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ABSTRACT 

Turbulent flow, characterized by velocity fluctuations, accompanies many forms of 

cardiovascular disease and may contribute to their progression and hemodynamic consequences. 

Several studies have investigated the effects of turbulence on the magnetic resonance imaging 

(MRI) signal. Quantitative MRI turbulence measurements have recently been shown to have 

great potential for application both in human cardiovascular flow and in engineering flow. In this 

paper, potential pitfalls and sources of error in MRI turbulence measurements are theoretically 

and numerically investigated. Data acquisition strategies suitable for turbulence quantification 

are outlined. The results show that the sensitivity of MRI turbulence measurements to intravoxel 

mean velocity variations is negligible, but that noise may degrade the estimates if the turbulence 

encoding parameter is set improperly. Different approaches for utilizing a given amount of scan 

time were shown to influence the dynamic range and the uncertainty in the turbulence estimates 

due to noise. The findings reported in this work may be valuable for both in-vitro and in-vivo 

studies employing MRI methods for turbulence quantification. 

 

Key words: Turbulence quantification; turbulent flow; phase-contrast magnetic resonance 

imaging; constriction; numerical flow phantom. 
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1. INTRODUCTION 

While normal cardiovascular flow is predominately laminar, turbulent flow accompanies many 

forms of cardiovascular disease. In the human arterial tree, turbulence causes pressure drops over 

stenoses and may increase the risk for hemolysis [1] as well as platelet activation and thrombus 

formation [2,3]. Additionally, ample evidence suggests that turbulence is involved in the 

pathogenesis of atherosclerosis [4-6]. With a growing awareness of the implications of abnormal 

hemodynamics, the demand for reliable tools for the quantitative assessment of blood flow 

disturbances is increasing [7]. 

 

Turbulent fluid motion can be described as “an irregular condition of flow in which the various 

quantities show a random variation with time and space coordinates, so that statistically distinct 

average values can be discerned” [8]. By employing ensemble, time or space averaging, a 

velocity component u can be statistically separated into the averaged mean velocity U and the 

fluctuating velocity u’ according to u = U + u’ [9]. The intensity of the velocity fluctuations can 

be quantified by the standard deviation σ = 2'usqrt  [m s
-1

]. Under the ergodic hypothesis, 

ensemble, time and space averages are interchangeable [10]. This means for example that 

sampling over a spatial area that encompasses all turbulence space scales yields the same result 

as a convergent value sampled over time. 

  

Several studies have investigated the effects of turbulent flow on the magnetic resonance 

imaging (MRI) signal in order to establish methods for quantifying turbulence [11-18]. Recently, 

an in-vitro study indicated good agreement between the turbulence quantities obtained by MRI 

and particle image velocimetry [19]. In addition, MR turbulence quantification was recently 

successfully applied in-vivo for the first time [20]. Prior to this, MR methods for the 

quantification of turbulence have been sparingly applied [21]. This may partly be attributed to 

earlier limitations in scanner hardware; the advantages offered by modern MRI scanners, such as 

increased signal-to-noise ratio through the use of improved receiver coils and reduction of echo 

time through the use of high-performance gradients can be expected to increase their utilization. 

Moreover, usability may be enhanced by clarifying specific aspects of MR turbulence 

measurements that facilitate adequate application of the technique. Here, we will examine the 

practical consequences of some of the assumptions which underlie MR quantification of 
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turbulence and investigate how intravoxel mean velocity variations and noise affect the 

turbulence estimates. All methods that utilize the MR signal magnitude for turbulence 

quantification are subjected to the same sources of error; however, different approaches for 

obtaining turbulence estimates may be differently affected.  

 

The objective of this work was to investigate potential pitfalls and sources of error in MR 

measurements of turbulence quantities and to outline strategies for minimizing their effects. This 

was done by means of theoretical derivations and numerical simulations. 

2. THEORY 

MRI flow quantification of the mean velocity, U, is a standard clinical tool and a powerful 

research tool that can be used to quantify different components of blood transiting the left 

ventricle [22], for example. The most common MR tool for quantification of flow is phase-

contrast (PC) MRI [23] where bipolar gradients are used to apply flow sensitivity. Spins moving 

under the influence of a bipolar gradient, accumulate phase according to  

2

0

)()( dttxtG , (1) 

where γ is the gyromagnetic ratio, τ is the duration of half the bipolar gradient and G(t) describes 

the gradient waveform. In PC-MRI, spins are assumed to move with a constant velocity and Eq. 

(1) can be written as υ = u kv, where 
2

0
)( tdttGkv describes the amount of applied flow 

sensitivity. The phase difference between two, or more, flow encoding segments acquired with 

different kv-values is proportional to the fluid velocity. The net phase of all the spins within a 

voxel provides the mean velocity U [24]. For a voxel centered at a given spatial position, the 

complex-valued PC-MRI signal can be described by [25] 

dueusCkS uik
v

v

, (2) 

where C is a constant influenced by relaxation parameters, spin density and receiver gain, u is the 

velocity and s(u) is the spin velocity distribution within the voxel.  
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In contrast to MRI measurements of the mean velocity, where the phase of the complex-valued 

MR signal contains the information of interest, quantification of the fluctuating velocity, u’, can 

be achieved by exploiting the effects of turbulence on the MR signal magnitude. With Eq. (1) as 

a starting point, Gao and Gore [14] presented a theoretical analysis of the relation between 

turbulent flow and the MR signal. They found the effects of turbulence to be dependent on the 

Lagrangian integral time scale, T0, which is a measure of the evolution time of turbulence. For an 

ideal bipolar gradient, their expression describing the dependence of T0 appears as 

)/2exp()/exp(43(//23/2 00
33

0
22

0
1

0
22

GGe)0()( TTTTTk
v

vSkS , (3) 

where σGG represents the ensemble averaged standard deviation [14]. Gao and Gore noticed that 

special cases emerged when T0 is long or short in relation to τ. Their simplification for long time 

scales appears as  

22)2/1(e)0()( vk
v SkS . (4) 

In the Gao and Gore theory, it is assumed that ln(|S|/|S0|) is directly proportional to kv
2
. This is 

equivalent to assuming that |S(kv)| has a Gaussian distribution. Gao and Gore prescribed 

measurements with several kv-values to find the expected linear relationship between ln(|S|/|S0|) 

and kv
2
 and, thereby, σ. The work of Gao and Gore, in combination with others [15,16], 

constitutes a theoretical and experimental foundation for the effect of turbulent time scales on the 

MR signal. The method of Gao and Gore and the work of their predecessors have been reviewed 

by Kuethe and Gao [16]. 

 

Following a different theoretical approach which originated from Eq. (2), Dyverfeldt and 

colleagues [18] derived a relation which is similar to Eq. (4) and noticed that the data required 

for turbulence quantification can be obtained from a standard PC-MRI measurement. The theory 

underlying this method exploits the fact that the spin velocities within a voxel can be assumed to 

be normally distributed in turbulent flow. As a result, s(u) can be expressed as the Gaussian 

probability density function and Eq. (2) can be written as 

vv iUkk
v CekS

22)2/1()( . (5) 

In Eq. (5), σ represents the intravoxel spin velocity standard deviation (IVSD) which under the 

assumption of ergodicity equals the ensemble averaged standard deviation. Since Eq. (2) is a 

Fourier transform, |S(kv)| is Gaussian distributed also in the theory underlying this method. By 



 6(22)  

combining two MRI signals acquired with different kv-values, )(
1vkS  and )(

2vkS , the 

quantification of the velocity fluctuations can be obtained directly from the signal magnitude 

relationship according to 
22

2112
/)(/)(ln2

vvvv kkkSkSsqrt , 
21 vv kk . This 

approach will be referred to here as IVSD mapping and σ-values obtained in this manner will be 

abbreviated σIVSD. In practice, it is convenient to set one of the kv-values in the preceding 

equation to zero so that  

)(/)0(ln
2
2

IVSD v

v

kSS
k

sqrt . (6) 

This results in a direct relationship between the non-zero kv and the velocity encoding range 

(VENC) of the corresponding PC-MRI acquisition; VENC = π/kv. In PC-MRI velocity mapping, 

the VENC defines a strict dynamic range and velocities outside the VENC are aliased. In IVSD 

mapping, the VENC defines the IVSD value which is resolved with best sensitivity, ~ , 

according to ~  = VENC/π. This optimum is achieved at a signal magnitude ratio 0/ SS  of 

approximately 0.6 (analytically: e
-1/2

) [18]. 

 

The resemblance between Eq. (4) and Eq. (5) reflects the fact that, by originating from Eq. (2), 

the IVSD derivation implicitly requires that τ << T0.  Experimental MRI methods capable of 

providing data for the calculation of T0 [15,26] have been described but would have limited 

applicability in-vivo. However, as suggested by Gao and Gore [14], T0 can be estimated by l/σ, 

where l, the characteristic length, is approximately one third of the vessel diameter. Recently, 

IVSD mapping was carried out in a range of human cardiovascular applications and the highest 

values of σ, found in post-stenotic aortic flow, were about 0.7 m/s [20]. This gives a worst-case 

T0 estimate of about 10 ms and thus, for in-vivo investigations at modern clinical MRI scanners 

where the duration of one bipolar gradient lobe is typically around 0.5 ms, the short time scale 

assumption seems valid and preferable.  

3. MATERIALS AND METHODS 

An important assumption underlying MR turbulence methods is that |S(kv)| has a Gaussian 

distribution, even though other distributions may be used as well [18]. Also, MR methods for 

turbulence quantification require that the voxels are sampled in a way which sufficiently 
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encompasses the turbulence scales. The conditions for this to hold are dependent on the nature of 

the flow in combination with imaging parameters. Intravoxel mean velocity variations will 

contribute to the distribution of s(u) and noise will directly affect the appearance of |S(kv)|; in this 

study, the effects of these inevitable sources of error are investigated. Additionally, the effects of 

noise on different approaches for obtaining the standard deviation of |S(kv)| are compared. In 

exploring these aspects of MR turbulence measurements, we utilize the theory underlying IVSD 

mapping [18] in combination with a numerical flow phantom and two different MR simulation 

approaches. The MR simulations are tailor-made to allow investigations of the specific questions 

of interest.  

 

3.1. Numerical Flow Phantom 

A numerical flow phantom consisting of time-resolved data of steady turbulent flow in a 14.6 

mm diameter straight pipe with a 75% area reduction cosine shaped stenosis (Fig 1a) was 

generated from large eddy simulations (LES) [27]; Newtonian flow with Reynolds number 2000 

at the inlet was considered. At the inlet, the flow had a fully developed laminar profile with 

superimposed velocity disturbances. Inlet and outlet were placed at four unconstricted pipe 

diameters upstream and twenty-one diameters downstream from the center of the stenosis, 

respectively.  

 

 

Fig. 1. a) Schematic of the numerical flow phantom used in this work. b) Images of the 

instantaneous axial velocity in the numerical flow phantom at three different time points. Z 

shows the distance from the center of the stenosis, normalized by the un-constricted pipe 

diameter (Z = 1  14.6 mm). The main flow direction is the positive Z-direction, as indicated by 

the arrow. 
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LES is a computational technique in which the larger turbulent scales are resolved, while the 

smaller are modeled, and instantaneous velocity fields separated by small, finite, time steps are 

computed. The approach used here has previously been validated against direct numerical 

simulations and laser Doppler anemometry [28]. A structured mesh consisting of 6.2 million 

cells was constructed in ANSYS Gambit 2.3 (ANSYS Inc., Pittsburgh, PA, USA), and all 

computations were performed with ANSYS Fluent 6.3 (ANSYS Inc., Pittsburgh, PA, USA) on 

the Linux cluster Neolith (National Supercomputer Centre, Linköping, Sweden). The solution 

was advanced with a time step of 50 μs. Converged values of σ taken over time, σtime, (requiring 

at least 10000 time steps) were acquired along the centerline of the numerical flow field. 

 

3.2. Gaussian Distributions and Scales of Turbulence 

In turbulent flow, eddies exist on a wide range of time and space scales. Accurate values of σ can 

only be obtained by sampling the velocity field in a way that sufficiently encompasses the 

turbulence scales [29]. In experimental assessment of turbulence, sampling can be done over 

space and/or time. In laser Doppler anemometry, for example, repeated measurements of the 

velocity at a single point are carried out over a sufficiently long period of time. MR image voxels 

are built up by samples taken over both space and time and, therefore, the turbulence scales are 

sampled in both the temporal and the spatial domain. The contribution from the spatial domain is 

simply determined by the voxel size. How well the temporal dimension helps in building up a 

voxel suitable for turbulence quantification is dependent on the time separation between each 

sample. 

 

Simulations of MR turbulence measurements were carried out on the numerical flow phantom by 

considering isotropic voxels of 2 x 2 x 2 mm
3
 along the centerline of the phantom. To reflect the 

effect of the time separation between the acquisitions of two consecutive phase-encoding lines 

on the sampling of the turbulence scales, each voxel comprised data from 20 time steps in the 

numerical flow phantom, separated by 20 ms. This corresponds to the time difference between 

two phase-encoding lines in an interleaved three-directional PC-MRI experiment with a TR of 5 

ms. 
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The intravoxel velocity distribution, s(u), was obtained by computing a probability density 

estimate of the spin velocities within each voxel. Only the velocity component in the main flow 

direction was studied. From s(u), S(kv) was computed by means of Eq. (2) with kv set to match 

the highest σ-values in the numerical flow phantom. Finally, σIVSD was computed according to 

Eq. (6). The values of σIVSD were compared with σtime, obtained as described above, and σrms, 

which was computed directly from the velocities within each voxel as the root-mean-square 

deviation from their mean. Note that, by definition, σ-values obtained by MR turbulence 

measurements are estimations of σrms.  

 

Further, S(kv) was sampled by computing Eq. (2) for a range of kv-values. The distributions of 

s(u) and |S(kv)| obtained in this manner were compared to Gaussian curves, using the standard 

deviation that was obtained by the simulated IVSD measurements. 

 

 

 

3.3. Intravoxel Mean Velocity Variations 

Variations in the mean velocity within a voxel will contribute to the intravoxel distribution of 

spin velocities and thereby alter the appearance of S(kv). Denoting the intravoxel velocity 

distribution caused by mean velocity variations alone as sMVV(u) and the distribution attributable 

to turbulence as sturb(u), the joint intravoxel velocity distribution can be obtained by convolution:  

s(u) = sMVV(u) * sturb(u). (7)  

The Fourier transform relationship in Eq. (2) implies that Eq. (7) can be written as 

S(kv) = SMVV(kv) Sturb(kv),  (8)  

where S(kv) is the signal obtained from the measurement. Rearranging and inserting Eq. (8) into 

Eq. (6) gives: 

)(

)0(
ln

2
2

2

vMVV

MVV

v
IVSDturb

kS

S

k
sqrt . (9) 

Based on the measured σ-value and an estimation of the intravoxel mean velocity variation, Eq. 

(9) thus provides a way of estimating and compensating for the effects of intravoxel mean 

velocity variations on MR turbulence measurements. As seen from Eq. (9), the effect decreases 

with increasing turbulence. 
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In this work, the effects of intravoxel mean velocity variations were addressed by studying the 

spatial acceleration along the centerline of the numerical flow phantom. The acceleration was 

approximated as the linear velocity gradient over a voxel. In this way, pure spatial acceleration 

results in a boxcar (uniform) spin velocity distribution within the voxel. The quotient 

)0(/)( MVVvMVV SkS  in Eq. (9), can then be derived from Eq. (2) and appears as )2/(sinc vak , 

where a is the velocity difference over the voxel.  

 

3.4. Noise and Dynamic Range 

It has previously been noticed that MR turbulence measurements will provide unreliable 

estimates when the difference in signal magnitude between S and S0 is in the same order of 

magnitude as the noise [16]. However, due to the Rician distribution of MR magnitude data, 

noise does not only affect the precision of MR turbulence measurements but may also cause bias. 

Since the best sensitivity in IVSD mapping is obtained by using a kv-value of 1/ ~ , where ~  is 

the σ-value of interest, the dynamic range can suitably be described in terms of ~ . σ-values 

much lower than ~  cause a poor difference in signal magnitude between S and S0. Due to noise, 

estimates of low σ-values are consequently resolved with lower accuracy. This is not of great 

concern however, since σ-values much lower than the value of interest are presumably of limited 

clinical significance. More importantly, σ-values considerably greater than ~  will result in 

almost zero true signal magnitude in S(kv). Since the modulus of S(kv) is used, the effective noise 

will in these cases have a non-zero mean value, implying that the reconstructed signal magnitude 

will be overestimated and, consequently, that σ will be underestimated. To what extent this 

occurs is determined by the signal-to-noise ratio (SNR) and the kv-value. As the true signal in 

these cases is close to zero, the reconstructed signal magnitude can be considered to be 

constituted by noise alone. A useful expression for estimating the effect of noise in MR 

turbulence mapping can thus be obtained simply by letting the flow sensitized signal S(kv) be the 

mean amplitude of the noise, nm. In this way, Eq. (6) can be written as 

m

v

nSsqrt
k

/ln2
1

ˆ 0 , (10) 

which allows for an estimation of the σ-value at which the true signal magnitude equals the mean 

magnitude of the noise. At σ-values greater than ˆ , noise will on average dominate the 
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measured signal, implying an underestimation of σ. A corresponding approach for diffusion 

weighted imaging has been presented by Jones and Basser [30]. 

 

The impact of noise on MR turbulence measurements was assessed by using a simulation 

approach in which noise was added to a theoretically ideal MR signal.  This simulation did not 

comprise the numerical flow phantom used above. Instead, to exclude the effects of the flow 

condition and solely focus on the effects of noise, a complex-valued theoretical MR signal 

Stheory(kv∙σtrue) was generated by inserting a range of kv∙σtrue values into Eq. (5). σtrue represents a 

true intravoxel velocity standard deviation. The multiplication of kv and σtrue allows for findings 

to be expressed in more general terms. The maximum value of Stheory was 1 for kv∙σtrue = 0. 

Simulation of a measured signal, Smeasured(kv∙σtrue), was carried out by adding Gaussian distributed 

noise with zero mean and variance 0.0025 to the real and the imaginary part of the theoretical 

signal, thus giving it a maximum SNR of 20 for kv∙σtrue = 0 and decreasing SNR with increasing 

values of kv∙σtrue. |Smeasured(kv∙σtrue)| is thus Rician distributed and represents the MR signal 

magnitude that would have been measured at the present SNR. From |Smeasured(kv∙σtrue)|, ˆ  was 

computed by means of Eq. (10). Estimates of σIVSD were thereafter obtained using Eq. (6) and 

then multiplied with kv to yield kv∙σIVSD. The resulting values of kv∙σIVSD thus differed from kv∙σtrue 

only due to noise. This computation was repeated 100000 times so that mean and standard 

deviation values of Smeasured and kv∙σIVSD could be obtained for each value of kv∙σtrue. The standard 

deviation of Smeasured and kv∙σIVSD represent uncertainty due to noise.  

 

When additional scan time is available, different approaches for obtaining σ can be used; the 

effect of noise on the dynamic range will depend on the approach which has been chosen. Here, 

three different approaches were evaluated. The IVSD method without additional signal averaging 

was included as a reference and contrasted to three approaches that require a two-fold increase in 

scan time; namely, IVSD mapping with three averages of S(kv∙σtrue = 1), standard linear least-

squares fit of four measurements of ln(|S[(kv∙σtrue)
2
]|) and weighted linear least-squares fit of four 

measurements of ln(|S[(kv∙σtrue)
2
]|). kv∙σtrue values of 0, 0.6, 1 and 1.4 were used in the least-

squares approaches. Knowing that |S|/|S0| = 0.6 provides the best accuracy and that excessively 

higher and lower signal ratios are disadvantageous, we hypothesize that a weighted least-squares 

fit is advantageous, if compared to an unweighted fit. In the present study, the weights were 
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empirically set according to a Gaussian filter with standard deviation 0.2, centered at |S|/|S0| = 

0.6.  

4. RESULTS 

Maps of the instantaneous axial velocity in a centerplane of the numerical flow phantom at three 

different time points (Fig. 1b) indicate that the largest temporal velocity variations are present 

around Z = 3. The velocity over time at the centerline position Z = 2.5 is plotted in Fig. 2. 

 

 

Fig. 2. Plot of the axial velocity component over time in the numerical flow phantom at 2.5 

diameters downstream from the stenosis. 

 

A comparison between a simulated MR turbulence measurement (σIVSD), the root-mean-square 

deviation of the intravoxel velocities from their mean, σrms, and σtime as obtained by sampling the 

numerical flow field over time is shown in Fig. 3.  

 

 

Fig. 3. Turbulence intensity in the axial direction along the centerline of the numerical flow 

phantom. Solid line: σIVSD as obtained by a simulated MR turbulence measurement. Dotted line: 

true standard deviation of the velocities within each voxel. Dashed line: Convergent values of 

the standard deviation as sampled over time in the numerical phantom. Z shows the distance 

from the center of the stenosis, normalized by the un-constricted pipe diameter (Z = 1  14.6 

mm). The main flow direction is the positive Z-direction. 

 

The amplitude of the spatial acceleration along the centerline of the numerical flow phantom is 

shown in the upper panel of Fig. 4 along with the mean velocity. The lower panel shows the 

contributions from spatial acceleration, relative to the kv-value used in the simulated 

measurement. The greatest effect is seen at the site of flow acceleration in the stenosis where 

turbulence is low. In the area of elevated turbulence around Z = 3, the effect is less than 1%. 
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Figure 5 shows the appearance of the intravoxel spin velocity distribution s(u) and its Fourier 

equivalent |S(kv)| at Z = 3. Additionally, the appearance of ln(|S(kv
2
)|) is shown. The circles 

indicate the kv-value used in the simulation. Note that, although the agreement between s(u) and 

the Gaussian curve appears poor, |S(kv)| deviate from the Gaussian curve mainly at values clearly 

above the used kv. 

 

 

Fig. 4. The effects of spatial acceleration along the centerline of the numeric flow phantom. 

Upper panel: The mean velocity along the centerline of the numerical flow phantom (solid line, 

left vertical axis) is plotted together with the amplitude of the spatial acceleration (dotted line, 

right vertical axis). Lower panel: Relative to the kv-value used in the MR simulation, the 

contribution from spatial acceleration to the measured IVSD values is less than 3%. Z shows the 

distance from the center of the stenosis, normalized by the un-constricted pipe diameter (Z = 1 

 14.6 mm). The main flow direction is the positive Z-direction. 

 

 

Figure 6 outlines the appearance of the dynamic range in MR turbulence measurements. As 

compared to |Stheory(kv∙σtrue)|, |Smeasured(kv∙σtrue)| is on average overestimated at low SNR. The error 

bars show the uncertainty in the estimates of Smeasured due to noise (bar height = ± one standard 

deviation). Corresponding plots for ln(|S(kv∙σtrue)
2
|) can be seen in the middle panel. In the lower 

panel, values of σIVSD, normalized by multiplication with kv, are plotted against kv∙σtrue (solid line) 

with error bars showing the uncertainty of the IVSD estimates due to noise (bar height = ± one 

standard deviation). The dashed line shows the maximum value, kv ˆ , that can be measured 

without being underestimated at the present SNR. Additionally, the circle indicates the IVSD 

value with lowest uncertainty, ~ . 
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Fig. 5. Upper panel: The appearance of the intravoxel spin velocity distribution s(u) (solid line) 

at the centerline position Z = 3 is compared to a Gaussian curve (dotted line) with the standard 

deviation obtained in the simulated MR turbulence measurement. Middle panel: |S(kv)| (solid) 

and a corresponding Gaussian curve (dotted). Lower panel: ln(S(kv
2
)). The circles indicate the 

kv-value used in the simulation. Note, in the lower panels, that the two curves deviate only at kv-

values clearly higher than the one used in the simulation. 

 

 

Fig. 6. Dynamic range in PC-MRI IVSD mapping at SNR ≤ 20. The solid lines show the mean of 100000 estimates 

and the error bars represent ± one standard deviation. The dotted lines show the theoretical appearance in absence 

of noise. Upper panel: Compared to the theoretical signal behavior (|Stheory(kvσtrue)|), the measured signal 

(|Smeasured(kvσtrue)|) is overestimated at low SNR. The dashed line shows the lowest value of |S| that can be measured 

without, on average, being overestimated. Middle panel: Corresponding plots for ln(|S(kvσtrue)
2|). Lower panel: 

Measured IVSD value vs. true intravoxel velocity standard deviation compared to the theoretical relation. The 

dashed line shows the maximum value of kvσIVSD that can be measured without being underestimated at the present 

SNR, computed according to Eq. (10). The circle indicates the IVSD value with lowest uncertainty. 
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A comparison between different approaches for utilizing additional scan time and their effects on 

the dynamic range can be seen in Fig. 7b-d. The IVSD method without additional signal 

averaging is included as a reference (Fig. 7a). In each panel, the quantity which has been 

measured is plotted against true intravoxel velocity standard deviation, σtrue, normalized by 

multiplication with kv, (solid lines) with error bars showing the uncertainty due to noise. The 

dotted lines show the theoretical relation and the dashed lines show ˆ  for IVSD mapping 

without additional signal averaging. Note that IVSD mapping with signal averaging of S(kv) (Fig. 

7b) and the proposed weighted least-squares approach (Fig. 7d) extends the dynamic range, 

whereas the standard least-squares approach has the opposite effect (Fig. 7c). 

 

 

Fig. 7. Comparison between different approaches for utilizing additional scan time and their 

effects on the dynamic range. In each panel, the average of 100000 estimates is plotted against 

true intravoxel velocity standard deviation, σtrue, normalized by multiplication with kv, (solid 

lines) with error bars showing ± one standard deviation. The dotted lines show the ideal 

theoretical relations. The dashed lines show the maximum values that can be measured without, 

on average, being underestimated when using IVSD mapping without additional signal 

averaging. a) The IVSD method without additional signal averaging is included as a reference. 

b) The IVSD method with three signal averages of S(kv). c) Standard least-squares (LS) fit using 

four kv-values. d) Weighted least-squares (wLS) fit using four kv-values. NSA = number of signal 

averages. 
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5. DISCUSSION 

In this study, fundamental aspects of the theory underlying MR turbulence measurements have 

been investigated. Methods for assessing the effects of noise and intravoxel mean velocity 

variations have been derived. By means of two different simulation approaches, the 

consequences of these sources of error on the MR signal used for turbulence quantification have 

been demonstrated. 

 

In theory, MR methods for the quantification of turbulence seek to estimate σrms, the root-mean-

square deviation of the intravoxel velocities from their mean. When the flow is ergodic and the 

voxels are built up by samples that sufficiently reflect the turbulence scales, the turbulence 

quantity measured by MRI will correspond to a σ-value measured by, for example, laser Doppler 

anemometry, given that this method too is applied with a sufficient sampling of the turbulence 

scales. A comparison between σIVSD as obtained by a simulated MR measurement and σrms 

showed excellent agreement (Fig. 3) and demonstrates the potential of MR turbulence 

quantification. Additionally, σIVSD agreed well with σtime, which was obtained by sampling the 

numerical flow phantom over time. Notwithstanding the MR simulation approach used here, 

these findings support the results recently reported by Elkins et al [19] which indicated a good 

agreement between turbulence quantities obtained by MRI and particle image velocimetry. 

 

It should be noted that this study did not comprise measurements. Instead, to allow a thorough 

investigation of specific aspects of the theory underlying MR turbulence quantification, tailor-

made MR simulations were designed. To perform a complete MR simulation of turbulent flow 

was beyond the scope of this study and remains a challenge. However, since the gradient 

waveform is reduced to one variable, kv, and relaxation parameters have no effect on the validity 

of the MR methods for quantification of turbulence used in this study, direct computations on a 

numerical flow phantom provide a good way of examining specific aspects of the accuracy of 

these methods. The numerical flow phantom used in this work allowed us to synthesize the MR 

signal directly from the intravoxel velocity distribution, using Eq. (2), and thereby simulate MR 

turbulence measurements. The flow in the numerical phantom is visualized in Fig. 1 for three 

time points. The plot of instantaneous velocity at the centerline position Z = 2.5 (Fig. 2) shows 

the apparently random behavior which is characteristic for turbulent flow. Although 6.2 million 
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cells were used in the mesh, the voxels in the area of high turbulence encompassed only about 

2000 cells. Combining data from multiple time steps in the numerical flow phantom thus helped 

in increasing the apparent intravoxel spin density. Still, the relatively low number of cells within 

the 2
3
 mm

3
 voxels may have affected the statistical analysis of the intravoxel velocities and 

thereby the appearance of s(u) and S(kv) in the MR simulations.  

 

Approaches for acquiring data suitable for turbulence quantification can be described with 

respect to the importance of sampling the turbulence scales. By definition, when τ << T0, the 

turbulent eddies appear stationary over the short duration of the observation time. The voxel size 

used in an experiment is often smaller than the largest turbulence space scales which can be of 

the same order of magnitude as the vessel, or pipe, diameter. This has important implications for 

the design of pulse sequences for measuring turbulence quantities and implies that sampling the 

voxel at several points in time may be necessary for sufficient inclusion of the turbulence scales. 

In MR imaging, the temporal dimension comes into play in different ways and how well it helps 

in building up a voxel suitable for turbulence quantification may depend on factors such as the 

choice of gradient encoding scheme, the k-space trajectory and the number of signal averages. 

The Lagrangian time scale, T0, is an order of magnitude representation of the statistical memory 

of the flow and it may therefore be preferable to sample the temporal dimension with a time 

difference of more than T0 between each sample. For in-vivo applications where cardiac-gated 

time-resolved PC-MRI is most often used, two consecutive phase-encoding lines are temporally 

separated by the duration of one cardiac cycle, and this is not an issue. If a multiple number of 

phase-encoding lines are acquired per cardiac cycle, an interleaved flow encoding will keep the 

consecutive samples separated by at least four TRs, in cases of three-directional measurements. 

Although time-resolved PC-MRI can also be applied to steady in-vitro flow, this is usually not 

done. In such cases, beneficial effects can be obtained by repeating the acquisition multiple times 

and perform signal averaging. In addition to improving the SNR, this will lead to improved 

sampling of the turbulence time scales, given that there is a sufficient time difference between 

the acquisitions of a given phase-encoding line. An alternative, applicable both to in-vivo and in-

vitro studies, is to use an echo planar imaging (EPI) sequence. In this case, the time difference 

between consecutive phase-encoding lines will be small. However, if compared to a non-EPI 

sequence, the use of EPI will allow for a large number of signal averages. Ultimately, this could 



 18(22)  

be beneficial in terms of the sampling of the turbulence time scales. It should be noticed that 

view to view variations, such as the ones described here, are a cause of ghosting artifacts, and 

that ghosting would induce errors in the estimates. An approach which can be used to estimate 

the effects of ghosting on MR turbulence measurements has been proposed [19] but remains to 

be validated. However, severe ghosting is normally easily detected in the images. 

 

The spatial acceleration (Fig. 4) in the stenotic part of the flow phantom was as high as 1 m/s 

over a distance of 2 mm, and thus constituted a good test case for assessing the effects of 

intravoxel mean velocity variations on MR turbulence measurements. Relative to the σ-value of 

interest, defined by ~  = 1/kv, the maximum contribution from spatial acceleration was less than 

3%, in spite of the high acceleration. In the decelerating part of the flow jet, where the elevated 

values of σIVSD are located, the contribution was less than 1%. This confirms recent in-vivo 

observations [20], and suggests that the effect of intravoxel mean velocity variations on MR 

turbulence measurements is negligible.  

 

The results presented in Fig. 6a-b describe the effects of the non-zero mean value of low SNR 

MR magnitude data. As predicted by theory, the consequence of this for IVSD estimation 

appears as in Fig. 6c where kv∙σtrue values greater than kv∙ ˆ  are underestimated. Note that the 

value of kv∙ ˆ  in Fig. 6 is dependent on the present noise level. An overall increase in SNR will 

increase ˆ  and vice versa.  

 

When scan time is not a critical issue, improved SNR can be obtained by taking the average of 

repeated measurements of S. Alternatively, each repeated measurement can be carried out with a 

different kv-value. If this is done, it is important to appreciate that low kv-values lead to a poor 

difference in signal magnitude and that high kv-values are at risk of being affected by the non-

zero mean value of low SNR MR magnitude data (Fig. 6a and Fig. 6b). From our comparison 

between three approaches that would require the same amount of scan time, it can be seen that a 

non-weighted least-squares fit of the measurement points is disadvantageous (Fig. 7). Since the 

best accuracy is obtained when |S|/|S0| is around 0.6, we have hypothesized here that in 

applications where multiple kv-values is used, a weighted least-squares fit is beneficial. This is 

confirmed by the results shown in Fig. 7 where the weighted least-squares approach extends the 
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dynamic range (Fig. 7d). An extension of the dynamic range is also obtained by performing 

signal averaging in IVSD mapping (Fig. 7b). In addition, this approach provides the greatest 

increase in accuracy at the central part of the dynamic range and should be most beneficial with 

respect to the sampling of the turbulence time scales. In applications where there is an extremely 

wide range of σ-values of interest, or when an order of magnitude estimation of the σ-values 

cannot be made, the dynamic range extension obtained by the weighted least-squares approach 

proposed here may be helpful. Optimization of weights was beyond the scope of this work, but it 

is recommended for application studies. When the σ-values of interest can be reasonably 

approximated, signal averaging using the same kv-value is the best option. 

6. CONCLUSION 

We have studied the practical consequences of important aspects of the theory underlying MR 

turbulence measurements, and presented several findings that may facilitate future applications 

of the technique. The findings are applicable to all approaches for MR quantification of 

turbulence that use information contained in the MR signal magnitude. Data acquisition 

strategies suitable for turbulence quantification have been outlined. We have derived an 

expression that describes the impact of intravoxel mean velocity variations and presented results 

that suggest that the effects are negligible. We have also investigated the impact of noise. The 

turbulence estimates may be underestimated if the SNR is low and the kv parameter is set too low 

in relation to the values of σ being studied. If kv is set too high, the uncertainty in the estimates 

will increase. The methods for the assessment of the dynamic range presented here can be 

applied prior to the measurements to design a suitable imaging protocol, as well as 

retrospectively to evaluate the dynamic range in an acquired dataset. Additionally, we have 

shown that approaches for MR quantification of turbulence that utilize multiple kv-values benefit 

from using a weighted least-squares approach.  
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