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ABSTRACT

Sex steroids are inevitable in women. However, long-term exposure to sex
steroids increases the risk of breast cancer. A complete understanding of sex
steroid control of the breast and how it relates to breast cancer risk is still lacking.
Angiogenesis and proteolytic enzyme activity are crucial for the process by
which tumors evolve into a vascularized, invasive phenotype. Matrix
metalloproteinases are potent matrix-degrading enzymes that affect several steps
in tumor progression including angiogenesis. In the female reproductive organs,
sex steroids regulate angiogenesis and MMP activity, yet little is known how sex
steroids affect these crucial events in normal and malignant breast tissue.

This thesis elucidates a link between sex steroids, MMP activity, and
angiogenesis. It is shown that estradiol down-regulates while tamoxifen up-
regulates the protein expression and activity of MMP-2 and MMP-9 in human
breast cancer cells in vitro and in human breast cancer xenografts in vivo. The
results further suggest that a biological consequence of this regulation may be
modulation of tumor angiogenesis. The net effect of adding tamoxifen to
estradiol treatment was an increase in extracellular levels of the endogenous
angiogenesis inhibitor endostatin and decreased levels of the tumor promoter
TGF-B1 compared to estradiol treatment only. This was accompanied by reduced
vasculature and decreased tumor growth. Similarly, a regulatory effect of
estradiol and tamoxifen on endostatin generation was observed in normal
human breast tissue by whole-tissue culture and microdialysis in human breast
tissue in situ.

In conclusion, the results presented in this thesis suggest previously
unknown mechanisms of action of estradiol and tamoxifen in breast cancer and
in normal human breast tissue, and novel means by which estradiol may tip the
scale to favor angiogenesis. This knowledge may be important for the
understanding of sex steroid dependent breast carcinogenesis and for the future
development of tissue-specific preventive as well as therapeutic strategies

against breast cancer.
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1. BACKGROUND

1.1 Sex steroids and the breast

Breast cancer is the most common malignancy among women in the Western
world today [1], in Sweden affecting approximately one in every ten women
during her lifetime [2]. Sex steroids exert potent effects on the breast, and the
relationship between sex steroids and breast cancer has been recognized for
more than a century [3]. It is known that sex steroids are crucial for the
development, proliferation, and differentiation of the normal human
mammary gland [4]. However, a complete understanding of this hormonal
control and how it relates to breast cancer risk is still lacking. Epidemiological
studies have revealed that an early menarche, late menopause and hormone
replacement therapy increase breast cancer risk, while an early menopause and
breast-feeding are protective, suggesting that long-term exposure to sex
steroids, both endogenous and exogenous, increases the risk of breast cancer

[5-9].

The development of the normal human breast is a progressive process initiated
during embryonic life and believed to be completed only by the end of a first
full pregnancy [10]. At birth, only a primitive ductal system is present and the
major development takes place during adolescence when lobular structures are
formed. Breast development reaches full maturity and function during
pregnancy and lactation, as the epithelial cell content expands dramatically
(Fig. 1). The final differentiation induced by full term pregnancy is believed to
reduce susceptibility of the mammary epithelium to malignant transformation,
owing to decreased proliferation, decreased carcinogen binding, and an

increase in DNA repair capacity [11].
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The majority of breast cancers are initially hormone-dependent and of luminal
epithelial phenotype [12]. The primary estrogen in humans is 173-estradiol,
which is produced mainly by the ovaries in premenopausal women. It is also
formed in peripheral tissues from circulating androgens derived from the
ovaries and/or the adrenal gland [13]. After menopause, the circulating levels
of estradiol are greatly reduced. However, postmenopausal women have been
shown to maintain breast tissue estradiol levels comparable with those in
premenopausal women and 10-20 times higher than corresponding plasma
levels [14;15]. Moreover, in breast tumors, tissue concentrations of estradiol
have been shown to be higher than in normal breast tissue [14-16]. These
findings support the notion that local estrogens may contribute to breast tumor

development and progression, described as the intracrine concept [17].

Fig. 1. The mature breast consists of a branching, tree-
like network of ducts which are lined by a double layer

Duct of luminal epithelial cells surrounded by a layer of basal

or myoepithelial cells and a basement membrane that

?0""90“"9 separates them from the intra-lobular stroma.
issue

The levels of estradiol locally in the breast are a consequence of uptake from
the circulation together with local formation of estradiol by the breast tissue
itself. The latter may occur through the transformation of androgens into
estrogens by aromatization and/or by conversion of estrone sulphate and
estrone into bioactive estradiol via activities of the enzymes estrone sulphatase
and 17p-hydroxysteroid dehydrogenases (Fig. 2)[17;18]. In situ aromatization

has been shown to enhance estradiol levels in breast tumors [19], and the
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activity of 17p-hydroxysteroid dehydrogenases may have prognostic
significance in breast cancer [20;21]. Plasma progesterone has been shown to
positively correlate with local tissue levels of estradiol, suggesting that
progesterone may be one regulator of local conversion of estrogen precursors

into potent estradiol in normal breast tissue [22].

STEROID

Estrone sulphate PHATASE
17BHSD2
Caone ) T Cawaa)
—_—
17pHSD1
ROMATASE

Fig. 2. Enzymatic mechanisms of estrogen synthesis.

Androgens

1.2 Hormone receptors

Classically, estrogen and progesterone exert their effects by diffusing into the
cell and binding to their nuclear receptors which in turn bind steroid
responsive elements on DNA or engage in protein-protein interactions [23]. In
addition to this classical mechanism, a non-genomic activity of the estrogen
receptor (ER) has been described by which membrane-associated ER is able to

exert rapid cellular changes [23].

1.2.1 Estrogen receptors

To date two nuclear receptors for estrogen have been identified, estrogen
receptors a (ERa) and  (ERP). The two ERs are encoded by different genes but
share a highly conserved DNA binding domain, thus both receptors bind to
similar targets [24]. The transcription mediated by ERa is triggered by two
activation domains, AF1 and AF2, of which AF1 is ligand-independent and
AF2 is ligand-dependent. ERP is however devoid of the AF2 domain. The
affinity for estradiol is considered to be similar for ERa and ERp, although for
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other ligands such as phytoestrogens and anti-estrogens the affinity varies.
Both estrogen receptors are expressed in normal and malignant breast tissue,
but while ERa, often denoted as ER, has been extensively studied, the function
of ERp is not yet well understood. In normal breast tissue, approximately 4-

10% of epithelial cells express ERa [25].

1.2.2 Progesterone receptors

The effects of progesterone is mediated by the progesterone receptor (PR)
which is expressed as two isoforms of a single gene, PR-A and PR-B [26]. While
normal breast tissue co-expresses both receptors at similar levels, the ratio of
PR-A to PR-B has been reported to increase in breast cancer [27].
Approximately half of primary breast cancers expressing ER also express PR
[26]. PR is an ER-regulated gene, and its presence indicates a functional ERa-

pathway [26;28].

1.3 Proliferation of the breast

Sex steroids have been shown to influence several steps in the development
and growth of tumors, such as DNA damage, proliferation rate, and induction
of growth factors [29;30]. Estrogens may directly stimulate the transcription of
genes involved in cell proliferation [31], as well as induce and interact with
growth factors [32]. For instance, estrogens influence the biosynthesis of
insulin like growth factor 1 (IGF-1) in the liver and have been found to regulate
IGF-1 gene transcription [33]. In turn, IGF-1 stimulates proliferation of breast
cancer cells and epidemiological studies have found an association between
free circulating levels and breast cancer risk [34;35]. Also, extracellular levels of
free IGF-1 locally in the normal breast have been shown to be doubled in the
luteal phase of the menstrual cycle compared with the follicular phase [36].
Proliferation of normal breast tissue is at its highest during the luteal phase of

the menstrual cycle, when concentrations of both estrogen and progesterone
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are high [37]. However, experimental data show that normal proliferating
breast epithelial cells do not express ERa [25]. It has therefore been suggested
that estrogen and progesterone may stimulate proliferation of normal breast
epithelium via paracrine signals secreted by steroid-receptor positive stromal

cells [25].

Although in vivo data strongly suggest that both estrogen and progesterone are
mitogenic for the breast epithelium, in vitro experiments have been less
conclusive as to the role of progesterone [38]. Synthetic analogues to
progesterone, the progestins, have been found to inhibit, stimulate or have no
effect on the proliferation of normal breast epithelium or breast cancer cells in
vitro [29]. On the other hand, recent data indicate that it is the combination of
estradiol and progestins in long term hormone-replacement therapy (HRT)

that correlates most strongly with an increased risk of breast cancer [5;6;39].

1.4 The anti-estrogen tamoxifen

The non-steroidal anti-estrogen tamoxifen is a cornerstone in the medical
treatment of ER-positive breast tumors today. Five years of adjuvant tamoxifen
significantly reduces breast cancer recurrence and mortality, irrespective of age
and menopausal status [40]. The Swedish Breast Cancer Cooperative Group
reported that five years of adjuvant treatment with tamoxifen in
postmenopausal breast cancer patients lowered the risk of recurrence or death
by 18% compared to only two years of treatment [41]. Further, long-time
follow-up of these patients demonstrated a significantly reduced mortality
from cardiovascular disease in the patient group receiving tamoxifen for five

years compared to patients in the two-year group [42].

Tamoxifen belongs to the category of selective estrogen receptor modulators
(SERMs), exhibiting inhibitory effects in the breast and stimulatory effects in

other tissues such as the uterus and bone [43]. Tamoxifen inhibits estrogen
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action by blocking AF2 activity, thus antagonizing ER action in cells where
AF2 is dominant while having agonist effects where AF1 activity is dominant
[24]. Major metabolites of tamoxifen are N-desmethyltamoxifen and trans-4-
hydroxytamoxifen. One major action of tamoxifen is the cytostatic induction of

G cell cycle arrest, thus slowing cell proliferation [44].

In contrast to tamoxifen, the steroidal SERM ICI182,780 (fulvestrant; Faslodex)
demonstrates pure anti-estrogenic effects on the majority of tissues [45].
ICI182,780 is a potent inhibitor of estrogen-regulated gene transcription. It
blocks ER transactivation from both the AF1 and AF2 domains and,
importantly, induces ER degradation [46;47]. Although ICI182,780 has been
shown to reduce ERa protein levels by 90%, there is still controversy as to the
effects on ERP. In MCF-7 cells, ICI182,780 has been shown to increase the
protein stability and/or protein levels of ERf3 [48].

1.5 Angiogenesis and the tumor microenvironment

1.5.1 Tumor dormancy

Carcinogenesis is a complex multi-stage process that includes initiation,
promotion, and progression. During carcinogenesis, cancer cells become self-
sufficient in growth signaling by deregulation of certain oncogenes and
suppressor genes [49]. Also, cancer cells become insensitive to anti-growth
signals and unresponsive to apoptotic signals. However, for a tumor to
progress and grow beyond the size of a few millimeters, it must recruit and
sustain its own blood supply [50]. This may be established from an already
existing vascular network by the process of angiogenesis [51]. Clinical and
experimental evidence suggest that human tumors may persist for long
periods of time as microscopic lesions that are in a state of dormancy [52-54].

For instance, autopsies of individuals who have died from car accidents or
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other trauma revealed that carcinoma in situ is found in the breast of 39% of
women age 40 to 50 years [54], while only 1% of women in the same age range
are diagnosed with cancer. Hence, it appears that additional signals are needed
for tumors to progress beyond this dormant state and become potentially
lethal. Several hypotheses to explain the phenomena of tumor dormancy have
been proposed [55;56]. For instance blocked or impaired angiogenesis may be

one cause of the dormant state [57-59].

1.5.2 The angiogenic switch

The process by which tumors evolve into a vascularized phenotype, the so
called “angiogenic switch”, is initiated by the secretion of specific endothelial
cell growth factors derived from either tumor cells or the surrounding stroma
[60]. This is followed by migration and proliferation of activated endothelial
cells, forming new capillary tubes, and the remodeling of basement
membranes (BMs) and extracellular matrix (ECM) by matrix-degrading
enzymes such as the matrix metalloproteinases [61]. As endothelial cells
differentiate and synthesize new basement membranes, the vascular lumen is
formed, and a mature vasculature is formed once new and pre-existing vessels

are linked and stabilized by pericytes and smooth muscle cells.

1.5.3 Tumor microenvironment

The importance of the tumor microenvironment, including tumor-associated
“normal” cells such as immune/inflammatory cells, endothelial cells, pericytes,
fibroblasts, as well as the ECM, in angiogenesis and tumor progression has
been recognized since Pagets “seed and soil” theory in 1889 (Fig. 3) [62]. The
influence of the microenvironment in tumor-induced angiogenesis may be
illustrated by the fact that breast tumors implanted into different tissues show
diverse angiogenic responses [63]. Moreover, results from one study suggest

that genetic alterations in stromal cells may precede neoplastic transformation
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of epithelial cells in the breast [64], suggesting an active oncogenic role of the

stroma in breast tumorigenesis.

1.5.4 Angiogenic regulators

Angiogenesis is the balance between angiogenic stimulators and inhibitors,
and an overproduction of stimulatory factors and/or reduced levels of
inhibitory factors tip the balance toward the pro-angiogenic state which is
needed for tumor progression to occur [60]. ECM molecules and ECM
remodeling events within the tumor microenvironment play a key role in
regulating angiogenesis [65]. A pro-angiogenic environment may be induced
by ECM molecules such as collagen, laminin, and fibronection, which promote
endothelial cell survival, growth, migration and/or tube formation. The ECM
also sequesters growth factors and cytokines, and proteolytic processing by
ECM-degrading enzymes causes the release of these embedded factors as well
as the liberation of bioactive fragments from large insoluble ECM components

[66].

Other changes in the tumor microenvironment, such as hypoxia, may influence
angiogenesis. In hypoxic tumors, hypoxia-inducible factor 1 (HIF-1) mediates
the up-regulation of the potent pro-angiogenic vascular endothelial growth
factor (VEGF)[67]. Furthermore, the presence of an immune/ inflammatory
response within the tumor may also promote angiogenesis [68]. Breast
carcinomas may contain a high proportion of infiltrating leukocytes,
particularly tumor-associated macrophages, which secrete pro-and anti-
angiogenic factors as well as matrix-degrading proteases. Besides VEGF, pro-
angiogenic proteins commonly produced by human tumors include basic
fibroblast growth factor (bFGF), interleukin-8 (IL-8), angiogenin, platelet-
derived growth factor (PDGF), and transforming growth factor-a/B (TGF-a/3)
[69]. The expression of these potent factors may be triggered by oncogenes and

facilitate the switch to an angiogenic phenotype. Moreover, the
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microenvironment can influence tumor cells to produce angiogenic factors that
are specific to a particular tumor type [70]. In human breast cancers, VEGF has

been shown to be a major pro-angiogenic factor [71].
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Fig. 3. The role of extracellular matrix during angiogenesis. (Modified from ref. 73)

The activity of pro-angiogenic factors is kept in check by endogenous
inhibitors of angiogenesis, many of which are proteolytic fragments derived
from naturally occurring ECM and vascular basement membrane proteins [72].
Among the matrix-derived inhibitors are type IV collagen-derived arresten and
canstatin, endorepellin, and thrombospondin-1 and -2 (TSP-1/-2). Tumstatin
and endostatin are derived from the NCI-domain of collagen type IV and type
XVIII respectively and may serve as potent endothelium-specific tumor
suppressors [73;74]. Other endogenous angiogenesis inhibitors include soluble

vascular endothelial growth factor receptor-1 (sVEGFR-1), maspin, interferon-
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inducible protein 10 (IP-10), 2-methoxyestradiol, and angiostatin, to mention a
few. Although many have been described, new proteins and small molecules
that function as endogenous inhibitors of angiogenesis are continuously being

discovered [75;76].

The activity of many factors which are important in the context of tumor
angiogenesis and progression is strictly regulated at the post-transcriptional
level in the extracellular environment. In addition, there is a complex
interaction between all components present within the tumor
microenvironment including stromal cells and the ECM. Therefore, in order to
gain a more complete understanding of angiogenesis and tumor progression it
is imperative to perform investigations of these processes and the regulating

factors, directly in this milieu.

1.6 Sex steroids and angiogenesis

Estrogens has been shown to modulate angiogenesis in the female
reproductive tract under both physiological and pathological conditions
[77;78]. In contrast, less is known how sex steroids regulate angiogenesis
locally in normal breast tissue and in breast tumors [79]. It has been shown that
VEGEF levels increased in human normal breast tissue in vivo during the luteal
phase of the menstrual cycle [80]. Sex steroids have also been shown to
positively regulate VEGF expression in experimental breast cancer [81-83].
During recent years the anti-angiogenic effects of tamoxifen have gained
attention [84]. Numerous in vivo models of breast cancer have demonstrated
these effects [85-87]. There is also data to suggest that the anti-tumor effect of
tamoxifen may relate to an anti-angiogenic action by suppression of VEGF
secretion and increase in sSVEGFR-1 levels [88;89]. Very few studies have been

performed regarding direct sex steroid effects on endogenous inhibitors of
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angiogenesis, although some data exist that may suggest a relation between

these two parameters [90;91].

1.7 Matrix metalloproteinases

Matrix metalloproteinases (MMPs; matrixins) are a large group of structurally
and functionally related enzymes that regulate cell-matrix composition.
Physiologically, these enzymes play a role in normal tissue remodeling events,
such as embryonic development, angiogenesis, ovulation, mammary gland
involution, and wound healing [92;93]. Under these physiological conditions,
the activities of MMPs are strictly regulated, and loss of activity control may

result in pathological disease, including cancer [94].

1.7.1 MMP expression and activation

To date, over 20 different MMPs have been identified in humans, all of which
possess specific domains conserved between different members [95]. All MMPs
share a minimal domain composition, consisting of a secretory signaling pre-
peptide, a pro-domain responsible for maintaining the latency of the enzyme, and
a catalytic domain containing the zink-binding active site (Fig. 4) [96]. All MMPs
are encoded by different genes, synthesized by cells as pre-pro-enzymes, and
in most cases secreted as inactive pro-MMPs. Activation of pro-MMPs requires
disruption of the Cys-Zn? interaction (cystein switch), and removal of the pro-
peptide often proceeds in a stepwise manner. MMPs are activated in vitro by
other proteinases and by non-proteolytic agents such as SH-reactive agents,
mercurial compounds, and denaturants, while, in vivo, tissue or plasma

proteinases are likely to be responsible for the activation of pro-MMPs.

The secretion and activity of MMPs are highly regulated at least at three levels:
transcription, proteolytic activation of the latent form, and inhibition of the
active enzyme by a variety of natural inhibitors [97]. Most MMPs are expressed

at low levels or not at all in resting-state adult tissues. Growth factors,

21



cytokines, physical stress, oncogenic transformation, and interactions with the
ECM, serve as inducers of gene expression [98]. Promoter-regions of inducible
MMPs (MMP-1, -3, -7, -9, -10, -12 and -13) contain multiple cis-acting elements
such as AP-1 and Spl. Further, in certain cell types MMPs may be stored
intracellularly in secretory vesicles, which may be rapidly released upon
stimulation [99]. Complete mechanisms of physiological activation of MMPs in
the extracellular environment remain to be elucidated, however, once
activated, the enzymes are strongly inhibited by several endogenous inhibitors,
the major inhibitors being the tissue inhibitors of matrix metalloproteinases
(TIMPs) [96]. Four different TIMPs (TIMP-1, TIMP-2, TIMP-3, and TIMP-4)
have been characterized thus far. They bind to MMPs in a 1:1 stoichiometric
ratio and reversibly block the activity of all MMPs tested thus far. Among
other molecules capable of regulating MMP activity are thrombospondins and

plasma a-macroglobulins [96].
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1.7.2 MMP substrates

MMP substrates include most of the ECM components, such as fibronectin,
vitronectin, laminin, entactin, tenascin, aggrecan, as well as the collagens
(types L 1L, IIL, IV, V, VI, VII, VIII, IX, X, XIV) [66]. Besides ECM components
and connective tissue, proteinase inhibitors like ai-proteinase inhibitor, anti-
thrombin-III and a2-macroglobulin are selectively cleaved by MMPs, as are
growth factors such as IL-la and pro-TNF-a. For most of the MMPs, the
substrate specificity in vivo is not yet defined. By proteolysis of ECM
components, MMPs can alter normal cell behavior as well as cell-cell
communication [100]. For instance, MMPs may alter cell growth by converting
growth factors like FGF [101] and transforming growth factor- (TGF-)[102]
into soluble forms. In addition, MMPs may act on apoptotic factors, modulate
cell-matrix adhesion, and release factors that act in paracrine manner to

influence the behavior of distinct cell types [103].

1.7.3 MMPs and cancer

The MMP family has long been implicated in the progression of human tumors
[104;105]. The expression and activity of MMPs are often increased in human
breast cancer, and this has been shown to correlate with advanced tumor stage,
increased invasion and metastasis, and poor survival [106;107]. In addition,
elevated expression of TIMPs are associated with the development of distant
metastasis and poor outcome in breast cancer patients [108-110]. It has also
been suggested that patient outcome may depend on the balance between
MMPs and their tissue inhibitors, for instance between MMP-2 and TIMP-2 in
breast cancer [111]. In situ hybridization and immunohistochemical studies
suggest that MMPs are often synthesized by stromal cells and not by the cancer
cells in many human cancers. In breast cancer, MMPs may be produced by
stromal fibroblasts, infiltrating macrophages, or vascular pericytes [112;113].
However, cancer cells may be stimulated by tumor stromal cells to produce

MMPs in a paracrine manner through the secretion of cytokines and growth
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factors. Moreover, MMPs secreted by stromal cells may be recruited to the
cancer-cell membrane, where they may exert effects such as activation of
membrane-bound MMPs. Interestingly, stromal expression of MMPs, rather
than expression by tumor cells, may be of prognostic value in breast cancer.
For instance, positive stromal MMP-9 expression has been shown to correlate
with HER-2 and to predict poor survival in ER-positive breast cancer [114]. In
contrast, MMP-9 expression by breast carcinoma cells independently offered

survival advantage [114].

Although originally considered to be important almost exclusively in invasion
and metastasis [115-118], extensive documentation now exist to support the
complex involvement of MMPs in several steps of cancer development and
progression (Fig. 5) [103;119]. MMPs may regulate cancer-cell growth,
differentiation, apoptosis, tumor angiogenesis and immune surveillance,
suggesting that MMPs may also affect earlier stages of tumor progression. In
addition, it has become clear that many of the actions of these enzymes in
cancer may have biological consequences that are also beneficial to the host.
Cancer-cell proliferation is decreased in tumors from MMP-9-deficient mice
compared to wild-type mice [120], and MMP-3, -7, -9 and -11 have been shown
to regulate apoptosis by releasing pro-apoptotic factors [121] as well as

survival factors [122].

Moreover, several MMPs have been implicated both as positive and negative
regulators of tumor angiogenesis. In the simplest sense, they promote
angiogenesis by degrading the ECM, allowing endothelial cells to invade the
tumor stroma. However, several MMPs have been shown to indirectly regulate
angiogenesis by releasing membrane-sequestered pro-angiogenic factors
including VEGF, bFGF, and TGF-f3 [123]. For instance, an up-regulation of
MMP-9 expression has been hypothesized to control the release of VEGF,
thereby contributing to the angiogenic switch [124]. In addition, MMPs may
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exert anti-angiogenic activity, by inhibiting the angiogenic activity of pro-
angiogenic factors [125] and by generating endogenous angiogenesis inhibitors
from plasma proteins and ECM components [126-128]. The anti-angiogenic
activity of MMPs has been documented in several studies using MMP knock-
out mice. For instance, mice deficient of MMP-9 exhibited accelerated tumor
growth and lower levels of tumstatin compared with wild-type mice [127].
Tumor growth and tumor angiogenesis were restored upon supplementing the
mice with recombinant tumstatin [127]. Likewise, elevated levels of MMP-7
and MMP-9 in integrin-al knock-out mice were shown to reduce tumor

vascularization [129;130].
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Fig. 5. MMPs can regulate tumor progression by interacting with ECM molecules and
integrins. Cleavage of ECM components releases bioactive molecules that may affect
cancer cell growth, angiogenesis, migration, invasion and metastasis. (Modified from
ref.117)
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1.7.4 MMP inhibitors as cancer therapy

Drug development programs for targeted therapy against MMPs were initiated
20 years ago, and many synthetic MMP inhibitors (MMPIs) have since been
developed and studied in human clinical trials [131]. However, MMP
inhibition as cancer therapy has yet to prove successful, as clinical trials thus
far have largely failed. Broad-spectrum inhibitors such as batimastat and
marimastat have proven promising in animal experiments, but when given to
advanced cancer patients no efficacy has been observed [132]. Similarly, other
types of MMPI-based drugs given to patients with advanced cancer showed no
beneficial effects or even poorer survival for groups given the drug than for
placebo-treated groups [132]. While this may in part be due to the fact that
most clinical trials have been performed in patients with advanced stage
disease, displaying an already well-established tumor vasculature, it is likely to
also depend on the multiple actions of MMPs in both angiogenesis and tumor
progression. Increased knowledge of the functions of MMPs in different tumor
types and the roles of specific MMPs in specific stages of tumor progression

may help to validate MMPs as therapeutic targets in the future.

1.7.5 MMPs and sex steroids

During the menstrual cycle and pregnancy, MMPs are key players in the
vascular remodeling of the endometrium and ovaries, suggesting a sex steroid-
dependent regulation of MMP activity [92;133]. However, although MMPs are
involved in mammary gland development and breast carcinogenesis [104;134],

little is known how sex steroids directly affect MMPs in breast tissue.
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1.8 Endostatin

Among the many inhibitors of angiogenesis, endostatin is one of few that has
been shown to inhibit the growth of a wide variety of tumors while exhibiting
no apparent toxic side effects [135]. Endostatin is a 20 kDa C-terminal cleavage
product of collagen type XVIII [136], generated by proteolytic enzymes such as
MMP-2 and MMP-9 [128;137]. Endostatin may be found in the vessel wall, in
platelets, and freely circulating in plasma [138;139]. The physiological levels of
circulating endostatin in plasma of healthy individuals ranges from 10-50
ng/ml [140;141], and certain cancer patients may display elevated levels
[140;142;143]. Node-negative breast cancer patients with high plasma levels of
circulating endostatin had a more favorable relapse-free survival time than
those with low levels [144]. Moreover, plasma levels of endostatin were found

to increase after administration of adjuvant tamoxifen [144].

1.8.1 Anti-angiogenic actions of endostatin

The physiological functions and cellular responses of endostatin are proving to
be diverse and are yet to be completely understood [145]. O'Reilly et al.
originally reported that endostatin inhibits endothelial cell proliferation [136].
In addition, endostatin has been found to affect a number of endothelial cell
functions, including migration [146;147], survival [148;149], protease activity
[150;151] and vessel stabilization [152]. However, the most consistent and
extensively studied effect of endostatin signaling is inhibition of migration and
proliferation of endothelial cells. Endostatin is a potent inhibitor of bFGF- and
VEGF-induced migration and affects endothelial cell-cell adhesion as well as
perivascular cell recruitment [147;153-155]. These various cellular responses
may be the mechanisms behind the anti-angiogenic effects of endostatin. In
addition, endostatin may down-regulate VEGF/VEGF receptor signaling by a
direct action on tumor cells [156]. The anti-angiogenic action of endostatin has
been shown to be accompanied by pan-genomic changes, including up-

regulation of anti-angiogenic genes and down-regulation of pro-angiogenic
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genes [157]. For example, endostatin has been shown to up-regulate
thrombospondin, another major endogenous angiogenesis inhibitor known to

be suppressed during the angiogenic switch [157].

The ability of endostatin to inhibit tumor growth and angiogenesis in vivo is
demonstrated by extensive studies using animal models. Genetic proof that
endostatin is an endogenous inhibitor and tumor suppressor is provided by
findings in endostatin deficient mice which exhibited increased angiogenesis
and accelerated tumor growth [74;158]. Correlative clinical evidence also
suggests a tumor suppressive role for endostatin. Individuals with Down
syndrome have a very low incidence of solid tumors and a high level of
circulating endostatin, attributed to the presence of three copies of XVIII
collagen on chromosome 21 [141]. It has been proposed that an increase of
circulating endostatin of about one-third of the normal serum levels may
represent an effective therapeutic dose to inhibit many solid tumors [141]. It
further suggests that circulating levels of endostatin may be increased
genetically. When experimentally over-expressing endostatin 1.6-fold in mice
(mimicking the elevated levels in Down syndrome individuals), tumors grew

three times slower than wild-type mice [74].

1.8.2 Clinical trials

Endostatin was the first angiogenesis inhibitor to reach clinical trials [159].
Initial phase I trials included patients with various tumor types, including
breast, lung, liver, pancreas, ovary, colorectal, and kidney cancers, and
indicated recombinant endostatin as a drug well tolerated by patients.
However, the results were less satisfactory than expected as only minor anti-
tumor activity was observed and no objective response was obtained [160-162].
Phase II trials were performed on melanoma and neuroendocrine tumors using
higher doses, but endostatin did not advance into phase III clinical trials as no

tumor response was observed [163]. In February 2005, clinical studies with
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endostatin stopped in America. However, at the 2005 American Society of
Clinical Oncology (ASCO) annual meeting the results of a phase III trial of
Endostar, a new recombinant human endostatin developed in China, were
reported. The trial showed that the addition of Endostar to standard
chemotherapy resulted in a significant improvement in response rate and
survival benefit in non-small cell lung cancer patients [164]. Nonetheless,
results of Chinese trials on Endostar have yet to be published in peer-reviewed
journals. Recent investigations on endostatin have focused on alternative
means of administration of recombinant endostatin and effective dosing to
improve therapeutic efficacy. For instance, inhibition of tumor growth in mice
by recombinant endostatin has been shown not to be linear but rather biphasic.
This biphasic effect is revealed as a U-shaped dose-response curve in which
efficacy is optimal between very low and very high doses depending on the

tumor type [165].

In addition, it has been shown that circulating levels of endogenous inhibitors
such as endostatin may be increased pharmacologically by the administration
of orally available small molecules. Anti-angiogenic low-dose chemotherapy,
so called metronomic chemotherapy, has been shown to increase circulating

endogenous inhibitors such as thrombospondin-1 and endostatin [166;167].

1.9 Transforming growth factor-p1

The proliferation of breast epithelial cells is regulated by both stimulatory and
inhibitory growth factors, one example being the transforming growth factor-
Bl (TGF-p1). TGE-p1 is the founding member of the TGF-f superfamily of
growth factors, which are involved in the regulation of almost every aspect of
cellular behavior; cell proliferation, differentiation, apoptosis, extracellular
matrix production, and migration [168-171]. Moreover, in cancer, TGF-f3

signaling regulates tumor initiation, progression, and metastasis, through
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mechanisms that function either within the tumor itself or through host-tumor

cell interactions [172].

1.9.1 TGF-p activation

TGEF-fs are secreted by the majority of cells mainly in the form of large latent
dimeric complexes containing the C-terminal mature TGF-3, the N-terminal
pro-domain LAP (TGF-3 latency associated protein), and one of the four latent
TGF- binding proteins (LTBPs) [173]. The LTBPs are important for the
association of latent TGF-f3 to the extracellular matrix, providing tissues with
an available storage of TGF-f3. The LTBPs also partake in the control of TGF-3
secretion and activation [170]. Matrix-bound latent TGF-B1 is released by
proteolysis of the ECM and subsequent activation of the soluble form may
occur through proteolysis, enzymatic deglycosylation, and acid treatment in

vitro, although less is known regarding in vivo activation mechanisms.

1.9.2 TGF-p and breast cancer

TGF-p has a proposed dual role in breast cancer, as it seemingly switches from
being a tumor suppressor in early epithelial carcinogenesis to a pro-metastatic
factor later in cancer progression [174-176]. In normal epithelial cells, TGF-3
signaling induces Gi-arrest, increases senescence, promotes apoptosis, and
enhances genomic instability [177], thus suggesting a tumor suppressor role for
TGF-B. Consistent with this, loss of autocrine TGF-f activity and/or
responsiveness to TGF-$ may allow epithelial cells to escape the growth
inhibition of TGF-B, leading to malignant progression. On the other hand,
increased expression or production of TGF-f is a common feature of many
advanced human tumors, including breast cancer. Enhanced TGF-{3 expression
in breast cancer is associated with metastatic disease predictors and poor
prognosis [178;179], suggesting that at later stages TGF-§ rather promotes

tumor progression.
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Among the TGF-B isoforms, TGF-$1 is the most abundant and most
universally expressed, and considerable data documents its tumor-promoting
role [180]. Examinations of archival tissues from patients with malignant breast
cancer has demonstrated statistical significant correlations between intense
immunohistochemical staining for TGF-1 and increased disease progression
[181]. Also, in vivo experiments have shown that addition of exogenous TGF-31
(natural or recombinant) to tumor cell lines before injection into mice increased
tumor growth and metastasis [179]. Tumor-derived TGF-1 may promote
tumor progression in several ways, affecting stromal cells such as fibroblast,
endothelial cells and immune cells, as well as acting on the tumor cells
themselves. TGF-B1 is a potent suppressor of immune function, possibly
allowing breast tumor cells to escape from immune surveillance [182].
Moreover, TGF-f1 has been shown to promote angiogenesis in vivo,
presumably through direct and indirect mechanisms [183]. TGF-f1 induces
VEGF expression and capillary formation of endothelial cells [184], but may
also regulate reactive stroma to promote angiogenesis and tumor growth [185].
In addition, in response TGF-f1 tumor cells may undergo epithelial-

mesenchymal transdifferentiation, becoming more invasive [180].

1.9.3 TGF-p1 and sex steroids

Besides the elevation of TGF-f31 levels in breast cancer [178], additional studies
suggest that endogenous TGF-31 activation in vivo is regulated by sex steroids
[186;187]. TGF-B1 production decreases during mid-pregnancy and lactation
[32]. TGF-f1 has been shown to be regulated by estrogen and progesterone,
restricting the proliferative response to these hormones [186]. In addition, anti-

estrogens such as tamoxifen may regulate TGF-31 [188-190].
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1.9.4 TGF-p1 and MMPs

Studies suggest that MMPs are involved in the regulation of TGF-f3 activity
[102;191]. Latent TGF-$1 may be released from the ECM by MMP proteolysis
of either LTBP or ECM molecules. MMPs may also directly activate latent TGF-
Bl via cleavage of LAP. For instance, MMP-9 complexed on the cell surface
with CD44, can activate latent TGF-1 [102]. However, interaction of active
TGEF-p1 with the ECM may in turn regulate the expression of MMPs [192;193].
For instance, breast cancer cells has been shown to induce stromal fibroblasts

to secrete MMP-9 via TGF-31 [194].
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2. AIMS OF THE STUDY

The overall aim of the present study was to map the effects of sex steroids
and tamoxifen on matrix metalloproteinase activity and the generation of

endostatin in the breast.

The following hypotheses were tested:

« Estradiol and tamoxifen affect the protein expression and
activity of MMP-2 and MMP-9 and their tissue inhibitors TIMP-1

and TIMP-2 in hormone-responsive breast cancer in vitro

« Estradiol and tamoxifen regulate the in vivo activity of MMP-2
and MMP-9 and the generation of the anti-angiogenic peptide

endostatin in hormone-responsive breast cancer in vivo

o TGF-f1 mediates the regulatory effect of tamoxifen on the
activity of MMP-2 and MMP-9 in hormone-responsive breast

cancer in vitro and in vivo

« Estradiol, progesterone, and tamoxifen affect the generation of

endostatin in normal human breast tissue in vitro and in vivo
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3. COMMENTS ON MATERIALS AND METHODS

For detailed information of materials and methods used in the present study,

please refer to the Materials and Methods section of each Paper.

3.1 Breast cancer models

Given the fact that the regulation and activity of MMPs as well as the
generation of endostatin mainly occur in the extracellular environment as a
result of cell-cell and cell-matrix interactions, it is crucial to investigate these
events directly in this milieu. Therefore, in this thesis the aims were to use
model systems reflecting the dynamic in vivo organization of the tumor

microenvironment and of the normal breast tissue.

3.1.1 Breast cancer cell culture

The majority of breast cancer research is conducted in vitro using established
breast cancer cell lines, which provide an unlimited source of homogenous,
self-replicating material, as in vitro models [195]. The accuracy of these cell
lines as tumor models remains a matter of debate, although it has been
suggested that they are likely to largely reflect the features of breast cancers in
vivo [195;196]. In this thesis, the MCEF-7 breast adenocarcinoma cell line was
chosen as an in vitro model of hormone-responsive breast cancer. This cell line
was established in 1973 from a pleural effusion removed from a woman with
metastatic breast cancer [197], and has since then been thoroughly studied and
characterized [198]. Similar to the majority of human breast tumors, MCE-7
cells are estrogen and progesterone receptor-positive, and their estrogen
receptor responsiveness is preserved during long-term continuous culture
[199;200]. Hence, MCEF-7 cells are highly suitable for investigations on the role
of sex steroids on tumor biology. Also, MCF-7 cells express high amounts of

markers of the luminal epithelial phenotype, again equivalent to human breast
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tumors of which more than 90% are of luminal phenotype [12;195]. The MCEF-7
cells used in this thesis were cultured in standard media devoid of phenol red,

as this has been shown to exert estrogenic effects [201].

3.1.2 In vivo model

The evolution and fate of tumors are highly dependent on interactions between
cancer cells and other cell types present in their vicinity. Various animal
models of human breast cancer are therefore available for investigations of
different aspects of breast cancer induction, progression, and metastasis [202].
In this thesis, subcutaneous MCEF-7 breast cancer xenografts were established
in female ovariectomized, athymic mice in order to investigate the in vivo
effects of estradiol and tamoxifen on MMP-2/MMP-9 activity, endostatin, TGF-
1, and tumor vasculature. The use of human breast cancer cells in this model
confers an important advantage over the use of murine mammary carcinoma
models in terms of hormone responsiveness. In contrast to human breast
tumors of which 50-70% express hormone receptors, mouse mammary tumors
are poorly responsive to hormones and express only low levels of estrogen and
progesterone receptors [203]. Although the lack of functional T cells in athymic
nude mice allows for foreign tumor cells to be transplanted in xenograft
models, it also results in a reduced inflammatory response [202]. This may
constitute a drawback of this model as immune/inflammatory cells have been
shown to play important roles in tumor progression and tumor angiogenesis

[99].

3.1.3 Whole-tissue culture

For studies of hormone effects on normal human breast tissue, there are a
limited number of applicable models. For this purpose a method of whole-
tissue culture of normal human breast tissue ex vivo has been previously
developed [204], and applied in this thesis. Using this method, breast tissue

biopsies, containing intact epithelium and stroma, are produced from normal
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human breast tissue obtained from healthy pre-menopausal women
undergoing routine reduction mammoplasty. In this thesis, none of these
women had ongoing hormonal treatment. The approach of whole-tissue
culture preserves the structural and functional integrity of the breast tissue
without the use of an artificial matrix and makes it possible to investigate the
effects of different exogenous substances on tissue for up to one week in
culture. The occurrence of inter-individual differences in biological response is
a limitation of this method, as it necessitates the use of tissue from a single
donor for all treatment groups and the need to repeat experiments on tissue

from different donors.

3.2 Hormone treatment

3.2.1 In vitro

In this thesis, MCF-7 breast cancer cells and normal breast tissue biopsies were
exposed to hormones for up to one week in culture. Hormone treatment with
estradiol was performed using the naturally occurring 17p-estradiol, and,
given the biphasic dose-response of this estrogen physiological concentrations
were used at all times. Plasma levels of estradiol range between 100-1500 pM in
premenopausal women [205], and a physiological concentration of 1000 pM
was therefore used for the treatment of normal breast tissue biopsies. In
postmenopausal women, circulating levels of estradiol drop to below 100 pM,
yet the postmenopausal breast tissue is able to maintain levels of estradiol
comparable with those of premenopausal breast tissue [206]. Moreover, in
breast cancer tissue, estradiol levels have been found to be significantly higher
than plasma levels. Therefore, for in vitro studies using the MCF-7 breast
cancer cell line, both 1000 pM and 10000 pM concentrations were used. For
progesterone treatments, a concentration of 10 nM was used. Progesterone

levels in premenopausal women range from 0.5-80 nM, and the chosen
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concentration is in line with circulating levels of progesterone in the luteal
phase of the menstrual cycle [205]. Tamoxifen was used at the concentration of
1 uM, which is equivalent to therapeutic serum concentrations in breast cancer
patients [207]. This concentration is not cytocidal to MCE-7 cells, but promotes
accumulation in the Gi-phase of the cell cycle and thereby inhibits cell

proliferation [208].

3.2.2 In vivo

As for the in vivo model of MCF-7 xenografts in female nude mice, the mice
were ovariectomized and supplemented with 17p-estradiol in the form of
subcutaneous 3-mm pellets (0.18 mg/60-day release). These pellets provide a
continuous release of estradiol at serum concentrations of 150-250 pM, as
confirmed in our laboratory by serum analysis [81]. These serum
concentrations represent physiological levels as observed during the estrous
cycle in mice and the menstrual cycle in women. Tamoxifen was administered
in the form of subcutaneous injections (1 mg/every second day), yielding
serum levels equivalent to the concentration used to treat MCF-7 cells in
culture and to therapeutic serum concentrations in breast cancer patients [207].
Mice were maintained with a physiological level of estradiol during tamoxifen
treatment to reflect the tumor microenvironment in both pre- and
postmenopausal breast cancer patients. Although desirable, it was not possible
to include an untreated control group or a tamoxifen-alone group in the
experimental design of the xenograft studies, given the fact that MCF-7 tumors

require estrogen for growth in nude mice [209].

3.3 Microdialysis for in vivo investigations
Microdialysis is a technique to monitor the chemistry of the extracellular space
in an individual organ or tissue. The technique has been used for more than

three decades, and since its introduction it has been improved and further
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developed for use not only in animals but in a variety of human tissues [210].
Importantly, it has proven highly useful for measurements of molecules in the
extracellular space [211;212]. C. Dabrosin has introduced, developed and
applied the microdialysis technique for in vivo investigations of the biology of
the normal human breast as well as of human breast cancer
[36;80;81;89;213;214]. In this thesis, the use of microdialysis allowed for
investigations of in vivo MMP-2/MMP-9 activity and the in vivo generation of
endostatin directly in human breast tumor xenografts in nude mice. In
addition, microdialysis was performed in pre-menopausal healthy volunteers
to determine the in vivo generation of endostatin as well as levels of estradiol in

normal human breast tissue.

3.3.1 The microdialysis technique

The microdialysis technique is based on the use of a catheter, consisting of a
double lumen cannula with a semipermeable membrane attached to the end of
the cannula, which is implanted in the tissue to be studied. Once implanted,
the catheter is perfused with a physiological solution that enters the catheter
through the one lumen and leaves it through the other (Fig. 6). Across the
membrane of the catheter, a passive diffusion of extracellular molecules takes
place. The chemical composition of a tissue is the net sum of cellular
uptake/release and transport of compounds by the microcirculation, hence, the
liquid (microdialysate) leaving the catheter reflects the chemical composition

of the extracellular space of the organ or tissue (Fig. 7).

-
s
Fig. 6. Illustration of the tip of the double-
.-‘/ \1 lumen microdialysis catheter. Diffusion of
/ ' extracellular molecules takes place across the
\ membrane. (Printed by courtesy of CMA
Microdialysis AB)
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Varying the pore size of the membrane enables detection of molecules of
different molecular size. To avoid ultrafiltration and loss of the perfusion fluid
into the tissue when using membranes with large poor sizes [215], a colloid (40
g/L dextran-70 and 154 mM NaCl) was added to the perfusion fluid. Moreover,
to establish steady-state conditions and to minimize any interference of cellular
molecules released in the initial lesion [216], an equilibration period of 30

minutes was imposed prior to starting the collection of dialysate for analysis.

Nl

=hicrodialysis catheter @

Fig. 7. Equilibrium is established
between the perfusion liquid and the
extracellular  fluid. = Microdialysate
leaving the catheter reflects the chemical
composition of the extracellular space of
the tissue or organ. (Printed by courtesy of
CMA Microdialysis AB)
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3.3.2 Recovery of substances

It should be pointed out that microdialysis is not a technique for direct
collection of interstitial fluid. Importantly, the composition of the
microdialysate is a result of the equilibrium between the perfusion liquid and
the extracellular fluid. This is termed recovery. The recovery of a given
molecule is dependent on a number of factors, including the surface area of the
dialysis membrane, the flow rate of the perfusion liquid, and the ability of the
molecule to cross the membrane [216]. Moreover, in vivo factors such as
temperature, blood flow, and interstitial pressure also affect the recovery of a

given substance.

By performing in vitro experiments with standard solutions of the molecule of

interest, the recovery over the membrane may be estimated. However, the
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“true” extracellular concentration of the given molecule cannot be extrapolated
from the in vitro recovery, since molecules diffuse differently in a solution and
a tissue [210]. Therefore, all microdialysis values used in this study are given as

original data.

3.4 Quantification of proteins and hormones

3.4.1 Protein and hormone quantification by ELISA

In this study, all quantitative determinations of protein were performed using
commercial kits employing the quantitative sandwich enzyme immunoassay
technique ELISA, chosen by reason of their high sensitivity and low intra-assay
variability. These assays use immobilized monoclonal primary antibodies
which bind, if present in the sample, the protein of interest. To sandwich the
protein-primary antibody complex a secondary enzyme-linked polyclonal
antibody is added, and upon addition of a substrate the reaction between
enzyme and substrate results in color development. This color development is
proportional to the amount of protein bound to the primary antibody in the
initial step. The amount of each protein is calculated using a standard curve
according to the instructions of the manufacturer. Most of the kits used had
not been validated for use in cellysates or microdialysates by the manufacturer.
However, we were able to measure detectable levels of the given proteins in
both of these sample types. Moreover, repeated experiments showed low

intra-assay variation.

The commercial kits used for the measurements of estradiol and progesterone
in plasma and microdialysates employs a different detection system. Instead of
an enzyme-linked polyclonal antibody, a horseradish peroxidase (HRP)
conjugated to the hormone of interest (estradiol or progesterone) is used. This
HRP-hormone-conjugate competes with estradiol or progesterone present in

the sample for binding to the immobilized primary antibodies. The amount of
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bound peroxidase conjugate is inversely proportional to the concentration of

the given hormone in the sample.

3.4.2 Quantitative gene expression analysis by real-time PCR

A number of methods are widely used for quantification of gene expression at
the mRNA level, including Northern blot or slot-blot hybridization, RNase
protection, and reverse transcription-polymerase chain reaction (RT-PCR).
These common methods share some limitations in that they usually require
relatively large amounts of total RNA, they are unsuitable for high throughput,
and more importantly, they are typically semi-quantitative in nature. These
limitations may be overcome by using real-time PCR, which is a rapid, highly
sensitive, quantitative method. This method was therefore chosen in this thesis
for quantitative analysis of MMP-2 and MMP-9 gene expression. The TaqMan®
assays that were used are highly sensitive due to the use of an internal dual-
labeled fluorogenic probe, which is hydrolyzed to the target sequence during
the annealing/extension phase of the PCR reaction by the 5" nuclease activity of
the Taq DNA polymerase. During each extension cycle the DNA polymerase
cleaves the reporter dye from the probe, resulting in its separation from the
quencher dye and emission of fluorescence from the reporter dye. One
molecule of reporter dye is cleaved for each target molecule amplified. Hence,
the emitted fluorescence is a measure of the amount of target mRNA in the

sample.

Extensive optimizations represent potential pitfalls of the real-time PCR
method. The gene expression assays for MMP-2 and MMP-9 that were used in
this study include pre-designed primers and probes, eliminating extensive
probe and primer design and optimization by the user. Human {-actin was
chosen as an invariant endogenous control to correct for minor experimental

variations. Relative gene expression changes were calculated using the 2-AACE
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method [217], initially validated using standard curves for MMP-2, MMP-9,

and [(3-actin.

3.5 Assessment of MMP-2/MMP-9 activity

Numerous methods exist for the detection and/or quantification of proteolytic
activity. One of the most widely used assays is zymography, which was
employed in this study together with a fluorescence-based activity assay, to

detect and quantify the activity of MMP-2 and MMP-9.

3.5.1 Gelatin zymography

Zymography is an electrophoretic technique by which proteases can be
analyzed with high sensitivity [218] . The most common substrates used to
study proteolytic activity by MMPs are casein and gelatin. MMP-2 and MMP-9
may be detected on sodium dodecyl sulphate (SDS) -polyacrylamide gels
copolymerized with gelatin (heat denatured collagen), referred to as
zymograms. During zymography, MMP-2 and MMP-9 are separated under
denaturing but non-reducing conditions, refolded in detergent that removes
the denaturing agent (SDS), and thereafter incubated in a developing buffer to
assure the restoration of enzyme activity. Coomassie blue staining of the
zymograms reveals sites of proteolysis as clear bands on a dark blue
background. The proteolytically inactive pro-forms of MMP-2 and MMP-9,
which are about 10 kDa larger than the active enzymes, become activated
during the renaturation process. Thus, both active and inactive forms may be
visualized on zymograms. Moreover, tofal potential enzymatic activity will be
determined, as TIMPs dissociate from the MMPs during electrophoresis and
do not interfere with detection of the enzymatic activity. Although mostly used
as a qualitative technique, proteolytic activity on zymograms may also be

quantified by computer-supported densitometry.
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3.5.2 MMP-2/MMP-9 activity assay

Given the semi-quantitative nature of zymography, an additional method was
chosen in this thesis by which the combined activity of MMP-2 and MMP-9
could be quantified in a more objective manner. This was performed by using a
quenched fluorogenic substrate specific for both MMP-2 and MMP-9. No
substrate specific only for MMP-2 or MMP-9 was available at the time. The
substrate used has a fluorescent Trp residue and a dinitrophenol (DNP)
quenching group on the N-terminus, and is optimized for hydrolysis by MMP-
2 and MMP-9 [219;220]. Quenching of the Trp fluorescence in the intact
substrate is relieved on hydrolysis, allowing for a continuous recording of
fluorescence. However, given the similarity in substrate specificity among
MMPs, it can not be completely ruled out that this substrate, although
optimized for MMP-2 and MMP-9, may be cleaved by other MMP species.

3.5.3 Direct quantification of MMP-2/MMP-9 activity in vivo

After finding that estradiol and tamoxifen had a regulatory effect on MMP-
2/MMP-9 activity in cultured human breast cancer cells, further investigations
aimed at exploring the effects of estradiol and tamoxifen on the in vivo activity
of MMP-2 and MMP-9 in MCF-7 tumors in nude mice. For this purpose, a
previously described approach [221] was employed, using the microdialysis
technique. Microdialysis catheters with 20-kDa molecular mass cutoff were
inserted in anesthetized mice and perfused with the quenched fluorogenic
substrate for MMP-2 and MMP-9 (described above), dissolved in a
physiological solution. To prevent fading of the fluorogenic substrate, the
entire microdialysis system was protected from ambient light. The 20-kDa
cutoff permitted diffusion of substrate into the tumor tissue but prevented the
active MMP-2 (~62 kDa) and active MMP-9 (~82 kDa) enzymes in the tissue
from diffusing into the catheter lumen, allowing for a direct quantification of
MMP-2/MMP-9 activity in tumors in situ. After an equilibration period of 30

minutes, microdialysis samples were collected at 30-minute intervals into



chilled amber tubes and immediately subjected to fluorometry measurements.
To verify the proper use of this approach in the present model system, initial in
vitro experiments were carried out to determine the optimal concentration of
substrate and to test for background fluorescence. These were carried out by
placing microdialysate catheters in a test tube containing purified active
recombinant MMP-2 and MMP-9 and thereafter perfusing the catheters with
different concentrations of MMP-2/MMP-9 substrate. Low levels of
autofluorescence were detected for all concentrations tested. 50 uM generated

the highest fluorescence and was therefore chosen for the in vivo experiment.

3.6 Immunohistochemistry

In this thesis, immunohistochemistry was used to confirm the presence of TGF-
[1 protein in human breast cancer xenografts as well as the presence of ER and
PR in cultured normal human breast tissue. The immunohistochemistry
technique is based on the detection of proteins in tissue sections by the use of
antibodies. In the present study, primary monoclonal antibodies were detected
using the HRP-DAB detection system that utilizes the colorless substrate
diaminobenzidine (DAB). The enzyme-substrate reaction yields a brown end
product in the cells expressing the protein of interest. To visualize the tissue,
sections were counterstained with Mayer’s hematoxylin, mounted, and
investigated under a light microscope. All scoring was conducted blinded to

treatment group.

A mouse anti-human TGF-f1 monoclonal antibody was used to detect TGF-f1
in tumor tissue sections. Entire sections were first scanned to identify the range
of intensity of the staining. Thereafter, TGF-p1-staining on each biopsy section
was scored as either weakly or strongly positive. In a blinded manner, ten high
power fields (x400) were examined per section. For ER- and PR-staining in

normal human breast tissue sections, a rabbit anti-human ERa monoclonal



antibody and a mouse anti-human PR monoclonal antibody were used
respectively. Positive staining for ER and PR was used as a viability marker as
well as a marker of hormone-responsiveness. For all experiments, negative
controls incubated without the primary antibody did not stain.

While polyclonal antibodies are produced by multiple B-cells and therefore
recognize different epitopes, monoclonal antibodies are derived from a single
B-cell and bind a single epitope on the protein of interest. Therefore, the use of
monoclonal antibodies was preferred in all quantitative analyses of proteins in
the present study as they reduce the risk of cross reactivity and background

staining.

3.7 Assessment of tumor angiogenesis

Tumor angiogenesis and tumor size are recognized as important independent
predictors of overall survival in breast cancer patients [222-226]. In clinical
specimens, microvessel density (MVD) has served as the golden standard
amongst techniques for quantification of vascularity. This approach was
originally described by Weidner et al. [227]. MVD is assessed by identifying
areas of highest vessel density (the so called “hot spots”) by light microscopy
at low magnification. Individual microvessels are then counted at high power
(x200)[227]. MVD is however complicated by variables such as selection of the
fields to be scored, which microvessels to count, how many fields that are
counted, choice of endothelial marker, and investigator experience [228-230].
Over the years, additional methods such as Chalkley count, vascular grade,
and computerized image analysis systems have been developed to improve the
assessment of tumor vascularity. These approaches aimed to minimize
subjectivity in counting stained tumor microvessels [229]. Another approach in
describing angiogenesis is to assess angiogenic activity in histological samples
by measuring the molecules involved in the establishment of the tumor

vasculature, such as angiogenic growth factors and their receptors, cell



adhesion molecules, and markers of activated, proliferating angiogenic vessels
such as CD105 [231]. The development of in vivo imaging techniques to
quantify the microcirculation in an entire tumor presents another promising

approach [232;233].

The pan-endothelial cell markers von Willebrand’s factor (Factor VIII antigen),
CD31, and CD34, are commonly used to highlight the entire tumor-associated
endothelium vascularity in the assessment of vascularity [227;234;235]. The
relative merits of these various markers have been discussed in several reports,
and there are contradictory results as to which marker is the most reliable.
Anti-CD31 may cross-react with plasma cells, thus increasing background in
tumors with high infiltration of inflammatory plasma cells, while CD34 stains a
variety of stromal cells [231;236]. Von Willebrand’s factor may also identify
lymphatic endothelium. It is suggested that not only the use of different
antibodies, but also the variation in staining protocols may explain

discrepancies between studies [237].

3.71 MVD as a prognostic factor in breast cancer

Microvessel density has been described as a prognostic factor in women with
breast cancer [225;234;238], especially in node-negative patients. However,
technical difficulties in methodology and potential interactions with therapy,
has illustrated the need for a standardized means of assessment [238].
Moreover, although MVD has been proposed as a predictor of response to anti-
angiogenic treatment, findings suggest that vessel quantification methods such
as MVD do not assess the angiogenic status of a tumor, but rather reflect the
metabolic burden of tumor cells [239]. Thus, the utility of vascularity as an
indicator of angiogenesis and as a tumor prognostic marker in clinical

specimens remains controversial.

46



3.7.2 Angiogenesis assessment in the present study

In this thesis, microvessel area quantified by computerized image analysis was
chosen for the assessment of tumor vascularity, aiming to minimize
subjectivity in vessel quantification. Microvessels were identified by
immunohistochemical staining for human von Willebrand’s factor using a
polyclonal rabbit antibody validated for use on paraffin-embedded tissue. This
antibody also detects the equivalent protein in mouse endothelial cells, the cell
type that vascularize the human xenograft tumor in our model. Using a Nikon
microscope equipped with a digital camera, three areas of high vascularization
(hot spots) were selected for vessel area quantification, as described by Schor et
al. [237]. The percentage of area occupied by vessels, identified by positive
staining, was assessed in high power fields (x200) using Easy Image
Measurement software, and the mean was calculated for each tumor section.

Quantifications were performed blinded to treatment group.

The use of microvessel quantification in a xenograft model is not directly
comparable to the use in human tumors, as xenograft tumors are more
homogeneous than human tumors due to the use of only one clone of cancer
cells [195]. Hence, compared to human tumors, where the pattern of
vascularity may be heterogeneous [84], there is less variation in vascularity
between tumor sections from the relative homogenous tumor explants used in
the present studies. Moreover, identification of hot spot areas in clinical
specimens is made difficult by the sometimes diffuse tumor growth in ‘normal
tissue’, as vessels outside the tumor margin should be excluded. In the
xenograft model used in the present study, the excised subcutaneous tumors
included tumor tissue only. In addition, tumors were size-matched as tumor
size has been shown to significantly correlate with extracellular VEGF, most

likely due to higher levels of hypoxia in larger tumors [89].
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3.8 Assessment of tumor growth

Subcutaneous injection of human breast cancer cells provides a relatively quick
and easy method of producing reliable tumor growth in vivo [202]. The
standard assessment of tumor growth in xenograft animal models is periodic
caliper measurement of tumors if superficial or by single, end-point
measurements of weight or volume if tumors are internal. In this thesis,
subcutaneous injection of breast cancer cells into nude mice resulted in solid
tumor formation within approximately three weeks. Tumor growth was
monitored by measuring length, width, and depth of the tumor by external
caliper measurements. This standard approach is rapid and easy to perform
but require the additional evaluation to exclude necrosis and edema and to
assure viable tumor cells. In the present study, the absence of necrosis was
verified at the end of experiments by H&E staining of tumor sections. More
recently, in vivo bioluminescence imaging based on visible light emission from
luciferase-expressing cells or tissues has emerged [240-242]. Although
technically more advanced, this novel approach permits real-time, non-
invasive evaluation of tumor burden in the same animals over time and an

earlier detection of tumor growth [241].

3.9 Statistical analyses

Data was presented as mean + SEM or as median with 25"-75%" percentiles.
Data exhibiting normal distribution was compared using Student’s t-test for
groups of two and one-way ANOVA with Bonferroni’s post hoc test for groups
of three or more. Skewed data was compared using Mann-Whitney U-test for
groups of two and Kruskal-Wallis H-test for groups of three or more. Fisher’s
exact test was used for comparison of immunohistochemical scoring.
Correlations were tested using Pearson’s correlation coefficient with Fisher’s r
to z test. All statistical tests were two-sided. Statistical significance was

assumed at P values less than 0.05.
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4. REVIEW OF THE STUDY

4.1 Regulatory effects of estradiol and tamoxifen on MMP
activity in breast cancer

4.1.1 Estradiol decreased and tamoxifen increased MMP-2 and MMP-9
levels in breast cancer cell culture (I)

In paper I, it was demonstrated that treatment with estradiol and tamoxifen
regulated the protein expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 in
MCE-7 breast cancer cells. The main finding was a significant effect of
tamoxifen exposure, which increased both intracellular and extracellular
protein levels of MMP-2 and MMP-9 compared to untreated controls, whereas
estradiol treatment significantly down-regulated the protein expression.
Tamoxifen-exposed MCEF-7 cells also exhibited significantly increased amounts
of active MMP-9, both extracellular and intracellular levels, in their culture
media. These results demonstrate that MMPs may be produced by the tumor
cells themselves, in addition to being induced by stromal cells as previously
suggested [99;119]. The extracellular levels of the tissue inhibitor TIMP-1, and
to a lesser extent TIMP-2, were also affected by hormone treatments. In
addition, real-time PCR analysis revealed changes in MMP-9 gene expression
levels in response to treatment, while only low levels of MMP-2 mRNA were
detected and with no differences in gene expression in response to hormone
treatment. MMP-9 mRNA levels were significantly down-regulated by
estradiol and up-regulated by tamoxifen. These changes were however much
less pronounced than the detected changes at the protein level. This may be
due to the post-translational regulation of these enzymes [96] and emphasizes
the relevance of studying protein levels rather than gene expression. In terms
of MMP-2, also the protein levels and activity were found to be low, as shown

by quantitative ELISA and zymography.
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4.1.2 Tamoxifen increased in vitro and in vivo MMP-2/MMP-9 activity in
breast cancer cell culture and breast cancer xenografts (I, II)

When measuring the physiological net result of hormone exposure on the
MMP and TIMP levels, using an MMP-2/MMP-9 activity assay, it was found
that the end-result of tamoxifen exposure to MCF-7 cells in culture was a
significant increase in extracellular MMP-2/MMP-9 activity whereas estradiol
exposure resulted in a significant decrease of MMP-2/MMP-9 activity
compared to untreated controls (I + II). Treating cells with a combination of
estradiol and tamoxifen partly counteracted the decrease seen after treatment

with estradiol only.

Zymographic analysis confirmed these results, showing a significant increase
of active MMP-9 after tamoxifen treatment as well as estradiol + tamoxifen (I).
In addition, using microdialysis it was shown that the net effect of in vivo
treatment with tamoxifen, in combination with a physiologic dose of estradiol,
to nude mice bearing solid breast cancer tumors was a significant increase in
intratumoral MMP-2/MMP-9 activity as compared estradiol-treatment only (II)
(Fig. 8).

T Fig. 8. Activity of MMP-
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4.2 Estradiol and tamoxifen affect angiogenic regulators in
breast cancer and in normal human breast tissue

4.271 Tamoxifen in combination with estradiol increased extracellular
endostatin in breast cancer cell culture, breast cancer xenografts in situ, and
normal human breast tissue (I, I, IV)

Recent publications point out the physiological role of endostatin as an
angiogenesis regulator, by showing that high levels of endostatin prevent solid
tumor formation [74;141]. Moreover, endostatin has been shown to be
generated by MMP-2 and MMP-9 [128;137]. The results of paper II suggest that
a biological effect of the modulation of in vivo MMP-2/MMP-9 activity may be
regulation of endostatin generation from collagen XVIII. As endostatin
generation occurs in the extracellular space, conventional techniques detecting
cellular expression levels cannot be used for quantifications of this process. By
using microdialysis (Fig. 9) it was found that tamoxifen treatment in
combination with a physiologic dose of estradiol to nude mice bearing breast
cancer increased endostatin levels in tumors in situ, compared with estradiol
treatment only (II). In addition, a difference in contribution of endostatin from
the cancer cells and from the host stromal cells was detected. Both cancer-cell
derived (human) endostatin levels and stroma-derived (murine) endostatin
levels were significantly increased in the estradiol+tamoxifen-treated group
compared with the group treated with estradiol only (II). However, the stroma-
derived endostatin levels were approximately five times higher than the
cancer-cell derived (II). A significant increase of the stroma-derived endostatin
was also detected in plasma of tamoxifen-treated animals, which is in line with
the previously reported increase in plasma endostatin levels after

administration of tamoxifen to cancer patients [144].

The effects of treatment on tumor-cell derived endostatin levels were
confirmed using MCF-7 cell culture, where, similarly to the in vivo context, the

extracellular levels of endostatin from MCF-7 cells in culture were significantly
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higher in conditioned media from estradiol+tamoxifen-treated cells compared
with cells treated with estradiol only (I + II). Also, exposure of cells to

tamoxifen only generated a significant increase in endostatin levels (I + II).

Fig. 9. A general microdialysis
experiment in the animal study. Mice
were kept anesthetized by repeated s.c.
injections. Microdialysis catheters were
inserted by a small skin incision and
sutured to the skin. A heating pad
maintained body temperature.
Catheters were connected to a
microdialysis pump and perfused with
solution. Outgoing microdialysates
were collected on ice.

Immunohistochemistry revealed that tumors with high MMP-2/MMP-9
activity and high levels of endostatin (estradiol+tamoxifen-treated animals)
exhibited significantly lower tumor vessel area compared to tumors with low
MMP-2/MMP-9 activity and low endostatin levels (estradiol-treated animals).
It was confirmed in wvitro using MCF-7 cell culture that the generated
endostatin was indeed related to MMP-2/MMP-9 activity, as inhibition of these
proteases significantly reduced the endostatin levels (Fig. 10). These results are
in line with several other studies supporting the paradigm that MMPs may act
in an anti-tumorigenic fashion by releasing anti-angiogenic fragments, thus
reducing tumor angiogenesis [127;129;130] and with the previously
demonstrated anti-angiogenic role of tamoxifen in hormone-responsive breast

cancer [81;82;88;89;204].

In addition, whole-tissue culture revealed that tamoxifen treatment also
increased endostatin levels in normal human breast tissue (IV). This suggests a
novel mechanism of action for tamoxifen in the normal human breast.

However, it could not be determined if this effect was mediated by MMP-
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2/MMP-9 activity, since these proteases were not detectable in the present

system.
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4.22 Tamoxifen decreased TGF-B1 levels in breast cancer cell culture and
in breast cancer xenografts in vivo (III)

Matrix-associated latent TGF-31 provides tissue storage of TGF-31 which may
be released by ECM proteolysis [170]. It has been reported that interaction of
TGF-f1 with the ECM may induce the expression of MMPs, including MMP-2
and MMP-9 [192;193]. In paper III, the initial hypothesis that the regulatory
effect of tamoxifen on the activity of MMP-2 and MMP-9 was mediated by
TGF-B1 was rejected. Instead, tamoxifen treatment significantly decreased
TGF-B1 protein levels and by inhibiting the activity of MMP-2 and MMP-9,
TGF-B1 levels were restored. These results suggest that these proteases are, at
least in part, involved in a negative regulation of TGF-f31 by tamoxifen. It has
previously been shown that a short-term exposure of tamoxifen may induce an
increase in TGF-p1 mRNA and activity in MCEF-7 cells [189;190], which, given
the tumor-promoting abilities of TGF-f31, would seem to contradict an anti-
tumorigenic effect of tamoxifen. The results of others were confirmed in the

present study, as an increased protein expression of TGF-1 was shown after
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24 hours of tamoxifen treatment of MCF-7 cells. However, it was further
demonstrated that a longer treatment (7 days) with tamoxifen instead
decreased TGF-f31 protein levels. A slight but non-significant increase in TGF-
1 was seen after treating cells with estradiol for 7 days. Furthermore, upon
blocking the estrogen receptor whilst exposing cells to tamoxifen, TGF-$1
levels significantly decreased, suggesting that the modulation of TGF-p1
protein levels by tamoxifen may be a result of tamoxifen action on ERf3 or a

non-classical ERa.

In addition, it was demonstrated in the present study that two weeks of
treatment MCF-7 tumor-bearing mice with tamoxifen in combination with a
physiological concentration of estradiol resulted in a significant decrease in
TGF-p1 compared to animals continually treated with estradiol only.
Moreover, the decrease in tumor tissue levels of TGF-$1 was associated with
reduced vasculature and decreased tumor growth, which is in line with the
previous notion that neutralizing and/or blocking TGF-p1 signaling may
decrease tumor angiogenesis and tumor growth [176;185]. The results further
suggest that down-regulating tumor TGF-f1 may be an additional mechanism
by which tamoxifen acts in an anti-tumorigenic and anti-angiogenic fashion in

breast cancer.

4.2.3 Estradiol decreased endostatin levels in breast cancer cell culture,
breast cancer xenografts in vivo and in normal human breast tissue ex vivo
and in vivo (I, II, IV)

As demonstrated in paper I, solid MCF-7 tumors in nude mice treated with a
physiological dose of estradiol exhibited significantly lower levels of
intratumoral endostatin as well as increased tumor vessel area compared to
tumors in animals treated with a combination of estradiol and tamoxifen. The
regulative effect of estradiol on endostatin generation by the MCF-7 cancer
cells in vivo was also verified in vitro, where estradiol significantly decreased

endostatin levels in cultured MCF-7 cells (I + II). Taken together, these results



suggest a novel mechanism by which estradiol may exert a pro-angiogenic
effect in breast cancer, and are in line with other studies showing that estradiol

may tip the scale to favor angiogenesis.

Very few studies have investigated the regulation of angiogenesis and
angiogenic factors in normal human breast, one reason being a lack of suitable
techniques and models for this research [80;204;243]. In paper 1V, estradiol and
endostatin were measured both in plasma and in microdialysis fluid recovered
locally from normal breast tissue. It was found that local estradiol and
endostatin exhibited a significant negative correlation whereas plasma
estradiol and local breast endostatin showed a trend but no significant negative
correlation (IV). However, no correlation trends were found between

progesterone and endostatin levels (IV).

It was further demonstrated that the detected correlation between estradiol
and endostatin was a result of a direct action of estradiol on the breast tissue.
By performing a set of experiments of whole normal breast tissue culturing, it
was shown that estradiol exposure decreased endostatin levels whereas the
addition of progesterone did not induce any significant results compared with
either control biopsies or estradiol-exposed biopsies (IV). These results suggest
that estradiol may be an important regulator of endostatin in normal human

breast tissue.

Moreover, treatment of breast tissue biopsies with tamoxifen induced an
increase of the endostatin levels compared with control biopsies (IV). These
results further suggest that endostatin generation is under the control of

estrogen in normal human breast tissue.
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5. CONCLUSIONS

Estradiol and tamoxifen regulate MMP-2/MMP-9 activity

in human breast cancer cells in vitro. Estradiol decreased and
tamoxifen increased the extracellular protein levels and activity of MMP-2
and MMP-9 as well as affected the endogenous tissue inhibitors TIMP-1 and
TIMP-2 in cultured MCEF-7 breast cancer cells.

Estradiol and tamoxifen regulate endostatin generation by
modulating MMP-2/MMP-9 activities in human breast cancer in
vivo. Tamoxifen in combination with estradiol increased the MMP-2/ MMP-9
activity, increased extracellular endostatin levels, and reduced microvessel area
in solid MCF-7 breast tumors in vivo. In vitro findings suggested that the
generation of endostatin was, at least in part, dependent on MMP-2/MMP-9

activity.

The anti-tumorigenic effect of tamoxifen in breast cancer may in
part be explained by decreased TGF-B1 tumor promoting activities.
Tamoxifen decreased TGF-31 protein levels, tumor growth, and tumor
vasculature in solid MCF-7 breast tumors in vivo. In vitro findings suggested that
the decrease in TGF-f31 levels was, at least in part, mediated by MMP-2/MMP-9

activity.

Estradiol and tamoxifen may be important regulators of endostatin
in normal human breast tissue. Local breast estradiol exhibited a significant
negative correlation with extracellular endostatin in normal human breast tissue
in situ. In normal human breast tissue ex vivo, estradiol exposure decreased
endostatin levels while tamoxifen increased endostatin generation of the normal

breast.
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6. CONCLUDING REMARKS AND FUTURE ASPECTS

Tumor angiogenesis is regulated by the balance of stimulators and inhibitors, and
there is increasing evidence that sex steroids may be important factors in this
regulation in breast cancer [79]. However, our understanding of sex steroid effects
on angiogenesis remains highly limited and even less is known of the regulation of
angiogenesis by sex steroids in the normal human breast. In the light of a
continuously increasing incidence of breast cancer and the always present issue of

hormone treatment in women, research in this field is of utmost importance.

The results presented in this thesis elucidate a link between sex steroids, MMP
proteolysis, and angiogenesis. It is shown for the first time that estradiol and
tamoxifen regulate the secretion and activity of MMP-2 and MMP-9 in human
breast cancer. Moreover, it is demonstrated that a biological consequence of the
regulation of matrix metalloproteinase activity by sex steroids may be a
modulation of tumor angiogenesis, for instance through altered tumor levels of the
anti-angiogenic fragment endostatin and/or the pro-angiogenic growth factor TGE-
B1. These effects have been observed in a human estrogen responsive breast cancer
cell line in wvitro and in xenografts of the same cell line in wivo, but further
investigations using other breast cancer cell lines and/or breast cancer models are

warranted to verify these findings.

The role of MMP activity in the regulation of the extracellular matrix is yet to be
completely elucidated. Although over-expression of MMPs has been shown to be
associated with breast cancer progression, it is now clear that MMP activity also
has biological consequences which may be beneficial to the host, including
suppression of angiogenesis. This may be demonstrated by the results presented in
this thesis, which show that activity of MMP-2 and MMP-9 may exert anti-
angiogenic effects in breast cancer by contributing to the generation of endostatin

and suppression of TGF-B1 activity. Initial clinical trials using MMPIs as cancer
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treatments have been largely disappointing and have not demonstrated efficacy in
terms of reducing tumor progression. The biological actions of MMPs that
negatively regulate cancer progression have received relatively little appreciation,
and are likely part of the reason why the results with MMPIs have not been more
encouraging. Hence, further research on the more complex roles of MMPs in the
regulation of extracellular matrix biology is needed to verify the use of MMPIs as

candidate therapies for tumor angiogenesis.

Breast tissue and tumor tissue are unique microenvironments created by the tight
interaction between epithelial cells, adipose tissue, connective tissue, immune cells,
and blood vessels. By using microdialysis it is possible to monitor the crucial
intercellular crosstalk and signaling taking place in this environment. In this thesis,
microdialysis has been used to explore the effects of estradiol and tamoxifen on the
in vivo activity of MMP-2 and MMP-9 as well as the in vivo generation of endostatin
directly in the extracellular milieu. Our results on endostatin generation illustrate
the important relationship and close interaction between cancer cells and the
stroma and the need for investigations of tumor biology in the right context.
Further investigations of possible sex steroid effects on other inducers and
inhibitors of angiogenesis by microdialysis may prove valuable for a better

understanding of the overall balance governing angiogenesis in breast cancer.

Increasing endogenous angiogenesis inhibitors such as endostatin to prevent non-
angiogenic in situ carcinomas from progressing to angiogenic tumors may be
among the safest forms of long-term anti-cancer therapy. However, although
recombinant endostatin efficiently blocks angiogenesis and suppresses primary
tumor growth and metastasis in experimental animal models, it has given poor
results in clinical trials. The use of purified recombinant endostatin as a therapeutic
cancer drug has faced many problems, including difficulties with production,

reproduction, and routes of administration. Thus, modulating the endogenous
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levels, for instance by MMP activities, rather than administrating the recombinant

protein, may be favorable.

This thesis applied whole-breast tissue culture as well as microdialysis in healthy
volunteers for studies of hormone effects on endostatin generation in the normal
human breast. Both these approaches preserve structural and functional
architecture of the breast and thereby vital multi-cellular crosstalk. Our results,
demonstrating sex steroid effects on the generation of endostatin in the normal
human breast, suggest a novel mechanism by which estradiol may tip the scale to
favor angiogenesis. This may be important for the understanding of sex steroid-
dependent breast carcinogenesis, including an estrogen-dependent angiogenic

switch.

Sex steroids are inevitable in women. However, long-term exposure to sex steroids,
both endogenous and exogenous, increases the risk of breast cancer. Therefore,
therapeutic strategies against this disease have aimed at reducing the influence of
sex steroids on the breast, and anti-estrogen therapy is a cornerstone in the
treatment of breast cancer today. Tamoxifen has been shown to reduce the
incidence of breast cancer by more than 40%, but tamoxifen therapy may also
induce severe side effects such as thromboembolism and endometrial cancer
[40;244]. Although early oophorectomy may reduce the risk of breast cancer by up
to 60%, ovarian ablation is associated with osteoporosis, cardiovascular disease,
and urogenital atrophy [245]. Therefore, there is an urgent need for more selective
compounds in the prevention of breast cancer. Hence, it is imperative to explore
the effects of sex steroids on breast tissue for a better understanding on the role of
sex steroid dependent carcinogenesis. This knowledge may be used in the future
development of novel tissue-specific preventive as well as therapeutic strategies

against breast cancer.
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