Guidelines for Management of Scoliosis in Rett Syndrome Patients Based on Expert Consensus and Clinical Evidence

Jenny Downs, Anke Bergman, Philippa Carter, Alison Anderson, Greta M Palmer, David Roye, Harold van Bosse, Ami Bebbington, Eva-Lena Larsson, Brian G Smith, Gordon Baikie, Sue Fyfe and Helen Leonard

N.B.: When citing this work, cite the original article.

This is a non-final version of an article published in final form in:

http://dx.doi.org/10.1097/BRS.0b013e3181a95ca4
Copyright: J B Lippincott Co
http://www.lww.com/

Postprint available at: Linköping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19883
Title: Guidelines for management of scoliosis in Rett syndrome patients based on expert consensus and clinical evidence

Authors:

Jenny Downs, PhD, Centre for Child Health Research, Telethon Institute for Child Health Research, Perth, Australia
Anke Bergman, MPH, Centre for Child Health Research, Telethon Institute for Child Health Research, Perth, Australia
Philippa Carter, MBBS, Centre for Child Health Research, Telethon Institute for Child Health Research, Perth, Australia
Alison Anderson, BSc (Hons), Centre for Child Health Research, Telethon Institute for Child Health Research, Perth, Australia
Greta Palmer, FFPMANZCA, Department of Anaesthesia and Pain Management, Royal Children’s Hospital, Melbourne, Australia
David Royle, MD, Division of Pediatric Orthopaedic Surgery, Morgan Stanley Children’s Hospital of New York Presbyterian, Columbia University Medical Center, New York, USA
Harold van Bosse, MD, Department of Orthopaedics, Shriners Hospital for Children, Philadelphia, USA
Ami Bebbington, BSc (Hons), Centre for Child Health Research, Telethon Institute for Child Health Research, Perth, Australia
Eva Lena Larsson, PhD, Orthopaedic Centre, University Hospital, Linkoping, Sweden
Brian Smith, MD, Department of Orthopedics, Yale University, USA
Gordon Baikie, MD, Department of Developmental Medicine, Royal Children’s Hospital, Melbourne, Australia
Sue Fyfe, PhD, School of Public Health and Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Australia
Helen Leonard, MBChB, Centre for Child Health Research, Telethon Institute for Child Health Research, Perth, Australia

Working group: Gordon Baikie, MD, Department of Developmental Medicine, Royal Children’s Hospital, Melbourne, Australia
Allan Beebe, Cardinal Orthopaedic Institute, Columbus, Ohio, USA
Andy Bowe, Department of Orthopaedics, Robert Wood Johnson University Hospital, New Brunswick, USA
Allen Carl, Capital Region Orthopaedic Group, Albany, USA
Hilary Cass, The Wolfson Centre, Great Ormond Hospital for Sick Children, London, UK
Eva Chan, Department of Physiotherapy, Glen Allan School, Melbourne, Australia
Craig Eberson, Department of Orthopaedics, Brown Medical School/Hasbro Children’s Hospital, Providence, USA
Carolyn Ellaway, Genetic Metabolic Disorders Service, Children’s Hospital at Westmead, Sydney, Australia
Peter Gibson, Department of Anaesthesia, Faculty of Medicine, Westmead Hospital, University of Sydney, Australia
Jocelyn Goodall, Department of Physical Therapy, Legacy Emanuel Children’s Hospital, Portland, USA
Robert Hensinger, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, USA
Peter Hupke, Department of Paediatrics, Georg-August University, Göttingen, Germany
Walter Kaufmann, School of Medicine, Johns Hopkins University, Baltimore, USA
John Killian, MD, Orthopaedic Specialists, Birmingham, USA
Alexander Krebs, Orthopaedisches Spital Wien-Speising, Abteilung fuer Orthopaedie, Vienna, Austria
Eva-Lena Larsson, PhD, Orthopaedic Centre, University Hospital, Linkoping, Sweden
Scoliosis in Rett syndrome

Gunilla Larsson, Swedish Rett Centre, Froson, Sweden
Bruce McPhee, Chair of Orthopaedic Surgery, University of Queensland, Brisbane, Australia
Ulrich Meergans, Department of Orthopaedics, Helios Seehospital Sahlenburg, Germany
Peter Newton, Pediatric Orthopaedic and Scoliosis Center, Rady Children’s Hospital, San Diego, USA
Roy Nuzzo, Department of Orthopaedics, Overlook Hospital, Summit, USA
Greta Palmer, FFPMANZCA, Department of Anaesthesia and Pain Management, Royal Children’s Hospital, Melbourne, Australia
Alan Percy, Civitan International Research Center, University of Alabama, Birmingham, USA
James Policy, Rett Clinic, Children’s Hospital Oakland, Oakland, USA
David Royle, MD, Division of Pediatric Orthopaedic Surgery, Morgan Stanley Children’s Hospital of New York Presbyterian, Columbia University Medical Center, New York, USA
Suken Shah, Department of Orthopaedics, Alfred I. DuPont Hospital for Children, Delaware, USA
Brian Smith, MD, Department of Orthopaedics, Yale University, USA
Ian Torode, Department of Orthopaedics, Royal Children’s Hospital, Melbourne, Australia
Stephen Tredwell, Emeritus Head of Paediatric Orthopaedics, Children’s Hospital, British Columbia, Canada
Hans Tropp, Department of Orthopaedic Surgery, University Hospital, Linkoping, Sweden
Harold van Bosse, MD, Department of Orthopaedics, Shriner’s Hospital for Children, Philadelphia, USA
Lyn Weekes, physiotherapist retired, UK
Alexander Wild, Department of Orthopaedics, Hessing Stiftung Augsburg, Germany,
Matthew Yates, Cerebral Palsy Education Centre, Melbourne, Australia

Corresponding author
Dr Helen Leonard
Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, 6872
Telephone: +61 08 9489 7790
Fax: +61 08 9489 7700
Email: hleonard@ichr.uwa.edu.au

Sources of support
The Australian Rett Syndrome program has been funded by the National Institutes of Health (5R01HD043100-05) and also the National Medical and Health Research Council (NHMRC) project grant #303189 for certain clinical aspects. The international Rett syndrome research program is funded by the International Rett Syndrome Foundation. HL is funded by a NHMRC program grant (#353514). There are no potential conflicts of interest or commercial support of the authors.

Acknowledgements
We would like to acknowledge the valuable contributions of our panel of parents; the work of the International Rett Syndrome Foundation (previously IRSA) in establishing and supporting Rettnet; the support of Drs Sarah Doyle, Michael Forness, Alison Hulme, Hossain Mehdian, Kit Song, Paul Sponseller and Helen Woodhead, and Mr Meir Lotan; and the information technology team at the Telethon Institute for Child Health Research in Western Australia.
ABSTRACT

Study design: Modified Delphi technique

Objective: To develop guidelines for the clinical management of scoliosis in Rett syndrome through evidence review and consensus expert panel opinion.

Summary of background data: Rett syndrome is a rare disorder and clinical expertise is thus with small case series. Scoliosis is a frequent association and the evidence base dealing with scoliosis management in this syndrome is limited. Parents have expressed needs for more information about scoliosis and Rett syndrome.

Methods: An initial draft of scoliosis guidelines was created based upon literature review and open-ended questions where the literature was lacking. Perspectives of four parents of Rett syndrome patients informed this initial draft. Access to an online and a word version of the draft were then sent to an international, multi-disciplinary panel via email with input sought using a 2-stage modified Delphi process to reach consensus agreement. Items included clinical monitoring and intervention prior to the diagnosis of scoliosis; monitoring following the diagnosis of scoliosis; imaging; therapy and conservative management; bracing; and pre-operative, surgical and post-operative considerations.

Results: The first draft contained 71 statements, 65 questions. The second draft comprised 88 items with agreement to strong agreement achieved on 85, to form the final guideline draft. A comprehensive, life-span approach to the management of scoliosis in Rett syndrome is recommended that takes into account factors such as physical activity, posture, nutritional and bone health needs. Surgery is indicated when the Cobb angle is approximately 40 to 50 degrees and must be supported by specialist management of anesthesia, pain control, seizures and early mobilization.

Conclusions: Evidence- and consensus-based guidelines were successfully created and have the potential to improve care of a complex co-morbidity in a rare condition and stimulate research to improve the current limited evidence base.

KEY WORDS Rett syndrome; scoliosis; neuromuscular diseases; Delphi technique, practice guideline

KEY POINTS

- A set of clinical guidelines for the management of scoliosis in Rett syndrome were developed based on expert expertise and clinical evidence
- Specific features of Rett syndrome such as genotype, seizures, autonomic disturbances and osteoporosis impact on the management of scoliosis
- A life-span approach commencing before the development of scoliosis and including comprehensive management from medical, therapy and surgical specialists is described
- Spinal fusion is recommended when the Cobb angle is approximately 40 to 50 degrees
MINI ABSTRACT
An international and multidisciplinary panel of clinicians participated in a modified Delphi technique to develop a set of clinical guidelines for the management of scoliosis in Rett syndrome. Items related to monitoring and conservative interventions prior to and following the diagnosis of scoliosis; and pre-operative, surgical and post-operative considerations.
INTRODUCTION
Rett syndrome is a rare neuromuscular disorder defined clinically by a set of criteria in 1988. Further to the identification of a link with a MECP2 gene abnormality these were later modified in 2002. It primarily affects females, results in severe intellectual disability and functional dependence and is associated with co-morbidities such as seizures, nutrition and growth problems, autonomic disturbances and osteoporosis. Scoliosis (of neuromuscular type) is the most common orthopaedic condition. Occurrence prior to adolescence is not unusual with data in our population-based Australian Rett Syndrome Database suggesting that the median age of onset for scoliosis is 9.8 years with about 75% affected by the age of 13 years. Like other types of neuromuscular scoliosis, scoliosis in these patients progresses more rapidly on average 14-21 degrees per year in small case series and may not necessarily halt with skeletal maturity. There may be adverse effects such as pain, loss of sitting balance, deterioration of walking skills and progressive restrictive lung disease.

The evidence base for the scoliosis management in Rett syndrome is limited. Some case series and one case study are available which can be supplemented by narrative reviews for neuromuscular scoliosis. For example, expert opinion from two sources suggests that planning for surgery should commence when the Cobb angle is greater than 40 to 60 degrees. Clinical trials in neuromuscular scoliosis are also limited focusing upon blood loss reduction. As RTT is rare, clinicians usually have exposure to small patient series.

Parents are integral to the management of scoliosis in Rett syndrome and can offer perspectives on management. Several families participating in the population-based Australian Rett Syndrome study had voiced concerns to researchers about lack of available information on scoliosis management. This led to the current project which included a review of the literature and the use of collective expertise of an international group of experienced clinicians as well as input from family members. A consensus building process was employed using the modified Delphi technique with the aim of increasing understanding and developing consensus guidelines for the clinical management of scoliosis in Rett syndrome.

MATERIALS AND METHODS
This project took the format recommended for the development of clinical guidelines by the National Health and Medical Council and the Royal College of Paediatrics and Child Health. The project was directed from the Telethon Institute for Child Health Research, Western Australia from 2006 to 2008 and the study was approved by the Ethics Committee of Curtin University.

Literature review and parent perspectives
A literature search was performed by AB, JD and HL. Databases included PubMed, Medline, the Cochrane Library, EMBASE, CINAHL, PsychINFO and Web of Science; online libraries included those of the World Health Organisation, CMA – Clinical Practice Guidelines, Geneva Medical Research, the National Guideline Clearinghouse, National Electronic Library for
Scoliosis in Rett syndrome

Health, Scottish Intercollegiate Guidelines, the British Orthopaedic Association, National Institute for Health and Clinical Excellence, and the Trip Database. Search and key words included Rett syndrome, co-morbidity, physiotherapy, scoliosis, predictors, bracing, anesthesia, surgery, outcome, neuromuscular, management, complications, orthopedic and techniques. The search was limited to English and the years 1980 to 2007. If the title and abstract described the management of neuromuscular scoliosis (determined by authors AB, JD, HL), the full paper was retrieved. Statements describing clinical management of scoliosis in Rett syndrome were extracted from the full text.

Rettnet, an online email information interchange for parents/persons with a RTT interest, was used to collect parent and carer perspectives. Using the filter word ‘scoliosis’ for postings between March 2001 and October 2006, interchange regarding scoliosis management were extracted.

Initial guideline development, expert panel recruitment and guideline redrafting using the modified Delphi process

Referenced statements extracted from the literature and Rettnet postings were categorized by AB and JD into topic areas. These were accompanied by a 5-point Likert scale for agreement rating (strongly agree, agree, neither agree or disagree, disagree, strongly disagree) with space for comments. If there was no literature, an open-ended question on management was constructed (by authors AB, JD, SF, HL). The statements and questions were listed in a word document and an online version created using HTML form and PHP script. Participants could indicate their level of agreement with dropdown menus and type in comments in the spaces provided, and responses could be saved, edited and submitted in stages. Data received were stored in a MySQL database on a secured server located at the Telethon Institute for Child Health Research.

Clinicians with Rett syndrome experience from different countries in the disciplines of orthopedics, spinal surgery, pediatrics, pediatric neurology, clinical genetics, anesthesia, nursing, physical and occupational therapy were identified by authors HL, JD and AB, and through publications and the Australian Rett Syndrome and InterRett databases. A Rettnet request was posted for parents to recommend clinicians with appropriate expertise. Snowball sampling using collegial recommendations was used to expand the sample. Parents who were participants in the Australian Rett Syndrome and InterRett studies were identified. Potential participants were contacted by telephone or email to request their participation; English was the language used. Seventy-two of the 128 identified clinicians were able to be successfully contacted. Sixty (83.3%) agreed to participate along with four parents.

For the first round of the Delphi process, members of the expert panel provided feedback on the emailed word document or online version which was username and password protected. Panel members were directed to respond to nominated sections relevant to their professional scope, for example, only orthopedic surgeons were required to respond to the statements and questions on imaging. A pre-determined level of consensus was established:
consensus was attained where a minimum of 70% of responses were within one response category of the median response.

The second guideline set was informed by these responses (drafted by AB, JD, SF and HL) and sent for second round consensus assessment. Any returned comments were considered for inclusion. This process was a modified Delphi process because consensus after round 2 was in the main clear and therefore we did not send panel members their previous responses together with the median responses for the group. The statements were then summarized to reduce repetition and sent to the panel for final endorsement. Some final discussion points were incorporated into the endorsed document where consensus allowed. A level of evidence using the Scottish Intercollegiate Guidelines Network grading scheme was applied to each item for which there was consensus: level 1 representing evidence from systematic reviews and randomized controlled trials (RCTs), level 2 case control or cohort studies, level 3 case reports or case series and level 4 expert opinion.

RESULTS

Literature review and parent perspectives
Search of 16 databases revealed 1,080 citations as potentially relevant. Of these, 183 articles were retrieved and reviewed in full text from August 2006 to March 2008: 42 supported the final guideline draft. No RCTs concerning neuromuscular scoliosis management were found.

Three hundred and nine Rettnet postings relating to scoliosis management were found with some families sending multiple postings. Common themes included conservative prevention of scoliosis progression, difficulties with spinal bracing, medical issues associated with severe scoliosis, anxiety about pending surgical procedures, a need for more pre-operative information and surgical outcomes.

Expert panel participation
Of the 60 clinicians agreeing to participate, 40 (66.7%) were orthopedic or spinal surgeons, six (10.0%) worked in areas of child neurology or developmental pediatrics, and there were eight (13.3%) physiotherapists or occupational therapists, two (3.3%) anesthetists, two (3.3%) clinical geneticists, one (1.7%) pediatric endocrinologist, and one (1.7%) spinal nurse.

Forty one participants responded including 25 (61.0%) orthopedic surgeons, seven (17.1%) physical or occupational therapists, four (9.8%) child neurologists or developmental pediatricians, two (4.9%) anesthetists, two (4.9%) clinical geneticists and one pediatric endocrinologist (2.4%). Nearly half (46%) were North American (46%), 11 (26.8%) were European, 9 (22.0%) were Australian with one (2.4%) from Israel. With regards to patients managed, 19 (54.3%) had managed more than 20, eight (22.8%) 11-20 patients, five (14.3%) 6-10 patients and three (8.6%) clinicians had managed less than five Rett syndrome patients.

Initial guideline draft and redrafting using the modified Delphi process
The initial guideline draft comprised six sections: monitoring and intervention prior to the diagnosis of scoliosis; monitoring and intervention after the diagnosis of scoliosis; imaging;
therapy; bracing; pre-operative considerations; peri-operative considerations; and post-operative considerations. All of the Rettnet topics were represented. The initial draft included 71 statements, 65 questions and a reference list.

Thirty-seven of 41 (90.2%) clinicians responded to the first round. Three of the four parents also responded and found that scope of the document was satisfactory and relevant to their experiences. Thirty-eight (92.7%) clinicians responded to version 2, which comprised of 92 items. The final guidelines document comprised 85 separate statements with agreement or strong agreement. Tables 1-4 list the items, together with levels of evidence, the median responses and the percentage of responses within 1 category of the median.

Two items were changed in response to comments received in the second round. Consensus was achieved for the item (Table 4 item 16) stating a preference for a single stage surgical approach. It was elected to expand this after discussion to “If extensive anterior-posterior surgery is planned, then consideration should be given to staging the procedure to reduce the risk of complications particularly if the child has significant co-morbidities.”

No consensus was achieved for the pain control regimen (Table 4 Item 29) as it was noted that medication regimens constantly change. In the final document, this was replaced with the more general statement “Post-operative analgesia must be closely monitored by a specialist pain team with 24 hour cover”.

The final guideline document was summarized to reduce repetition and was endorsed by 35 panel members (Table 5). At this stage, some orthopedic panel members wished to emphasize the importance of pelvic fusion in relation to the amount of pelvic obliquity and whether the patient was ambulating or not. However, as many different views were expressed during this discussion, the original statement was retained.

DISCUSSION

This project integrated available evidence in the literature with parental input and expert clinician consensus using a modified Delphi technique. The resulting guideline contains statements relevant to the development and progression of scoliosis in Rett syndrome, including monitoring as well as conservative and surgical interventions. This document is comprehensive with a life-span approach.

We initiated this study in response to the voiced concerns of parents who had many questions about the management of scoliosis and many of whom have felt that the provision of information about scoliosis management was poor. Incorporating parental concerns renders these guidelines reflective of consumer needs and supports their social validity. Guidelines are systematically developed statements that assist clinicians and patients to engage in best practice. Scoliosis management requires contributions from professionals with medical, surgical and therapy skills. For that reason, a multidisciplinary panel was sought. Although ‘drop out’ did occur, the number of participants and cross section of professions was reasonable. However we would acknowledge anesthetists and nurses were under represented which should be addressed during future guideline revision. Of those who participated, response rates were high and many constructive comments...
were received. Use of the internet and email enabled timely consultation across the world. The method employed permits time for considered responses. Lack of face-to-face contact can be both advantageous in allowing freedom of expression and reduction of group pressures and disadvantageous in that it restricts constructive debate over contentious issues such as the management of pelvic obliquity.26

A significant limitation of this project is that the peer-reviewed literature is very limited and even though expert exposure is also small, the consensus of experts played a particularly important role. This document is thus a current best effort to provide practitioners with guidance in the management of an important orthopedic condition in this rare disorder.

There are usually different ways to manage a clinical problem and many comments reflected the variety of clinical practice. For example, the panel endorsed use of 6 monthly antero-posterior X-ray films to assess the progress of scoliosis but some members of the panel requested both antero-posterior and lateral X-ray films at 12 monthly intervals in their practice. Similarly, use of the supine position for X-rays was recommended for girls who cannot sit but some clinicians commented that the supine position was preferred for all cases because the measures were felt to be more reproducible. The scoliosis guidelines therefore represent guidance and discussion points rather than a specific recipe for clinical management.

The clinical experience of our panel matched the consumer experience of a group of 168 parents with a daughter with RTT who described their perception of effectiveness of treatments for scoliosis in an online questionnaire. Parents judged bracing effective in delaying the need for surgery in a minority of cases and its use was tempered by commonly experienced adverse effects, and physiotherapy was considered beneficial to quality of life in nearly two thirds (62%) of cases countered by comments relating to the lack of effect on the progression of the scoliosis.12,25 This highlights the importance of involving parents, who have a wealth of knowledge, understanding and experience with both RTT and scoliosis, in health care. They are crucial partners in this process.18

Consistent with earlier recommendations in the literature,18,35,36 surgery should be conducted when the Cobb angle is approximately 40 to 50 degrees. Surgical intervention prior to the development of severe scoliosis and before the effects of other co-morbidities such as decreasing mobility with increasing age in RTT37 come into play has the potential to improve surgical outcomes. This recommendation is also a measurable outcome of the acceptance of these guidelines by the orthopedic community.

There is much need for additional research. As case series to date have been small, multi-institutional study would better represent the population. Larger samples would possibly permit sub-analysis of predictive factors of age of onset, genotype, preceding mobility level and severity of Cobb angle. Other issues that could be assessed include establishment of a relationship between supine and standing X-rays, the impacts of spinal bracing and physical therapy, timing and type of surgery (the latter relevant to optimal surgical approaches and cases with pelvic obliquity), post-operative pain and respiratory interventions, and post-
surgical complications and outcomes. Strategies for support after the immediate post-operative period have not been determined in these guidelines and this is also an important subject for further research.

In conclusion, these guidelines have been created using innovative methodology where no prior document existed in response to parental needs. The recommendations incorporate a comprehensive approach to multiple aspects of health in subjects with RTT and scoliosis. This document can be used by clinicians with less experience of RTT, to promote discussion among clinicians and caregivers, and act as a catalyst for further research.

REFERENCES –
Table 1 Agreement with items describing the monitoring and intervention prior to diagnosis of scoliosis

<table>
<thead>
<tr>
<th>Items describing monitoring and intervention prior to diagnosis (reference and study design)</th>
<th>Level of evidence (SIGN)</th>
<th>Median response</th>
<th>n/N (%) with median response or 1 category either side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All children with a clinical diagnosis of RTT should have a molecular test as genotype may influence the development and management of scoliosis (cohort study12)</td>
<td>2+</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>2. Children with abnormal early development and those who never learned to walk have been shown to be at higher risk of developing scoliosis. These children require closer monitoring (cohort study,12 case series14)</td>
<td>2+</td>
<td>strongly agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>3. A physical assessment of the spine should be conducted at the time of diagnosis of RTT</td>
<td>4</td>
<td>strongly agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>4. A physical assessment of the spine should be conducted at least every 6 months after diagnosis of RTT</td>
<td>4</td>
<td>agree</td>
<td>7/9 (77.8)</td>
</tr>
<tr>
<td>5. Develop, maintain and promote walking for as long as possible (case series,37 case series38)</td>
<td>3</td>
<td>strongly agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>6. It is important to maintain strength of the back extensors (case series14)</td>
<td>3</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>7. It is important to maintain flexibility of the spine (case series14)</td>
<td>3</td>
<td>strongly agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>8. It is important to implement a postural management scheme that includes appropriate support for correct sitting posture</td>
<td>4</td>
<td>strongly agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>9. It is important to implement a postural management scheme that includes sleeping posture supports</td>
<td>4</td>
<td>agree*</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>10. Because of the high prevalence of scoliosis in RTT, families should be given information about this early in the child’s clinical course (narrative review39)</td>
<td>4</td>
<td>strongly agree</td>
<td>8/9 (100.0)</td>
</tr>
</tbody>
</table>

*All items completed by 9 physicians and therapists; SIGN = Scottish Intercollegiate Guidelines Network; *1 strongly agree, 4 agree and 4 neither agree or disagree = therefore although there is consensus, this is the weakest of the items and therefore we feel more caution recommending this strategy.
Scoliosis in Rett syndrome

Table 2 Agreement with items describing the monitoring after diagnosis of scoliosis and imaging of scoliosis. Items in italics dropped because of no consensus direction.

<table>
<thead>
<tr>
<th>Items describing physical monitoring after diagnosis of scoliosis (reference and study design)</th>
<th>Level of evidence (SIGN)</th>
<th>Median response</th>
<th>n/N (%) with median response or 1 category either side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Referral should be made to an orthopedic surgeon when there is clinical concern regarding scoliosis (case series; narrative review)</td>
<td>3</td>
<td>strongly agree</td>
<td>30/30 (100.0)</td>
</tr>
<tr>
<td>2. Scoliosis monitoring should be conducted every 6 months (narrative review)</td>
<td>4</td>
<td>agree</td>
<td>25/30 (83.3%)</td>
</tr>
<tr>
<td>3. Scoliosis monitoring should be more frequent when there is evidence of low muscle tone</td>
<td>4</td>
<td>neither agree or disagree</td>
<td>23/30 (76.7)</td>
</tr>
<tr>
<td>4. Scoliosis monitoring should be more frequent when there is evidence of limited early development of mobility</td>
<td>4</td>
<td>agree</td>
<td>22/30 (73.3)</td>
</tr>
<tr>
<td>5. Scoliosis monitoring should be more frequent during growth spurts</td>
<td>4</td>
<td>agree</td>
<td>26/29 (89.6)</td>
</tr>
<tr>
<td>6. Scoliosis monitoring should be more frequent when the curve is progressing rapidly</td>
<td>4</td>
<td>strongly agree</td>
<td>27/30 (90.0)</td>
</tr>
<tr>
<td>7. Children with genotypes known to be at higher risk of more severe scoliosis (p.R168X, p.R255X, p.R270X) require more frequent monitoring (cohort study)</td>
<td>2</td>
<td>agree</td>
<td>27/30 (90.0)</td>
</tr>
<tr>
<td>8. Relative importance of factors that determine the frequency of orthopaedic assessment include</td>
<td>4</td>
<td>N (%) ranking in the top 5</td>
<td></td>
</tr>
<tr>
<td>1. Progression of the curve</td>
<td>26/28 (92.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Age of onset</td>
<td>22/28 (78.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Cobb angle</td>
<td>21/28 (75.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Skeletal maturity</td>
<td>17/28 (60.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Level of ambulation</td>
<td>15/28 (53.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Genotype</td>
<td>13/28 (46.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Current age</td>
<td>12/28 (42.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Level of lung function</td>
<td>10/28 (35.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Muscle tone</td>
<td>9/28 (32.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Pattern of the curve</td>
<td>6/28 (21.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Physical assessment in RTT should include symmetry of weight bearing in sitting (narrative review)</td>
<td>4</td>
<td>agree</td>
<td>29/30 (96.7)</td>
</tr>
<tr>
<td>10. Physical assessment in RTT should include level of walking ability including time spent walking and total distance walked</td>
<td>4</td>
<td>agree</td>
<td>30/30 (100.0)</td>
</tr>
<tr>
<td>11. Physical assessment in RTT should include sitting balance (narrative review)</td>
<td>4</td>
<td>agree</td>
<td>29/30 (96.7)</td>
</tr>
<tr>
<td>12. At each visit, weight should be measured (narrative review)</td>
<td>4</td>
<td>agree</td>
<td>28/30 (93.3)</td>
</tr>
<tr>
<td>13. At each visit, height should be measured (n=29) (narrative review)</td>
<td>4</td>
<td>agree</td>
<td>27/30 (93.1)</td>
</tr>
<tr>
<td>14. Due to the potential to lose height, the height of girls with RTT should be measured in the supine position</td>
<td>4</td>
<td>neither agree or disagree</td>
<td>25/30 (83.3)</td>
</tr>
</tbody>
</table>

Items describing imaging (reference and study design)

<table>
<thead>
<tr>
<th>Items describing imaging (reference and study design)</th>
<th>Level of evidence (SIGN)</th>
<th>Median response</th>
<th>n/N (%) with median response or 1 category either side</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Request an initial X-ray if there is evidence of a curve (narrative reviews; reliability studies)</td>
<td>4</td>
<td>strongly agree</td>
<td>21/21 (100.0)</td>
</tr>
<tr>
<td>16. Six monthly follow-up X-rays are suggested if the Cobb angle is more than 25 degrees before skeletal maturity (narrative reviews)</td>
<td>4</td>
<td>strongly agree</td>
<td>16/21 (76.2)</td>
</tr>
<tr>
<td>17. 12 monthly X-rays are required after skeletal maturity (narrative review)</td>
<td>4</td>
<td>agree</td>
<td>17/21 (81.0)</td>
</tr>
<tr>
<td>18. Plain radiography is sufficient in monitoring the progression of the curve (narrative reviews)</td>
<td>4</td>
<td>strongly agree</td>
<td>20/21 (95.2)</td>
</tr>
<tr>
<td>19. Standing upright antero-posterior and lateral spinal radiographs are advised for patients at their initial visit (narrative reviews)</td>
<td>4</td>
<td>strongly agree</td>
<td>20/21 (95.2)</td>
</tr>
<tr>
<td>20. Sitting upright antero-posterior and lateral spinal radiographs are advised for patients who cannot sit (narrative reviews)</td>
<td>4</td>
<td>strongly agree</td>
<td>21/21 (100.0)</td>
</tr>
<tr>
<td>21. Supine antero-posterior and lateral spinal radiographs are advised for patients who cannot sit</td>
<td>4</td>
<td>agree</td>
<td>19/21 (90.5)</td>
</tr>
<tr>
<td>22. Antero-posterior films alone may be used in follow up X-rays (narrative review)</td>
<td>4</td>
<td>agree</td>
<td>17/21 (81.0)</td>
</tr>
<tr>
<td>23. A hand and wrist radiograph can be taken to assess skeletal maturity (descriptive text)</td>
<td>4</td>
<td>agree</td>
<td>20/21 (95.2)</td>
</tr>
</tbody>
</table>

* Items completed by 30 orthopedic surgeons, physicians and therapists; § Items completed by 21 orthopedic surgeons; SIGN = Scottish Intercollegiate Guidelines Network.
Table 3 Agreement with items describing therapy for scoliosis and spinal bracing. Item in italics dropped because of no direction to the consensus.

<table>
<thead>
<tr>
<th>Items describing therapy for scoliosis (reference and study design)</th>
<th>Level of evidence (SIGN)</th>
<th>Median response</th>
<th>n/N (%) with median response or 1 category either side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Commence therapy as soon as there is clinical concern (case study)</td>
<td>3</td>
<td>strongly agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>2. Physiotherapy should be used to maintain general well being in children with RTT and scoliosis (narrative reviews)</td>
<td>4</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>3. Physiotherapy will not prevent the progression of an established scoliosis (narrative reviews)</td>
<td>4</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>4. Aim to increase the distance that the child can walk</td>
<td>4</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>5. Aim to increase the length of time that the child is able to stand on her feet</td>
<td>4</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>6. Aim for walking and/or standing at least 2 hours per day (case study)</td>
<td>3</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>7. For those who cannot walk, support standing in a standing frame or at least 30 minutes a day</td>
<td>4</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>8. Aim to maintain range of movement of joints (case series; narrative review)</td>
<td>4</td>
<td>strongly agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>9. Symmetrical supported seating is valuable for the child’s comfort and functioning (narrative reviews; case series; before and after study)</td>
<td>3</td>
<td>strongly agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>10. Time spent in daylight, and/or supplements of vitamin D should be considered to promote bone health (narrative review)</td>
<td>4</td>
<td>agree</td>
<td>10/10 (100.0)</td>
</tr>
<tr>
<td>11. Improving dietary intake of calcium should be considered to promote bone health (RCTs)</td>
<td>1+</td>
<td>agree</td>
<td>10/10 (100.0)</td>
</tr>
<tr>
<td>12. In severe scoliosis where surgery is not indicated, the management plan should include the provision of supported sitting to optimize posture - (Holmes et al 2003 – before and after study)</td>
<td>3</td>
<td>strongly agree</td>
<td>9/9 (100.0%)</td>
</tr>
<tr>
<td>13. In severe scoliosis where surgery is not indicated, the management plan should include the monitoring and treatment of pressure sores</td>
<td>4</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
<tr>
<td>14. In severe scoliosis where surgery is not indicated, the management plan should include chest physiotherapy, flu immunization and a low threshold for antibiotic use to minimize the effects of restrictive lung disease</td>
<td>4</td>
<td>agree</td>
<td>9/9 (100.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Items describing spinal bracing for scoliosis (reference and study design)</th>
<th>Level of evidence (SIGN)</th>
<th>Median response</th>
<th>n/N (%) with median response or 1 category either side</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. There is no consensus that spinal bracing is beneficial in reducing the progression of scoliosis in RTT (case series; narrative reviews; narrative)</td>
<td>3</td>
<td>agree</td>
<td>28/31 (90.3)</td>
</tr>
<tr>
<td>16. A brace is warranted in a very severe case of scoliosis where the child can’t sit up straight (case series)</td>
<td>3</td>
<td>neither agree or disagree</td>
<td>27/31 (90.0)</td>
</tr>
<tr>
<td>17. A brace is warranted where active seating and trunk activation cannot be achieved (case series)</td>
<td>3</td>
<td>agree</td>
<td>30/31 (96.8)</td>
</tr>
<tr>
<td>18. If tolerated, bracing should be used in the skeletally immature child to delay surgery (narrative reviews; narrative)</td>
<td>4</td>
<td>agree</td>
<td>29/31 (93.5)</td>
</tr>
<tr>
<td>19. The following are potential complications of bracing:</td>
<td></td>
<td></td>
<td>30/31 (96.8)</td>
</tr>
<tr>
<td>Pressure sores</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory impairment (case series)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discomfort (case series)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin irritation</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential to decrease physical activity (case series)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Items completed by 9 physicians and therapists, items 10 and 11 also completed by a pediatric endocrinologist; § items completed by 31 orthopaedic surgeons and therapists; SIGN = Scottish Intercollegiate Guidelines Network.
Table 4 Agreement with items describing the pre-operative9; peri-operative9; and post-operative considerations9. Items in italics dropped because of no direction to the consensus.

<table>
<thead>
<tr>
<th>Items describing pre-operative considerations (reference and study design)</th>
<th>Level of evidence (SIGN)</th>
<th>Median response</th>
<th>n/N (%) with median response or 1 category either side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A surgical objective is the restoration of the normal sagittal profile (narrative reviews16,21,25)</td>
<td>4</td>
<td>agree</td>
<td>19/21 (90.5)</td>
</tr>
<tr>
<td>2. A surgical objective is to achieve level shoulders and hips (narrative reviews24)</td>
<td>4</td>
<td>agree</td>
<td>20/21 (95.2)</td>
</tr>
<tr>
<td>3. A surgical objective is to achieve a spine that is balanced and fused (narrative review24)</td>
<td>4</td>
<td>strongly agree</td>
<td>21 (100.0)</td>
</tr>
<tr>
<td>4. Surgery should be performed when the Cobb angle is approximately 40 to 50 degrees (case series;8,11,16 narrative review25)</td>
<td>3</td>
<td>agree</td>
<td>18/21 (85.7)</td>
</tr>
<tr>
<td>5. Sitting balance is an important consideration when planning surgery for scoliosis in RTT (narrative review21)</td>
<td>4</td>
<td>strongly agree</td>
<td>19/20 (95.0)</td>
</tr>
<tr>
<td>6. Where there is a severe anaesthetic risk of complications, surgery should be performed at a specialist centre</td>
<td>4</td>
<td>strongly agree</td>
<td>21/21 (100.0)</td>
</tr>
<tr>
<td>7. Caution should be used when performing surgery in younger children due to the following problems: decreased trunk height, pulmonary restriction, ‘crankshaft’ phenomenon, secondary curvatures</td>
<td>4</td>
<td>agree</td>
<td>20/21 (95.2)</td>
</tr>
<tr>
<td>8. Surgery should not be delayed until skeletal maturity has been achieved (narrative review20)</td>
<td>4</td>
<td>agree</td>
<td>16/20 (80.0)</td>
</tr>
</tbody>
</table>

| Items describing peri-operative considerations (reference and study design) | 4 | agree | 24/25 (96.0) |

9. There should be a period of pre-operative hyperalimentation if weight is less than the 5th centile (narrative review relating to cerebral palsy24)	4	agree	21/25 (84.0)
10. The following markers of nutrition should be assessed:	4	agree	25/25 (100.0)
Body Mass Index	4	agree	25/25 (100.0)
Haemoglobin	4	agree	25/25 (100.0)
Electrolytes	4	agree	25/25 (100.0)
Albumin (narrative review21)	4	agree	25/25 (100.0)
White cell count (narrative review21)	4	agree	25/25 (100.0)
11. Given the higher incidence of decreased bone density in children with RTT, bone density should be assessed pre-operatively (n = 26) – (cohort study21)	4	neither agree or disagree	25/26 (96.2)
12. Patients with RTT need special anaesthetic consideration in line with other neuromuscular disorders. They are highly sensitive to analgesia, sedatives and volatile anaesthetics (case studies16,21; case control study20)	4	agree	21/21 (100%)
13. In addition to the pre-operative assessment used in all scoliosis surgery, the following must be considered before anaesthetising a child with RTT:	4	agree	23/25 (92.0)
Breathing patterns (narrative reviews16,21)	4	neither agree or disagree	24/24 (100.0)
Excess salivation (n = 24)	4	agree	23/24 (95.8)
Gastro-oesophageal reflux (n = 24) (narrative reviews20,21)	4	agree	20/25 (80.0)
Autonomic disturbance	4	agree	24/25 (96.0)
Seizure history and management (narrative review20)	4	agree	23/25 (92.0%)
Pre-operative ECG (narrative review24) to diagnose prolonged QT syndrome	4	agree	23/25 (92.0%)
14. A Bispectral Index Monitor should be used in inducing and maintaining an adequate level of anaesthesia in children who are extremely sensitive to anaesthetic agents (case studies25,26)	4	neither agree or disagree	25/25 (100.0)
15. If a reliable signal can be obtained, MEPs and/or SSEPs can be used to detect neurological injury during neuromuscular scoliosis surgery (case series;12,8,27)	3	agree	25/26 (96.2)
narrative reviews12,8,27	3	agree	21/25 (84.0)
16. A posterior only fusion should be the definitive management of neuromuscular scoliosis in girls with RTT (narrative reviews21)	4	agree	22/25 (88.0)
17. Both an anterior and posterior approach achieves maximal surgical correction and stability (narrative reviews21)	3	agree	24/25 (96.0)
18. In the majority of cases, it will be possible to use a posterior approach to spinal surgery (case series25)	3	agree	23/26 (88.5)
19. If antero-posterior surgery must be used, a single stage approach is preferable in order to reduce surgical insult (retrospective case series relating to cerebral palsy15)	4	agree	21/24 (87.5)
20. Fixation to the pelvis is undesirable in patients who are ambulant (narrative reviews26,27)	4	agree	23/25 (92.0)
21. If pelvic obliquity exists and the child is non-ambulant, pelvic fixation is indicated (narrative review20)	4	agree	23/25 (92.0)
22. There may be a role for halo-femoral traction intra-operatively in large, rigid curves (retrospective case control study[10]; retrospective prospective quasi-experimental study[11])

Items describing post-operative considerations (reference and study design)

23. Post-operatively, the following should be assessed as a measure of surgical success:

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complications including bleeding, infection and duration of ICU stay (narrative reviews;[16,20] case series[11,16,17])</td>
<td>3</td>
<td>agree</td>
</tr>
<tr>
<td>Cobb angle and achievement of fusion (narrative review;[16] retrospective case series[10])</td>
<td>3</td>
<td>agree</td>
</tr>
<tr>
<td>Respiratory status (narrative[5]; retrospective case series[10])</td>
<td>3</td>
<td>agree</td>
</tr>
<tr>
<td>Sitting balance, function and quality of life (narrative review;[16] before and after study;[16,42] descriptive study[43])</td>
<td>3</td>
<td>agree</td>
</tr>
<tr>
<td>Parental satisfaction (narrative reviews[16,17])</td>
<td>4</td>
<td>agree</td>
</tr>
<tr>
<td>Weight gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neither agree or disagree</td>
</tr>
</tbody>
</table>

24. Admit to HDU/ICU post-operatively (n = 27) (narrative review;[20] narrative review relating to cerebral palsy[52])

25. Care needs to be taken with regards the titration of analgesia so that pain relief is adequate, sedation is minimised and to ensure respiratory effort is not compromised (consensus guidelines[64])

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV paracetamol 15mg/kg, 6/24 Ketamine infusion 0.1-0.2mg/kg/hr to reduce opioid requirements, Morphine 10-20mcg/kg/hr or Tramadol 0.25-0.33mg/kg/hr (if respiratory depression a major concern and seizures are adequately controlled and/or are absence type or are not present), Diazepam 0.025-0.075mg/kg 6/24 for muscle spasm management, pain team review twice daily, 24 hour cover for review prn if deteriorates</td>
<td>4</td>
<td>agree</td>
</tr>
</tbody>
</table>

26. Frequent and aggressive chest physiotherapy should be used

27. A clear management plan should be constructed when the patient is transferred back to the ward

28. Seek expert advice to optimize nutritional status

29. Post-operative reviews should be carried out at 6 weeks and then every 2/3 months over the first year

30. Consult parents or caregivers to help assess the child post-operatively (narrative review[17])

31. Log roll for bed mobility

32. Sit over the edge of the bed on the first post-operative day

33. Transfer to a chair on the second post-operative day

34. Walking (if possible) on the third post-operative day

35. Post-operative reviews should be carried out at 6 weeks and then every 2/3 months over the first year

36. After one year, reviews should be carried out annually

~Items completed by 21 orthopedic surgeons; §Items completed by 25 orthopedic surgeons, anesthetists and physicians. One pediatric endocrinologist also answered item 3; αItems completed by 25 orthopedic surgeons, anesthetists and physicians with 7 therapists completing questions relating to therapy; SIGN = Scottish Intercollegiate Guidelines Network[31]
Table 5 Final guidelines endorsed by the expert panel for the management of scoliosis in Rett syndrome (RTT)

1 Monitoring and intervention prior to diagnosis of scoliosis

1.1 All children with a clinical diagnosis of RTT should undergo genetic testing as genotype may influence the development and management of scoliosis.

1.2 Because of the high prevalence of scoliosis in RTT, families should be given information about this early in the child’s clinical course.

1.3 Physical assessment of the spine should be conducted at the time of diagnosis of RTT and at least every 6 months thereafter.

1.4 Therapy should aim to:
 - Develop, maintain and promote walking for as long as possible.
 - Optimize strength of back extensors.
 - Maintain flexibility of the spine.
 - Implement a postural management scheme that includes appropriate support for correct sitting posture and sleeping posture supports.

2 Monitoring following a diagnosis of scoliosis

2.1 Referral should be made to an orthopedic surgeon when there is clinical concern regarding scoliosis.

2.2 Physical examination of the spine should be conducted at least every 6 months, but the frequency of assessment should be increased in the following situations:
 - Abnormal early development/never learning to walk
 - Low muscle tone
 - During growth spurts
 - Early age of onset
 - Greater Cobb angle
 - Children with genotypes known to be at higher risk of more severe scoliosis (p.R168X, p.R255, p.R270X)

2.3 Physical assessment in RTT should include:
 - Sitting balance and symmetry of weight bearing in sitting
 - Level of walking ability and time spent walking
 - Total distance walked

2.4 At each visit, height and weight should be measured.

3 Imaging

3.1 Request an initial X-ray if there is evidence of a curve.

3.2 It is preferable to assess skeletal maturity with a hand and wrist radiograph but assessment of the iliac crest growth plate is also an option.

3.3 Six monthly X-rays are suggested if the Cobb angle is more than 25 degrees before skeletal maturity and twelve monthly X-rays after skeletal maturity until evidence of no further progression.

3.4 Plain radiography is sufficient in monitoring the progression of the curve. The following views should be obtained and should include shoulder to pelvis:
 - Standing upright AP and lateral spinal radiographs for patients who can stand at their initial visit.
 - Sitting AP and lateral spinal radiographs for patients who cannot stand.
 - Supine AP and lateral spinal radiographs for patients who cannot sit.

3.5 AP films alone may be used in follow up x-rays.

4 Therapy and conservative management

4.1 Involve physiotherapists and occupational therapists as soon as scoliosis has been diagnosed.

4.2 Physiotherapy should be used to maintain musculoskeletal wellbeing in children with RTT and scoliosis. There is not yet evidence that physiotherapy will prevent progression of an established scoliosis.

4.3 Aim to prolong ambulation as long as possible. Aim to increase the distance that the child can walk and/or the length of time the child can stay on their feet (at least 2 hours per day where possible).

4.4 For those who cannot walk, use standing frames for at least 30 minutes a day.

4.5 Aim to maintain range of movement of joints.

4.6 Symmetrical seating is valuable for the child’s comfort and functioning.

4.7 Assess, monitor and optimize Vitamin D levels. Improve dietary intake of calcium and time spent in daylight to promote bone health.

4.8 In severe scoliosis where surgery is not indicated, the management plan should include:
 - The provision of supported seating to optimize posture
 - Monitoring and treatment of pressure sores
 - A low threshold for antibiotic use during respiratory infections to minimize the effects of restrictive lung disease.

5 Spinal Bracing

5.1 There is no consensus that bracing is beneficial in reducing the progression of scoliosis in RTT but it may used if seating and trunk activation cannot be achieved.

5.2 If tolerated, bracing should be used in the skeletally immature child, to help delay surgery.

5.3 The following potential complications of bracing must be considered: pressure sores, respiratory impairment, discomfort, skin irritation, exacerbation of gastro-esophageal reflux and the potential to decrease trunk strength, flexibility and physical activity.

6 Pre-operative considerations

6.1 Surgery should be performed in a specialist center due to the high risk of anesthetic and post-surgical complications.
Scoliosis in Rett syndrome

6.2 Surgery should not be delayed until skeletal maturity has been achieved, however, caution should be used before performing surgery in children younger than 10 years of age due to the following problems: decreased trunk height, pulmonary restriction, ‘crankshaft’, and secondary curvatures.

6.3 Surgery should be performed when the Cobb angle is approximately 40 to 50 degrees.

6.4 Surgical objectives should include:
- Achieving a spine that is balanced and fused
- Restoration of the normal sagittal profile
- Achieving level shoulders and hips
- Improving the well-being and functioning of the child
- Improving carer well-being.

6.5 There should be a period of hyperalimentation if weight is less than the 5th centile.

6.6 The following markers of nutrition should be assessed: BMI, Hemoglobin, electrolytes, albumin (<3.5mg/dl), white cell count.

6.7 Patients with Rett syndrome need special anesthetic consideration in line with other neuromuscular disorders. They are highly sensitive to analgesia, sedatives and volatile anesthetic agents.

6.8 In addition to the pre-operative assessment used in all scoliosis surgery, the following must be considered before anaesthetizing a child with Rett syndrome:
- Breathing patterns (hyperventilation, breath holding)
- Pre-operative arterial blood gases/capillary gases
- Gastro-esophageal Reflux
- Autonomic disturbance
- Seizure history, management and medications
- Pre-operative ECG to identify possible prolonged QT syndrome.

7 Surgical considerations

7.1 In the majority of cases it will be possible to use a posterior-only spinal fusion. This is the definitive management of neuromuscular scoliosis in girls with RTT.

7.2 If anteroposterior surgery must be used, a single-stage approach is preferable in order to reduce anesthetic and surgical complications but a staged procedure may be appropriate in the presence of significant co-morbidities.

7.3 Fixation to the pelvis is indicated if pelvic obliquity exists in the non-ambulant child. There is no consensus about the degree of obliquity that indicates fixation.

7.4 If a reliable signal can be obtained, Motor Evoked Potentials and/or Somatosensory Evoked Potentials can be used to detect neurological injury during neuromuscular scoliosis surgery.

8 Post-operative considerations

8.1 Admit to HDU/ICU post-operatively.

8.2 Care needs to be taken with regards the titration of analgesia so that pain relief is adequate and sedation is minimized to ensure respiratory effort is not compromised. Post-operative analgesia must be closely monitored by a specialist pediatric pain team with 24hr cover or Intensive Care specialists.

8.3 Frequent and aggressive chest physiotherapy should be used. Non-invasive positive airway pressure support may be required post-extubation (e.g. BiPAP).

8.4 A clear management plan should be constructed when the patient is transferred back to the ward.

8.5 Seek expert advice to optimise nutritional status.

8.6 Consult parents or caregivers to help assess the child post-operatively.

8.7 Mobility post-operatively:
- Log roll for bed mobility.
- Sitting on edge of bed day one post-op.
- Transfer to chair post op day two.
- Walking (if possible) post op day three.

8.8 Post-operative reviews should be carried out at:
- 6 weeks
- Then every two-three months over the first year
- Annually thereafter.

8.9 The following should be used to assess surgical outcome: complications including bleeding, infection and duration of ICU stay; Cobb angle and achievement of fusion; respiratory status; sitting balance, function and quality of life; parent and carer satisfaction.

Scoliosis in Rett syndrome

Scoliosis in Rett syndrome

