, Ĥπ, must therefore
be included quantum mechanically. Treating the resonance integrals, βij , in the
Mulliken approximation,29 i.e., as proportional to the overlap integrals, Sij , by a
constant k, the energy contribution from the π-electron system then read

Ĥπ = −k
∑

i>j

′

Sij [ĉ
†
j ĉi + ĉ†i ĉj ], (3.4)

where ĉ†i (ĉi) creates (anhilates) an electron on site i and, assuming a tight-binding
approach, the summation run over nearest neighbors only. Analytical formulas for
Sij between 2p Slater type atomic orbitals pπ,i and pπ,j on sites i and j (arbitrary
directions) have been obtained by Hansson and Stafström17 from the master for-
mulas of Mulliken et al.30 Expanded to first order around the undimerized state,
it is easy to show that for systems where all 2p Slater type atomic orbitals are
orthogonal to the bond plane

Sij = k−1 cos(Φij)[t0 − α(rij − a)], (3.5)

where Φij = arccos(pπ,i · pπ,j/|pπ,i||pπ,j |) is the angle between pπ,j and the pro-
jection of pπ,i with respect to revolution around the bond axis, and

t0 = k · f(a) = A · (15 + 15aζ + 6(aζ)2 + (aζ)3), (3.6)

α = k · f ′(a) = A · aζ2(3 + 3aζ + (aζ)2), (3.7)

with ζ = 3.07 Å−1 for the 2p orbitals of carbon and A = k · (e−aζ/15). Equations
3.4–3.7 are the relevant formulas for the π-electrons in the systems treated in this
thesis. Note though that if the orthogonality condition is not satisfied by all pπ

vectors, π-electrons will mix with the σ-bonding system which would hence require
an exact treatment also of this part of the Hamiltonian.
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3.3 Statics

The starting point for further calculations is to retrieve the ground state confor-
mation of constituent molecules. By definition this is the state of minimum total
energy, Etot, with respect to variations in {rij} and may consequently be obtained
from the condition

∂Etot

∂rij
=
∂〈Ψ0|Ĥπ + Ĥlatt|Ψ0〉

∂rij
= 0, (3.8)

where |Ψ0〉 is the ground state determinant. In order to keep the molecular size of
the system we also include the constraint that the total bond length change should
be zero, i.e.

∑′
i>j(rij − a) = 0. Using the method of Lagrangian multipliers, it is

easy to show that this constraint may be incorporated into the model by simply
subtracting a constant term in the “distance spring part” of Eq. (3.3) such that,

K1

2

∑

i>j

′
(

rij − a−
2α

K1
〈ρ〉

)2

, (3.9)

where 〈ρ〉 is the mean charge density. Incorporated into the lattice Hamiltonian,
Eq. (3.8) is then solved in a self-consistent way using, e.g., the resilient propagation
method rprop,10,36 so as to retrieve the geometrical configuration of the ground
state.

At this point it is important to stress that the configurations obtained are for a
specific set of parameters that must be optimized to reproduce the conformation,
the charge distribution, the relevant part of the phonon spectrum etc., as retrieved
by experiments and/or by ab initio calculations. This is a multi-objective opti-
mization task to which evolutionary algorithms may be applied since the only
requirement placed by the method is that one can evaluate an objective (cost)
function f for a given set of input parameters x. If, for example, our primary
interest lies in reproducing the geometry (i.e., the molecular bondlengths rij) and
bandgap energy Eg of a molecule, we define, e.g., a scalar valued molecular cost
function

f(x) = |Eg, ab − Eg, og(x)| +
∑

i>j

′
|rij, ab − rij, og(x)|, (3.10)

ab being an index for ab initio values and og an index for values of the optimized

geometry retrieved from the solutions to Eq. (3.8), and minimize f with respect
to x using a genetic algorithm that repeatedly modifies a population of individual
solutions {xi} over a predefined number of generations ng. At each step, the
algorithm generates ne children that are exact copies of the three individuals with
the best fitness values, nm children that are uniformly selected individuals with
random numbers of normal distribution appended to each vector element, and
nc children that are weighted arithmetic means of two parents chosen through
roulette selection within the current population. For a continuous population size
of 20 individuals evolving over ng=100 generations with ne=3, nm=6, and nc=11,
an optimal parameter set that minimizes f is typically found within 30 to 40
generations.
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3.4 Dynamics

Nontrivial dynamics may now be obtained if the ground state of the system is
perturbed by an external force. In this thesis, we focus mainly on field induced
charge carrier dynamics, but also excitation dynamics has been studied. Since the
later does not add to the methodological description of the former, we shall here
focus on the incorporation of the electric field E(t) into Ĥ .

In our approach we take the field into account in the Coulomb gauge, i.e.,
by a scalar potential. Since periodic boundary conditions are not applicable in
the Coulomb gauge, this will restrict us to use only finite sized systems. We
further assume that the electric field is uniform in space and constant in time
after a smooth turn on described by a half Gaussian function of width tw cen-
tered at tc. The external electric-field contribution to the Hamiltonian then read
ĤE(t) = |e|

∑

i riE(t)(ĉ†i ĉi − 1), with the electric field in the ê-direction defined
such that E(t)=E0 exp[−(t− tc)

2/t2w]ê for t < tc, and E0ê otherwise. Incorporated
into Ĥ , we arrive at the following expression for the total system Hamiltonian

Ĥ = Ĥπ + ĤE + Ĥlatt =
∑

i,j

′
ĉ†ihij ĉj − |e|

∑

i

riE(t) + Ĥlatt, (3.11)

the first term in the right hand part being the previously introduced Ĥel.
With the aid of Ĥ we may now unravel the interdependence between Eqs. (3.1)

and (3.2) through the time-dependent density matrix elements ρij(t). If in mean-

field approximation we make the anzats that ρij(t) =
∑

p ψ
†
ip(t)fpψjp(t), where

fp ∈ [0, 1, 2] is the time-independent occupation number of the pth molecular
orbital, then ψip(t) will be solutions to the time-dependent Schrödinger equation

i~ψ̇ip(t) =
∑

j

hij(t)ψjp(t), (3.12)

and Eq. (3.2) resolves into the generalized Hellmann-Feynman theorem1 for the
ionic forces

M r̈i = −
∑

p

fp ψ
†
ip(t)〈

∂H

∂ri

〉ψjp(t) − λṙi. (3.13)

Expanding the time-dependent molecular orbitals ψip(t) in a basis of instantaneous
eigenfunctions7

ψip(t) =
∑

p′

ϕip′ (t)αp′p(t), (3.14)

defined by
∑

j hij(t)ϕjp(t)=ϕip(t)εp(t), we obtain, additionally, the time-dependent
occupation number of the eigenstate as

np(t) =
∑

p′

fp′ |αpp′(t)|2. (3.15)

Since we expect that eigenstates will come close to each other in energy and nona-
diabatic transitions therefore to occur, we rather solve Eq. (3.12) and Eq. (3.13)
simultaneously, allowing for a time-dependent occupation of instantaneous eigen-
states.



CHAPTER

FOUR

Comments on Papers

Having detailed the theoretical framework of which I have been a part of devel-
oping, the purpose of this chapter is to give a brief introduction to the papers
included in this thesis and highlight the main results that were obtained. In this
context I would like to point out that although I have performed all calculations
and written most of the text in these papers, I have been firmly supervised by my
coauthor Professor Sven Stafström.

4.1 Paper I

In the first paper we study polaron dynamics in highly ordered molecular crystals
and in particular the transition from adiabatic to nonadiabatic transport across
the region of intermediate intermolecular interaction strength, J , where neither
band theory nor perturbative treatments like the Holstein model20 or extended
Marcus theory apply.6 For this purpose we rely on the methodological framework
presented in Chapter 3 and use the time evolution of the occupation number np(t)
in Eq. (3.15) as a signature of the adiabaticity at hand. As a model system we use
single crystal pentacene, but the value of J is varied to simulate different types of
molecular crystals. This allows us to demonstrate the capability of our model to
study carrier dynamics in the desired region of intermolecular interaction strength.
The constraint of time-independence in intermolecular overlap introduced in order
to enable this study can in principle be lifted with a second set of parameters to
account for the dynamics of the inter-atomic interactions in-between the molecules.

4.2 Paper II

The second paper concerns the impact of phenylene ring torsions on the intra-
chain mobility in conjugated polymers. For this purpouse we expand the ssh-
model fully into three dimensions such that the modulation of hopping integrals
caused by the torsion of rings around σ-bonds may be incorporated. Note though

11
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that the distribution in torsion angles is treated within a static picture since the
dynamics of polaron transport occurs at a timescale which is considerably faster
than the dynamics of phenylene ring torsion.9 Within this treatment we show that
variations in ring torsion angles along a conjugated polymer chain have a strong
effect on intra-chain charge carrier mobility. Variation in ring torsion along the
polymer chain can cause electron localization and thus change the type of transport
from adiabatic polaron drift to nonadiabatic polaron hopping. In particular, we
show the sensitivity for such a transition in the case of random variations in the
ring torsion angles along a ppv chain. The effective energy barrier associated with
the change in torsion angle also depends on the applied electric field strength and
by increasing the field strength a transition back to adiabatic transport can be
obtained.

4.3 Paper III (in manuscript form)

Finally, in the third paper we study relaxation dynamics in molecular crystals
following the initial excitation of an electron from an occupied to an unoccupied
level well above the bandgap energy. Due to the strong electron-phonon coupling
in the π-conjugated systems of interest here, the change in the electron density
associated with the excitation will induce vibrational modes, or phonons, into the
lattice. The processes by which the electron and the hole then relax towards lower
lying states can involve, e.g., direct radiative recombination of the exciton, nonra-
diative relaxation between molecular states of the same spin multiplicity (termed
internal conversion),25 or even exciton dissociation into an electron-hole pair.2

From experimental studies on α-hexathiophene,13,16 rubrene,31 and pentacene,
18,33 however, the dominant relaxation channel in π-conjugated molecular crystals
from upper excited states has been identified to be internal conversion, wherefore
the focus of the article is on nonradiative relaxation dynamics.

As a model system for molecular crystals we use single crystal pentacene and
employ the procedure in Section 3.4 to monitor the coupled electron-phonon dy-
namics of the system. In particular, for a 10 molecule large system, we have studied
the nonradiative relaxation process of excitons towards the first excited state, i.e.,
with the hole in the highest occupied molecular orbital (homo) and the electron
in the lowest unoccupied molecular orbital (lumo), both within and in-between
bands of narrow spaced eigenstate energies. For intra-band transport we observe
internal conversion stimulated by the transfer of energy from the electronic to the
vibrational degrees of freedom followed by the decay of the phonon occupation
number, which is in qualitative agreement with experimental results. Since the
relaxation which we consider is entirely nonradiative we also observe the evolution
of a stable polaron-exciton with corresponding eigenstate energies well within the
band gap. For the situation when also inter-band transitions are considered we
observe internal conversion processes much slower than what has been reported
from experiments. We belive that this is because in real systems disorder and other
irregularities limit the symmetry conditions for interband transitions imposed by
an intrinsic system.
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