

Linköping Studies in Science and Technology

Dissertation No. 1113

Dialogue Behavior Management in Conversational
Recommender Systems

by

Pontus Wärnestål

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2007

Cover Design: “Preferences” Pontus Wärnestål

© Pontus Wärnestål, 2007

ISBN 978-91-85831-47-0
ISSN 0345-7524

Printed by LiU-Tryck, Linköping 2007

Till Cecilia

Abstract

This thesis examines recommendation dialogue, in the context of dialogue strategy

design for conversational recommender systems. The purpose of a recommender sys-

tem is to produce personalized recommendations of potentially useful items from a

large space of possible options. In a conversational recommender system, this task

is approached by utilizing natural language recommendation dialogue for detecting

user preferences, as well as for providing recommendations. The fundamental idea of

a conversational recommender system is that it relies on dialogue sessions to detect,

continuously update, and utilize the user’s preferences in order to predict potential

interest in domain items modeled in a system. Designing the dialogue strategy man-

agement is thus one of the most important tasks for such systems.

Based on empirical studies as well as design and implementation of conversational

recommender systems, a behavior-based dialogue model called bcorn is presented.

bcorn is based on three constructs, which are presented in the thesis. It utilizes

a user preference modeling framework (preflets) that supports and utilizes natural

language dialogue, and allows for descriptive, comparative, and superlative preference

statements, in various situations. Another component of bcorn is its message-passing

formalism, pcql, which is a notation used when describing preferential and factual

statements and requests. bcorn is designed to be a generic recommendation dialogue

strategy with conventional, information-providing, and recommendation capabilities,

that each describes a natural chunk of a recommender agent’s dialogue strategy,

modeled in dialogue behavior diagrams that are run in parallel to give rise to coherent,

flexible, and effective dialogue in conversational recommender systems.

Three empirical studies have been carried out in order to explore the problem

space of recommendation dialogue, and to verify the solutions put forward in this

i

ii Abstract

work. Study I is a corpus study in the domain of movie recommendations. The re-

sult of the study is a characterization of recommendation dialogue, and forms a base

for a first prototype implementation of a human-computer recommendation dialogue

control strategy. Study II is an end-user evaluation of the acorn system that imple-

ments the dialogue control strategy and results in a verification of the effectiveness

and usability of the dialogue strategy. There are also implications that influence the

refinement of the model that are used in the bcorn dialogue strategy model. Study

III is an overhearer evaluation of a functional conversational recommender system

called CoreSong, which implements the bcorn model. The result of the study is

indicative of the soundness of the behavior-based approach to conversational recom-

mender system design, as well as the informativeness, naturalness, and coherence of

the individual bcorn dialogue behaviors.

Sammanfattning

I denna avhandling undersöks rekommendationsdialog med avseende p̊a utformningen

av dialogstrategier för konverserande rekommendationssystem. Syftet med ett re-

kommendationssystem är att generera personaliserade rekommendationer utifr̊an po-

tentiellt användbara domänobjekt i stora informationsrymder. I ett konverserande

rekommendationssystem angrips detta problem genom att utnyttja naturligt spr̊ak

och dialog för att modellera användarpreferenser, liksom för att ge rekommenda-

tioner. Grundidén med konverserande rekommendationssystem är att utnyttja dialog-

sessioner för att upptäcka, uppdatera och utnyttja en användares preferenser för att

förutsäga användarens intresse för domänobjekten som modelleras i ett system. Ut-

formningen av dialogstrategihantering är därför en av de viktigaste uppgifterna för

s̊adana system.

Baserat p̊a empiriska studier, liksom p̊a utformning och implementering av kon-

verserande rekommendationssystem, presenteras en beteendebaserad dialogmodell

som kallas bcorn. bcorns bas utgörs av tre konstruktioner, vilka alla presenteras

i denna avhandling. bcorn utnyttjar ett preferensmodelleringsramverk (preflets)

som stöder och använder sig av naturligt spr̊ak i dialog och till̊ater deskriptiva, kom-

parativa och superlativa preferensuttryck i olika situationer. Den andra komponenten

i bcorn är dess interna meddelande-formalism pcql, som är en notation som kan

beskriva preferens- och faktiska p̊ast̊aenden och fr̊agor. bcorn är utformat som en

generell rekommendationshanteringsstrategi med konventionella, informationsgivande

och rekommenderande förmågor, som var och en beskriver naturliga delar av en re-

kommendationsagents dialogstrategi. Dessa delar modelleras i dialogbeteendediagram

som exekveras parallellt för att ge upphov till koherent, flexibel och effektiv dialog i

konverserande rekommendationssystem.

iii

iv Sammanfattning

Tre empiriska studier har utförts för att utforska problemkomplexet som utgör

rekommendationsdialog och för att verifiera de lösningar som tagits fram inom ramen

för detta arbete. Studie I är en korpusstudie i filmrekommendationsdomänen. Studien

resulterar i en karakteristik av rekommendationsdialog, och utgör basen för en första

prototyp av dialoghanteringsstrategi för rekommendationsdialog mellan människa och

dator. Studie II är en slutanvändarutvärdering av systemet acorn som imple-

menterar denna dialoghanteringsstrategi och resulterar i en verifiering av effektivitet

och användbarhet av strategin. Studien resulterar ocks̊a i implikationer som p̊averkar

utformningen av den modell som används i bcorn. Studie III är en medhörnings-

utvärdering av det funktionella konverserande rekommendationssystemet CoreSong,

som implementerar bcorn-modellen. Resultatet av studien indikerar att det beteende-

baserade angreppssättet är funktionellt och att de olika dialogbeteendena i bcorn

ger upphov till hög informationskvalitet, naturlighet och koherens i rekommendations-

dialog.

Preface

Over the years that this research has been carried out, I have tried to keep in mind

that research on conversational interaction with machines in the end must support

real people when carrying out their tasks. Just like dialogue, this turns out to be

a two-way street: The task of writing this thesis would not have been completed

without the support of, and conversations with, real people.

First of all, I am indebted to Arne Jönsson, my main supervisor. He has guided

and supported me over the years, and enthusiastically engaged in critical discussions

about a great many topics. My secondary supervisor, Lars Degerstedt, has been a

great influence and patiently discussed, and opened up my eyes for, many issues of

engineering and technological aspects of software design and development. Apart

from being great supervisors, you have been great collaborators and co-workers.

I would like to thank the members of the Natural Language Processing Laboratory

(NLPLAB) and Human-Centered Systems (HCS) at the Department of Information

and Computer Science, and everyone involved in the Swedish Graduate School of

Language Technology (GSLT), for providing an active and stimulating research en-

vironment. I am also thankful to the technical and administrative staff, especially

Lillemor Wallgren and Britt-Inger Karlsson for their help in the many administrative

matters that surround a thesis production. A special thank you goes out to the people

that participated in the user studies.

This thesis is based on several papers, which have been read and commented on

by audiences and reviewers (who remain anonymous). Their valuable feedback has

contributed greatly.

Teaching is an important part of my work, and the opportunity to teach at different

institutions such as Linköping University, Göteborg University, and Chalmers has

v

vi Preface

been fun and a great experience for me.

I would like to thank my parents and my dear brothers for their encouragement.

And many thanks to my extended family, relatives, and friends. Thank you Oskar

for our continuous dialogue (spanning decades now) on life, games, and thermos de-

sign. Thanks Martin for interesting discussions on many aspects of human-computer

interaction and for being a great host on my many visits. Your prediction all those

years ago turned out to be true!

Last, but certainly not the least, thank you Cecilia for your never failing support

and encouragement.

Pontus Wärnest̊al, Olskroken, June 2007

Refereed Publications by the Author

• Pontus Wärnest̊al, Lars Degerstedt, and Arne Jönsson. Emergent conversa-

tional recommendations: A dialogue behavior approach. In Proceedings of

the 8th SIGDIAL Workshop on Discourse and Dialogue, Antwerp, Belgium,

September 2007.

• Pontus Wärnest̊al, Lars Degerstedt, and Arne Jönsson. Interview and delivery:

Dialogue strategies for conversational recommender systems. In Proceedings

of the 16th Nordic Conference of Computational Linguistics (Nodalida), Tartu,

Estonia, May 2007.

• Pontus Wärnest̊al, Lars Degerstedt, and Arne Jönsson. PCQL: A formalism

for human-like preference dialogues. In Proceedings of the 5th IJCAI Workshop

on Knowledge and Reasoning in Practical Dialogue Systems, Hyderabad, India,

January 2007.

• Pontus Wärnest̊al. Modeling a dialogue strategy for personalized movie rec-

ommendations. In Proceedings of the IUI Workshop “Beyond Personalization”,

pages 77–82, San Diego (CA), USA, 2005.

• Pontus Wärnest̊al. Modularized user modeling in conversational recommender

systems. In L. Ardissono, P. Brna, and A. Mitrovic, editors, Proceedings of 10th

International Conference on User Modeling (UM05) LNAI 3538. Edinburgh,

Scotland U.K., pages 545–547. Springer-Verlag, Berlin Heidelberg, 2005.

• Pontus Wärnest̊al. User evaluation of a conversational recommender system.

In Ingrid Zukerman, Jan Alexandersson, and Arne Jönsson, editors, Proceedings

vii

viii Publications

of the 4th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue

Systems, pages 32–39, Edinburgh, Scotland U.K., 2005.

As Pontus Johansson:

• Aseel Berglund and Pontus Johansson. Using Speech and Dialogue for Interac-

tive TV Navigation. Universal Access in the Information Society, 3(3–4):224–

238, October 2004.

• Pontus Johansson. Design and Development of Recommender Dialogue Sys-

tems. Licentiate Thesis 1079, Linköping Studies in Science and Technology,

Linköping University, 2004.

• Pontus Johansson. Natural Language Interaction in Personalized EPGs. In

Proceedings of the 3rd UM Workshop “Personalization in Future TV”, pages

27–31, Pittsburgh (PA), USA, 2003.

• Lars Degerstedt and Pontus Johansson. Evolutionary Development of Phase-

Based Dialogue Systems. In Proceedings of the 8th Scandianvian Conference

on Artificial Intelligence, pages 59–67, Bergen, Norway, November 2003.

• Pontus Johansson. MadFilm - a multimodal approach to handle search and or-

ganization in a movie recommendation system. In Proceedings of the 1st Nordic

Symposium on Multimodal Communication, pages 53–65, Helsingör, Denmark,

2003.

• Pontus Johansson, Lars Degerstedt, and Arne Jönsson. Iterative Development

of an Information-Providing Dialogue System. In Proceedings of the 7th ERCIM

Workshop “User Interfaces for All”, pages 29–36, Paris, France, 2002.

• Aseel Ibrahim and Pontus Johansson. Multimodal Dialogue Systems: a case

study for interactive TV. In Proceedings of the 7th ERCIM Workshop “User

Interfaces for All”, pages 209–218, Paris, France, 2002.

• Aseel Ibrahim and Pontus Johansson. Multimodal Dialogue Systems for In-

teractive TV Applications. In Proceedings of the 4th IEEE ICMI conference,

pages 117–222, Pittsburgh (PA), USA, 2002.

Table of Contents

1 Introduction 1

1.1 Aim and Research Questions . 2

1.2 Contributions . 4

1.3 Method . 5

1.4 Thesis Outline . 7

2 Background: Conversational Recommender Systems 11

2.1 Dialogue Systems . 12

2.1.1 Concepts and Definitions . 12

2.1.2 Dialogue Model Components 14

2.1.3 Layered Control Architectures 14

2.1.4 Computational Dialogue Management Formalisms and Classi-

fications . 20

2.1.5 Other Dialogue Classification Schemes 22

2.2 User Modeling and User Preferences 23

2.2.1 User Modeling . 23

2.2.2 User Preferences . 27

2.2.3 Recommendation Models and Algorithms 32

2.2.4 Recommendation Performance Factors 36

2.3 Conversational Recommender Systems 38

2.4 Development of Conversational Recommender Systems 41

2.4.1 Design and Development Methodologies 42

2.4.2 Interaction Design and Usability 43

2.4.3 Evaluation . 46

2.5 Summary . 48

ix

x TABLE OF CONTENTS

3 An Empirical Study of Recommendation Dialogue 49

3.1 Experimental Design . 50

3.1.1 Participants . 50

3.1.2 Apparatus . 51

3.1.3 Procedure . 51

3.1.4 Results . 52

3.2 Analysis . 52

3.2.1 The Dialogue Distilling Process 52

3.2.2 Guideline Development . 53

3.2.3 Guideline Application . 53

3.3 Characterization of Recommendation Dialogue 60

3.3.1 Roles and Dialogue Flow . 61

3.3.2 Factual and Preference Requests and Statements 63

3.3.3 Dialogue Acts . 64

3.3.4 Delivery and Interview Dialogue Behaviors 68

3.4 Summary . 72

4 Design and Verification of a Recommendation Dialogue Strategy

Model 73

4.1 Movie Recommendation Dialogue Control 74

4.1.1 System Initiative . 74

4.1.2 User Initiative . 81

4.2 Evaluation . 82

4.2.1 Participants . 83

4.2.2 Acorn . 83

4.2.3 Procedure . 85

4.3 Results . 86

4.3.1 Dialogue Corpus Analysis . 87

4.3.2 User Satisfaction Analysis . 90

4.4 Discussion . 91

4.5 Summary . 94

5 Storing and Utilizing Situation-Based User Preferences 95

5.1 Defining the Preference Model Framework 96

5.1.1 Requirements . 96

TABLE OF CONTENTS xi

5.1.2 Dimensions . 98

5.1.3 Limitations . 98

5.2 PCQL . 99

5.2.1 FP State Formulas . 100

5.2.2 Factual State Mapping . 103

5.2.3 Preference State Mapping . 104

5.2.4 PCQL Action Statements . 106

5.3 Utilizing and Supporting Dialogue . 107

5.3.1 Utilizing Dialogue . 109

5.3.2 Supporting Dialogue . 111

5.4 The Preflet Construct . 113

5.4.1 Definitions . 113

5.4.2 Preflet Descriptors . 115

5.4.3 Preference Evaluation . 116

5.4.4 Constraining and Relaxing Attributes 119

5.4.5 Preference Updates and Conflicts 122

5.4.6 Preflet Update Resolution Heuristics 124

5.5 Summary . 127

6 BCORN: Managing Recommendation Dialogue 129

6.1 Dialogue Behavior Diagrams . 130

6.2 BCORN Dialogue Behaviors . 133

6.2.1 Conditions and PCQL in BCORN 133

6.2.2 PCQL Action Tags and Dialogue Acts 133

6.2.3 Conventional . 134

6.2.4 Direct Delivery . 136

6.2.5 Interview . 137

6.2.6 Indirect Delivery . 141

6.3 Emergent Dialogue Strategy . 143

6.4 Implementing BCORN: CoreSong . 145

6.4.1 Input: Interpretation and Streaming 146

6.4.2 Output: Weaving and Generation 148

6.4.3 Preflet Updates . 152

6.5 Evaluation . 152

xii TABLE OF CONTENTS

6.5.1 Participants . 154

6.5.2 CoreSong Configurations . 154

6.5.3 Procedure . 158

6.5.4 Results . 158

6.6 Summary . 159

7 Conclusion 167

7.1 Summary . 167

7.2 Future Work . 171

A Corpora 189

A.1 Corpus I . 189

A.2 Corpus II . 190

B Experiment Scenarios 191

B.1 Study I . 191

B.1.1 Recommender’s Instructions 191

B.1.2 Customer’s Instructions . 192

B.2 Study II . 192

B.2.1 Task 1 . 193

B.2.2 Task 2 . 193

B.2.3 Task 3 . 193

B.2.4 Questionnaire Statements . 193

B.3 Study III . 194

B.3.1 User Instructions . 194

B.3.2 Questionnaire Statements . 195

List of Figures

1.1 Sample recommendation dialogue . 3

1.2 Dialogue system reference architecture. 4

1.3 Principal work scheme. 7

2.1 Layers in the ymir architecture. 16

2.2 Preference strength ranges. 31

3.1 Excessive customer input . 55

3.2 Distilled version of excessive customer input 56

3.3 Ambiguous reference . 57

3.4 Complex preference attribute . 58

3.5 Database browsing difficulties in the dialogue 59

3.6 A biased recommender . 60

3.7 Sample recommendation dialogue . 62

3.8 Information requests in a recommendation dialogue 64

3.9 Accept-Solution conversational circumstance 68

3.10 Constraint selection strategy . 70

3.11 Constraint relaxation and delivery . 71

4.1 Dialogue control strategy . 75

4.2 Exhausted recommendation base . 77

4.3 Failure of the RecEngine node . 80

4.4 Acorn’s graphical user interface. 84

4.5 Sample movie recommendation dialogue 86

4.6 Scenario deviation and exploration 89

4.7 User satisfaction parameters . 90

xiii

xiv LIST OF FIGURES

4.8 Recommendation realization failure 93

4.9 Sample recommendation dialogue . 93

5.1 Sample recommendation dialogue . 117

6.1 The Conventional dbd. 136

6.2 The Direct Delivery dbd. 137

6.3 The Interview dbd. 139

6.4 The Indirect Delivery dbd. 142

6.5 The standard CoreSong behavior configuration. 145

6.6 CoreSong’s graphical user interface. 147

6.7 Sample recommendation dialogue . 153

6.8 Sample dialogue for the blunt experiment configuration 156

6.9 Sample dialogue for the recommender experiment configuration . . 157

6.10 Sample dialogue for the q-a experiment configuration 157

6.11 Overhearer evaluation web page . 161

6.12 Experiment result: Informativeness 162

6.13 Experiment result: Preference Management 163

6.14 Experiment result: Coherence . 164

6.15 Experiment result: Naturalness . 165

List of Tables

2.1 User model dimensions . 25

2.2 Reliability ratings of endorsements 31

3.1 Dialogue distilling guidelines . 54

3.2 Utterance content taxonomy . 63

3.3 recommendation and motivation dialogue acts. 67

4.1 User evaluation data . 88

5.1 Preference model capabilities . 97

5.2 Factual and preferential operators . 101

5.3 fp state formula mappings (factual) 103

5.4 fp state formula mappings (descriptives and superlatives) 105

5.5 fp state formula mappings (comparatives) 106

5.6 pcql action mappings . 108

5.7 Preference utterance types . 109

5.8 Conversational circumstances . 110

5.9 Example evaluation scores . 119

6.1 bcorn condition functions . 134

6.2 System action tags and dialogue acts 135

6.3 User action tags and dialogue acts . 135

6.4 Sample direct delivery in the music domain 138

6.5 Sample interview in the music domain 140

6.6 Sample preference interview . 141

6.7 Sample indirect delivery dialogue in the music domain 143

xv

xvi LIST OF TABLES

6.8 Sample bcorn dialogue . 149

6.9 Experiment configurations . 155

1
Introduction

This chapter introduces the topic of conversational recommender systems,

and presents the aim, research questions, demarcations, and contributions

of this thesis.

This thesis deals with dialogue strategy design for conversational recommender

systems. The purpose of a recommender system is to produce personalized recommen-

dations of potentially useful items from a large space of possible options that is hard

to manually browse or search. In a conversational recommender system, this task is

approached by utilizing natural language dialogue for detecting user preferences, as

well as for providing recommendations. There are several reasons for pursuing the

conversational approach as a viable alternative to traditional recommender system

interaction. For example, natural language dialogue can allow users to express their

preferences qualitatively, and in contexts where they are motivated to elicit them.

Furthermore, detecting a user’s preferences and using them for recommending items

is a collaborative venture, where coherent conversation with a dialogue partner seems a

2 Chapter 1. Introduction

natural choice of interaction style. Figure 1.1 exemplifies a recommendation dialogue

between a user and a conversational music recommender system. The fundamental

idea of a conversational recommender system is that it relies on dialogue sessions to

detect, continuously update, and utilize the user’s preferences in order to predict the

user’s potential interest in domain items (e.g. songs in the dialogue shown in Fig-

ure 1.1) modeled in the system. The design of dialogue strategy management is thus

one of the most important tasks when designing conversational recommender sys-

tems. In order to place this particular work into a more complete picture, Figure 1.2

sketches a typical conversational dialogue system conceptual architecture, and shows

where the focus of this thesis lies. In this work, the aim is thus to discover generic

solutions for modeling conversational recommendation behavior, that are suitable for

implementing in specific recommender system applications. The work is carried out in

three main steps. First, we define a recommendation dialogue situation, from which

we empirically study and characterize recommendation dialogue. Then, based on a

verified empirical model, we construct and verify a generic model and software arti-

facts of recommendation dialogue that can be used in conversational recommender

system implementations. Verification of these components is then done with an end-

user evaluation of a conversational recommender system implementation.

1.1 Aim and Research Questions

Since a conversational recommender system relies on dialogue and incremental modifi-

cation of a user’s preference model, the system’s dialogue strategy to initialize, update,

and utilize the preference model in the interaction is crucial for its performance and

usability. The overall aim of this thesis is therefore to describe and present a computa-

tional dialogue strategy model for personalized conversational recommender systems.

In order to pursue this, the following specific research questions are posed:

1. How are recommendation dialogues characterized?

2. What is the structure of a recommender agent’s dialogue strategy?

3. How are user preferences stored, utilized, and updated in recommendation dia-

logue?

1.1. Aim and Research Questions 3

S Welcome.
What situation should we discuss?

U I would like a play list for work
S Ok. Is there a particular genre you prefer when you

work?
U I like jazz
S These artists and albums belong to the genre Jazz:

[list]

Any of these you like in particular?
U What rock artists are there?
S These artists belong to the genre Rock: [list]

Any of these you like in particular?
U Eric Clapton is the best!
S These albums belong to the artist Eric Clapton: [list]

Any of these you like in particular?
U I like Journeyman better than Pilgrim
S Ok. Are there any other genres, artists or albums you

prefer at work?
U What albums by Elvis Presley are there?
S These are the albums by the artist Elvis Presley: [list]

Any of these you like in particular?
U I don’t like his albums released after Promised Land
S Ok. I think you would like Tales of Brave Ulysses by

Cream.
Have you heard it?

Figure 1.1: Sample recommendation dialogue between a conversational recommender
system (S) and a user (U). [list] denotes a listing of database items, such as genres,
artists, or songs.

4 Chapter 1. Introduction

Figure 1.2: Prototypical dialogue system reference architecture. Even though com-
plete implementations guide this work and involves all components above, the focus of
this thesis’ research questions is on dialogue strategy management (shaded in the fig-
ure). NL = Natural Language, SR = Speech Recognition, NLU = Natural Language
Understanding, NLG = Natural Language Generation, TTS = Text-to-Speech.

4. What is required for a computational model for recommendation dialogue and

user preference management?

1.2 Contributions

The thesis is restricted to single-domain, unimodal dialogue systems, that have as

their purpose to deliver personalized recommendations to users. That is, the model

does not cover switching between different domains in the same dialogue session,

and we utilize natural language input as the only input channel1. Furthermore, we

assume a strict turn-taking mechanism2. In particular, the focus is on conversational

recommender systems in media domains, such as music and movie recommendations.

Given these demarcations, the contributions should be viewed as studies from a

cross-disciplinary perspective. That is, the three first research questions are problem-

oriented and expected to help us describe and understand the complex problem space

at hand. While reaching the answers to these questions in a hypothesis-generating

manner, we are ready to investigate the fourth research question, where we can expect

more tangible components engineered to encapsulate the empirical findings previously

1Even though the systems described use standard graphical user interfaces, on-screen direct
manipulation is not part of the dialogue management model per se.

2The framework as such, can be implemented as parallel Harel statecharts, effectively setting the
scene for utilizing temporal constructs such as time-outs and delays, and thus more dynamic turn-
taking. However, the focus and claims made within this work are made on the strict turn-taking
assumption.

1.3. Method 5

discovered.

In summary, this thesis makes the following contributions:

1. Characterization of recommendation dialogues based on collected human-human

recommendation dialogues.

2. pcql: A formalism for describing preferential and factual statements and re-

quests, as well as for supporting management of preferences in conversational

recommender systems.

3. Preflets: A preference model that stores situation-dependent user preferences,

and supports recommendation dialogue.

4. Dialogue Behavior Diagrams: A precise description of conversational recom-

mendation dialogue as modularized behaviors.

5. bcorn: A computational model of recommendation dialogue, based on dialogue

behavior diagram instances. The model is implemented in the CoreSong con-

versational recommender system, and has been evaluated to verify the bcorn

model.

1.3 Method

Language Technology3 is a multi-disciplinary research field that combines expertise

from the humanities, natural and behavioral sciences. Scientific approaches and prac-

tical techniques are drawn from a range of disciplines, including Linguistics, Com-

puter Science, Human-Computer Interaction, Engineering Science, Psychology, and

Mathematics.

In this thesis, the focus is to provide a computational model of recommendation

dialogue. Therefore, the model is not psychological or “human-like” from an internal

perspective. It is, however, “human-like” (with limitations and modifications that

are clarified later) and empirically studied and verified as such, from an external,

behavior-based, viewpoint. Due to the cross-disciplinary approach, and the inherent

3The related terms Computational Linguistics, Natural Language Processing, and Language En-
gineering (and possibly others) all refer to some aspect of the computational study of language. No
distinction between them is made in the following, unless specifically noted.

6 Chapter 1. Introduction

properties of the phenomenon of dialogue interaction itself (i.e. human users with

expectations on natural language use in human-machine dialogue situations), dia-

logue system research in general includes (exploratory) design methodology, formal

specification, and empirical validation [Hulstijn, 2000]. It is therefore difficult to

choose a single methodological position for this venture. Both exploratory and em-

pirical studies have been carried out in this work, as well as software development

work. The exploratory approach has been used to gain insights on the constitution of

recommendation dialogue in a human-computer use context. This includes dialogue

corpus collection, and qualitative corpus analysis in order to generate hypotheses con-

cerning dialogue characterization and design. Empirical studies—in the behavioral,

human-computer interaction (hci) sense—has been chosen for end-user prototype

evaluations, primarily to verify dialogue model designs. This includes analysis of

questionnaires and dialogue session logs. The aim of software development research

in general is to gain insights into the mechanisms and pre-conditions under which

certain phenomena can be modeled and/or emerge. Although much progress has

been made within this approach, the integration with results from other scientific

disciplines often has weak explicit linkage to empirically derived knowledge. This is

addressed in this work by mapping empirical findings to software component design as

an application of empirical research [Jönsson, 1993]. Development is grounded in an

engineering approach, where the focus is on functionality and robustness of software,

work effort connected to the construction process, and reason about development

methods from the perspective of usefulness and efficiency for programmers.

The viewpoint in this work is thus that the way forward is to cross-fertilize an

engineering approach with empirical hci studies in order to further advance the field

of dialogue system research as a whole. By illuminating the stated research issues

from this hybrid approach [Hulstijn, 2000] a number of interesting answers can be

provided, and we will view the contributions of the thesis in the light of this.

More concretely, Figure 1.3 shows the work scheme that has been used in or-

der to address the research questions of this thesis, and the results that will be

described in the following chapters. Main work activities include Studies I–III, which

are empirical studies that each results in various “artifacts”. Study I results in a

corpus and recommendation dialogue characteristics; Study II is an evaluation of a

dialogue strategy, as well as an exploration with implications for refinements and

1.4. Thesis Outline 7

Figure 1.3: Principal work scheme of this thesis, showing important work activities
and resulting contributions.

customized notations and frameworks; and Study III is an evaluation and verifica-

tion of the artifacts arrived at during the course of this work. The artifacts shown

in Figure 1.3 constitute the main contributions of this thesis. Prototyping suits

an iterative, exploratory development process [Jacobson et al., 1992], and is recom-

mended in order to make a system that meets users’ needs [Nielsen, 1993]. During

the course of this work, several prototypes have been built to aid the exploration

and investigation of conversational recommender system design and development in

film and tv media domains (see [Johansson et al., 2002; Johansson, 2003b; 2003a;

Berglund and Johansson, 2004]). Some of these system prototypes are not explicitly

covered in this dissertation. However, two of them—acorn [Wärnest̊al, 2005] and

CoreSong [Wärnest̊al et al., 2007b]—are used in the controlled experiments Study

II and Study III and are therefore included as part of the work scheme as shown in

Figure 1.3.

1.4 Thesis Outline

The rest of the thesis’ chapters and content are organized as follows.

• Chapter 2. Background: Conversational Recommender Systems. As a

starting point for the work, this chapter provides definitions of relevant concepts,

classifications of (general) dialogue management approaches, user preference

modeling and recommender system research. We also present aspects of the

design and development of conversational recommender systems.

8 Chapter 1. Introduction

• Chapter 3. An Empirical Study of Recommendation Dialogue. The

empirical basis for this thesis is a recommendation dialogue corpus, collected

in a dialogue study (Study I). This results in a human-human dialogue corpus,

which is systematically re-written into a human-computer recommendation di-

alogue through the process of dialogue distilling. The analysis of the material

is presented as a characterization of the recommendation dialogue genre.

• Chapter 4. Design and Verification of a Recommendation Dialogue

Strategy Model. This chapter first presents a basic dialogue strategy model

for movie recommendation dialogue, based on the analysis of the previous chap-

ter, that is implemented in a prototype conversational recommender system

called Acorn. The chapter then describes an evaluation of Acorn’s dialogue

strategy model with end users (Study II). We assess a range of usability met-

rics on the recommendation dialogue strategy based on Study I. We thus verify

that the distilled dialogue that forms the model is both effective, efficient, and

usable.

• Chapter 5. Storing and Utilizing Situation-Based User Preferences.

In order to provide personalized recommendations to a user, the system needs

a model of the user’s preferences. The topic of Chapter 5 is a situation-based

user preference model called preflet, that supports natural language dialogue

management and provides user preference data for content-based recommender

engines. This chapter also introduces the pcql data manipulation notation for

expressing preferences and factual queries and statements, which will be used

as a generic message-passing formalism in the bcorn model.

• Chapter 6. BCORN: Managing Recommendation Dialogue. In this

chapter the concept of dialogue behavior diagrams (dbds) is introduced. dbds

are used to describe a generic recommender agent’s dialogue strategy, based on

the dialogue behaviors defined in Chapter 3 and the implications from Chap-

ter 4. dbd instances update and utilize preflets for managing the personal-

ized recommendation dialogue, and utilize various external resources such as

databases and recommender engines. The presented dbds constitute the com-

putational model bcorn (Behavior-based Conversational Recommender). The

1.4. Thesis Outline 9

chapter also presents CoreSong, which is a functional conversational recom-

mender system in the music domain, implemented as an application of the

bcorn model. CoreSong is validated in an overhearer user study (Study

III), which is also presented.

• Chapter 7. Conclusion. The last chapter first provides a summary and

concluding discussion of the previous chapters. The results of the thesis are

discussed, and pointers for future research in the area are provided.

2
Background: Conversational Recommender

Systems

This chapter surveys state-of-the-art research of dialogue systems and dia-

logue models, user preference modeling, conversational recommender sys-

tems, and relevant software engineering methodologies.

In this introductory chapter, several research areas are briefly surveyed. The

common denominator is a conversational approach to personalized recommender sys-

tem design and interaction. This requires us to examine four parts. First, we look at

dialogue system concepts in general (Section 2.1), where some basic definitions and

components are surveyed, before moving on to (some) control architecture and formal-

ism constructs. Second, we address user modeling and user preference management

in general (Section 2.2). The usage of user models is also taken into account when

we examine recommendation models and algorithms. Armed with dialogue systems,

user preference models, and recommendation models we are ready to survey exist-

12 Chapter 2. Background: Conversational Recommender Systems

ing approaches to conversational recommender systems (Section 2.3). Finally, some

aspects of the engineering of conversational recommender systems are covered by sur-

veying development methodologies, interaction design issues, and the particularities

of personalized dialogue system evaluation (Section 2.4).

2.1 Dialogue Systems

Advances made in the fields of language technology has provided a range of models

aiming at producing “the conversational computer” [McTear, 2002]. This section

describes definitions of and motivations for dialogue system concepts, a classification

of dialogue modeling approaches, and the general components required for dialogue

systems.

2.1.1 Concepts and Definitions

We define a dialogue system to be a computer system with which human users interact

on a turn-by-turn basis, and in which natural language is an important interaction

modality. The purpose of a dialogue system is to provide a natural-language interface

between a user and a computer-based application [McTear, 2002]. The underlying goal

is to enable users to interact in a natural and intuitive way using spoken or typed

natural language. However, since general human-like conversational competence is

still far beyond today’s models and technology, the naturalness of the interaction

is questionable. Dialogue systems of today limit users in what they can say and

how. Intuitive and natural interaction is then a case of design, and the human-

computer dialogue interaction needs to be shaped accordingly, utilizing the weak

and strong points of human-computer dialogue, which is significantly different from

human-human dialogue [Jönsson and Dahlbäck, 1988].

One demarcation that has been proposed to this issue is to focus on practical dia-

logues [Allen et al., 2000; 2001]. The practical dialogue hypothesis states that [Allen

et al., 2001, page 29]:

The conversational competence required for practical dialogues, while still

complex, is significantly simpler to achieve than general human conversa-

tional competence.

2.1. Dialogue Systems 13

By applying the practical dialogue approach in well-defined domains, a robust and us-

able conversational behavior can be achieved despite the shortcomings of today’s nat-

ural language understanding components and models [Pieraccini and Huerta, 2005].

The design of a proper dialogue management model is thus one of the most important

tasks of dialogue system research. It is worth designing generic dialogue management

solutions, following the domain-independence hypothesis. It states that [Allen et al.,

2001, page 29]:

Within the genre of practical dialogue, the bulk of the complexity in

language interpretation and dialogue management is independent of the

task being performed.

To this end several generic architecture and tool box approaches that provide imple-

mentations of dialogue models have been suggested for new-domain dialogue system

customization [Allen et al., 2000; O’Neill and McTear, 2000; Degerstedt and Jönsson,

2004; Larsson and Traum, 2000].

The core of a typical dialogue system architecture is the dialogue manager. Even

though there is no universal agreement of exactly what a dialogue manager is, and

what capabilities it should have, there seems to be two common denominators [Pier-

accini and Huerta, 2005]. A dialogue manager should: (a) keep track of session

states, and (b) decide on the next system action. These aspects can then be com-

pleted with e.g. contextual interpretation, ambiguity resolution, anaphora resolution,

system back-end communication, output generation, etc.

The dialogue manager is responsible for two aspects of dialogue control: man-

agement of initiative, and management of dialogue flow. Initiative may be on the

system, the user, or mixed. Simple dialogue system approaches adopt completely

system-driven dialogue control. That is, the user is guided through a number of

pre-defined system prompts until the task is complete. Typically, such systems are

implemented in a finite-state based fashion. A larger degree of user freedom exists

in frame based approaches. (See Section 2.1.4 for details.) In user-driven dialogue,

the system reacts to user queries and delivers the desired information. More complex

dialogue system allows for mixed initiative, where dialogue control is shared. The

user is free to e.g. ask questions at any time, and the system may have an agenda

or plan and issue questions/prompts to the user accordingly. Plan (or agent) based

14 Chapter 2. Background: Conversational Recommender Systems

systems (see Section 2.1.4) are typically mixed initiative.

2.1.2 Dialogue Model Components

Dialogue managers utilize knowledge sources which, according to McTear [2002], col-

lectively is referred to as the dialogue model. For the purpose of this thesis, we accept

this notion of a conversational system’s dialogue model. Some fundamental knowledge

sources include [McTear, 2002, page 96]:

• Dialogue history. A representation of (relevant aspects of) the dialogue in

terms of mentioned domain entities and topics. This resource forms the basis

for anaphora resolution, and focus management.

• Task model. A representation of the user’s current task and the information

required to be gathered in the dialogue.

• World knowledge model. A representation of general background informa-

tion to support reasoning (e.g. temporal knowledge).

• Domain model. A representation of domain-specific knowledge including on-

tological relationships, etc.

• Conversational competence model. A representation of turn-taking, dis-

course obligations (e.g. Grice’s maxims [1975]), etc.

• User model. A representation of user characteristics relevant to the dialogue.

All knowledge sources listed above can be more or less complex, depending on the

requirements of the system application. The view in this thesis is thus that dialogue

complexity exists on several levels and can be described from different perspectives.

2.1.3 Layered Control Architectures

One important question when designing and implementing dialogue systems is which

architecture to use. During the past decades several architectures have been proposed;

all with their own advantages and disadvantages. Most architectures are not formally

specified. This means that there is a degree of freedom concerning how an architecture

2.1. Dialogue Systems 15

is interpreted. However, the need for a formalization cannot be escaped when im-

plementing an actual system (since a verbal description cannot be compiled and run

on a computer). An important issue thus becomes; given an (informal) architecture

description—which formalism should be chosen for implementing the architecture?

This survey will focus on layered architecture approaches, since this relates to the

contributions made in this thesis.

A general characteristic of layered systems is that they are organized hierarchically.

Each layer provides service or information to the layer above it and serves as a client to

the layer below. The connection between layers are defined by protocols, determining

how layers will interact [Garlan and Shaw, 1993]. Outside the world of Language

Technology, the most widely used applications of layers are (a) layered communication

protocols such as the TCP/IP stack, and (b) operating systems, where the kernel runs

in one layer, and user space and processes reside in layers above.

According to Garlan and Shaw [1993, page 11], layered systems support the fol-

lowing properties:

1. design based on different levels of abstraction (i.e. supporting a divide-and-

conquer strategy of partitioning complex problems into incremental and man-

ageable steps).

2. enhancement (since each layer only interacts with at most the surrounding two

layers, changes in one layer affect at most two other layers).

3. reuse (i.e. different implementations of a layer can be used interchangeably,

allowing for designs of reusable layer interface standards in a framework).

There are some disadvantages one must be aware of, and not all kinds of systems

are suitable for a layered approach. Performance considerations need to be taken,

even if a system can be structured in layers. That is, a system may require close

coupling between low-level and high-level layers due to computational performance,

such as large search tasks etc. This may thus violate the enhancement property above.

Design considerations are also important, since some systems conceptually are hard

to model in this manner. Finding the right level of abstraction for the different layers

is a non-trivial design issue. For example, communications layers sometimes need

to bridge several layers—an unhealthy sign since this violates both the enhancement

16 Chapter 2. Background: Conversational Recommender Systems

Figure 2.1: Principal layers and components of the ymir architecture.
From Thórisson [1997].

and the reuse advantages mentioned above. It may even violate the design property

depending on the complexity of the problem the system aims to solve.

Layered Dialogue System Approaches

The layered and behavior-based approach to dialogue system construction is limited.

This ties into the observation that the notion of layers can mean different things.

Even though the general—software engineering—notion of layers have been used in

several architectures adhering to the classical paradigm, implementations of a more

dynamic behavior-based layer approach are rare. This section briefly describes two

such approaches.

Reactive, Process Control and Content Layers The ymir system [Thórisson,

1997] employs a layered architecture that consists of three layers as shown in Fig-

ure 2.1. It is focused on communication and models speech, intonation, body language

and facial gesture. The three layers are: reactive, process control, and content. Each

layer contains perception and decision modules. Response times are very important

in natural language communication, as a pause or delay can change the entire mean-

ing of an utterance depending on context. The reactive layer has very short response

times (in the 150–500 ms range) in order to provide realistic gaze fixation or blinking

etc. Processing time increases in the higher layers. The top-most layer—the content

2.1. Dialogue Systems 17

layer—have significantly longer response times, and consists of topic information in

knowledge bases. The output of the layers is processed by a fourth main component,

the Action Scheduler, which prioritizes and morphs action requests from the three

layers.

Implementations of ymir display a set of characteristics that are not usually found

in dialogue systems:

• there is a non-rigid interruptible quality of the behaviors1.

• gestures and body language (including facial gestures) are integrated with the

communication content, without artificial communication protocols.

• behaviors run concurrently at the expected times and without unnatural delays.

• miscommunication and speech overlaps are handled in a “natural” way, by using

stops and restarts.

Recently, the ymir architecture has been enhanced with a more elaborate turn-taking

model [Thórisson, 2002]. This work addresses the fact that each participant in an or-

dinary dialogue may take 2–3 communication decisions every second. One interesting

aspect of this work is that it assumes no protocol, or implementation of turn-taking

rules.

Content and Interaction Layers Another example of a multi-layer approach to

spoken dialogue systems is presented by Lemon et al. [2003]. This work is inspired by

(a) communication layers as presented by Clark [1996], and (b) robot architectures

as outlined in the behavior-based AI field. As Lemon et al. put it [2003, page 169]:

We view the process of natural interaction with a dialogue participant

as analogous to the interaction with a dynamic environment: dialogue

phenomena arise which need to be negotiated (as a new obstacle must be

avoided by a robot).

The proposal is a two-layer architecture that separates interaction-level phenomena

from content and context management and conversation planning. The main benefit

1Note that this is different from barge-in, which is a general way to just skip the reminder of a
system utterance.

18 Chapter 2. Background: Conversational Recommender Systems

of this approach is that the interaction layer makes use of low-level signals to provide

more natural and robust interactions between dialogue systems and human partic-

ipants in a way that the content layer is not able to do solely. This is supported

by a number of findings in psycholinguistic literature that stresses the importance of

asynchronous interaction-level processing in realistic and natural dialogue. Examples

of interaction-level phenomena handled by systems implementing this architecture in-

clude: realistic timing and turn-taking, immediate grounding and thus more realistic

(continuous) feedback, barge-in management, and NP selection (anaphora manage-

ment). Unfortunately, no user evaluation data is available yet, but the approach

nevertheless seems promising for end-users since it addresses issues that are mostly

not focused on with most other dialogue systems.

From an engineering point of view, the layered approach to dialogue system con-

struction displays some desirable characteristics: According to Lemon et al.:

In engineering terms, this division of labor is attractive in that the clarity

and modularity of dialogue management is enhanced

However, some approaches in this strand have failed. Note that e.g. Steels’ non-

hierarchical, massively parallel approach [Steels, 1994] was abandoned for engineering

reasons since it was not practical for each behavior to model all other behaviors, even

though the theory seemed sound from a biological perspective [Bryson, 2001].

Subsumption Layer Control

We will end the survey of layered control architectures with the subsumption archi-

tecture, somewhat radically suggested by Rodney Brooks. By organizing behaviors

as layers, Brooks [1991b; 1991a] created an architecture (and methodology) called the

subsumption architecture for designing and implementing robots with multiple goals

and robust behavior. A crucial difference with this approach compared to those of

e.g. Thórisson and Lemon et al. is that a particular behavior2 does not model other

2In the following, a behavior is an informal term denoting a result of system actions in a context,
whereas a layer is a technical term that refers to internal structures used to generate behaviors (in
the former sense).

2.1. Dialogue Systems 19

behaviors. It can instead be described as a loosely coupled approach without cen-

tralized control. Both the ymir model and that of Lemon et al. are inspired by the

behavior-based philosophy—even if they do not go “all the way” as they rely on high-

level planning in one centralized control layer. Close in spirit, the sesame generic

dialogue management framework, is designed for supporting dynamic multi-domain

dialogue processing [Pakucs, 2003]. It’s architecture is agent-based and agents com-

municate via a blackboard. However, none of the autonomous agents has access to

a central representation of the problem, and there is no central agent responsible for

planning. Furthermore, none of the agents knows about other agents’ internal states.

An important feature in the subsumption approach is incremental extendability,

i.e. that new layers are built on top of existing behaviors, effectively supporting

evolutionary design and development of system capabilities.

Briefly, subsumption means that a system’s control architecture is decomposed

into sets of layers, each implementing a behavior of the system. The approach stresses

sensor-motor coupling and is a rather radical reaction to the classical AI paradigm of

functional decomposition, since layers run independently of each other and without

a model of the environment/world. One central hypothesis is that coherent behavior

can be achieved without explicit central modeling, but as an emergent result from

micro behaviors [Pfeiffer and Scheier, 1999].

High-level cognition (including conceptual natural language and dialogue capa-

bilities) in the system is not considered in Brooks’ early papers (the first paper on

subsumption appeared in 1986), and the approach is only validated for simplistic

behavior. Despite of this, the approach is still of high interest and has been the

subject of general discussions on embodied cognitive science and general artificial in-

telligence [Kirsh, 1991; Pfeiffer and Scheier, 1999], which has also been replied to by

Brooks in his later work, e.g. [Brooks, 1997].

20 Chapter 2. Background: Conversational Recommender Systems

2.1.4 Computational Dialogue Management Formalisms and

Classifications

Traditionally, dialogue systems are roughly divided into three3 classes based on the

type of dialogue management formalism employed [McTear, 2002].

1. Finite-state based systems

2. Frame based systems

3. Plan (or Agent) based systems

Note that this classification refers to the system as a whole; that is, aspects of both

conceptual architecture and mathematical formalism used to implement the architec-

ture influence how a system is classified.

Finite-State Based Systems

At the least complex end the dialogue system steps through a dialogue consisting of

pre-defined states. The interaction is completely system-driven, and has been widely

used in commercial (telephone-based) applications. The advantage is the simplicity

of the approach. Due to the inflexibility of pre-defined states and the purely system-

driven initiative, the interaction is very restricted and only suitable for very simple

tasks such as long-distance dialing by voice or simple telephone banking.

Frame Based Systems

Frame (or template) based systems have more flexibility and allow users to decide the

order in which information required by the task record is given. The frame is in this

case viewed as a static context representation where a pre-defined set of parameters

needs instantiation before a system action can be taken. In contrast to finite-state

based approaches, several pieces of information can often be given in one go, if the

user desires it. Examples include travel bookings, hotel reservations, etc.

3Allen et al. [2001] has a slightly more fine-grained division, but for the purpose of this survey,
McTear’s division is sufficient. Furthermore, we will not deal with probabilistic or machine learning
approaches to dialogue management in this survey.

2.1. Dialogue Systems 21

Since task representations are simple and well-understood, complete linguistic

interpretation of user utterances is often not necessary. Therefore, robustness can be

achieved in the natural language processing components [Allen et al., 2001; McTear,

2002].

Frame based systems can be extended with multiple context representations, thus

adding complexity in the dialogue management since the user can shift between topics

in one dialogue session; for instance, discussing hotel location (with a frame task

representation covering aspects such as room size, price, and various hotel facilities)

and flight tickets (with a frame covering seating, number of stops, and ticket price)

in the same travel booking dialogue session.

As is the case of any production rule system, a potential disadvantage for frame

based development is that it is difficult for the designer to foresee all contexts un-

der which rules may fire. Examples of frame based systems include the voicexml

framework, and mimic [Chu-Carroll, 2000].

Plan Based Systems

At the higher end on the task complexity scale we find plan based (a.k.a. agent based)

systems. These are designed to permit complex communication about tasks that are

too complex to be represented as pre-defined frames. Dialogue phenomena that can

be handled include collaborative negotiation dialogues, dynamically generated topic

structures [Allen et al., 2001], and advanced error detection and correction [McTear,

2002]. Since the user’s input cannot be determined in advance, a sophisticated natural

language interpretation component is required for agent based systems.

The plan based approach is rooted in classical AI and is related to the logic based

approach [Hulstijn, 2000]. In this approach, dialogue management is viewed as a

general inference engine and dialogue is represented in a logical formalism.

Plan and logic based approaches are often theoretical and implementations are

few and to this date restricted to research systems, such as trains and trips [Allen

et al., 2001] and sundial [McGlashan et al., 1992]. This approach also has potential

disadvantages [Jönsson, 1997]: First, the problem of identifying the primitives needed

for describing human intention and goals. Secondly, the concern of performance of

plan recognizers.

22 Chapter 2. Background: Conversational Recommender Systems

2.1.5 Other Dialogue Classification Schemes

Categorizing dialogue can be done on other dimensions than the ones described above.

This section will briefly summarize some attempts.

Dahlbäck’s classification [1997] has a slightly different goal than that of Allen et

al., and lists the following dimensions (or criteria) for dialogues:

• Modality (spoken or written)

• Kinds of agents (human or computer)

• Interaction (dialogue or monologue)

• Context (spatial and/or temporal)

• Number and types of tasks

• Dialogue–Task distance

• Kinds of shared knowledge (perceptual and/or linguistic and/or cultural)

For the purpose of this thesis, it is interesting to note the dialogue-task distance

dimension. Dahlbäck observes that the dialogue structure can bear close or distant

resemblance to the task structure. A short distance example is planning and advisory

dialogue, whereas information retrieval dialogue is a long distance example. Short

distance dialogue benefit from intention-based methods according to Dahlbäck [1997,

page 36]:

The closer the language background task connection the more appropriate

become plan or intention based models

Another classification is made by Hulstijn [2000]. Hulstijn defines inquiry-oriented

dialogue as an exchange of information between two participants in different roles:

an inquirer and an expert, where the inquirer has an information need, and the goal

of asking the expert questions to satisfy that need. The expert’s goal is to answer

questions—as well as asking clarifying questions when needed.

Along with inquiry-oriented dialogue Hulstijn suggests negotiative dialogue. Ne-

gotiative dialogue refers to dialogues where participants can discuss and compare

2.2. User Modeling and User Preferences 23

alternative solutions to the problem at hand. (Non-negotiative dialogue typically

concerns simple information retrieval tasks, such as natural language interfaces to

databases.) He describes five phases in negotiative dialogue in the default order open,

inform, propose, confirm, and close. Except for the opening and closing phases, any

result of a phase can, however, be undone.

This concludes the first part of the introductory overview of related research. In

the following section, general user modeling research and recommender systems are

surveyed, before relating it to the conversational approach to recommender systems.

2.2 User Modeling and User Preferences

User modeling is a large research field with several applications. This survey briefly

reports on the fundamentals of user modeling (Section 2.2.1), before focusing on one

particular aspect of user modeling: user preference modeling (Section 2.2.2).

2.2.1 User Modeling

To lay a basic foundation for this overview we start off with an intuitive definition of

a user model, i.e. that a user model is knowledge about the user of a system, encoded

for the purpose to improve the interaction. Kass and Finin [1988] view user models

as a subclass of agent models. An agent model is a model of any entity, regardless of

its relation to the system doing the modeling. A user model is thus a model of the

agent currently interacting with the system. Furthermore, Kass and Finin note that

implicit user models are often not interesting, since they merely represent assumptions

about the user made by designers of the system (at design-time). This discussion is

instead focused on explicit agent models, which are constructed and utilized at use-

time. There are four features that characterize agent (and thus, user) models [Kass

and Finin, 1988, page 6]:

1. Separate Knowledge Base. Information about an agent is not distributed

throughout other system components.

2. Explicit Representation. The knowledge about the agent is encoded in an

expressive language, with support for inferential services.

24 Chapter 2. Background: Conversational Recommender Systems

3. Support for Abstraction. The modeling system can distinguish between

abstract and concrete entities, such as classes and instances of objects.

4. Multiple Uses. The agent model can be used for various purposes such as

support dialog, or to calculate predictions of items for a user, etc.

Since the user model concept is approached from different directions, it is multi-

faceted and can be categorized along the lines of several dimensions. One of the

earliest works in the field identifies three dimensions [Rich, 1979], and other authors

add to this list. Kass and Finin [1988] summarize these dimensions (D) as shown

in Table 2.1. It is possible to imagine more dimensions of a user model. Zukerman

and Litman [2001] for example, present the concept of multi-dimensional user models.

While their use of “dimension” is not directly comparable to that of Kass and Finin4,

it gives rise to the concept of interaction modality, which can be viewed as an addition

to the list above. By including modalities other than language, such as mouse pointing

and clicking etc., in the user model the system’s “understanding” of what the user is

trying to accomplish can be enhanced.

Advantages

Billsus and Pazzani claim that the information overload problem could be overcome

by user modeling in the context of information agents [Billsus and Pazzani, 2000,

page 148]:

[User modeling systems] locate and retrieve information with respect to

users’ individual preferences. As intelligent information agents aim to

automatically adapt to individual users, the development of appropriate

user modeling techniques is of central importance.

Such user modeling systems are known as recommender systems and make use of user

models consisting of user preferences, detailed in Section 2.2.2.

The benefits of user modeling systems are [Sparck Jones, 1989; Kay, 2000]:

4Rather, Zukerman and Litman’s use of “dimension” seems to be more related to Kass and Finin’s
number of models dimension.

2.2. User Modeling and User Preferences 25

Table 2.1: User model dimensions according to Kass and Finin’s classification [1988].

Dimension Meaning
D1 Specialization The user model may be generic or individual. Typ-

ically, a stereotype model [Rich, 1989] can act as a
“bridge” between a generic and an individual model.
For the class of personalized recommender systems,
the user model is naturally individual.

D2 Temporal extent The dimension of temporal extent is defined on a
short-term – long-term scale. A short-term user
model is discarded as soon as the interaction ends.
Long-term models are stored between sessions, and
are suitable for individual models.

D3 Modifiability If the user model can be changed during the course of
an interaction, it is dynamic. Otherwise, it is static.
User models that continuously track goals and plans
of the user during a session are dynamic.

D4 Number of agents Some systems are not limited to a one-to-one rela-
tionship between user and system. There might be
several agents involved in the interaction, such as in
a medical diagnosis system where there is one doctor
interacting with the system, and one patient. Both
the doctor and the patient can be modeled in sep-
arate agent models. The system could also have a
model of itself.

D5 Number of models For each given agent, it is possible to have several
models. Separate models for an individual agent
corresponds to real-life situations where humans can
“wear different hats” depending on if they act as a
private person, or represent a company etc. Kass
and Finin claim that there has to be a central model
responsible for deciding which sub-model to employ
in any given situation.

D6 Method of use User models may be descriptive (i.e. described in a
simple database which can be queried), or prescrip-
tive (i.e. where the system simulates the user to check
the user’s interpretation of a system response).

26 Chapter 2. Background: Conversational Recommender Systems

• Effectiveness. The prime object of the user model is that the system reaches

the correct decision. A correct user model is thought to help the system improve

its decision-making.

• Efficiency. A user model can also serve to reach the correct decision in an

economical way.

• Acceptability. The system may utilize a user model to support its decision-

making in a comprehensible and agreeable way.

Disadvantages

The lack of utility evaluations of user modeling and personalized interaction points

out one of the problems with user modeling and personalized systems; the tendency

to non-determinism. That is, the interface and the available commands may differ

depending not only on who the user is; but could also differ for the same user at

different times depending on the task she is currently attending. This is really walking

on the edge in terms of usability, since it is very close to violate established usability

principles, such as “recognition rather than recall”, and the principle of making things

visible [Norman, 1988].

Höök et al. [1996] point out that adaptive systems run the risk of leaving the

user without a sense of control. It is necessary for all software systems that they

are inspectable, controllable and predictable. This can be addressed by transparent

systems. Transparency occurs when the system is built as a “glass box” (i.e. the user

is informed of the user model and its use in the system). Fischer [2001, page 14]

claims that:

it will be a major challenge to find ways to avoid misuses, either by not

allowing companies to collect this information5 at all or by finding ways

that the individual users have control over these user models.

In order to avoid some of these ethical and social pitfalls, Kobsa [Kobsa, 1993] provides

the following guidelines:

5i.e. “user models”. (Author’s note).

2.2. User Modeling and User Preferences 27

• Users should be aware of the fact that the system contains a user modeling

component.

• Users should be instructed that computer systems make errors, and merely relies

on assumptions.

• Users should be instructed that a system might pursue non-cooperative inter-

ests.

• Users should have the possibility to inspect and modify their user model.

• If technically possible, users should be able to switch off the user modeling

component.

• Long-term characteristics should be modeled with caution, since misuse is more

likely to have a larger effect, and because they are often more intimate/personal

than short-term characteristics.

• Results in user modeling research should be made accessible to the general

public, since they will eventually be affected by it.

Systems following these guidelines would have an “interactive user model”, and thus

be adaptable.

A related problem, which could yield negative social implications, is the issue of

incorrect models. A recommending system, such as a tv guide, with an incorrect

user profile could start recommending tv shows that a user is not interested in—or

worse: would not want to be affiliated with. In some contexts (e.g. watching tv with

friends), such recommendations could result in a social faux pas.

2.2.2 User Preferences

One may argue that preferences could be treated as goals. However, while there are

situations in which the two seem related, Carberry et al. [1999] suggest that goals are

conscious at the beginning of an interaction, whereas preferences come into play as

users must evaluate alternatives and choose between them. Preferences influence the

way users desire to achieve their goals. Satisfying strong preferences is more important

than satisfying weak ones, and partially satisfying preferences are better than ignoring

28 Chapter 2. Background: Conversational Recommender Systems

them; even if the underlying goal can be reached in both cases. Therefore, preferences

are considered to be influencers on the actions that need to be taken in order to reach

a goal. This has implications on how and when preferences should be requested

[Carberry et al., 1999, page 189]:

Dynamically recognizing user preferences as they are expressed in dialogue,

rather than querying the user about those preferences beforehand, may

be the only way to obtain an accurate model of the user’s preferences [...]

The user may not have an accurate model of her preferences until she is

faced with an actual decision, so querying her preferences before a decision

is made will be ineffectual.

According to Kay [2000], four principal techniques for acquiring user preference

data exist. The techniques listed are at a rather abstract level and says little of

how the actual acquisition can be implemented in a system. However, they serve the

purpose of providing a framework for continuing the discussion. The four techniques

are:

• Elicitation. Elicitation is a straight-forward method of simply asking the user.

The quality of the data is quite high, but the drawback is that it demands the

user’s attention, possibly hindering her from focus on the task at hand.

• Monitoring. This unobtrusive method demands no attention from the user’s

part, since it resides in the background. However, the data is typically of low

quality and can never be better than a guess.

• Stereotypic reasoning. A stereotype is one the oldest and most common

elements in user modeling work. This approach is mostly used to quickly as-

sess default values about a user, which inferential reasoning can be based on.

Disadvantages include that stereotypes by definition are nothing more than

rough guesses about individual characteristics, and that it requires a signifi-

cant amount of knowledge engineering to chart relevant stereotypes and related

implications for a domain.

• Domain- or knowledge-based reasoning. This approach is related to

stereotypic reasoning and relies on inferences drawn from some sort of domain

2.2. User Modeling and User Preferences 29

model or ontological relations. For example, a user indicating that she knows

nothing about concept C2, allows the system to infer that she is also ignorant

of concept C1, if it follows from the knowledge model of domain D that C1 is a

prerequisite for C2.

Obviously, taking all possible techniques for acquiring user preference data into ac-

count is a huge task, considering e.g. the range of available interaction modalities

that can be viewed as orthogonal to the techniques listed above. For the purpose of

this thesis, we focus on the approach of elicitation and domain- and knowledge-based

reasoning.

There are several ways of encoding preference data. Scales (e.g. 1–5, or “Bad–

Ok–Good”, etc.) are used in several commercial and research systems. In a natural

language approach one runs into the problem of quantifying preferential statements

and mapping them onto a chosen scale. This issue has been addressed by employing

machine learning techniques (cf. [Pang et al., 2002]), and lies beyond the scope of

this thesis. An alternative approach is to differentiate between positive and negative

preferences, and focus on preference strength and reliability measures. This is the

approach of Carberry et al. [1999].

Carberry et al. claim that since people often weigh their preferences when making

a decision, some preferences may be more important than others. Thus, preference

strength is an important aspect of preference modeling. The model presented by Car-

berry et al. dynamically recognizes user preferences in planning dialogues. A complete

preference representation contains an attribute–value pair according to a domain de-

scription, a strength of the preference, and the system’s confidence in the preference

(reliability).

Preference strength

Preference strength modeling depends on (a) semantics of the user’s utterance, and (b)

the dialogue context in which preferences are given. The utterance types considered

are:

1. Direct. Directly expressed preferences (such as “I like Language Technology”

represent the strongest type of preference.

30 Chapter 2. Background: Conversational Recommender Systems

2. Indirect. Some utterances contain implicit preferences. That is, they are

not direct statements, but rather express a potential interest. An information

query is an example of this. Indirect preferences have weaker strength than

direct preferences.

3. Hedging. Uncertain preferences are conveyed by using “hedging” that intro-

duces uncertainty about a preference (e.g. the utterance “I might like to take a

Language Technology course”). Hedgings represent the weakest form of prefer-

ence strength.

Carberry et al. propose to utilize dialogue context as a second influencer of preference

strength. Four conversational circumstances are identified and ranked according to

the difference in preference strength:

1. Reject-Solution. User gives preferences as a reason for rejecting a recommen-

dation/solution.

2. Volunteered-Background. User includes preferences as part of a background

problem description.

3. Volunteered. User volunteers preferences without prior prompting from the

system.

4. Question-and-Answer. User provides preferences in response to a direct

system query.

Preferences may also be deducted from a history of recommendations6 as well as

stereotypes or generalization. Figure 2.2 shows the preference strength ranges for

conversational circumstances.

Utterance types, dialogue context, and deductions are combined into a preference

strength measure in the ordinal range weak-2, weak-1, mod-2, mod-1, str-2, str-1.

This range can be translated to an integer preference strength interval [1, 6]7.

6Called a proposal history in the work by Carberry et al..
7This is for positive preferences. For negative preferences the scale is inversed, and the strength

interval thus ranges between [−1,−6].

2.2. User Modeling and User Preferences 31

Figure 2.2: Preference strength ranges for conversational circumstances. From [Car-
berry et al., 1999].

Reliability

Reliability is modeled by the use of endorsements, which are viewed as explicit factors

that affect the modeling agent’s certainty in a preference strength hypothesis. Car-

berry et al. utilize endorsements that reflect how a preference is detected and ranked

on an ordinal scale as shown in Table 2.2. Endorsements that do not match con-

versational circumstances represent ways to detect implicit preferences. This is done

by deducing facts from a structure that keeps track of system proposals (Proposal

Table 2.2: Reliability ratings of endorsements. From [Carberry et al., 1999].
PH = Proposal History.

Value Reliability Endorsement
5 Very-Strong Reject-Solution, Volunteered-Background
4 Strong Volunteered, Question-and-Answer
3 Moderate PH-Deduction-Strong
2 Weak PH-Deduction-Weak, Stereotypical, Indirect-Propagation
1 Very-Weak PH-Deduction-Initial

32 Chapter 2. Background: Conversational Recommender Systems

History), or by using stereotypical reasoning (if applicable depending on domain).

The main reason for using endorsements for reliability is to allow for accumulation

and combination of several (weak) pieces of evidence for preferences. Second, a mo-

tivation generation component for recommendations can justify and better explain a

recommendation by taking preference reliability into account. The intricate details

of the use of endorsements and reliability measures are not necessary for the current

overview, and we refer to the original source for more details. We will return to

reliability and preference strengths in Chapter 5.

Attributes

Carberry et al.’s model focuses on attribute-value type preferences, and they identify

three attribute types: disjoint, scalar, and complex. Disjoint attributes carry values

for which preferences do not conflict, such as artist in the music domain. A user can

like or dislike artists in any combination without conflict. Scalar attributes are viewed

as having values on a scale, where different values would conflict with each other.

As an example of this, consider difficulty level of university courses. A preference

toward very easy courses is viewed as being in conflict toward a preference toward

very difficult courses. Complex attributes also have values that are scalar, but where

values may fall on different points on the scale without conflicting. In the music

domain, a user might like both an artist’s albums released 1955–1960, as well as

albums released 1968–1972 (but perhaps not the ones in between).

Carberry et al.’s work shows how dialogue interaction efficiently can work together

to model variations in preference strength by utilizing the modality- and interaction

technique-specific properties of natural language.

2.2.3 Recommendation Models and Algorithms

The purpose of recommender systems is to produce personalized recommendations of

potentially useful items from a large space of possible options. To accomplish this, the

system employs one or more recommendation algorithms (also known as prediction

techniques), that operate on a model of user preferences. Recommender systems can

be characterized in a number of ways. One taxonomy, suggested by Burke [2002],

bases the categories on the used data sources and algorithms used. For a survey of

2.2. User Modeling and User Preferences 33

various recommender systems currently used on the Internet, see [Montaner et al.,

2003]. The following categories are considered in Burke’s taxonomy:

• Collaborative filtering

• Content-based

• Demographic

• Utility-based

• Knowledge-based

These models have their own advantages and disadvantages, and each is described

below.

Collaborative filtering (cf) systems are widely used and perhaps the most

familiar recommendation technique. cf systems utilize the rating information of

several users (hence the term “collaborative”) in order to predict item ratings for

a specific user. A preference model typically consists of a vector of items rated

by the user. This vector is sometimes called a “basket”8. The vector is compared

to other users’ vectors with an appropriate similarity measure and a neighborhood

of similar users is identified. Recommendations then basically consist of previously

unseen/unrated items in the neighborhood for each user. The ratings in the vectors

can either be binary (e.g. seen or not-seen; purchased or not-purchased etc.), or

valued (e.g. rated on a scale from -1 to 1, or 1 to 5). The main advantages with the

cf approach are that it:

• works well for domains where the items consist of aspects that are hard to model

correctly, such as music, movie, and book taste.

• always is a “correct” and relevant model of end-users’ preferences, and where

each user’s personal preference is catered for in the community. This assumes

that users’ ratings do not change too often and that users keep rating items

continuously.

8As in “shopping basket”, due to the many commercial online shopping implementations that
use cf.

34 Chapter 2. Background: Conversational Recommender Systems

• can cope with cross-genre recommendations; e.g. making confident predictions

of comedy movies to a user U that never rated comedies before (as long as the

neighborhood of U contains comedies).

• requires no domain knowledge.

• is adaptive, i.e. the model improves over time as more ratings are added to the

preference model.

cf systems work best if the domain objects do not change too often, in which case

other users’ ratings become less important. Furthermore, if ratings in general are

sparse it becomes hard to identify a correct and relevant neighborhood. There is also

a problem if a specific user’s basket is too small. This raises the question of how to

“fill the basket” as quickly as possible. This issue is known as the new-user cold-start

problem. A related issue is when a new object (such as a newly released movie) enters

the domain, and thus contains very few (if any) ratings in the community. This issue

is called the new-item cold-start problem.

Content-based (cb) systems utilize a user preference model based on the features

of the objects rated by the user. Instead of deriving a user-to-item correlation and

defining neighborhoods, item-to-item correlation is used. User preference models

are—as in the case of cf models—long-term and improved as users rate more items in

the domain. The advantages and disadvantages are basically the same as cf systems

with two important exceptions. On the one hand, cb systems can not identify cross-

genre items and thus tend to stick to the same type of recommendations, whereas

cf systems can introduce new types (see above). On the other hand, the new-item

cold-start problem is not apparent in cb systems, since all its features are known as

soon as it is introduced and not dependent on user ratings. Another feature of cb

systems is that items are limited to their initial description—or features—and this

makes the technique dependent on the features that are explicitly given. cb systems

naturally require a domain model; often in the form of attribute-value descriptions

of the included items. Both cb and cf systems suffer from the new-user cold-start

problem.

2.2. User Modeling and User Preferences 35

Demographic systems rely on explicit user attributes and base recommendations

on the demographic cluster that a user belongs to. This kind of recommender is

thus stereotypical, since they build on the assumption that all users belonging to a

certain demographic group have similar taste or preference [Rich, 1989]. One of the

first recommendation systems—grundy—was a book recommendation system devel-

oped by Rich [1979]. The main disadvantage with demographic systems is the need

to gather demographic information, with all the difficulties and privacy issues that

comes with it. Both new-user and new-item cold-start problems exist in demographic

systems [Burke, 2002].

Utility- and Knowledge-based systems are related to each other and for the

purpose of this survey it is suitable to group them together. A utility-based system

is typically short-term, and bases recommendations on utility values of each item in

a domain for a specific user. Knowledge-based systems employ functional knowledge,

i.e. explicit knowledge about how items in the domain meet user needs [Burke, 2002].

Knowledge-based systems do not require a utility function from the user. However,

they require knowledge engineering, which is very expensive. Knowledge-based sys-

tems have the power to identify how features in an item explicitly address user pref-

erences (or problems that the user wants to solve) and reason about how items meet

needs. Knowledge engineering may take many forms, but according to Burke [2002,

page 338] all knowledge systems require: (a) catalog knowledge about all objects

(such as ontological relationships etc.) in the domain, (b) functional knowledge de-

scribing how user needs map to item features, and (c) knowledge about users. User

knowledge can be of varying form depending on the application.

Both types share the advantage of not being prone to cold-starts. This is definitely

a big advantage. However, together they share two (probably just as big) disadvan-

tages: First, utility-based systems require the user to input the utility function which

is to be satisfied. This function must cross all features of the objects. A benefit of

this is on the one hand that a skilled user can express non-product specific attributes.

On the other however, this demands that the user is a skilled professional who can

design her utility functions efficiently, since they require the user to take all attributes

of the domain into account. Second, these systems are static and cannot learn or im-

prove their recommendations as e.g. cb and cf systems can. The inflexibility of the

36 Chapter 2. Background: Conversational Recommender Systems

utility-based approach does not fit casual browsing, since moving around in the item

space is cumbersome due to the fact that a new utility function must be conveyed for

each such move. Finally, knowledge-based systems require knowledge engineering.

2.2.4 Recommendation Performance Factors

It is hard to state if one of the above recommender system types generally are better

than the others, since they all have trade-offs. Indeed, much attention is given to

combine the above techniques into hybrid recommenders in order to utilize the best

(and eliminate the worst) characteristics of the different techniques [Burke, 2002;

Carenini et al., 2003]. Hybrid recommenders show promise to address the most crucial

part for recommender system performance: the accuracy of item recommendations

and predictions. However, the combination of algorithms is only one of the key factors

to efficient and accurate recommender systems.

A second important factor is the content and density of the set of user rat-

ings [Carenini et al., 2003], or the user preference model. While this problem exist for

all recommender types (except utility-based systems), the problem has received most

attention in cf systems. In cf systems, the preference model (“basket”) consists of

ratings of items in the domain. The more ratings in the model, the better predictions

(and thus recommendations) the cf algorithm can compute. Building user model

content is highly related to the new-user cold-start problem.

For completeness, a third key factor can be added to algorithms and preference

model density: The use of domain knowledge management and ontologies as proposed

by Middleton et al. [2002]. They report on successful integration of the Quickstep

recommender system and an ontology. Quickstep is a hybrid recommender system

and bases its user interest profiles on an ontology of research paper topics. The

construction of ontologies requires knowledge engineering and this approach thus

suffers from the disadvantages from the knowledge- and utility-based system class.

Recommender system research should thus be focused on (a) developing recom-

mendation techniques and algorithms (including combinations of existing techniques),

and (b) interaction design for efficient preference data acquisition [Johansson, 2003b].

According to Carenini et al., the latter aspect has been neglected to a large ex-

tent [Carenini et al., 2003].

2.2. User Modeling and User Preferences 37

As hinted above, one problem prominent in all types of recommenders (except

for the utility-based systems is the new-user cold-start (or “ramp-up” [Burke, 2002])

problem. In order to give personalized recommendations, systems have to know about

the user’s preferences. The process of acquiring these preferences demands time and

effort from a new user. This delayed benefit is in effect the new-user cold-start

problem. Users want to be able to efficiently start using the system right away, and

get relevant information the minute they start using it. The cold-start problem is

a serious problem, since it has been shown that most users tend to resort to non-

personalized information-browsing instead of investing the effort of conveying the

preferences needed by the system. Indeed, asking for preferences in advance might

even be impossible in some cases as discussed in Section 2.2.2; and Baudisch and

Brueckner [2002] recommend that regular information-providing behavior thus should

be a necessary functionality of recommender systems in order to ensure immediate

benefit.

The process of getting to know a user’s preferences varies depending on the appli-

cation, and the recommendation technique used. Most cf systems require the user to

go through a process of explicitly rating a number of pre-defined items in the chosen

domain as they are provided by the system. This is for example the approach taken

in the MovieLens movie recommendation system [Rashid et al., 2002]. Recommen-

dations in such systems start out being based on the “average” user preferences. As

the user rates more and more items, the recommendations gradually improve.

Another approach is to let the user give explicit content-based preferences in some

sort of sign-up process. This is currently a common practice in several commercial

systems, such as Amazon9.

With sparse data in the preference model, we will always face the cold-start

problem—no matter how good prediction techniques and algorithms we develop.

Hence, research toward devising suitable interaction techniques for preference elic-

iting is important. The next section surveys some contemporary attempts to address

this issue.

9http://www.amazon.com

38 Chapter 2. Background: Conversational Recommender Systems

2.3 Conversational Recommender Systems

A conversational recommender system utilizes natural language dialogue between the

user and the system to initialize, continuously update, and put the user’s preferences

to use in order to calculate and present personalized item recommendations.

One underlying motivation for exploring a human-like conversational approach to

recommender system interaction is voiced by Aksoy et al. [2006, page 297]:

it helps consumers to use a recommendation agent that thinks like them,

either in terms of attribute weights or decision strategies

This implies that preference attribute weights detected in the human-system dialogue

should reflect how humans detect preferences, and that preferences and recommen-

dations should be handled in a human-like fashion in the interaction.

A second motivation for the conversational approach is that it aims to exploit

situations where the user has a high motivation to provide preference data. For this

purpose Carenini et al. [2003] propose the Conversational and Collaborative Model

(CC), in contrast to what they refer to as a Standard Interaction Model. The Standard

Interaction Model preference acquisition occurs at registration time, after which user

and system communicate in “an independent and asynchronous way” [Carenini et al.,

2003, page 13], resulting in delayed benefit for the user. Carenini et al. identify four

situations where users have a high motivation to provide preference data:

• The user asks for a rating for an item she is interested in, but the system signals

that it does not have a sufficient preference model and asks the user for more

ratings.

• The system predicts an average rating (i.e. recommendation is not good enough

to decide whether or not the user should be interested). The user is willing to

provide more ratings to get a better supported recommendation.

• The user is puzzled by a recommendation (e.g. the user believes a prediction

for an item would be significantly different).

• If the user rates items, the accuracy of other users can be improved. In the

future, they may reciprocate. (Certain systems also implement “rewards” in

the user community for this type of behavior.)

2.3. Conversational Recommender Systems 39

Even though the CC model aims for conversational interaction, and indeed employs

something like a dialogue flow, it lacks a natural language processing component.

The conversational approach is also exemplified by Burke et al. [1997],who present

a range of recommender systems based on the FindMe Assisted Browsing framework

(e.g. assisting users to browse through car, video, apartments, stereo equipment, and

restaurant information). Burke et al.’s focus lies on structuring information retrieval

based on users’ critique of previously retrieved items in the domain. The FindMe

systems are knowledge-based and the framework can be applied to interaction sit-

uations where the user faces a large, fixed set of choices and where the domain is

too complex for users to fully articulate a specific information query. However, when

faced with a retrieved item, the domain is familiar enough for the user to articulate

some critique of the solution. The crucial point here is that the critique can be differ-

ent for different users; the critique signals what attributes are important for a specific

user. This is called tweaking in the FindMe framework. Consider the following movie

recommendation implementation tweaking: Let us say that a user U is recommended

the violent science-fiction movie Terminator II starring Arnold Schwarzenegger. The-

oretically, the user can criticize each single attribute of this movie in response to the

recommendation. Responses such as (a) “it’s too violent”10, (b) “I don’t like science

fiction”, or (c) “I don’t like Arnold Schwarzenegger” are all valid, and signal what

attributes are important to user U. The next recommendation will be very different

depending on which of the responses (a, b, or c) U chooses.

FindMe systems aim to reduce complexity, but maximize functionality. How-

ever, Burke et al. acknowledge that using only direct manipulation in a purely graph-

ical user interface falls short compared to natural language when describing the movie

recommendation systems Video Navigator and PickAFlick [1997, page 16]:

Interface constraints also entered in the decision not to employ tweaking in

Video Navigator and PickAFlick. There are simply too many things

that the user might dislike about a movie for us to present a comprehensive

set of tweak buttons. ... natural language tweaking capacity ... is the most

likely candidate for a tweaking mechanism in this domain.

10Even the statement “it’s not violent enough” is a possible ground for rejecting the recommen-
dation; emphasizing the importance of expressing preferences qualitatively.

40 Chapter 2. Background: Conversational Recommender Systems

Another approach based on users’ critique of system solutions is the Candidate-

Critique Model (CCM) proposed by Linden et al. [1997]. The CCM is implemented

in an automated travel assistant, and builds on the assumption that communication

between the system and the user is in the form of system candidate solutions to a

problem, and user critiques of those solutions. Although not implemented in the

system, free-form natural language dialogue is the ultimate aim of the system, since

that would [Linden et al., 1997, page 69]:

allow solution information to be communicated concisely from the system

to the user and allow arbitrary information about the user’s preferences

to be communicated from user to system

The CC, assisted browsing, and CCM approaches all use graphical user interfaces

with direct manipulation and typing of search terms as means of interaction, even

though they all acknowledge the possibility and potential benefit of using natural

language interaction [Carenini et al., 2003; Burke et al., 1997; Linden et al., 1997].

As an example of an approach that utilizes spoken natural language interac-

tion, consider the conversational recommender system Adaptive Place Advi-

sor [Thompson et al., 2004]. It was first presented with a graphical user inter-

face [Langley et al., 1999], and then with a natural language interface [Göker and

Thompson, 2000; Thompson et al., 2004]. The latter implementation is one of the

first spoken personalized conversational recommender systems. The approach con-

trasts against the ranked-list approach commonly used in other recommender sys-

tems. Instead, the goal of the Adaptive Place Advisor is to narrow down the

alternatives by having the user remove instead of re-order items. As noted by Göker

and Thompson [2000], deriving preferences from on-going interaction, and gradually

narrowing down choices by allowing partial descriptions of items, is a suitable recom-

mendation strategy for conversational systems. The benefits are that (a) the user is

not overwhelmed by a myriad of items, and (b) the user is aided in her understand-

ing of the domain and her preferences by thinking about questions in the dialogue.

The Adaptive Place Advisor utilizes dialogue moves to modify both the current

query and the user preference model. For example, if the result set size for a query

is larger than four items, the user is asked to constrain the query with attributes or

values of item properties. If the result set is empty, the system asks the user to relax

2.4. Development of Conversational Recommender Systems 41

the current constraints. Sizes in between (i.e. 1–4) are manageable by the user and

thus recommended.

Finally, the AdApt system serves as an example of a multi-modal recommender

system. AdApt is a dialogue system that helps the user to find apartments by ask-

ing questions and providing guidance in a dialogue [Gustafson et al., 2000]. The

system employs an animated talking head and presents information both graphically

on maps, and auditory by the talking head. Furthermore, the system allows for both

direct manipulation of the graphical user interface by means of mouse pointing, as

well as speech recognition. According to Gustafson et al., the apartment domain

is complex enough to warrant natural language interaction as one major interaction

modality. Since the research focus of AdApt is on multi-modal interaction—and not

on recommendation techniques as such—issues related to recommendations in the

dialogue are not thoroughly described. Indeed, it is questionable if AdApt should

be categorized as a proper personalized recommendation system, since there is no ex-

plicit, individualized user preference model built. AdApt instead utilizes an implicit

user model that presupposes cooperative dialogue behavior from the user. AdApt

follows the Adaptive Place Advisor’s notion of eliminating items from ranked

lists. (AdApt tries to limit the matching number of hits to 7 or less, whereas Adap-

tive Place Advisor tries to limit the list to 4 or less).

Since conversational recommender systems rely heavily on dialogue and incre-

mental modification of queries and preference models, a system’s dialogue strategy

to initialize, update, and utilize the preference model in the interaction is crucial for

the system’s performance and usability.

2.4 Development of Conversational Recommender

Systems

Dialogue system development is naturally viewed as a case of software development.

As a subclass, sets of general methods and evaluation criteria have evolved and is

slowly maturing. For instance, the disc project aims at defining best practice method-

ology regarding specification, design, usability, and evaluation of (spoken) dialogue

systems [Dybkjær et al., 1997].

42 Chapter 2. Background: Conversational Recommender Systems

The topic of dialogue system development is vast, and this section can only deal

with a small part of it. The interested reader is encouraged to consult works such

as McTear’s [2002]. The rest of this section gives an overview of development method-

ologies (Section 2.4.1), interaction design and usability (Section 2.4.2), and evaluation

(Section 2.4.3).

2.4.1 Design and Development Methodologies

As software systems tend to become more and more complex, and given the human

limitations in keeping an overview of complex systems, products developed accord-

ing to a methodology that requires up-front analysis, followed by design, and then

implementation—such as the waterfall method as it is commonly applied—run the

risk of ending up being filled with flaws [Martin, 1999]. Such heavy (or monumen-

tal) methodologies are contrasted to agile (or light-weight) methods [Fowler, 2000].

The cornerstones of agile methods are iterative and incremental software develop-

ment. Iterative and incremental development [Larman and Basili, 2003], is viewed as

consisting of iterative development cycles, where each iteration may consist of e.g. in-

cremental additions of functionality or re-factoring of code. The term evolutionary

development is used to describe an iterative and incremental methodology. Simplicity

in both tools and design is crucial for agile evolutionary development in general [Beck,

2000, page 103], and in the case of dialogue systems in particular [Degerstedt and

Jönsson, 2001; Johansson et al., 2002].

According to Bryson [2001], the chosen architecture greatly influences the design

method. It is thus, given the arguments for evolutionary development above, impor-

tant that the dialogue system architecture supports evolutionary development [Degerst-

edt and Johansson, 2003]. That is, functionality should be easy to add, remove, and

modify as requirements might change during the life-cycle of the project. Refactor-

ing in terms of separating dialogue management, preference models, and back-end

resources, etc. should be encouraged and supported by the architecture. If the archi-

tecture supports the principle of making generics as generic as possible, and specifics

as specific as possible, it helps making the engineering sound.

2.4. Development of Conversational Recommender Systems 43

2.4.2 Interaction Design and Usability

For a conversational recommender system interaction design needs to be approached

from two aspects: the natural language interaction aspect, and the recommender

system aspect. A smooth integration of both aspects is necessary for achieving a

usable system.

Natural Language Interaction Design

Natural language interaction differ from traditional graphical user interface interac-

tion, and requires its own set of methods to ensure user acceptance and usability

issues [Yankelovich, 1997]. If system design methodology for dialogue system con-

struction is a young field, usability issues and interaction design for natural language

interaction have only recently started to attract attention, since there hitherto has

been a strong functional focus on the systems. Indeed, we have previously said that

it might be a good idea to pursue the goal of human-like conversational recommender

systems (see Section 2.3). However, it is important to note that solely aiming for

unrestricted human-human dialogue is not a guarantee for ensuring usability. This

builds on the assumption that an unrestricted dialogue system is more usable than

one that is not. In theory this might be true, but the significant deficiencies in cur-

rent natural language understanding technology and theory is a fact that voids this

assumption [Pieraccini and Huerta, 2005]. While we take inspiration from human-

human dialogue when designing a conversational system, we still need to define and

address explicit usability aspects in order to achieve successful interaction.

Natural language interaction is typically based on human-human dialogue anal-

ysis; Wizard-of-Oz (woz) dialogues; dialogue theory and guidelines such as Gricean

maxims [Grice, 1975], or the Dialogue Evaluation Tool [Dybkjær et al., 1998]; or a

combination. In woz studies [Dahlbäck et al., 1998], the aim is to collect human-

machine dialogue corpora, where the machine is emulated by a human “wizard”—

whose existence is supposedly unknown to the user. One advantage is that it is

economical, since there is no need to build a functional system beforehand. An

interaction protocol of some sort which the wizard follows is “enough”. A second

advantage is that it is practical, since the alternative (that of analyzing unrestricted

human-human dialogue) may be too large of a step to restricted human-machine

44 Chapter 2. Background: Conversational Recommender Systems

dialogue.

However, there is a viable alternative—or middle-way—to the two approaches: di-

alogue distilling, which is a corpus analysis method with a particular aim for dialogue

system development [Jönsson and Dahlbäck, 2000; Larsson et al., 2000]. In the distil-

lation process, human-human dialogues are re-written to resemble human-computer

dialogue. This task is systematically carried out by applying guidelines. The resulting

corpus can then be used as base for dialogue modeling. The motivation for choosing

distillation of human-human dialogues in the beginning of a dialogue system devel-

opment project is economical (the same argument as for woz studies), and design-

theoretically sound, since free flowing dialogue between two humans may provide data

that correspond better to the relevant tasks and behaviors in the domain—without

the inbuilt assumptions inherent in the design of a woz environment [Jönsson and

Dahlbäck, 2000]. Dialogue distilling is more thoroughly described in Chapter 3.

An important aspect of successful natural language interaction design is the prompt

design and surface realization. By carefully formulating system prompts a smoother

interaction can be achieved. This is emphasized in commercial applications and much

effort is devoted to customizing prompts. Within the research community, this falls

under the Natural Language Generation field [Jurafsky and Martin, 2000], and in-

cludes following Gricean maxims [Dale and Reiter, 1995], and generating human-like

referring expressions, e.g. [Viethen and Dale, 2006], etc.

In their studies of natural language interaction in electronic tv program guides,

Berglund and Johansson [2004] and Ibrahim and Johansson [2002a] present interaction

design issues and guidelines for natural language dialogue-based information systems.

In their study, users reported that they found natural language dialogue efficient and

flexible since they could specify a lot of information in queries in certain situations,

and rely on the mixed-initiative capability of the system to aid completion of partial

user queries in others. Natural language generation of query results tailored for the

user was appreciated by the participants of the study; indicating that careful attention

should be paid to the design surface realization of system output.

Ibrahim and Johansson [2002b] propose a separation of the user, agent, and back-

end resources in their three-entity interaction model. The separation is done on inter-

action modality, as well as concretely communicating it in the graphical presentation

on-screen. Ibrahim and Johansson found that this separation communicates the di-

2.4. Development of Conversational Recommender Systems 45

alogue capabilities of the system more efficiently, and encourages the users to take

advantage of them.

Recommender System Interaction Design

We now turn to the other aspect of conversational recommender system interaction

design: recommender system-specific interaction issues. Since recommender systems

constitute a subclass of user-adaptive systems (i.e. systems that adapts its behav-

ior at use-time, depending on detected characteristics of an individual user), we are

presented with specific problems such as non-determinism and the difficulties of pre-

dicting system behavior at design-time (see Section 2.2.1). Furthermore, there are

specifics concerning the delivery of recommended items that need to be considered.

The research in this area is limited to date, and what exists is targeted toward tradi-

tional recommender systems with graphical user interfaces and direct manipulation

interaction (e.g. [Swearingen and Sinha, 2002]). Therefore, some care has to be taken

when applying the guidelines to conversational recommender systems.

In short, the following guidelines should be observed in recommender system in-

teraction design:

• Users’ trust in the system increases if the system logic is transparent; if there is

familiarity of both the recommended items and the process of receiving them;

and if previously liked items is included in the recommendation delivery. In-

deed, Buczak et al. [2002] found that users thought a recommender system

was broken when it recommended tv shows unknown to the user, without an

accompanying explanation relating to the users’ preferences.

• Users dislike bad recommendations more than they dislike providing a few ad-

ditional ratings or preferences. This needs to be carefully approached however,

due to the cold-start problem of delayed benefit (see Section 2.2.4).

• The process of eliciting preferences should be easy and engaging (e.g. a mix of

different type of questions, and continuous feedback during the input phase).

• The system’s categorization of e.g. genres should map to users’ mental models.

Filtering over genres should be easy and self-explanatory.

46 Chapter 2. Background: Conversational Recommender Systems

• Users should not perceive the recommendation set as a dead end, but rather

as a dynamic set that changes due to additionally elicited preferences or item

ratings.

• Additional subjective and objective item information should be easily available.

Reviews and ratings by other users are important, as well as clear paths to

detailed item information.

2.4.3 Evaluation

In the area of user-adaptive systems (such as personalized recommender systems),

evaluation has gradually become more and more critical, due to their dynamic nature.

Requiring evaluation and verification for scientific results is far from a new and bold

statement, but according to a recent survey, empirical evaluations in user-adaptive

systems research are still quite rare [Chin, 2001].

For researchers and developers working on adaptive conversational systems sev-

eral evaluation frameworks are available depending on the focus. If the focus is on

Language Technology research (i.e. focusing on dialogue more than adaptive function-

ality), one of the most well-known and widely accepted frameworks available for dia-

logue system evaluation is the paradise evaluation framework [Walker et al., 1998;

Litman and Pan, 1999]. paradise provides elegant metrics for assessing dialogue

strategy comparison, with a strong focus on task-oriented (spoken) dialogue systems.

paradise is typically applied on fairly mature systems and relies on a definition of

an ideal “key” to resolve specific tasks in the system’s domain.

If, on the other hand, the focus is on adaptive functionality a number of general

evaluation frameworks are available. Examples include Gupta and Grover’s layered

approach for adaptive hypermedia systems [2003], and Paramythis et al.’s modular

approach [2001]. The modular and layered approaches to adaptive system develop-

ment are in general sound, since they cater for the fact that comparing adaptive

functionality with a non-adaptive version of the system can be an absurd approach,

since the adaptive functionality often is an integral part of the system [Höök, 2000;

Weibelzahl and Weber, 2002]. However, these evaluation methods are not optimal

when considering systems that uses natural language and dialogue interaction, since

they have been designed for traditional user interfaces such as web and desktop ap-

2.4. Development of Conversational Recommender Systems 47

plications. The problem is the sometimes overlooked fact that there are no estab-

lished standards for dialogue system interaction as in the case of visually oriented

interaction, such as the dominating Window-Icon-Menu-Pointer (WIMP) interaction

metaphor. Only in certain application types is there a gradually maturing standard

and end-user deployment, such as information-providing services in the travel reser-

vation domain. The lack of dialogue system interaction standards can be attributed

to the incomplete operationalization of pragmatics and different dialogue genres. It

is therefore important to adopt an exploratory approach in the evaluation and focus

on issues not necessarily covered by the general methods in order to gradually reach

sound dialogue system standards.

According to Hulstijn [1999], usability is one of the key quality factors for dialogue

system performance, that concern both design and evaluation. Hulstijn considers the

following properties for dialogue system evaluation:

• Effectiveness. The accuracy and completeness with which users achieve their

task.

• Efficiency. The relative effectiveness of a system set in relation to the effort

to achieve it.

• Transparency. A system is transparent if the user’s mental model of the

system capabilities and behavior coincides with the design of the system.

• Coherence. The coherence of the system is to what degree the system’s utter-

ances are combined into a well-formed dialogue.

• Satisfaction. Satisfaction is defined as they way users perceive the system and

may be seen as a measure of usability.

Hulstijn [1999] notes that corpus-based methods tend to be conservative since a

change in system functionality is likely to change users’ behavior. As this quickly

may render the corpus inadequate we want to keep corpus dependency to a mini-

mum. Therefore, collecting and analyzing corpora should be fast and cheap, and

more importantly so in the beginning of exploring the system and domain require-

ments. According to this view, the evaluation step has a strong implication on the

48 Chapter 2. Background: Conversational Recommender Systems

initial design method, even though evaluation typically is employed at the final stages

of system design.

One rapid evaluation paradigm is called the “overhearer” model [Whittaker and

Walker, 2004]. The reason for using the overhearer model is to avoid natural language

interpretation problems (e.g. for projects where the coverage of grammar and lexicon

is not in focus). Furthermore, it allows for comparison of alternative dialogue strate-

gies in the same dialogue context, and has been used to evaluate adaptive generation

tasks for dialogue systems [Foster and White, 2005].

To gain feedback on system interaction and functionality, additional forms of user

input is needed. There are several hci methods available for this purpose, such as

surveys and interviews (subjective in nature) that could be used as a complement to

dialogue session logs and other more objective metrics.

2.5 Summary

Conversational recommender systems dwell in the intersection of dialogue system,

user modeling, and recommender system research, tied together by general software

development and evaluation methodology including empirical approaches and hci.

Setting this scene has been the topic of this background chapter. While these research

efforts provide us with many pieces of the puzzle, the integration of them, as well as

the quest for the missing ones, remains to be carried out.

Some dialogue genres, such as inquiry-oriented dialogue, are well-known phenom-

ena. However, the particularities of recommendation dialogue deserves more attention,

both in terms of an empirically based description of recommendation dialogue, as well

as recommendation dialogue as it should be designed and developed in computational

systems. One natural next step is thus to study human-human recommendation dia-

logue in detail, and then perform steps, with the existing pieces of previous research in

mind, toward a computational model of human-computer recommendation dialogue.

3
An Empirical Study of Recommendation

Dialogue

This chapter describes Study I, which is a human-human dialogue cor-

pus study in the domain of movie recommendations. The analysis of the

study consists of a dialogue distillation, and results in a characterization

of recommendation dialogue, and forms a base for a first prototype im-

plementation of a dialogue control strategy for movie recommendations,

which will be presented and evaluated in Chapter 4.

A first step toward understanding the dialogue genre of conversational recom-

mendation is to study how humans carry out recommendations and gathers prefer-

ences that will influence recommendations in dialogue. It is a well-documented fact

that human-human dialogues are not identical to human-computer dialogues [Jönsson

and Dahlbäck, 1988; Reeves and Nass, 1996]. However, we ended the last chapter

with noting the problem of the lack of dynamics when employing expensive corpus-

50 Chapter 3. An Empirical Study of Recommendation Dialogue

based methods in an exploratory, evolutionary dialogue system design process, since

a change in system functionality is likely to change users’ behavior (rendering the

original corpus inadequate). Therefore, collecting and analyzing corpora should be

fast and cheap, and more importantly so in the beginning of exploring the system

and domain requirements (see Section 3.2.3). Along these lines, our first data collec-

tion is a human-human dialogue corpus, intended to capture initial characteristics on

recommendation dialogue.

In Section 3.1, the experimental design and procedure is described. As analy-

sis method, the choice is (the economical) dialogue distilling method [Jönsson and

Dahlbäck, 2000; Larsson et al., 2000], which is the topic of Section 3.2. Armed with

the data of the analysis we characterize recommendation dialogue informally in Sec-

tion 3.3, which will form the basis for our first stab at a recommendation dialogue

strategy model in Chapter 4.

3.1 Experimental Design

The study was set up to record dialogues about movie preferences and recommenda-

tions. The dialogues were between one dialogue partner playing a movie recommender

role, and one partner acting as a customer looking for movie recommendations.

3.1.1 Participants

Forty-eight participants (24 female and 24 male students at Linköping University)

were recruited. The participants did not know each other. More specifically and

importantly, they did not know each other’s movie preferences. Each dialogue session

required two participants, one acting in the role of a movie recommender, and the

other in the role of a customer wanting movie recommendations. In order to avoid

repetition of recommendation strategies in the dialogues, each session had a new rec-

ommender. The benefit of receiving varying dialogue strategies is judged to outweigh

the benefit of having a more experienced recommender (i.e. that would have acquired

more “recommendation skill” due to his/her acting in several sessions). An experi-

enced recommender would obviously be an advantage, but at this stage we prioritize

variation.

3.1. Experimental Design 51

All sessions were kept as varied as possible in terms of gender and roles, including

male-female, male-male and female-female dialogues, as well as mixing the recom-

mender and customer roles in order to ensure as much variation as possible in the

dialogues. The participants were not paid.

3.1.2 Apparatus

The study was set in a home environment designed for usability studies. Apparatus

for the study included:

• A laptop connected to an extensive movie information database1 for the recom-

mender to use as information source. The database contains over 540,000 movie

titles with information on actor, director, genre, plot, year, award, language,

and several other attributes for each title.

• A movie recommendation protocol—also called the “to-see list”—where the

recommender writes down movie recommendations for the customer.

• Scratch pads and pencils for both customer and recommender to use for note-

taking.

A stereo microphone connected to a digital recorder was used to record each dialogue

session.

3.1.3 Procedure

One of the dialogue partners in each session was assigned the role of a professional

movie recommender, and got a 15-minute tutorial on how to use the movie information

database. The second dialogue partner was assigned the role of a customer, and

received no training.

One scenario was specifically designed for the customer, which included a short

background story. This scenario, in combination with the home environment was

aimed to put the customer in the right mood; and to provide motivation for conveying

preferences and be cooperative in the dialogue with the recommender.

1The Internet Movie Database (http://us.imbd.com).

52 Chapter 3. An Empirical Study of Recommendation Dialogue

The recommender also received a scenario prior to the tutorial, which provided

her with the task of recommending in total ten movies. Five of these should have been

seen by the customer and verified as “good” recommendations (in order to indicate

that the recommender acquired and utilized the customer’s preferences), and five

should be previously unseen. When the recommendation protocol (referred to as

“the to-see list”) was completed, the session was terminated. Translated versions of

the scenarios are available in Appendix B.

Both dialogue partners were allowed to use the scratch paper and pencils pro-

vided in order to keep notes throughout the session. Furthermore, even though the

recommender used the online movie database, both participants were allowed to look

at the information on the laptop screen.

3.1.4 Results

A total of 24 dialogues were recorded with two participants in each session, resulting

in 7.5 hours of recorded material. In addition to recording, two observers were present

(however residing in the background to avoid interference). The scratch pads were

collected along with observation notes from the two observers. Transcription of the

dialogues resulted in 2684 utterances with a mean of 112 utterances per dialogue. All

dialogues are in Swedish, and excerpts below have been translated to English.

3.2 Analysis

The human-human dialogue corpus was systematically re-written to human-machine

dialogues through the process of dialogue distilling. The method can be seen as a

complement to woz studies (see Section 2.4.2).

This section gives a brief overview of the process of dialogue distilling, followed

by an account of the guidelines used in the analysis phase of User Study I, and the

results of the distillation.

3.2.1 The Dialogue Distilling Process

When distilling, we aim at re-writing an original human-human dialogue corpus into

a plausible human-machine dialogue. In the movie recommendation corpus, we ap-

3.2. Analysis 53

point the recommender participant to function as “the system”, and the customer as

“the user”. In the following, this is how they are referred to. In general, dialogue

distillation is a two-step process [Larsson et al., 2000] consisting of:

1. Guideline development

2. Guideline application

It is important to realize that even the most thoroughly developed guidelines can-

not be fully objective and exact, and in the application of them, issues will most

certainly arise where the distiller may have to go back and refine or re-define the

guidelines [Larsson et al., 2000].

3.2.2 Guideline Development

Defining the guidelines is a complex task, because all communication characteris-

tics and phenomena are less than perfectly understood—both concerning human-

human as well as human-machine communication. In order to perform methodologi-

cal changes to the corpus, Jönsson and Dahlbäck [2000] suggest two sets of guidelines,

which are further developed by Larsson et al. [2000]. This boils down to four sets of

guidelines: general guidelines, linguistic properties guidelines, functional properties

guidelines, and ethical properties guidelines. Each set consists of a number of specific

guidelines, as well as rules of thumbs for applying them. For the corpus collected in

User Study I, several guidelines were developed based on these suggestions. They are

summarized in Table 3.1.

3.2.3 Guideline Application

Several issues arises when trying to apply the guidelines. As noted by Larsson et

al. [2000], the guideline application step boils down to “common sense”, and perhaps

the most notable benefit of using the distillation method is that the distiller is forced

to confront abstract principles with the concrete dialogue data, and thereby gains

an understanding of the dialogue system that is to be built. As the collection of

issues provided in this section shows, the distillation process provides us with a large

number of observations that enhance understanding of the dialogue behavior of a

conversational recommender system.

54 Chapter 3. An Empirical Study of Recommendation Dialogue

Table 3.1: Dialogue distilling guidelines used in the movie recommendation dialogue
corpus analysis. (S = system, U = user). Adapted from Larsson et al. [2000].

Guideline Explanation
Linguistic properties
Syntax S speaks syntactically correct in full sentences, and does

not mumble or hesitate.
Turn-taking S does not interrupt U, and always allows U to take

initiative.
Focus S presents the information in such a way that coherence

with the focus of the user’s utterance is maintained.
Functional properties
Relevance/Quantity S only presents relevant information.
Quantity S asks only for the information it needs to complete its

task; no more and no less.
Immediacy S gives all relevant information at once.
Memory S does not forget information and does not ask user twice

about the same piece of information.
Orderliness S follows a certain order when asking questions; S does

not skip between questions.
Repetition S does not repeat itself unless asked to.
Mapping S is responsible for mapping the nl representation of a

database request to a suitable one.
Ethical properties
Honesty S does not lie and does not try to cheat the user.
Politeness S is polite.
Seriousness S is not ironic, does not flirt, etc.
Voluntariness S does not try to persuade the user.
User Initiative S does not take the initiative (including the turn) from

the user.
Neutrality S does not express its own opinions.

3.2. Analysis 55

R1 have you seen Star Wars?
C1 yeah the new Star Wars movies are quite lousy / the

first / uhm / episode one / was really bad because of
that computer animated clown that jumped around and
squealed / of course they removed him in the second
movie / which was good / but that movie didn’t have
any plot at all

R2 okay
C2 but then again they’re good to watch / you know lots

of special effects and great sound / so I’d watch them
anyways

R3 right / I see / have you seen The Matrix?

Figure 3.1: Excessive customer input from the human-human dialogue that will be
modified in the distilled version. Movie titles are in italics. R = Recommender,
C = Customer.

Modification of Excessive User Utterances

The biggest challenge is to apply distillation guidelines on user input. On the one

hand, we want to stay as true as possible to the human way of expressing herself—

as in the human-human corpus—since we do not want to build a dialogue system

that restricts the user. On the other, several difficulties arise as many utterances

are very complex and ambiguous and thus hard to implement in a dialogue system.

Furthermore, capturing the multi-faceted user preferences in a human-human dialogue

with existing recommender engine technology in mind is next to impossible. The

general rule is to modify user utterances as little as possible. However, the closer we

get to implementing a speech-based dialogue system, the more restrictive we need

to be with what sort of input we will accommodate. This is because, the longer the

utterances, the harder it is to recognize and interpret them with contemporary speech

recognizers.

Another issue related to both utterance length and content is when customers

are very talkative and provide information that even a very advanced recommender

engine will not be able to make use of. An example of this sort of user input as

a response to a movie recommendation is shown in Figure 3.1. Recognizing and

interpreting utterances C1 and C2 in Figure 3.1 is beyond the capabilities of the

56 Chapter 3. An Empirical Study of Recommendation Dialogue

S1 Have you seen Star Wars?
U1 Yeah, they are okay
S2 I see. Have you seen The Matrix?

Figure 3.2: Distilled version of the dialogue excerpt of Figure 3.1. Movie titles are in
italics. S = System, U = User.

dialogue systems reported on in this thesis. Given that a speech recognizer succeeds

in correctly recognizing and interpreting C1 and C2, the only really usable fact for

future recommendations is that the user ratings for the episode I and II in the Star

Wars series are less than average. Even if the recommender engine could utilize and

model preferences concerning e.g. computer animation and special effects in movies,

we would not be able to draw any conclusions about this from C1 and C2, since the

user first states that the movie is lousy because of the “computer animated clown”,

but then says that the movies are good because of the “special effects”. Thus, the

distilled version of the dialogue in Figure 3.1 becomes quite severely changed (see

Figure 3.2). This particular dialogue is even harder to accommodate correctly, since

Star Wars is both one of currently six episodes in a series, as well as one unique movie

in that series. It is not clear whether the recommender in R1 was originally referring

to the movie or the series. We can view the excerpt in Figures 3.1 and 3.2 as an

application of the Mapping guideline (see Table 3.1) since neither the information

nor the recommender engine of the system can handle the content of the original

dialogue in Figure 3.1.

System Utterance Syntax

As the guidelines dictate, the system should not make use of ambiguous ellipses,

since this may confuse the user. Repairing such misunderstandings requires complex

dialogue tracking and makes the dialogue less efficient. Figure 3.3 shows an example

of this from the dialogue corpus. The confusion in the dialogue in R7-C8 is avoided

if we make sure that the system never uses ambiguous expressions such as R7.

3.2. Analysis 57

R1 Samuel L Jackson acts in the following movies: [list]

C1 Time to Kill is good
R2 have you seen 51st State?
C2 no
R3 do you want to put it on your to see list?
C3 what is it about?
R4 51st State is about [plot]

C4 no
R5 have you seen Unbreakable?
C5 is Bruce Willis starring in that?
R6 yes
C6 Bruce Willis has done many good movies / The Sixth

Sense is great
R7 ok / he acts in Star Wars
C7 Bruce Willis!?
R8 no no / Samuel L Jackson / do you like science fiction?
C8 aha / yeah

Figure 3.3: Dialogue excerpt where the recommender (R) makes an ambiguous ref-
erence (R7), confusing the customer (C). Movie titles and actor names are in italics;
domain information, such as title lists and plot information, from the database is
omitted but marked with brackets.

User Initiative

Even though the recommender in the human-human dialogue generally tries to accom-

modate customer requests, she sometimes ignores customer requests and maintains

initiative according to her plan. Since the recommender has a legitimate “expert”

role, this behavior is accepted by both parts in the dialogue. However, in a human-

machine dialogue this sort of behavior will probably be less easy to accept for the

user. When distilling, we need to accommodate this and abide to the User Initia-

tive guideline. That is, when the user takes initiative, the system should let her do

that without question.

The typical example of this is when the user initiates an information request before

responding to a pending system-initiated preference request.

58 Chapter 3. An Empirical Study of Recommendation Dialogue

R1 it seems that you like movies where the story is not
chronological?

C1 yeah / like the story jumps back and forth with cool
cuts

R2 right / then I think you’d like Memento

Figure 3.4: Dialogue excerpt with a complex preference attribute. Movie titles are in
italics. R = Recommender, C = Customer.

“Do Not Diagnose What You Cannot Treat”

As pointed out by Höök [2000], user modeling applications should not include data

that are of no relevance for the task being performed. That is, the system should not

request user model properties that have no relevance for the recommendation task.

This seems intuitive and clear, but when applying this guideline to the corpus we are

required to know the workings of the recommender engine that we will put to use

in the final conversational recommender system. Otherwise, we might remove too

much from from the corpus, as well as remove too little. For example, one human

recommender in the study asked for a customer’s age. Demographic recommender

systems (see Section 2.2.3) utilize age information in their user model, whereas e.g. cf

systems do not. When distilling, we thus complement the guidelines with the rele-

vance recommendation of Höök, as well as taking the chosen recommender engine

into account.

Another example of preference conveying covering attributes that are hard to

model is found in the excerpt of Figure 3.4. The preference in C1 in Figure 3.4

would require a knowledge-based recommender system with explicitly encoded infor-

mation for “non-chronological storyline” and “cool cuts”. Allowing for such—and

other equally complex—attributes is perhaps possible, but it obviously requires a

massive knowledge engineering effort.

Wasting Turns: Immediacy and Forgetfulness

Human recommenders tend to “waste turns” by not giving all relevant information

at once, as the guidelines suggest. This is partly due to that it takes time for a

human recommender to browse and overview the information in the movie database.

3.2. Analysis 59

C1 do you have any Spanish movies
R1 Spanish? / uhm how do I find that //
C2 I think I’ve heard about a Spanish move called Amores

something
R2 uhum / maybe
C2 supposed to be a gang movie
R3 sorry / what was the title?
C3 like Amores Peros I think

Figure 3.5: Dialogue excerpt showing how the dialogue can be affected by database
browsing difficulties and human memory limitations. Movie titles are in italics.
R = Recommender, C = Customer.

Figure 3.5 shows how this affects the dialogue (R1, R2). Another turn-waster is

due to human memory limitations. Several dialogues contain utterances where the

recommender asks the customer to remind her of a title or an actor name, as in

Figure 3.5 (R3). While this dialogue behavior is natural between humans, it is not

suitable in a human-machine dialogue according to the Forgetfulness guideline.

Orderliness: Is it there or not?

The Orderliness guideline has been applied with care, since it is hard to charac-

terize the original corpus as having a quality of order. Human recommenders differ

greatly in their strategy, and sudden “interruptions” from the users in form of pref-

erence volunteering and information requests cause the dialogue to take unpredicted

ways. This mutual breaking of order from both recommender and customer seems to

work out fine in the human-human context. The dialogue discussed here may require

seemingly unordered skipping between issues in order to arrive to qualified movie

suggestions. Thus, the recommended Orderliness guideline has been treated with

moderation.

The Unbiased Recommender

In the excerpt in Figure 3.6 the recommender poses a leading question (R2), that

makes it hard for the customer to disagree without “losing face”. In R2 in Figure 3.6

the recommender indicates that the customer is “a bit childish” if she admits to

60 Chapter 3. An Empirical Study of Recommendation Dialogue

R1 have you seen Harry Potter?
C1 yeah /
R2 it was a bit childish right?
C2 uhm / yeah / I guess

Figure 3.6: Example of a leading recommender question unsuitable for an unbiased
dialogue system. Movie titles are in italics. R = Recommender, C = Customer.

liking the movie Harry Potter. The response in C2 is very hesitant, indicating that

the customer only agrees with the recommender in order not to seem childish. In

effect, the inferred low “rating” of the movie in question thus might be incorrect and

in turn affect future recommendations. In order to avoid such negative effects, leading

questions are re-written as unbiased questions (e.g. “What did you think about it?”

instead of R2).

A related issue on bias that is commonplace is when the recommender motivates

her recommendations by claiming personal experience of the movie in question. This

is fine in a human-human situation where the more knowledgeable recommender is

the expert. Indeed, subjective explanations of this sort occur in the original corpus.

However, in a human-computer situation users are probably less likely to accept a

system that states “I have seen this movie myself, and I enjoyed it very much”. Thus,

all recommendation explanations and motivations in the distilled corpus are based

on objective attributes of the movie (such as genre and cast), as the Neutrality

guideline prescribes. This is in line with the Relevance guideline, that suggests

that the system should only present relevant information. In this case, this is done

by using matching attributes in the current recommendation base in the explanation.

3.3 Characterization of Recommendation Dialogue

As a second step in the analysis, a number of characteristics are identified in the

corpus. The characterization consists of: (a) the roles and attached initiatives, which

have an impact on how the dialogue progresses (Section 3.3.1); (b) the relations

between information requests and preferential statements (Section 3.3.2); (c) a list of

re-occurring dialogue act types in the corpus (Section 3.3.3); and (d) a classification

of two principal dialogue behaviors (Section 3.3.4).

3.3. Characterization of Recommendation Dialogue 61

3.3.1 Roles and Dialogue Flow

We start by defining a recommendation dialogue as an exchange of dialogue acts be-

tween two participants; one acting in a recommender role, and the other in a customer

role (i.e. receiver of recommendations). The recommender is assumed to have exten-

sive domain knowledge (such as access to a database of domain items), as well as a

strategy for getting to know the customer’s preferences, and a way of using this in-

formation in order to recommend relevant items. In a human-machine situation this

translates naturally to the system having the recommender role, and the user having

the customer role. Note the deliberate deviation from the roles in inquiry-oriented

dialogue [Hulstijn, 2000]. Roles are slightly different since the distance between task

and dialogue is closer than in traditional information retrieval dialogue [Dahlbäck,

1997]. Furthermore, inquiry is viewed as a part of recommendation dialogue, and

negotiation plays a large role in recommendation dialogue. (See Section 2.1.5.)

Looking at the overall dialogue flow in a typical recommendation dialogue, we can

distinguish three phases:

1. Establishing initial descriptive preferences.

2. Free exploration by query, and additional preference acquisition.

3. Refinement of preferences using comparatives and superlatives.

In phase 1, the recommender (i.e. a recommender system implementation) aims at

establishing some basic preferences, preferably distributed over the majority of the

domain’s entity types (e.g. some preferred artists, some genres, and some album

preferences in the music domain). Here, the initiative is mostly the recommender’s

who is guiding the customer (i.e. the user) to efficiently acquire preferences through

direct questions.

The customer (or user) may then, in phase 2, take initiative and explore the

domain by posing factual questions about the domain. In the dialogue corpus it

is common that preference statements occur as a result of being exposed to query

results. This is consistent with the observations of e.g. [Carberry et al., 1999, page

187] who claim:

62 Chapter 3. An Empirical Study of Recommendation Dialogue

S1a These movies belong to the genre Thriller: [list]

S1b Any of these you like in particular?
U1 I like The Usual Suspects better than The Silence of the

Lambs
S2a Ok.
S2b Are there any other genres, actors or directors you pre-

fer?

Figure 3.7: Sample distilled dialogue excerpt from the dialogue corpus with factual
statements and queries; and descriptive, comparative and superlative preferences.
S = system, U = user.

users are often unaware of their preferences at the outset of planning and

only bring these preferences into play as they must evaluate alternative

actions and choose among them.

When an initial set of preferences have been accumulated, preferences may be

refined by introducing comparative statements in phase 3 (e.g. utterance U1 as

response to S1a/S1b in Figure 3.7). It is noteworthy that preference statements

in the early phases (1–2) typically deals with classes (entity types and values that

describe attributes of domain items), whereas phase 3 typically deals with instances

(individual domain items that are being recommended). Recommendations may occur

in all three phases, but typically the recommender can only provide high-quality

recommendations in phases 2 and 3 when enough preferences have been collected

from the customer. Initiative in the third phase is not as clear-cut as in the previous

two. The corpus indicates that about half of the recommenders re-gained more control

over initiatives in phase 3 and asked customers’ comparative questions. The other

half simply acknowledged comparative preferences as they were stated by customers.

For dialogue system strategy design, this behavior is thus an open choice using the

human-human dialogue corpus as guideline.

The phases are not one-directional since they may overlap each other to a certain

extent in the dialogue. Each phase may also occur several times in a longer dialogue.

Furthermore, all phases are not mandatory in all preference dialogues (e.g. there may

be dialogues without much exploration by query). The three phases serve as useful

guidelines when designing a dialogue strategy that describe human-like preference

3.3. Characterization of Recommendation Dialogue 63

Table 3.2: Utterance content taxonomy. Percentage of utterances in the corpus.

Category % Sub-category % Sub-category %
Task 79.3 Factual 28.6 Class 8.9

Instance 19.7
Preferential 50.7 Class 18.3

Instance 32.4
Communication management 14.5
Irrelevant 6.2

dialogue behavior.

One observation on preference dialogues is that humans prefer to start out simple

and then gradually refine factual queries/statements and preference statements in the

on-going dialogue as opposed to construct complex utterances in one go. This should

thus be supported in the dialogue strategy design.

With this bird’s eye perspective of the general flow of a recommendation dialogue,

we move on to utterance level to characterize requests and statements of dialogue

participants.

3.3.2 Factual and Preference Requests and Statements

When examining the dialogue corpus at utterance level, it was found that 50.7%

of the customer utterances in the dialogues were descriptive (32.7%), comparative

(9.0%) or superlative (9.0%) preferential utterances. A smaller part, 28.6%, of the

utterances were factual utterances about the domain and its entities. Preferential

and factual utterances are considered to be the principal task-related utterances in

preference dialogues. The remaining part consisted of communication management

such as repeats, etc. (14.5%), and irrelevant utterances such as questions concerning

the experiment situation, etc. (6.2%) [Johansson, 2003a]. Table 3.2 shows the distri-

bution of utterances. As noted in Section 3.3.1, preference statements occur for both

classes (e.g. actor or genre in the movie domain), and instances (e.g. movie titles).

It is interesting to note that information requests occur as part of the recommenda-

tion dialogue, often as a sub-dialogue to a preference interview. Indeed, it often drives

the dialogue forward. This interleaving of factual requests and preference statements

64 Chapter 3. An Empirical Study of Recommendation Dialogue

R1 Rene Russo acts in these movies / any you like there?
(R displays a list of movies on the screen)

C1 yeah / that one is great (C points at one of the titles on
the list)

R2 I see / please name another good movie
C2 uhm / who’s starring in Ransom
R3 here are all the actors in Ransom: (R shows list)
C3 so what other movies has Mel Gibson done?
R4 all of these (R points at Gibson’s filmography list)
C4 right / oh yeah / Braveheart is one of my absolute fa-

vorites
R5 Oh then I think you’d like Gladiator

Figure 3.8: Dialogue excerpt showing how user-initiated information requests move
the more general preference dialogue forward. The overall goal for the recommender
is to retrieve movie preferences (R1, R2), based on movie titles from the filmogra-
phy list of the actress Rene Russo. Subsequently, the customer initiates information
requests (C2, C3), thereby retrieving another filmography list. Actions are denoted
within parenthesis. Movie titles and actor names are in italics. R = Recommender,
C = Customer (the excerpt is not distilled).

is exemplified in Figure 3.8.

3.3.3 Dialogue Acts

Task-related utterances in recommendation dialogues can be viewed in terms of tradi-

tional dialogue acts such as statements and information requests [Bunt, 1994]. Even

though general and domain-independent dialogue act taxonomies have been sug-

gested, they often seem too general for specific applications, especially as user model

acquisition heuristics [Pohl et al., 1995]. As hinted above, the division between fac-

tual and preferential acts is important and serves as a useful tool to categorize acts

specific for the recommendation dialogue. In order to arrive at a design of a formalism

specifically targeted for recommendation dialogue we identify the following acts2:

2Note that the focus is not on general domain-independent act types, but rather on the studied
class of recommender systems. Conventional acts, such as acknowledge, opening, and closing,
etc. naturally occur in recommendation dialogues.

3.3. Characterization of Recommendation Dialogue 65

Factual-Request Requests take two distinct shapes. In the first sense, it is a ques-

tion of factual nature (typically from the customer’s part) about the domain. This is

the information request in the traditional information retrieval dialogue system sense,

where the system’s task is to deliver a database result (as a factual-statement).

This is a typical act found in inquiry-oriented dialogue.

Preference-Request In the second sense, the request is a preferential question

from the recommender to the customer, where the goal is to acquire preferences as

an answer from the customer. These preference-requests are mostly descriptive,

but occur as comparatives or superlatives in some dialogues. preference-requests

typically take three forms, ranging from specific to generic. The most specific form

requests explicit entity type values (such as “What do you think about thrillers?”). In

the second form, preferred entity types are requested in a more open-ended fashion

where the user is free to give the preferred value, given an entity type (such as “Please

state a genre that you like”). Third, open preference-requests encourage the

user to elicit both entity type as well as value. The open preference-request

may contain valid entity type suggestions (e.g. “What other genre, actor, or director

preferences do you have?”, or be completely open (e.g. “What else do you like?”.

Answer As in the case of requests there are both factual and preferential an-

swers. These are responses from the customer to preference-requests from the

recommender. Answering is an abstract act that can take several shapes: factual-

statement, preference-statement, and the simple yes/no answer. factual-

statements as answer is most common for the recommender and preference-

statement is mostly a customer act. yes/no answers exist for both roles.

Factual-Statement The factual-statement is a fundamental characteristic of

information retrieval dialogue and is the standard response to a factual-request,

typically carried out by the recommender. In an implementation, providing an answer

from a database or other domain description is naturally the task of the system.

Preference-Statement Comparative preference-statements naturally refer to

two entity types or entity values (arity 2), whereas descriptive and superlative state-

66 Chapter 3. An Empirical Study of Recommendation Dialogue

ments refer to one entity type or value (arity 1). Naturally, this act is reserved for

the customer in the studied recommendation situations. However, it does occur that

human recommenders provide their own preferences as statements, e.g. before pro-

viding a recommendation. This is unsuitable for human-computer dialogues and has

been removed in the distillation process. The reason preference-statement is

separate from the answer category is that preference-statements also occur as

volunteerings, i.e. without a preceding preference-request. This is an important

feature of preference detection in Carberry et al.’s theory [1999].

Agreement The abstract agreement act can be of two types: (accept or reject).

These two are common in this domain as answers to recommendations, and take

the form of two acts in sequence3. The reject act is viewed as a no combined

with a preference-statement (e.g. “No. I don’t like thrillers”). The accept act

is a yes (or acknowledgment in some schemes), combined with a preference-

statement.

Recommendation The recommendation act is central to preference dialogues in

recommendation situations, and is the goal of a recommender system. A recom-

mendation is invoked when the recommender has gathered “enough” preferences

from the customer in order to present an entity that she believes the customer will

like. However, recommendation is an abstract act, since it can be realized as a

question (“Have you seen film x?”), as a statement (“You will probably like film

x”), or even as a sequence of the two (“Have you seen film x? I think you will like

it”).

Motivation A recommendation is often accompanied with an explanation of why

the recommendation was made. Motivations can help build trust between partici-

pants, since it helps the customer understand what preferences the recommender has

picked up on. It also naturally relates to transparency in terms of human-computer

interaction (see Section 2.2.1). This act is called motivation, and typically relates

previously collected preferences to the recommended item. Table 3.3 exemplifies a

3They may also be viewed as a compound act, depending on how the encoding formalism of the
act is designed.

3.3. Characterization of Recommendation Dialogue 67

Table 3.3: Dialogue excerpt with a recommendation and a motivation dialogue
act. The actor and genre preferences used in the motivation were previously
detected in the dialogue. Movie titles and actor names are in italics. U = User,
S = System.

Utterance Dialogue Act
S1 Have you seen Entrapment (1999)? recommendation
U1 No answer(yn)
S2 I think you will like it since it is a thriller

starring Sean Connery.
motivation

recommendation and a motivation expressed with regard to this particular user’s

previously detected preferences.

Compound Acts Certain utterances can best be described as being compounds

of the dialogue acts listed above. The two agreement acts (accept and reject),

can be viewed as either a compound, or a sequence of two acts. Another common

compound is a merge of a preferential and a factual statement, as in “I like comedies

when I want to relax”. The preferential part concerns the genre comedy, and the

factual part concerns the situation relax.

As described in Chapter 2, the model presented by Carberry et al. [1999] describes

three utterance types in which preferences are conveyed: direct (e.g. “I like Bruce

Willis”), indirect (e.g. as part of queries; “What thrillers are there?”), and hedg-

ing, which signals an uncertain preference (e.g. “I might like Pulp Fiction”). Direct

statements and hedgings falls into the descriptive preference-statement category,

whereas indirect statements belongs to the factual-question category. Carberry

et al. focus on descriptive preferences and do not mention comparatives and superla-

tives in their model. However, we feel they should naturally be included in the direct

preference-statement category.

Connecting the findings in the corpus analysis with the theory of Carberry et

al., we provide an extension to the conversational circumstances category (see Sec-

tion 2.2.2):

68 Chapter 3. An Empirical Study of Recommendation Dialogue

S1 Star Wars: A New Hope is a Science Fiction movie.
U1 Yes, I like Science Fiction.

Figure 3.9: Dialogue excerpt exemplifying the Accept-Solution conversational circum-
stance. S = System, U = User.

Accept-Solution: The user gives a preference as part of accepting a recommen-

dation. Figure 3.9 shows an example. The preference strength is comparable to

that of Volunteered-Background, and the Accept-Solution circumstance is affected

by the utterance type in the same fashion, ranging from mod-2 (3) to str-2 (5)4. As

endorsement, it has a reliability rating of Very-Strong (5)5.

3.3.4 Delivery and Interview Dialogue Behaviors

With the completion of the characterization of recommendation dialogues, we have an

empirical ground to start developing a computational model for recommendations in

natural language dialogue. The first step is to define recommendation dialogue strate-

gies. This is done by clustering the distilled corpus into re-occurring patterns. Two

principal dialogue patterns were identified: delivery, and interview [Wärnest̊al et

al., 2007b]. The hypothesis is that a recommendation dialogue strategy model suitable

for implementing conversational recommender systems can be seen as a combination

of interview and delivery strategy instances of varying complexity.

The Delivery

The goal of a delivery is to present information. We identify two kinds of delivery:

(a) direct delivery, and (b) indirect delivery. In the former case, a delivery simply

consists of presenting a solution as a response to an explicit request (such as a tra-

ditional information retrieval dialogue system). In the latter, the delivery is due to

an implicit request, or a long-term goal, influenced by preferences detected in the

on-going dialogue. For instance, a recommender system user has the long-term goal

of getting recommendations. However, it is in collaboration with the recommender

4See Figure 2.2.
5See Table 2.2.

3.3. Characterization of Recommendation Dialogue 69

agent that this is achieved, and the agent cannot be certain that the next recom-

mendation is previously unknown to the user. This requires caution in terms of the

delivery. Furthermore, the agent could motivate its choice of recommendation with

a motivation, as well as follow-up questions regarding the quality of the given recom-

mendation. Such motivations are central for building trust [Swearingen and Sinha,

2002] and help explaining the inner workings of the recommendation algorithm [Höök,

2000]. They are frequently used in recommendation situations and therefore desirable

in conversational recommender system interaction. Asking the user for feedback on

the delivered item is also considered part of the indirect delivery strategy.

At certain points, a delivery request may result in exceptional results. Exceptional

results arise when the user has provided too little, ambiguous, or erroneous informa-

tion; and needs guidance in order to achieve her goal. The amount and quality of such

information depends on what background resources the deliverer has at her disposal.

A dialogue system that employs a complete ontological model of the domain can, for

instance, “know” that certain concepts are not covered by an underlying database

(out-of-domain concepts). Other examples of exceptional results are empty result

sets, or under-specified queries.

In our view of recommendation and inquiry-oriented dialogue, exceptional results

is what drives the interview strategy. There is a symmetry between under-specified

queries and resulting clarification dialogues, and preference acquisition for indirect

delivery (such as recommendations). This similar structure makes it possible to use

the interview strategy for both user preference interviews, as well as for sub-dialogue

clarification for poorly understood requests. The generality of the interview and

delivery strategies makes them suitable to use for both phenomena, as exemplified in

Chapter 6.

It is important to note that the occurrences of exceptional results increases in

human-computer dialogue compared to human-human ditto. A typical example is

information about out-of-domain concepts which is a direct consequence of the limited

domain descriptions in information systems to date.

70 Chapter 3. An Empirical Study of Recommendation Dialogue

S1 Is there a particular genre you like?
U1 I like thrillers
S2a These are the actors and directors that belong to the

genre Thriller: [list]
S2b Any of these you like in particular?
U2 I like the actor Kevin Spacey
S3a These movies star the actor Kevin Spacey: [list]
S3b Any of these you like in particular?
U4 The first one is good
S4a Ok. Do you have any other preferences?
U4 What drama movies are there?
S4a These movies belong to the genre Drama: [list]
S4b Any of these you like in particular?

Figure 3.10: Preference constraint selection strategy in an interview. Example from
the music domain. Entity values are in italics. S = system, U = user.

The Interview

The purpose of the interview is to collect information about opinions on domain

entity types (e.g. genres, directors or actors in the movie domain) and specific items

(i.e. specific movies). We refer to this information as preferences, which form the base

for deliveries (e.g. product recommendations, or database search results). The user

(interviewee) is assumed to respond cooperatively, but may also volunteer preferences

not explicitly asked for. The question-selection strategy (i.e. the order in which entity

type and value preferences are requested by the system) follows a certain default

order, often ranked by a pre-defined importance in the domain and usually ends in

“open” preference requests (e.g. utterance S4b in Figure 3.10). Our corpus analysis

suggests a question-selection strategy that moves from generics to specifics (i.e. asking

about genre preferences before asking about actor preferences). Note however, that

the default order can be revised since interviewees may volunteer preferences in a

different order and inform the interviewer of specific importance of certain attributes.

Recommender systems that implement this kind of interview strategy is said to have

a dynamic question-selection strategy (cf. [Bridge, 2002]), since the questions are

chosen at run-time depending on what preferences have been given by the user. As

the dialogue progresses it may become impossible to provide more deliveries based

3.3. Characterization of Recommendation Dialogue 71

S1a There are no more movies matching the current criteria.
S1b Would you like to ignore any director preferences?
U2 Yes, skip all directors
S2a Ok, I have a recommendation ready for you.
S2b I think you will like the movie The Usual Suspects.

Figure 3.11: Relaxing a specific constraint in a preference interview (S1b), which is
followed by a delivery (S2b). Example from the movie domain. S = system, U = user.

on the current preference model. The system then takes on the interview strategy,

but tries to relax the constraints. When asking for relaxations, the system uses the

inverse order in which attributes were requested in the constrain strategy. Figure 3.11

shows a sample relaxation interview from the movie domain. When the preference

requests on the interviewer’s agenda has been fulfilled and the resource responsible

for reaching a solution, a delivery can be made. This depends on the task and the

nature of the resource. In some cases the interviewer has a fixed agenda stating which

attributes that need values supplied by the interviewee. The dialogue then progresses

with repeated constrain requests in a slot-filling fashion. When all slots have been

filled a delivery (typically in the form of a database result set) can be made. This

strategy is standard for information retrieval dialogue systems.

In other cases the requests for constraints are more dynamic. For instance, in

recommender systems the number and nature of the “slots” that need to be filled

depends on the interviewee’s preferences. Consider a conversational movie recom-

mender system. For one interviewee (the user) it might be enough for the interviewer

(the system) to ask for a handful constraints6 if her preferences are narrow enough to

quickly reach high-quality movie predictions. For another interviewee (e.g. one with

“too normal” preferences that does not make her easy to place in a collaborative fil-

tering neighborhood) the interviewer might have to keep constraining for several turns

until the recommendation engine is ready to provide a movie prediction.

6This depends on the nature of the recommender engine. It might mean a dozen or more movie
titles in a collaborative filtering engine; or perhaps one or two genre preferences and a few actor
preferences if the engine has a content-based flavor.

72 Chapter 3. An Empirical Study of Recommendation Dialogue

3.4 Summary

This chapter described Study I, where a human-human corpus was collected and

analyzed using a systematic method to re-write the corpus into human-computer

recommendation dialogues. The analysis revealed three phases of recommendation

with different uses of descriptive and comparative preference statements, a dialogue

act classification, as well as two clusters of behavior: interview and delivery. This

forms the base for designing and implementing a dialogue strategy model that can

be implemented and evaluated in a prototype conversational recommender system—

which is the topic of the next chapter.

4
Design and Verification of a

Recommendation Dialogue Strategy Model

First, we describe a dialogue strategy implementation based on the analysis

of the previous chapter. Second, an end-user evaluation of the implemen-

tation is described. The result is a verification of the effectiveness and

usability of the dialogue strategy design. Furthermore, we find implica-

tions for “conversational impetus”, variation of motivation strategy, and

domain exploration support, that will influence the refinement of the rec-

ommendation dialogue strategy model put forward in the following chap-

ters.

This chapter describes a basic recommendation dialogue control strategy in

the movie domain, based on the characteristics of the analyzed corpus from Study

I in Section 4.1. Second, and in line with an iterative development approach, we

are interested in quickly getting a running system which can be used in an end-

74 Chapter 4. Design and Verification of a Dialogue Strategy Model

user evaluation, which is the topic of Section 4.2. The results of the study are then

discussed in Section 4.3.

4.1 Movie Recommendation Dialogue Control

As detailed in Chapter 3, the recommendation dialogues in the corpus can be viewed

as interviews and deliveries consisting of a combination of (a) system-driven prefer-

ence requests, (b) user-driven information requests, (c) user deliveries of preferences,

and (d) system deliveries of information and recommendations. The mixed-initiative

character of the dialogue can be said to correspond to a seamless integration of these

initiative types. Based on this assumption, we can define a basic dialogue control

structure for managing recommendation dialogues in the movie domain.

4.1.1 System Initiative

The system-driven preference interview and indirect recommendation delivery strat-

egy is implemented as a hierarchical Harel statechart [Harel, 1987], where black dots

denote entry nodes, circled black dots denote exit nodes, rounded squares denote

super- and sub-states, and the circled H denotes a “history” node that keeps track of

the encapsulating node’s current state. Each node corresponds to a system prompt

(with either canned text, or a template that is filled by back-end resources), and

transitions correspond to influences of various types. Figure 4.1 shows a graph that

corresponds to initiative types (a), (c), and (d) above.

Initiating the Recommendation Dialogue

When starting the statechart execution, a canned welcome message is produced before

traversing to the InitRecBase node. In InitRecBase, a “recommendation base”

is established, which is the principal attribute set that future recommendations will

be based on. There are several possible responses to the InitRecBase depending

on what attribute the user prefers. Most users want to base their recommendations

on genre (e.g. a drama, comedy, or action movie), whereas some users aim for movies

starring their favorite actor (e.g. “I would like a movie starring Cary Grant please”).

4.1. Movie Recommendation Dialogue Control 75

Figure 4.1: A recommendation dialogue statechart graph covering dialogue flows of
the 24 distilled dialogues from the movie recommendation dialogue corpus. Sub-states
correspond to system utterances (with the exception of the shaded RecEngine node
which “silently” queries the recommender engine to determine the next system move),
whereas super-states correspond to user model initialization, user model usage, and
user model update from a dialogue point of view. Transitions are influenced by user
utterances, previously recorded user preferences, and database content. (Transition
conditions are not shown in the graph for readability reasons.)

76 Chapter 4. Design and Verification of a Dialogue Strategy Model

Getting Attribute Values

GetValGenre is responsible for trying to assess what genre(s) the user is interested

in. The GetValActor node functions in a similar way, asking the user for names

of their favorite actors or actresses. The information retrieved by these two GetVal

nodes is integrated in the recommendation base.

Acquiring Title Ratings

A central issue when utilizing recommender engines is to acquire title ratings from

the user [Rashid et al., 2002]. The more titles that are included in the user preference

model, the better recommendations the engine can provide. Furthermore, the system

needs some way of keeping track of which movies the user has seen, so the system

does not recommend them again.

Thus, we have three GetTitle nodes, each based on one of the attributes genre,

actor, and director. The typical GetTitle node usage is when the user has provided

an attribute value (such as the name of an actor). The system then provides the user

with a list of titles matching the given attribute values and asks her to identify movies

that she likes. Note that this list is a non-personalized list and not a recommendation

set. The GetTitle nodes typically occur before any requests have been passed to

the recommendation engine. Interleaved information requests can influence how the

lists turn out (such as the excerpt in Figure 3.8). Thus, there is no hard connection

between the GetTitle node and the current recommendation base, since the titles

in the list at any given moment do not need to reflect the recommendation base.

This serves two purposes. First, we do not decrease the user’s freedom of posing

information requests, and indeed utilize these in the recommendation task. Second,

it is good for the user preference profile to be as diverse as possible and not only

include ratings for movies matching the current recommendation base.

RateTitle comes into function after a recommendation has been proposed. Its

function is to extract the rating of an already seen recommended movie, so that we

constructively can utilize an otherwise “useless” recommendation, while maintaining

a conversational tone in the interaction.

4.1. Movie Recommendation Dialogue Control 77

S1 Have you seen The Fifth Element
U1 yeah / awesome
S2 It seems like we have covered all movies. Is there any

other kind of movie you would like to watch?
U2 uhm / are there any movies directed by Oliver Stone?

Figure 4.2: Dialogue excerpt showing how Acorn suggests a relaxation of the rec-
ommendation base when the matching titles have been exhausted. Movie titles and
director names are in italics. S = System, U = User.

Delivering Recommendations

SeenTitle is one of the central nodes in the usage situation, since this is where the

system presents a movie suggestion to the user. The corresponding system utterance

for this node is “Have you seen this movie?” along with the title of the highest

ranked recommendation. All nodes that have arches leading to SeenTitle need to

pass a check1, since there are cases where it is not possible to traverse to SeenTitle

(i.e. perform a recommendation). This depends on the chosen recommendation en-

gine. The SeenTitle node is thus called only if the recommendation engine is able

to deliver a suggestion. Otherwise, there is a need to continue to get ratings from

the user (by returning to an appropriate GetTitle node), or to change the current

recommendation base.

Handling Changes

As pointed out above, the user may change the recommendation base. A change

in the recommendation base can also arise from the system’s part (e.g. to relax the

constraints posed by the current recommendation base). The excerpt in Figure 4.2

shows an example of how the system suggests to change the recommendation base.

In terms of network traversing, S1 is an instantiation of the SeenTitle node. The

response in U1 is a positive rating of the recommended title, causing the system to

return to the RecEngine node to perform another suggestion based on the current

recommendation base. Now, since all movies based on the current recommendation

base have been considered, we traverse to the RelaxRecBase node (S2). From

1This check is represented as the RecEngine node in Figure 4.1.

78 Chapter 4. Design and Verification of a Dialogue Strategy Model

this node there are several options, depending on the user’s response. Since the user

provides a new recommendation base (recommendations should henceforth be based

on the director in U2) the system moves to the GetTitleDirector node according

to Figure 4.1.

Managing Recommendation Dialogue

In case the suggested title in a SeenTitle node is indeed unseen by the user, we have

a potential recommendation delivery. The system now needs to explain, or motivate,

the recommendation objectively following the theory of building trust [Buczak et al.,

2002], and according to the findings in the dialogue corpus. This is done in the ToSee

node, which (a) generates an explanation by relating to the matching attributes in the

current recommendation base, and (b) provides the user with the option of putting

the recommended movie on the recommendation protocol. In case the user declines,

the system needs to verify the current recommendation base, since this response is

interpreted as negative feedback to the recommendation. On the other hand, if the

user responds positively, we have a successful recommendation. The system can then

add the recommended movie to the protocol and move on.

After a successful recommendation has been made the system asks if the user

wants a new recommendation in the NewRec node. A wide range of responses may

follow this question. A simple “no” indicates that the session is terminated (moving

the Exit node), whereas a “yes” is equally easy to handle, since we simply test if we

can go to the SeenTitle node to perform a new recommendation (after passing the

RecEngine check). However, the user may also change the recommendation base

if she decides to continue the dialogue. It is easy to assume that this is because the

users want variation in a set of recommendations in a session and desires e.g. one

action movie, one drama comedy starring their favorite actor, and one animated

movie. Example responses to the question “Would you like a new recommendation?”

include:

• “Yes, something like Gladiator please.”

• “A drama starring Mel Gibson would be nice.”

• “Do you have any animated movies?”

4.1. Movie Recommendation Dialogue Control 79

• “Sure, give me movies directed by Ridley Scott.”

In the case of a changed recommendation base, we traverse to the appropriate Get-

Title node (depending on which attribute(s) has been changed), in order to get a

complete picture of any modifying attributes to the new recommendation base before

moving on to a new SeenTitle node.

Influencing Transitions

As evident in Figure 4.1, several nodes have multiple arches branching to different

nodes. It was discovered early in the distillation process that similar system preference

queries can be responded to in very different ways.

By comparing the surrounding dialogue context and taking into account how

long dialogues have progressed (i.e. how many previous preference requests had been

completed), and the available information from the database, three ways of influencing

the network node transition are identified:

1. User utterances

2. User preference model

3. Database content and recommendation base

User Utterances The first—and most obvious—way to guide transitions is to take

the content of the user’s utterance to a system query into account. This is done by

having each node check the interpreted utterance and decide which node to traverse

to next. The content of the user utterance is thus the most important as well as

straight-forward way to influence dialogue node transitions. However, while this is

the default and most common transition influence, there are cases where the content

of a user utterance may yield two (or more) equally valid system responses. We then

need to consider other parameters.

User Preference Model One alternative parameter is what the recommender

agent believes to be true about the user’s movie preferences. This reflects that the

recommender needs to know a number of preferences (ideally covering both positive

and negative preferences about the bulk of all available attributes) before a qualified

80 Chapter 4. Design and Verification of a Dialogue Strategy Model

U1 I would like a drama please
S1 Can you please say a drama movie that you like?
U2 yes / Schindler’s List
S2 Ok. Do you have any other favorite movies?
U3 what movies have Luc Besson directed?
S3 Luc Besson is the director of these movies [displays a

list of movies]
U4 The Big Blue is very good
S4 Ok. Do you have any other favorite movies?
U5 I liked that one as well [selects another movie from the

list]
S5 Ok. Have you seen Jeanne D’Arc?

Figure 4.3: Dialogue excerpt showing how the system fails the RecEngine check
twice (S2, S4) and continues to ask the user for movie ratings. In S5, we reach
SeenTitle since RecEngine is passed, since the recommendation engine now has
enough data to provide a recommendation. The established recommendation base
consists of dramas (U1). Movie titles and director names are in italics. S = System,
U = User.

recommendation can be issued. It seems sound to assume that the recommender

utilizes previously known preferences about movies, actors, and genres to dictate his

or her next utterance.

In recommender system terms, this relates to the density and size of the user pref-

erence model (see Section 2.2.3). Concretely, a cf recommendation system is not

able to calculate any prediction scores unless the user preference model has reached

a certain density and size2. Figure 4.3 shows how the system returns to the Get-

TitleGenre node after failing the RecEngine check due to an incomplete user

preference model. Thus, the size and content of the user preference model serves as

an input to the dialogue nodes’ transition decisions. In Figure 4.1, this is shown as

the dashed arch from the RecEngine node to the GetTitle node.

Database Content and Exhausted Recommendation Base A third, but still

important, issue is when the recommender realizes that the user’s preferences takes

2A cf system is not required to cover any other attribute than titles, which is not a strategy
typically employed by a human recommender.

4.1. Movie Recommendation Dialogue Control 81

the form of too demanding constraints for the search for movies. This is true both

for regular database queries, and recommendations. It then often happens that the

recommender asks the user to relax these constraints. This happens both when an

information query from the user is too narrow, or when all movies matching the

current recommendation base have been considered.

When there are no matching movies—or when all movies matching a specific

preference set have been considered—in the dialogue, the system must have ways to

proceed if the user does not take initiative and starts introducing new preferences or

search constraints.

An exhausted recommendation base can thus be the reason for traversing to a

RelaxRecBase node instead of a new SeenTitle node (see Figures 4.2 and 4.1).

4.1.2 User Initiative

Hitherto we have focused on system-driven preference requests and recommendations.

However, as noted above, a recommendation dialogue control structure will also have

to accommodate user-driven information requests. Fortunately for our rapid proto-

typing approach, there is a fairly large body of research addressing exactly this issue.

One such initiative is the phase-based pgp design pattern3 that allows for information-

providing dialogue system construction [Degerstedt and Johansson, 2003].

The dialogue strategy presented above has been implemented in the Acorn movie

recommender system4 by adopting the pgp pattern and integrating the finite-state

recommendation dialogue network with the information-providing capabilities [Jo-

hansson, 2004]. Each node in the graph in Figure 4.1 thus holds the same basic

phase-based information-providing machinery, so that users can issue information re-

quests at any time in the underlying system-driven dialogue, as the empirical corpus

findings dictate.

3pgp is hosted at the NlpFarm open source initiative (http://herd.ida.liu.se/nlpfarm/) as
part of the molinc component.

4Acorn is described in more detail in Section 4.2.2.

82 Chapter 4. Design and Verification of a Dialogue Strategy Model

4.2 Evaluation

The evaluation presented in this section has as its purpose to verify the dialogue strat-

egy model described above. The evaluation is inspired by the paradise framework,

as well as Hulstijn’s evaluation properties [1999] (see Section 2.4.3).

The following nine aspects of user satisfaction with Acorn was measured:

• Task ease: How well the user feels that a particular task can be carried out with

the system.

• Adaptation: How well the system adapts to an individual user’s preferences.

• System response time and pace: How fast the system responds, and whether

the interaction pace feels satisfactory for the user.

• Domain coverage: Measures whether there are enough items in the domain to

solve a task, and whether there is enough information about each item.

• Interpretation performance: The user’s experience of how well the system un-

derstands her input.

• Generation performance: How well the system performs when generating lin-

guistic responses (phrase choice, clarity, and verbosity).

• Expected behavior: Measures how intuitive and natural the dialogue interaction

is, in terms of initiative and grounding etc.

• Entertainment value: Assesses how entertaining and interesting it is to engage

in a dialogue with the system.

• Future use: Whether it is likely that the user will use the system in the future

or not.

These factors are assessed by analyzing (a) dialogues from the user sessions, and (b)

a post-study questionnaire filled out by each of the participants.

In this study the set of user satisfaction aspects—and corresponding questions in

the questionnaire—were enhanced in order to address e.g. entertainment value and

adaptation assessment.

4.2. Evaluation 83

4.2.1 Participants

Twenty participants of varying age, gender, and background were recruited as users.

None of them had any special knowledge of dialogue systems5, but were all proficient

computer users. They were not paid.

4.2.2 Acorn

Acorn is a text-based dialogue system built specifically to implement and evaluate

a recommendation dialogue strategy in the movie domain. It is programmed in Java6

with a MySql7 database back-end.

The user interface (see Figure 4.4) consists of a chat-style panel where the dialogue

between Acorn and the user takes place and a text field where the user types her

input. To the right of the chat panel is a result presentation panel where movie

information and other pieces of domain information is displayed.

Acorn’s architecture is phase-based [Degerstedt and Johansson, 2003] and builds

on the molinc component8. The main components of Acorn are: a dialogue man-

ager (implementing the recommendation dialogue control strategy described in Sec-

tion 4.1), a domain knowledge manager (including a hybrid collaborative filtering

and content-based recommendation engine and a movie database), and a preference

manager (described below). The Linguistic Analysis phase uses a parser module

that produces a task representation of the user utterance. In the Pragmatic Inter-

pretation phase a refined interpretation based on dialogue context is carried out by

using a dialogue memory to add/change information in the task representation. The

Pragmatic Interpretation phase is required for simple sub-dialogue capabilities, such

as asking for clarifications or additional information, or refinements if the database

returns too many or no hits. The Task Handling phase executes the task by retriev-

ing information from the database. The result set is transformed to suitable output

in the Generation phase with slot-filling templates.

Whenever an information request has been addressed by Acorn, the preference

and recommendation dialogue continues to gather preferences and provide recommen-

5None of the participants had previously engaged in Study I.
6JDK 1.4
7MySql 4.3
8Available at http://herd.ida.liu.se/nlpfarm/.

84 Chapter 4. Design and Verification of a Dialogue Strategy Model

Figure 4.4: Acorn’s graphical user interface.

4.2. Evaluation 85

dations, until a new information request is detected.

Acorn’s back-end part consists of a hybrid cf server9, and a movie information

database holding information on actors, genres, directors, and plot information. The

database is used both to accommodate information requests, as well as providing

attributes for the recommendation base. The recommendation engine is thus a hybrid

engine [Burke, 2002], since it utilizes both the cf server as well as the domain-

dependent database.

Assessing ratings is a tricky issue, as we need to convert natural language judg-

ments about movies to some sort of ordinal scale. Acorn utilizes a rather simple

approach. The grammar allows users to use a variety of judgmental descriptions

of movies, ranging from single-word utterances (e.g. “good”, “excellent”, “dreadful”,

etc.) to multi-word expressions (e.g. “I really like this”, “Gone With the Wind is

fantastic”, etc.). These words and phrases are based on the utterances in the distilled

dialogue corpus. As noted in Chapter 2, the problem of mapping natural language

statements to numerical sentiment is naturally the “fuzziness” of language.

The approach adopted in Acorn is a vast simplification of the preference-detection

theory of Carberry et al. [1999]. acorn records only direct preference statements

(that is, hedgings and indirect statements leave no trace in the preference model). Fur-

thermore, reliability measures and closeness-of-match is ignored (see Section 2.2.2).

This approach does not accommodate comparative statements, nor does it model fac-

tual questions as indirect preference statements. This basic approach is clearly not

scalable for long-term end-usage; but given the purpose of Acorn as a prototype

for this user evaluation study, it is sufficient and quick to implement. Figure 4.5

exemplifies dialogue interaction in Acorn.

4.2.3 Procedure

Each participant received a quick tutorial explaining rudimentary facts about Acorn

(e.g. it being a movie information and recommendation system, that the interaction

is typed, and that the language of interaction is Swedish, etc.). Next, the participant

was presented with a short scenario consisting of three sub-tasks (see Appendix B).

9The user rating matrix is provided by the GroupLens (http://www.grouplens.org) research
group.

86 Chapter 4. Design and Verification of a Dialogue Strategy Model

U1 I would like a movie recommendation please
S1 Okay. What kind of movie do you feel like?
U2 I feel like watching a thriller
S2 Can you tell me one of your favorite thriller movies?
U3 Uhm, I’m not sure
S3 Okay. Can you tell me one of your favorite actors or

actresses?
U4 I think Bruce Willis is good
S4 I see. Have you seen Pulp Fiction?
U5 Yes
S5 What did you think about it?

Figure 4.5: Sample recommendation dialogue about movies. Movie titles and actor
names are in italics. U = User, S = System.

The tasks ranged from strict (tasks 1 and 3) to a bit more open-ended (task 2) in

order to ensure that the sessions are comparable (cf. [Walker et al., 1998]), but at

the same time allow for some variety in the solutions. In addition to the comparable

quality, strict tasks are also a way to determine efficiency (i.e. that a specific task is

resolved), since users have no reason to persist in artificial constructed open-ended

tasks and may settle for almost anything if there is no “real” or personal motivation.

During the dialogue session, the participants noted their solutions/results of each

task on a protocol. After completing the scenario, they were asked to fill out the

questionnaire. The questionnaire consists of 23 questions regarding user attitudes

toward task solution, system performance, and dialogue interaction. Response values

are encoded on an ordinal scale of 1–4 corresponding to the statements I strongly

disagree (1), I somewhat disagree (2), I somewhat agree (3), and I strongly agree (4).

The sessions were also logged during the interaction and time-stamped and saved on

file.

4.3 Results

The study yielded two kinds of data. First, the dialogue logs constitute data for a

dialogue corpus analysis. Second, the questionnaire responses provides data for a user

satisfaction analysis.

4.3. Results 87

4.3.1 Dialogue Corpus Analysis

Session logs of the interactions resulted in a corpus with a total of 226 complete turns,

and a total elapsed time of 4 hours (mean 12 minutes per dialogue). The dialogues are

in Swedish, and the excerpts presented herein have been translated to English. The

corpus was annotated manually with the number of system interpretation failures,

and the number of system restarts. Furthermore, each dialogue was compared to an

“optimal” scenario solution which represent the shortest number of turns that are

required to solve all sub-tasks in the scenario. The scenario can be completed in

seven turns, which is the “key” to an efficient dialogue. However, since the scenario

can be resolved in a variety of ways, an additional turn or two may still feel both

optimal and natural for a particular user. All twenty subjects accomplished all tasks

in the scenario. The average number of turns for completing the tasks is 11.3, and 10

subjects accomplished the scenario within the optimal range (7–9 turns, depending

on their strategy, and personal choice in the open-ended task).

Dialogues longer than 7–9 turns are the result of (i) system interpretation failures

(due to a variety of factors, such as lack of linguistic coverage on the system’s part,

or on uncooperative behavior or misspellings on the user’s part, etc.); (ii) domain

exploration (e.g. asking for more recommendations, or additional information not

required by the scenario); or (iii) miscellaneous turn types, such as clarification sub-

dialogues due to too many database hits, etc. Table 4.1 shows some interesting aspects

of the data, which will be discussed below.

Interpretation failure turns (FAL) are defined as turns that were not success-

fully parsed by the system, i.e. not covered by Acorn’s linguistic resources. The

total interpretation failure rate for the complete corpus is 1.2 turns per dialogue,

with twelve completely error-free dialogues.

Domain exploring turns (EXP) are requests that are “not necessary” in order to

complete scenarios. Examples include asking for plot information even though no task

in the scenario requires that kind of information, or asking for more recommendations

than required. Nine of the users used one or more turns for such additional domain

exploring. The dialogue excerpt in Figure 4.6 is an example of when the user asks for

more information and recommendations than required by the scenario.

88 Chapter 4. Design and Verification of a Dialogue Strategy Model

Table 4.1: Total number of dialogue turns (TRN), number of interpretation failure
turns (FAL), domain exploring turns (EXP), miscellaneous turns (MSC), and mean
user satisfaction over the nine categories from the questionnaire (SAT).

User TRN FAL EXP MSC SAT
01 14 6 0 1 2.5
02 7 0 0 0 3.1
03 9 1 1 0 2.7
04 14 0 2 5 3.2
05 9 1 0 1 3.3
06 12 1 0 4 3.2
07 15 0 5 3 3.3
08 17 1 5 4 2.7
09 17 0 6 4 3.2
10 7 0 0 0 3.3
11 7 0 0 0 2.9
12 7 0 0 0 2.9
13 7 0 0 0 3.3
14 8 0 0 1 3.0
15 23 7 1 8 2.6
16 10 0 0 3 2.8
17 9 2 0 0 3.0
18 9 0 1 1 3.0
19 12 2 2 1 2.8
20 13 3 3 0 3.0

Total 226 24 26 36 n/a
Mean 11.3 1.2 1.3 1.8 3.0

4.3. Results 89

U1 please recommend a drama with Sean Connery
S1 Have you seen the movie Action of the Tiger (1957)?
U2 no
S2 Action of the Tiger (1957) is a drama starring Sean Con-

nery. Do you want another recommendation?
U3 yes please
S3 Have you seen the movie Anderson Tapes, The (1971)?
U4 what is it about?
S4 Here is the plot for Anderson Tapes, The (1971). Have

you seen it?
U5 no
S5 Anderson Tapes, The (1971) is a drama starring Sean

Connery. Do you want another recommendation?
U6 yes a comedy with Adam Sandler

Figure 4.6: Excerpt where the user deviates from the scenario requirements in order
to explore the domain. The turns U3–S5 are clearly outside the scope of the scenario
since it only requires one recommendation based on the attributes in U1, and no
additional information requests such as U4. The dialogue has been translated from
Swedish. S = System, U = User.

Miscellaneous turns (MSC) include a variety of turns, and have deliberately

been merged together for the purpose of this analysis since they are not in focus

here. These turns include e.g. sub-dialogue clarifications when the database returns

none or too many hits. Another example of turns in this category arises due to the

constructed and artificial nature of the scenario: A user may for example not like the

actor Adam Sandler, and may dislike his comedies even more; and this has an impact

on the dialogue of Task 3 (see Appendix B), since users may respond negatively to

the resulting recommendation. This causes Acorn to spend turns trying to find out

what is wrong with its preference model of the user. This phenomenon would not

arise in “real” situations because users disliking Adam Sandler’s comedies would not

ask for such recommendations.

User satisfaction (SAT) is a metric that consists of mean values of the question-

naire responses (graded 1–4) for each of the nine aspects. The mean values should

naturally be interpreted with care, since the questionnaire provides an ordinal scale.

90 Chapter 4. Design and Verification of a Dialogue Strategy Model

Figure 4.7: User satisfaction based on the subjects’ own assessment split into nine
categories based on the post-study questionnaire. Response values are: I strongly
disagree (1), I somewhat disagree (2), I somewhat agree (3), and I strongly agree (4).

However, they are still useful indicators for the upcoming user satisfaction analysis.

4.3.2 User Satisfaction Analysis

The 23 questionnaire items were grouped into the nine categories, and the responses

were weighed together. For example, for the category Adaptation users responded to

the following questionnaire:

1. Acorn’s responses were relevant and helped me solve the tasks.

2. Acorn’s recommendations were effective and matched the preferences I had

put in.

3. Acorn adapted continuously to my preferences.

Figure 4.7 shows the results of each of the nine user satisfaction categories for all

twenty users.

4.4. Discussion 91

It is noteworthy that nine out of twenty users engage in domain exploration dia-

logues. This should be considered rather high, since the users were not instructed or

even encouraged to engage in such dialogues. Domain Coverage (mean score 3.9) and

Entertainment Value (3.7) are the two highest-ranking aspects, and users engaging

in exploration turns give the highest entertainment value ratings.

In the higher range we also find Expected Behavior (3.6), Generation Performance

(3.5) and Future Use (3.5). Adaptation (3.2) is slightly lower, and could be affected

by that the given scenario contains tasks that do not fit certain users, such as the

given choice of actors and genres in task 3. Another important factor to consider is

that adaptation typically requires more long-term use than just one session.

System Response Time (2.0) is significantly lower than the other rankings and is

due to the slow response-time because of the large database.

4.4 Discussion

The study shows that Acorn’s dialogue strategy allows for efficient dialogues, since

all users accomplished the scenario, and that several even completed the tasks within

the optimal number of turns. This capability may be seen as a prerequisite for

conversational recommender systems, not to say for dialogue systems in general.

The low interpretation error rate would suggest that the user satisfaction rates

are indeed measuring the desired aspects, without them being influenced by a general

dissatisfaction with interpretation performance of the system.

One interesting observation is that the dialogue interaction has an entertaining

quality. The number of domain exploring initiatives suggests that users finds the

interaction interesting enough to deviate from the scenario, and engage in the dialogue

out of personal interest. Exploratory behavior seems to happen toward the middle

or end of the dialogue sessions, which indicate that such behavior is not only an

attempt to familiarize with the system. Users engaging in exploration turns also

seem to give the highest Entertainment Value ratings. This suggests that exploring

the large domain space is an entertaining feature of interacting with Acorn. The

questionnaire analysis shows that this is one of the most high-ranked satisfaction

aspects. It is thus clear that dialogues longer than the “optimal efficiency” may have

a high user satisfaction value attached. This is especially true in exploratory dialogues

92 Chapter 4. Design and Verification of a Dialogue Strategy Model

where it is a quality in itself for the user to be able to learn more about the domain

than initially planned. Obviously, this comes with the domain and the purpose of the

system: Exploring the movie domain and receiving personalized recommendations is

different from e.g. finding train table information.

As pointed out in Chapter 2, previous research suggests that an important reason

for investigating and developing conversational recommender systems is that they

allow the system to capture user preferences when users are as motivated as possible

to give them. Since most users are not explicitly aware of all their preferences at

the outset of a dialogue session, the system should trigger preference volunteering.

It is mostly when exposed to information that the user brings her preferences into

play [Carberry et al., 1999].

This triggering by information exposure we call conversational impetus since this

could help drive the preference dialogue forward [Wärnest̊al, 2005]. An implication

of this study is thus to integrate a mechanism for such conversational impetus in a

recommender agent’s dialogue strategy.

An interesting fact is that the users’ opinion on Interpretation Performance ac-

cording to the questionnaire seems rather low compared to the factual number of

interpretation failures (FAL rates in Table 4.1). When examining these dialogues in

detail it seems that users that encountered an interpretation failure in the beginning

of their session, did not read Acorn’s responses as carefully in the remainder of

the session. An example of this is found in Figure 4.8 where utterance U1 was not

understood by Acorn, resulting in the help message S1. After the additional help

message the user does not seem to care much about Acorn’s prompts, and fails to

realize that her request has been addressed correctly. This stresses the importance of

interpretation performance since a lack thereof takes away the feeling of interacting

with a competent conversational partner, and this causes the user to pay less atten-

tion to the system’s utterances and dialogue. Another possible explanation for this

behavior is concerned with when to issue explanations. Objective explanations of rec-

ommendations serve two key points in the interaction: to provide transparency of the

system logic, and inspire trust between the user and system [Swearingen and Sinha,

2002]. In the original human-human corpus—on which Acorn’s dialogue strategy

is based (see Chapter 3)—utterance sequences such as S2-U3-S3 in Figure 4.9 are

standard. That is, the recommender provides an explanation of the recommendation

4.4. Discussion 93

U1 I want to know about Brad Pitt
S1 To be able to provide recommendations I need to know

about your movie preferences. Say for example: “I
would like a drama”.

U2 a movie starring Brad Pitt
S2 Ok. I need more information in order to give you a

recommendation. You can for example provide a genre
you’re interested in.

U3 comedy
S3 Have you seen the movie Snatch (2000)?
U4 Just give me a comedy starring Brad Pitt, can you do

that?

Figure 4.8: Excerpt showing a user’s failure to realize that a correct recommendation
has been given. (The recommended movie Snatch (2000) is a comedy starring Brad
Pitt, which is what the user asked for). U = User, S = System.

U1 Who is acting in the movie Entrapment?
S1 Entrapment (1999) has the following cast. [Acorn dis-

plays a list of actors: Sean Connery, Catherine Zeta-
Jones, ...].

U2 Can you recommend a drama with Sean Connery?
S2 OK. Have you seen Finding Forrester (2000)?
U3 No
S3 Finding Forrester (2000) is a drama starring Sean Con-

nery.
U4 Who else is starring in it?

Figure 4.9: Sample recommendation dialogue about movies. U = User, S = System.

94 Chapter 4. Design and Verification of a Dialogue Strategy Model

only if the respondent has not seen the recommended title (compare to S4-U5-S5 in

Figure 4.5). However, providing the explanation of the recommendation afterward

seems not to be suitable for the dialogue in Figure 4.8. Here, it would perhaps be

better if the explanation that Snatch (2000) is in fact a comedy starring Brad Pitt

could be provided as part of utterance S3. A dialogue strategy could thus present

recommendation explanations earlier, or better yet; provide adaptive recommenda-

tion explanations that depends on e.g. the number of previous successful transactions

and recommendations.

4.5 Summary

This chapter presented the recommender system acorn, which implements a dialogue

strategy model based on the empirical investigations of human-human recommenda-

tion dialogues. The properties of acorn’s dialogue model was investigated in a study

with end-users. The study verified that an efficient and effective dialogue management

model with high usability measures can be achieved using the dialogue distillation of

the human-human recommendation dialogue corpus. The study also results in impli-

cations for improvements of the model, including explicit support for conversational

impetus for driving the dialogue forward and supporting domain exploration in the

dialogue; and the importance of generating explanations for recommendations at the

right time in the dialogue.

5
Storing and Utilizing Situation-Based User

Preferences

This chapter describes a user preference modeling framework that sup-

ports and utilizes natural language dialogue, and allows for descriptive,

comparative, and superlative preference statements, in various situations.

The chapter also covers the pcql notation used for describing factual and

preferential statements and requests.

In the previous chapter, it was shown that we could design and customize a

domain-dependent conversational recommender system based on the investigation

reported on in Chapter 3. In order to explore dialogue strategies for other domains

and applications, we now aim for mechanisms to manage preferences in the dialogue

in a more elaborate and generic way, as well as laying the ground work for easier

modification of a conversational recommender system’s dialogue behavior.

Before defining a recommendation dialogue strategy model based on the find-

96 Chapter 5. Storing and Utilizing Situation-Based User Preferences

ings of the previous chapters, we will use this chapter to provide a user preference

model framework that supports and utilizes natural language dialogue tailored for

recommendation dialogue. In this matter, the work is based on—and extends—the

preference-detection model of Carberry et al. [1999]. Two components are involved in

this matter. Therefore, we first identify the desired characteristics and requirements

of the preference model framework by relating it to the user modeling classifications

reported on in Chapter 2. This is done in Section 5.1.

Second, a data manipulation notation called pcql for representing factual and

preferential statements and requests in a compact and unambiguous form is presented

in Section 5.2. pcql accommodates the preferential dialogue theory of Carberry et

al. [1999], and the notation will also be used as the message-passing format in the

recommendation dialogue strategy model in Chapter 6.

In Section 5.3, we outline how recommendation dialogue and a preference model

could cross-fertilize each other. All these aspects are taken together in the specifica-

tion of the preflet model, which is the topic of Section 5.4. pcql and preflets form two

important corner-stones of the bcorn model, which is the topic of the next chapter.

5.1 Defining the Preference Model Framework

The aim for this chapter is to design a user preference modeling framework suitable for

conversational recommender systems. The characteristics of the user preference model

is captured by placing them in the dimensions suggested by Kass and Finin [1988]

(see Table 2.1, Section 2.2.1). Table 5.1 summarizes the requirements, dimension

characteristics, and limitations of the user preference modeling framework about to

be constructed in this chapter.

5.1.1 Requirements

The first overall requirement (R1) is that the model is directly compatible with natu-

ral language dialogue; i.e. it should both support dialogue modeling and management,

and be correctly updated by the dialogue. Concretely, we build on the investigation

by Carberry et al. [1999]. Thus, the user preference model should support prefer-

ence strength variation of the utterance types direct, indirect, and hedging (R1a), as

5.1. Defining the Preference Model Framework 97

Table 5.1: Characterization of capabilities, dimensions, and limitations for the
proposed user preference model (compare Table 2.1). Q-A = Question-and-Answer,
Vol = Volunteered, Vol-Bg = Volunteered-Background, Rej-Sol = Reject-Solution,
Acc-Sol = Accept-Solution, cb = content-based, cf = collaborative filtering.

Requirements
Requirement Value(s)
R1a Utterance types direct, indirect, hedging
R1b Conversational circumstance Q-A, Vol, Vol-Bg, Rej-Sol, Acc-Sol
R1c Preferential statement types descriptive, comparative, superlative
R2 Situations multiple

Dimensions
Dimension Value
D1 Specialization individual
D2 Temporal extent long-term
D3 Modifiability dynamic
D4 Number of agents one-to-one
D5 Number of models multiple
D6 Method of use descriptive

Limitations
Limitation Value
L1 domain complexity independent attributes
L2 attribute types disjoint, scalar, complex
L3 recommender engine support cb engine

98 Chapter 5. Storing and Utilizing Situation-Based User Preferences

well as support the conversational circumstances question-and-answer, volunteered,

volunteered-background, and reject-solution (R1b). As discovered in the corpus anal-

ysis, there is also an accept-solution circumstance that has a preference strength

comparable to volunteered-background. This circumstance is included as requirement

R1b. As argued in Chapter 3, supporting human-like preferential statements requires

not only descriptives, but also comparatives and superlatives. Our preference model

should thus be able to handle relative preferences expressed by comparative state-

ments, as well as superlatives, along with basic descriptives (R1c).

Preferences are often situation-dependent and it is therefore important that a

recommender system can handle that. For example, even though a user may have a

strong preference toward mellow jazz while casually driving her car, she may prefer

upbeat dance music when working out. The second overall requirement (R2) is thus

to provide a model that captures user preferences for multiple situations.

5.1.2 Dimensions

Following the agent model dimensions (D) found in Section 2.2.1, we pin point the

proposed user preference model as follows: For the application type we have in mind

it is desirable to capture (D1) individual and (D2) long-term characteristics of the

user. Furthermore, user preferences are built up incrementally and evolves through

new discoveries in the dialogue interaction depending on what, how, and when, a user

elicits a preference; thus being an instance of a (D3) dynamic user model. We limit

the model to model a one-to-one relationship between user and system, and therefore

model one user in the system interaction (D4). As dictated by R2, we allow each user

to have multiple models (D5), one for each situation. To keep the solution as simple

as possible, we maintain a plain database of preference data entries, which makes the

model descriptive (D6).

5.1.3 Limitations

In addition to the dimensions listed above, we make some limitations (L) regarding

domain model complexity and back-end resource suitability:

In line with Carberry et al. [1999], we make an independent attribute assumption

(L1). For instance; in the music domain, a preference for an entity value for the type

5.2. PCQL 99

Artist (e.g. Metallica) does not have any explicit implication on the preference for the

type genre values (e.g. Heavy Metal) of that artist. Furthermore, the model supports

attributes that are disjoint, scalar, or complex (L2) (see Section 2.2.2).

The preference model suggested in this chapter is targeted for content-based (L3)

recommender engines, since it deals with entity types as well as entity values (see

Section 2.2.3).

5.2 PCQL

Having laid out the basic requirements based on previous user modeling research

(see Chapter 2) and recommendation dialogue studies (see Chapters 3 and 4), we

need a data manipulation language in order to computationally model recommenda-

tion dialogue. As we have seen in the preceding investigations, there is a need for

both factual and preferential statements and requests in recommendation dialogue.

A notation language aiming to cover recommendation dialogue in a dialogue strategy

management framework should thus allow for a compact and efficient formulation of

conventional, preferential and factual statements and requests. pcql1 is a formal-

ism that consists of action statements that represent dialogue act specifications

of recommendation dialogues [Wärnest̊al et al., 2007c]. pcql action statements are

used for representation of user and system acts as well as for communication with

external resources. The formalism is targeted for human-like preferential and factual

expressions and intended to be used as a message passing format for the dialogue

manager module in conversational recommender systems.

Since pcql is a conversational formalism, the pcql action statements have a

double function. On the one hand, each statement describes some aspects of the

factual and preferential state (the fp state) of the dialogue system. On the other

hand, each pcql action statement expresses an action performed by the dialogue

participant, a dialogue act, where the acting agent is doing something that will result

in a response from the dialogue partner. The description is subordinate to the dialogue

action, but the latter requires the first to be fully understood. In that sense, the

descriptive expression is a parameter to the stated action.

1Preferential Conversation Query Language.

100 Chapter 5. Storing and Utilizing Situation-Based User Preferences

5.2.1 FP State Formulas

The expressions of pcql that are used to describe (aspects of) the fp state are called

fp state formulas. In this section, we define the syntax of this formalism2.

The fp state formulas express relations and entities of the domain that are in

focus in the dialogue. The basic constituents of this language are constraints over

entity types and entity values. The entity types are predefined types of possible

entity values, such as Genre, which can be enumerations of known entities or open

domains such as “any string”. The entity values are either atomic domain entities—

such as Electronic— or sets/intervals of entity values—such as {Rock, Electronic} and

[1989..1999]. The domains that we aim to cover are assumed to deal with attribute

type sets that are finite.

The constraints can be formed using the factual operators shown in Table 5.2. A

special entity type is YN consisting of the values Yes and No. References to entities

through other entities (relations or attributes) are handled with two constructs. The

first is to use the π operator to mark entity types whose values are inferred from

the other constraints in a formula. For example, “Albums of The Beatles and Deep

Purple” can be described as

π Album, Artist∈{The Beatles, Deep Purple}

Informally, we may read this as follows: Artist∈{The Beatles, Deep Purple} specifies a

set of entities (in this case two); π Album projects this set of entities on the albums

(in this case all albums by either The Beatles or Deep Purple). The second construct

is that entity values can indirectly be referred to as attributes of other entity values

using dot notation on the entity type names, for example ‘My Song’.Album denotes the

album of which the song ‘My Song’ belongs.

We form constraints from atomic entity types and entities, and by augmenting

atomic constraints with factual operators (see Table 5.3 for examples). From the

factual constraints, we form conjunctive formulas, called factual fp state formulas,

where comma is used as conjunction sign. Intuitively, the meaning of the factual fp

2We use an abstract syntax notation for the fp state formulas. A concrete syntax suitable for
implementation exists, but it is less readable in text. For example: � corresponds to ++ , and �

corresponds to >> .

5.2. PCQL 101

Table 5.2: Factual and preferential operators of the fp state formulas. The factual
operators are used to form unary and binary constraint expressions. The preferential
operators are used on the factual constraints to formulate: Descriptive, comparative,
and superlative ratings’ polarities are either positive or negative. Note that hedges
(�) can be combined with descriptive, superlative, and comparative preferential
operators.

Factual
Operator Name Arity Meaning

◦ Operator type 1 or 2 don’t know
>/⊥ max/min 1 newest/oldest

π projection 1 entity reference
=/6= (not) equals 2 is/is not
</> comparison 2 newer/older
∈/6∈ (not) member 2 one of/not one of

Preferential
Operator Name Arity Meaning

} Operator type 1 or 2 don’t know
� Indifferent 1 or 2 doesn’t matter
⊕/	 Descriptive 1 good/bad
�/� Superlative 1 the best/the worst
�/� Comparative 2 better/worse
� Hedging - (marks uncertainty)

102 Chapter 5. Storing and Utilizing Situation-Based User Preferences

state formulas can be read as specifications of sets of entities. The unary operators

are really aggregate operators on such sets, where the aggregate is given implicitly by

the remaining formula3.

Given the set of factual fp state formulas, we form atomic preference formu-

las by augmenting the preference operators shown in Table 5.2. It is not allowed to

nest the preference operators in the same atomic preference formula (since this would

increase the complexity of the language without being useful). From the factual fp

state formulas and the atomic preference formulas, we form conjunctive formulas

using comma as the conjunction sign. Furthermore, each preference operator may

be indexed with a hedging symbol (�), that indicates uncertainty about the prefer-

ence [Carberry et al., 1999]. The intuitive reading of the preference formulas are as

statements of like and dislike of the sets of entities described by the factual part of

the formula.

Finally, the factual and preference operator symbols form two operator types,

denoted by ◦ and } respectively. The type symbols ◦ and } can be used in any

formula in place of an operator to express uncertainty or requests concerning the

operator’s position. For example, the question “Is Bob Dylan an artist or not?” can

be described using ◦, as the fp state formula

(Artist ◦ Bob Dylan)

Similarly, the preference statement “Is Elvis Presley better or worse than Deep Pur-

ple?” can be described using }, as the fp formula

(Artist=Elvis Presley) } (Artist=Deep Purple)

This forms the complete fp state formula language, for which various examples

can be found in Tables 5.4 and 5.5. The format of the fp state formulas is influenced

by how formulas of modal (and intentional) logic keep a clean separation between

the factual level and the belief of the agents, but at the same time allows for mixing

levels freely in compound formulas.

An fp state formula describes a conjunctive aspect of the total fp state that is

3The Max/Min operators have higher priority than projection, in formulas where both occur.

5.2. PCQL 103

Table 5.3: fp state formula mappings for factual utterance types. The table shows
by prototypical examples how expressions of factual state in utterances correspond
to fp state formulas.

Explicit Utterance Example FP State Formula
Entity Type What is genre? Genre

One of genre, artist and album Genre, Artist, Album

Entity Techno Genre=Techno

Enumeration Both Dylan and Waits Artist∈{Dylan, Waits}
Yes/No Yes YN=Yes

Negation Not Dylan Artist 6=Dylan

Interval Album three to five (AlbumNo∈ [3..5])
Relative Newer than 1975 (Year> 1975)
Aggregate The latest > Year

Aggregate Most sold album of the 1970’s > SoldCopies, (Year∈ [1970..1979])
Referential
Entity An album by Dylan π Album, Artist=Dylan

Enumeration Albums by either Dylan or Waits π Album, Artist∈{Dylan, Waits}
Negation All albums except The Beatles’ π Album, Artist 6=The Beatles

Interval Songs from the 70s π Song, Year∈ [1970..1979]

Relative Albums older than Weathered π Album, (Year<Weathered.Year)
Aggregate The first of Dylan’s albums π Album,⊥ Year, (Artist=Dylan)

relevant for a particular dialogue act. We say that each fp state formula expresses

an fp state mapping from the dialogue act to some entities of the fp state that are

in focus.

5.2.2 Factual State Mapping

The factual fp state formulas deal with information-providing aspects of the system

state. We distinguish between factual fp state formulas that concern explicitly stated

entities and those that are indirectly referenced using the projection operation (π).

Table 5.3 shows the identified classes of factual descriptions in dialogue acts we

have found from the examined material, as discussed in Chapter 3.

In the explicit factual fp state formulas, entities are referred to by their name

(in the system). In explicit aggregates and relative statements, it is the aggregate or

104 Chapter 5. Storing and Utilizing Situation-Based User Preferences

relative value that is explicit. For example, in “most popular in the 70s” the aggregate

set “the 70s” is explicitly mentioned.

In the referential factual fp state formulas, entities are referred indirectly through

properties or relations that specify them. This means that the formula must also

specify of what type the referred entity is. Referential formulas are most obviously

occurring in questions, but may also occur in informative statements. In particular,

they may be part of the informative part of user preference utterances.

5.2.3 Preference State Mapping

Preferential user utterances are built “around” factual fp state formulas, using the

preference operators. Descriptive and superlative statements are syntactically han-

dled in the same way in fp state formula mapping schemes, as shown in Table 5.4.

Both types of constructs amount to similar 1-arity formulas. However, observe that

the meaning of superlatives is a form of aggregate functions operating on sets, which

is more complex than the descriptive case. Since these aggregates are given implicitly

by the context, this complexity is hidden from the formula. For example, the fp state

mapping of the sentence “The Beatles is the best Pop artist” can be described by the

fp state formula

�(Artist=The Beatles), (Genre=Pop)

Most factual constructs make sense as part of a preference statement. The constructs

that make little sense are: explicit and referential negation, and Yes/No. In real

dialogue, some of the listed utterances are less important than others. However, recall

that we want to be able to use pcql after contextual interpretation. In some cases this

means that the fp state formula at hand actually contains the collected information

of a whole sub-dialogue. In a collected formula, more complicated constructs may

have been gathered over time. Thus, pcql covers both the collected formulas and

the simpler ones in a natural way.

Compound fp is a type of formula that occur only on the preference level. This

class contains utterances that separately combines one part that is expressing a pref-

erence with one part that is factual (see Table 5.4).

Comparative utterances are 2-arity constructs, and are handled differently than

the 1-arity preference formulas. Table 5.5 shows how the factual classes are handled

5.2. PCQL 105

Table 5.4: fp state formula mappings for descriptive and superlative preference
utterances.

1-Arity Utterance FP State Formula
Explicit Entity
Type

Genre and artist are important,
but not album

⊕ (Artist, Genre),	 Album

The artist does not matter � Artist

Artist is most important � Artist

Explicit Entity I like The Beatles ⊕ (Artist=The Beatles)
Techno is not good 	 (Genre=Techno)
Dylan is the best artist � (Artist=Dylan)

Explicit Enu-
meration

I like Dylan, The Beatles and
Deep Purple

⊕ (Artist∈
{Dylan, The Beatles, Deep Purple})

I like Dylan and Waits the best �(Artist∈{Dylan, Waits})
Explicit Inter-
val

I like Album three to five ⊕ AlbumNo∈ [3..5]

I like Album three to five the best � AlbumNo∈ [3..5]

Explicit Rela-
tive

I might like everything older than
1975

⊕� (Year<1975)

I like everything older than 1975
the best

� (Year<1975)

Explicit Aggre-
gate

I like the most sold albums from
the 70’s

⊕ (> SoldCopies, (Year∈ [1970..1979]))

Referential
Entity

I like all of Dylan’s albums ⊕ (π Album, (Artist=Dylan))

Referential
Enumeration

I like songs with Creed and Bush ⊕ (π Song, (Artist∈{Creed, Bush}))

I don’t like songs with Creed and
Bush

	 (π Song, (Artist∈{Creed, Bush}))

Referential In-
terval

I like songs from the 60’s ⊕ (π Song, (Year∈ [1960..1969]))

I like songs from the 60’s best � (π Song, (Year∈ [1960..1969]))
Referential
Relative

I like all Moby’s albums before
Play

⊕ (π Album, (Artist=Moby), (Year<
Play.Year))

Referential Ag-
gregate

I like Dylan’s latest album ⊕ (π Album,⊥ Year, (Artist=Dylan))

Dylan’s latest album is the worst � (π Album,⊥ Year, (Artist=Dylan))
Compound fp I like Elvis when I am working ⊕ (Artist=Elvis), (Situation=Work)

Elvis is the best when I am work-
ing

� (Artist=Elvis), (Situation=Work)

106 Chapter 5. Storing and Utilizing Situation-Based User Preferences

Table 5.5: fp state formula mappings for 2-arity comparatives.

2-Arity Utterance FP State Formula
Explicit Entity
Type

Artist is more important than
Album

Artist � Album

Explicit Entity Master of Puppets is better than
Ride the Lightning

(Album= ‘Master of Puppets’) � (Album=
‘Ride the Lightning’)

I prefer techno to songs by Creed (Genre=Techno) � (Artist=Creed)
Explicit Enu-
meration

I like Dylan and Waits better
than The Beatles

(Artist∈{Dylan, Waits}) � (Artist=
‘The Beatles’)

Explicit Inter-
val

I like Album three to five better
than the others

AlbumNo∈ [3..5] � AlbumNo 6∈ [3..5]

Explicit Rela-
tive

I prefer newer than 1975 over
older

(Year>1974) � (Year<1975)

Explicit Aggre-
gate

I like the most sold from the 70’s
better than rock

(> SoldCopies, (Year∈
[1970..1979])) � (Genre=Rock)

Referential
Entity

I like Dylan’s genre better than
Scooter’s

(π Genre, (Artist=
Dylan)) � (π Genre, (Artist=Scooter))

Referential In-
terval

I like songs from the 90’s better
than classical music

(π Song, (Year∈
[1990..1999]))�(π Song, (Genre=Classical))

Referential
Enumeration

I like albums by Dylan or Waits
better than Bush

(π Album, (Artist∈{Dylan, Waits})) �

(π Album, (Artist=Bush))
Referential
Relative

I like all Moby’s albums before
Play better than Dylan

(π Album, (Artist=Moby), (Year<
Play.Year)) � (Artist=Dylan)

Referential Ag-
gregate

I like Dylan’s latest album better
than Creed

(π Album,⊥ Year, (Artist=
Dylan)) � (Artist=Creed)

Compound fp I like Bush better than Moby
when I am working

(Artist=Bush) � (Artist=
Moby), (Situation=Work)

by fp state formulas in comparative preference contexts using infix notation.

5.2.4 PCQL Action Statements

When we use pcql to model natural language utterances we attach action tags

to fp state formulas. An action tag is a domain or applications-specific category

that accepts specific fp state formulas as valid arguments. pcql does not make any

assumptions on action tag categories, and it is up to the designer to select a set of

tags that suits her needs [Pohl et al., 1995].

5.3. Utilizing and Supporting Dialogue 107

An action tag can be used to assert facts, give answers, preferences and/or values.

Such a tag accepts one or two arguments, where the (optional) second argument is a

collection of values (e.g. a database result set).

The operator } can used to request type of preference. For factual requests (such

as asking questions about domain items), projection π and aggregates are normally

used. However, any formula can be seen as an implicit question, which may warrant

the addition of projections to all kinds of formulas. For example, the fp state formula

⊕ (π Album, (Artist=Bob Dylan))

can be seen as the wh-question “Which albums by Bob Dylan do you like?”, or as

the implicit yes/no question “Do you like the albums of Bob Dylan?”, which can be

made explicit by adding of π YN. In situations where the type of statement (e.g. wh-

or yes/no-question) is important, action tags can be used. Similarly, action tags can

express conventional actions. These statements usually accept one (possibly empty)

argument. For example, an action tag greet could be implemented as an empty-

argument action to represent the utterance “Hello”, but it could also accept an fp

state argument such as: greetJ (Name=Tom) K to represent “Hello Tom”.

Each dialogue act may correspond to a pcql action tag. The complete pcql

action statement (action tag and fp state formula) expresses the pcql action map-

ping that specifies the dialogue act performed by the agent. Table 5.6 shows some of

the possible mappings for the identified dialogue act types discussed in Section 3.3.3

used in the CoreSong system. We will return to the action tag set and its relation

to the dialogue acts in Chapter 6. In these examples the focus is on the structure

of the dialogue act and action tag. Therefore, only simple fp state descriptions are

used, but any of the previously discussed mappings can be used here as well.

5.3 Utilizing and Supporting Dialogue

We look at the relationship between recommendation dialogue and preferences from

two perspectives: First, we describe ways in which the recommendation dialogue is

utilized in order to detect and calculate preferences. Second, we describe how the

preference model can serve the recommendation dialogue. This forms the ground-

108 Chapter 5. Storing and Utilizing Situation-Based User Preferences

Table 5.6: A sub-set of pcql action mappings in CoreSong for dialogue acts in
the recommendation dialogue.

Act Utterance PCQL Action Statement
Factual Ques-
tion

What electronic albums are there ask Jπ Album, (Genre=Electronic) K

Preference
Question

Is Moby better or worse than
Creed?

ask J (Artist=Moby) } (Artist=Creed) K

Which artists are better than
Metallica?

ask J (π Artist) � (Artist=Metallica) K

What do you think about
techno?

ask J} Genre=Techno K

Which song do you like best on
album Weathered?

ask J⊕ (π Song, (Album=Weathered)) K

Which genres or artists do you
prefer?

ask J⊕ (Value∈{Genre, Artist}) K

Factual State-
ment

These artists belong to the genre
rock: [X,Y,Z,...]

inform Jπ Artist, (Genre=
Rock) Kvalues J Artist : {X, Y, Z, . . .} K

Preference
Statement

I like techno but I don’t like
Moby

inform J⊕ (Genre=Techno),	 (Artist=
Moby) K

I like Creed when I work inform J⊕ (Artist=Creed), (Situation=
Work) K

Recommendation Have you heard the song Just
One?

ask Jπ YN, (Song= ‘Just One’) K

Agreement
(Reject)

No, I don’t like Hoobastank inform J YN=No,	 (Artist=
Hoobastank) K

Greet Hello greet J K
Bye Good bye bye J K

5.3. Utilizing and Supporting Dialogue 109

Table 5.7: Preference utterance types and their connection to dialogue acts. Exam-
ples from the music domain.

Type Act Example pcql fp state
direct preference-stmt I like jazz ⊕ (Genre= Jazz)
indirect factual-question What jazz artists are there? π Artist, (Genre= Jazz)
hedging preference-stmt I think I might like jazz ⊕� (Genre= Jazz)

work for the user preference model construct called a preflet put forward in detail in

Section 5.4.

5.3.1 Utilizing Dialogue

This section connects the empirically discovered dialogue acts presented in Section

3.3.3, with the theory of Carberry et al. [1999] (see also Section 2.2.2).

According to the theory, a preference utterance type can be classified as direct,

indirect, or a hedging. Table 5.7 shows correspondence between utterance types as

defined by Carberry et al., and the dialogue acts in the corpus analysis. Classification

of utterances into types and dialogue acts are performed by examining the pcql

statements. The occurrence of a preference operator in a pcql statement signals

that the dialogue act is a preference-statement. A preference hedging operator

(�) further classify the preference statement as a hedging. A projection operator

(π), and the absence of any preference operators, indicates a factual-question.

Preference and projection operators are explained in Section 5.2.1.

Second, we can modify the preference strength by moving up from utterance

level and examine the conversational circumstance in which the utterance occurs

(Question-and-Answer, Volunteered, Volunteered-Background, Reject-Solution, and

Accept-Solution). Table 5.8 shows (sequences) of dialogue acts corresponding to

conversational circumstances that have impact on preference detection. A prerequi-

site for the Question-and-Answer circumstance classification is that the topic of the

preference-question from the system and the preference-statement from

the user are the same. Otherwise the user’s preference-statement will be clas-

sified as volunteered. Agreement acts such as reject and accept are con-

110 Chapter 5. Storing and Utilizing Situation-Based User Preferences

Table 5.8: Conversational circumstances and their connection to dialogue acts.
Examples from the music domain. Q-A = Question-and-Answer, Vol = Volunteered,
Bg = Background, Rej-Sol = Reject-Solution, Acc-Sol = Accept-Solution, S = sys-
tem, U = user, STMT = Statement.

Circ. Act(s) Example
Q-A S: preference-question What genre do you like?

U: preference-stmt I like jazz
Vol U: preference-stmt I like Eric Clapton
Vol-Bg U: factual-stmt I want to setup a play list for work

U: preference-stmt or I like techno
factual-question What techno artists are there?

Rej-Sol S: recommendation Have you heard Waterloo by ABBA?
U: reject No. I don’t like ABBA

Acc-Sol S: recommendation Have you heard Waterloo by ABBA?
U: accept Yes. I like ABBA

sidered as described in Section 3.3.3. Note that it is also possible to use a com-

pound factual-statement/preference-statement dialogue act in the case of

Volunteered-Background, such as I like Elvis Presley when I work. This is managed

with pcql compound statements. The example above would have the following pcql

fp state formula:

⊕ (Artist= ‘Elvis Presley’), (Situation=Work)

Preference strength and reliability are calculated according to Carberry et al. [1999]

(see Section 2.2.2). Utterance type and circumstance are combined into a preference

strength measure in the ordinal range weak-2, weak-1, mod-2, mod-1, str-2, str-1,

translated to an integer preference strength interval [1, 6] (or [−1,−6] for negative

preferences). As noted in Section 2.2.2, reliability is modeled by the use of endorse-

ments, which are viewed as explicit factors that affect the modeling agent’s certainty

in a preference strength hypothesis. They are translated to an integer interval [1, 5].

Based on the findings in the corpus study, we provide the following extensions of

the original theory:

• Superlative preference statements are interpreted as the strongest kind of pref-

erence, with preference strength 6 or −6, and reliability measures depending on

5.3. Utilizing and Supporting Dialogue 111

conversational circumstance (see Section 2.2.2).

• Strengths arising from comparative preference statements are resolved as de-

tailed in Section 5.4.6.

• The conversational circumstance accept-solution is assigned with preference

strength and reliability as outlined in Section 3.3.3.

Utterance type and circumstance identification patterns (as exemplified in Tables 5.7

and 5.8) can obviously be made more elaborate if needed. However, the examined

material indicates that the patterns presented here are sufficient for the kinds of

systems dealt with in this thesis.

5.3.2 Supporting Dialogue

The previous section described how the dialogue should utilize the preference mod-

eling framework in order to detect and record preferences. In this section we take

the opposite perspective, and examine how the preference structure can support a

recommendation dialogue flow.

Constraining and Relaxing Values in Interviews

Generally, constraints are needed when the information space is too big. On the

other hand, constraints need to be relaxed when there are no items in the space that

match. A collaborative dialogue partner will inform her inquirer of the status, and

suggest suitable attributes that should be modified (i.e. relaxed or constrained). Two

principal cases of constraining and relaxation of entity types are considered, based on

the interview dialogue behavior described in Chapter 3 (Section 3.3.4).

First, factual queries may be incomplete (such as underspecified, ambiguous, or

outright erroneous) or over-specified, and thus need to be modified with additional

specification before a database query can be carried out. This relates to inquiry-

oriented dialogue and may consist of constraining or relaxation. Second, preferences

may need to be relaxed or constrained in a similar manner. The dialogue excerpts

shown in Figures 3.10 and 3.11 exemplify constraining and relaxation of preferences

in dialogue. The two cases are similar. Indeed, we have already established that

112 Chapter 5. Storing and Utilizing Situation-Based User Preferences

factual queries are considered indirect preferences. One might argue however, that

the intention of the participant requesting explicit information from e.g. a database is

different from the participant who elicits preferences in order to get recommendations.

There are several ways to handle the dynamics of suggesting attribute relaxation

and constraining, depending on how complex the domain is, and how advanced (“in-

telligent”) the attribute selection should be.

A straight-forward and simple way to handle the problem is to pre-define a ranked

list of the available domain attributes. For example, in the movie domain, one strategy

is to start with generics and go toward specifics for constraining, and reverse the

order for relaxation. The “initialization” step of the movie recommendation dialogue

strategy model in Figure 4.1 suggests the following constrain order for the movie

domain: Genre, Actor, and Director.

More elaborate techniques are sometimes required. In particular, there should

be some guarantee that e.g. a relaxation of a suggested attribute leads to a possible

solution to the original inquiry. Therefore, depending on processing capability and

domain description, the ranked-list approach could be augmented with a check that

the suggested modification really results in a query that delivers a database result set

within a desired range (e.g. larger than 0, but smaller than some pre-defined limit).

Another way to augment the selection process is to let the relaxation and con-

straining be guided by the content of the user’s preference model. Here, the system

would retain strong preferences with high reliability as long as possible and suggest

modification of weaker preferences or preferences with lower reliability first. The

preference modeling framework suggested below supports both the generic-to-specific

approach, as well as a preference dependent approach (see Section 5.4.4).

Motivations in Indirect Deliveries

When issuing indirect deliveries, motivations are central for building trust [Swearin-

gen and Sinha, 2002] between user and system, and help explaining the inner work-

ings of the recommender system [Höök, 2000]. Our preference modeling framework

supports this by using reliability measures and preference strengths to determine

what attributes should be included when generating motivations. Note that this

is a domain-dependent issue, since the chosen recommender engine type ultimately

5.4. The Preflet Construct 113

will dictate what attributes and preferences are available. For content-based engines,

which naturally require a domain model in the form of attribute-value descriptions

of the included items, users’ preferences can be mapped directly onto these features.

A recommended item’s attributes are matched to the user’s preferences for the cur-

rent situation. Only preferences with reliability above a specified threshold (see Sec-

tion 5.4.3 below) are considered, and are ranked based on the preference strength.

Accordingly, motivations consist of relating features of an item to the strongest pref-

erences with a high reliability in the user’s preference model. This can be expressed

in generic pcql as follows for an attribute-value description of a domain item with a

ranked list of entities derived from the preference model.

motivate J (Item= ItemName), {etype1 , etype2 , . . . , etypen} K

When generating a natural language statement from such a pcql statement instance,

the choice could be to design templates that take into account the number of allowed

items on the ranked list [Buczak et al., 2002]. In Chapter 6 (Section 6.4.2) examples

of such a template-based approach are described for a music recommender system.

Other ways to generate motivations for other types of recommender engines (e.g. cf

engines) have been suggested by e.g. Herlocker et al. [2000]. Examples of how the

preference model can assist motivation generation and attribute constraining and

relaxation are found in Chapter 6.

5.4 The Preflet Construct

Equipped with the specification described in the previous sections, we are ready to

implement the preflet user preference model.

5.4.1 Definitions

A basic assumption for our framework to be useful is that domain objects are

described by a set of entity types and entity values, (i.e name-value pairs). For

example, an object in the music domain can be described by the set of attributes

{Genre=Alternative, Artist=Audioslave, Album=Revelations, Title=‘Wide Awake’}.

114 Chapter 5. Storing and Utilizing Situation-Based User Preferences

Following Carberry et al. [1999], preference strength is expressed on an integer

interval [1, 6], or [−1,−6] for negative preferences. Reliability is expressed on an

integer interval [1, 5] and corresponds to the ordinal scale presented in Table 2.2.

Entity types are indexed with an importance function value, which is a positive

real number. The default value of 1.

We define a sentinel to be of one of three types:

• maximum: (> pstr(x) : s)

• minimum: (⊥ pstr(x) : s)

• modification: (‡ pstr(x) : s)

A maximum sentinel sets an upper-limit preference strength s for x. Usually s is a

dynamic reference to the strength of another preference, but there may be cases where

a static strength defines the sentinel. A minimum sentinel similarly sets a lower-

limit preference strength. A modification sentinel guarantees that the preference

strength of its subject increases or decreases s steps, unless the ceiling or floor of the

strength interval is reached.

Given the definitions above, a complete preference can be formulated as:

ef → v(pstr,r,<S>?)

pstr is the preference strength in an integer interval [−6, 6] of the entity type e with

an importance function value f , and value v with a reliability measure4 r in the

five-graded ordinal interval described in Section 2.2.2, and S is an optional sentinel

expression. Sentinels are used to model comparative preference statements, and are

explained in Section 5.4.6.

We further define a preflet descriptor to consist of a mapping from a descriptor

name to a value. A preflet descriptor name and value pair is unique and can therefore

be used for identification.

Finally, a preflet is a structure that consists of (a) a collection of preferences

grouped on entity types, and (b) a set of preflet descriptors.

4Unless the reliability measure is explicitly needed for the discussion at hand, we omit it for
clarity in the following.

5.4. The Preflet Construct 115

5.4.2 Preflet Descriptors

In general, the preflet uses a finite set of preflet descriptors, with at most one preflet

descriptor for each name. Intuitively, each such set combination of preflet descriptors

defines a preflet type. For each preflet type, the user builds up user-specific attribute

preferences. Each preflet descriptor can be thought of as a dimension of that type.

For example, let us assume that preflets in a certain domain are one-dimensional

and describe different situations (we simply call the descriptor name - Situation).

The descriptor set is a set of four pre-defined situations (e.g. Work, Exercise, Relax,

and Party). This means that each user has at most four preflets to flesh out in our

implementation of this domain.

In another example the preflet descriptor set can consist of two descriptors and

is thus two-dimensional. The two names are Situation and Mood. A value is here any

token assigned by the user. For example, the value of Situation can be defined by the

user (such as Exercise) and likewise, the value of Mood (e.g. Happy, Mellow, etc.). The

set of valid preflet types in this example is infinite since the user can create as many

situations-mood pairs as she wants with one preflet for each pair (e.g. Happy-Exercise,

Mellow-Driving, etc.).

In theory a preflet can have any number of preflet descriptors, and each value

domain may be closed with pre-defined values (as in the first example) or open for

arbitrary tokens (as in the second example). Typically, the number of preflet descrip-

tor names is fixed for a given system, but preflet instances may not use all of them,

and the number of preflets connected to a user increases gradually. For example, only

Situation but not Mood may have been specified for a preflet at a certain point in a

dialogue from the second example domain.

We suppose that exactly one preflet is active, and under discussion, at any given

time in the dialogue. The user needs to explicitly switch and/or update preflets by

referring to descriptors. That is, Preflet p1 (with the preflet descriptor Situation = u)

can be updated in the context of Preflet p2 (with a preflet descriptor Situation = v)

explicitly, such as in the following user utterance example (as response to a recommen-

dation of the song Song x (p2 is active): “No thanks, but Song x is good in Situation

u”. This updates p1 with a volunteered (positive) preference for Song x, and p2 with a

reject-solution (negative) preference for Song x. However, the following dialogue will

116 Chapter 5. Storing and Utilizing Situation-Based User Preferences

still concern p2 until the user explicitly activate p1 by saying e.g. “Let’s talk about

Situation v”.

5.4.3 Preference Evaluation

A user’s set of preflets is used for the preference evaluation of domain objects. We

assume that in any given moment of the dialogue only one preflet is active, selected

based on the preflet descriptors (which in turn could reflect e.g. the situation currently

under discussion, or the user’s mood at the moment, depending on how the preflet

descriptors for the system are designed). Therefore, the preference evaluation is

always performed for a domain item (e.g. movie or song title) w.r.t. one particular

preflet—or more precisely w.r.t. the preference set of that preflet.

The recommender engine utilizes the preference model when calculating prediction

scores for song entities in the database. Each song is an entity (of entity type Song)

that is described by a set of attributes from the entity types Genre, Artist, Album, and

Title, with associated values. When calculating the predicted evaluation score for a

specific song, the engine uses the preference strengths of matching genre, artist, and

album values; and the importance for each entity type5.

More formally, consider a set S = T0, . . . , Tn of entity types that is a partition of a

finite entity set E . For each entity e in E , by the set of attributes A(e) we understand

the set of pairs of the form 〈ei, Ti〉 such that ei is an entity of type Ti. For each such

pair 〈ei, Ti〉 ∈ A(e), ei is called an attribute of e. Similarly, let A(T) denote the set of

all types Ti of the attributes of the entities of T .

Let IT denote an importance function from T to the set of positive real numbers.

Let ST denote a preference strength function that is a mapping from T to the interval

of integers [−6, 6]. Moreover, let CT stand for a closeness-of-match function that is

a mapping from T to the interval of integers [0, 3]6.

Let T be an entity type in E where ITi
, STi

, CTi
exist for each type Ti occurring in

5The reliability measure is used as a threshold. Only preferences with a reliability higher than
2 are considered. However, low reliability preferences are still useful (and therefore retained), since
several indications with low reliability may be combined to preferences with high reliability [Carberry
et al., 1999].

6The summing of products of preference strength and closeness-of-match follows the model of Car-
berry et al., which in turn corresponds to a weighted additive model in human decision-making [Car-
berry et al., 1999].

5.4. The Preflet Construct 117

U1 What genres are there?
S2a I found these genres in the database: [list].
S2b I’d like to know more about your preferences.
S2c What else do you like?
U2 I like the genre Rock & Roll
S3a These are the artists that belong to the genre Rock &

Roll: [list].
S3b I’d like to know more about your preferences.
S3c What else do you like?
U3 What songs were made by Elvis Presley?
S4a I found these songs by the artist Elvis Presley: [list].
S4b I’d like to know more about your preferences.
S4c What else do you like?
U4 I like the album Live at Madison Square Garden
S5a You might like the song Suspicious Minds because it is

a Rock & Roll song by Elvis Presley.
S5b Have you heard it?

Figure 5.1: Sample recommendation dialogue in the music domain. [list] denotes
lists of genres, artists, albums or songs. S = system, U = user.

A(T). The evaluation score function σT for T w.r.t. ITi
, STi

, CTi
is then:

σT (e) =
∑

〈ei,Ti〉∈A(e) ITi(ei)× STi(ei)× CTi(ei)

A normalized evaluation score mapped to a real number interval [-1,1], can be cal-

culated by the normalization formula F (x)/max(range(F)).

Example 1 For instance, the following preference model is constructed from the

dialogue excerpt in Figure 5.1:

Genre(2.0) → Rock&Roll(4,4)

Artist(1.0) → ‘Elvis Presley’(3,3)

Album(1.0) → ‘Live at Madison...’(4,4)

In this example, the importance function value for the type genre was increased due

to the indirect user interest detected in utterance U1 in Figure 5.1. In our example,

all direct preferences are positive, and occur in a question-and-answer circumstance.

118 Chapter 5. Storing and Utilizing Situation-Based User Preferences

According to the model they get a preference strength and reliability of 4 [Carberry et

al., 1999]. The request for Elvis Presley’s songs is modeled as an indirect preference,

with strength and reliability 3.

Following our example dialogue, the evaluation score for the song ‘Suspicious

Minds’ turns out to be (2.0 × 4 × 3) + (1.0 × 3 × 3) + (1.0 × 4 × 3) = 45, resulting

in a normalized score of 0.63. Since this is higher than the recommender engine’s

threshold (0.50), the song is recommended in utterance S5b in Figure 5.1.

Example 2 The following example describes how the preference strength evaluation

function of a sample preflet is used to calculate the preference score for two objects

in the music domain. First, we consider the two domain objects D1 and D2:

D1 : {Genre=Alternative, Artist=Audioslave, Album=Revelations, Title=’Wide Awake’}

D2 : {Genre=Alternative, Artist=’Snow Patrol’, Album=’Eyes Open’, Title=’Chasing Cars’}

Then, consider the following (partial) preflet for a particular user:

Genre(1.0) → Alternative(4,4)

Artist(1.0) → Audioslave(5,3), ’Snow Patrol’(3,2)

Album(2.0) → Revelations(3,3), ’Eyes Open’(2,4)

As recommended by Carberry et al., a reliability threshold can be used so that only

preferences with a reliability rating of 3 (Moderate) or higher are considered. The

artist preference for Snow Patrol has a reliability rating lower than the threshold.

Therefore, it is not considered at this time. The preference itself is retained of course,

since future interactions may accumulate evidence that increases the reliability rating

to a useful level.

The maximum evaluation score for a domain item (Song) for the example preflet

is 727. The normalized preference evaluation score for D1 is 45/72, and 24/72 for D2.

Table 5.9 shows the preference evaluation score calculations for the example preflet.

7There are three entity types in this domain, the maximum strength is 6, the maximum closeness
of match is 3, and the entity type Album has importance function value 2.0—the others have 1.0.

5.4. The Preflet Construct 119

Table 5.9: Evaluation scores for example domain objects D1 and D2, given the
partial preflet. Imp-F = Importance Function, Str = Strength, C-o-M = Closeness
of Match, Rel. = Reliability.

D1 (“Wide Awake” by Audioslave)
Imp-F Str C-o-M Product Rel.

Genre 1 4 3 12 4
Artist 1 5 3 15 3
Album 2 3 3 18 3
Evaluation score 45
Normalized score 0.63

D2 (“Chasing Cars” by Snow Patrol)
Imp-F Str C-o-M Product Rel.

Genre 1 4 3 12 4
Artist 1 3 3 0 2
Album 2 2 3 12 4
Evaluation score 24
Normalized score 0.33

Example 3 Our third example shows the a score evaluation for both negative and

positive preferences. First, consider an addition to the user’s preflet from Example 2.

Artist(1.0) → Creed(−5,3)

Then, consider the domain object D3.

D3 : {Genre=Alternative, Artist=Creed, Album=Weathered, Title=’Hide’}

D3’s evaluation score is (1.0×4×3)+(1.0×−5×3)+(1.0×0×0) = −3 (normalized

score −0.04), since the positive preference for the matching genre is slightly weaker

than the negative preference for the matching artist.

5.4.4 Constraining and Relaxing Attributes

Preflets support two kinds of attribute selection for constraining and relaxing at-

tributes in the dialogue (see Section 5.3.2): the generic-to-specific approach, and

120 Chapter 5. Storing and Utilizing Situation-Based User Preferences

the preference-based approach. Both approaches build on the concept of an ordered

list of entity types that are constrained (or relaxed) in order.

The Generic-to-Specific Approach

With this basic approach, we pre-suppose that the entity types in a domain can be

ordered in terms of generality. That is, certain types have the power to describe

domain objects in a more general sense than other types. In the music domain, for

example, Genre is more general than Album. This information is made available to the

active preflet as an ordered list, along with a record of which attributes have been

requested by the relax and constrain functions. As supported by the recommendation

dialogue corpus in Chapter 3, the recommender agent starts by constraining the

most general entity type and move on to specifics. The relaxation strategy takes the

opposite direction, and tries to eliminate specific entity types first.

The Preference-Based Approach

The ordered list of entity types that need to be constrained or relaxed can be generated

based on the contents of the preflet. We utilize importance function first, and in cases

where importance function values are identical, the number of reliable entity values

for each type. The algorithm can informally be described as follows for Constrain

operations:

1. Order entity types (descending order) on importance function value (see Sec-

tion 5.4.3).

2. If two types have the same importance function value:

(a) Eliminate entity values for each type where reliability is 3 or higher. (We

use the same threshold as for preference score evaluation.)

(b) Order types of equal importance by counting the remaining values (the

more values attached to a type, the more important it is considered to be

for the user).

3. Reverse the list for Relax operations.

5.4. The Preflet Construct 121

Example Consider the following preflet for user U:

User : U

Situation : Exercise

Genre(2.0) → Techno(5,2), Dance(4,3)

Artist(2.0) → Scooter(4,3)

Album(1.0) → BodyCombat31(4,4), ‘A Tribute to the King’(3,4)

Year(1.0) → [1990..1999](4,4), [2000..2004](5,4), 2007(3,4)

When applying the preference-dependent approach, the ordered constrain list for this

user would be:

1. Genre

2. Artist

3. Year

4. Album

Since Genre and Artist have the same importance (2.0), and the same number of values

(the genre Techno is removed due to its low reliability), the default generic-to-specific

order is retained. For Year and Album, both with lower importance function value

than Genre and Artist, Year is ranked the higher of the two since three reliable values

are connected to it compared to only two for Album. If relaxation are required in the

dialogue, the strategy is thus to start from the bottom of the list instead.

There are times when choosing the static generic-to-specific approach to attribute

selection is desirable. First, since constrain operations in the dialogue are carried out

as part of the preference modeling process, there are often times when a preference-

dependent approach cannot be used since there are no preferences (yet) to guide the

selection process. Thus, it can also be seen as a fall-back strategy to the preference-

based approach. Second, certain domains and applications might require constraining

and relaxation to be carried out in the same order, even if there are preferences

available.

122 Chapter 5. Storing and Utilizing Situation-Based User Preferences

5.4.5 Preference Updates and Conflicts

Human preferences are hard to quantify—especially in domains based on taste or

gratifications, such as music, movie, and literature preferences. In some cases, this is

a result of the inbuilt vagueness of human preference expressions in natural language8.

In other cases, a user simply changes her preferences. A model aiming at maintaining

a correct9 user preference model must therefore be able to detect and resolve such

issues, so that each entity value is assigned a single strength-reliability tuple in a

preflet.

This section suggests that three main classes of update issues can occur (more

or less frequently) when updating a preflet model. Section 5.4.6 presents resolution

heuristics for each of these update issues.

• Accumulated Evidence Modification (AEM)

• Incomplete Comparative (IC)

• Conflict (C)

It is natural that preferences change between sessions; and sometimes even within

sessions. Furthermore, preference detection is a cumulative process, and the system

needs ways to combine several pieces of evidence for the an entity type and value

into one combined preference strength. The issue of Accumulated Evidence Modifica-

tion (AEM) deals with the problem of deciding when to overwrite previously collected

preferences, or how to modify preferences, given new acquisitions.

Since we allow for comparative preference statements, such as x is better than

y, we need to consider cases where the comparison argument is unknown (e.g. the

preference for y in the example above). And even if the comparison argument is

known, it is not trivial to quantify how much better or worse something is compared

to the comparison argument. This issue is called the issue of Incomplete Comparative

(IC) and can be broken down into two cases:

• IC1: x � y , pstr(y) is known.

8As noted in Chapter 2, we do not try to capture the quantitative difference between awesome,
great, super, splendid or extraordinary, brilliant etc.

9Rather, “as correct as possible”. There is no evidence that even human recommenders are able
to maintain a “correct” preference model of recommendation dialogue partners.

5.4. The Preflet Construct 123

• IC2: x � y , pstr(y) is unknown.

Here, pstr(y) is the preference strength (including polarity) for entity type or value

y. The problem for resolving IC is to assign a correct preference strength for x.

The third case—the issue of Conflict (C)—is also divided into sub-cases10 (C1-5).

They involve incompatible preference statements in the same preflet. The following

list provides the conflict cases. Note that the temporal order in which the preferences

are detected matters:

• C1:

1. a superlative �x is detected.

2. a comparative y � x is detected, causing pstr(y) to “hit the ceiling”.

• C2:

1. a comparative y � x is detected.

2. a superlative �x is detected, which violates (1).

• C3:

1. a comparative x � y is detected.

2. accumulated evidence for ⊕ y results in pstr(y) > pstr(x), thus violating

(1).

• C4:

1. The calculation of multiple sentinels results in conflicting strengths.

• C5:

1. Circle reference between two sentinels.

C1-3 naturally have inverses C1’-C3’ where the preference operators are inverted.

For instance, the temporal order for C1’ is identical to C1, but preference operators

are inverted:

10All sub-cases dealt with here involve comparatives. Conflicts concerning descriptive preferences
are identified and resolved by Carberry et al. [1999]

124 Chapter 5. Storing and Utilizing Situation-Based User Preferences

1. a superlative �x is detected.

2. a comparative y � x is detected.

The next section suggests heuristics for resolving the described update issues.

5.4.6 Preflet Update Resolution Heuristics

Resolving Accumulated Evidence Issues (AEM)

Continuous updates of a user’s preferences given the content of an on-going dialogue

is detailed by Carberry et al. [1999]. We use their approach by utilizing endorsements

as reliability measures, as briefly outlined in Chapter 2. The interested reader is

encouraged to study the original work by Carberry et al..

Resolving Incomplete Comparatives (IC)

Comparative preference statements state something about the relationship between

two entity types or values. Section 5.2.3 details pcql fp state formulas for compara-

tive preference statements. If we allow for such statements and want to do something

useful about them in a preference modeling framework (as R1c in Table 5.1 dictates),

we need a way to maintain such comparative relations over time. The sentinel concept

is used to accommodate this. Sentinels are assigned to the first of the two arguments

that are part of any comparative statement.

IC1 The system simply assigns x with a modification sentinel

< ‡ pstr(y) : +1 >

There may well occur situations where previously detected preference strengths in-

dicate that the user thinks that x has a higher strength than y. A more recent

comparative statement, such as IC1, that contradicts this will have precedence and

overwrite the old pstr(x). The modification solution is thus a direct application of

the recency guideline.

5.4. The Preflet Construct 125

IC2 Simple enough, IC2 is handled in a similar fashion as IC1, but with a slight

addition. The modification sentinel is identical, but since there is no previous record

of pstr(y) the system assigns it a default strength of 3, with the weakest form of

reliability (1). This means that pstr(x) will receive a value of 4 when the preflet is

updated.

Resolving Conflicts (C)

One general approach to resolving potential conflicts in our model is to put emphasis

on the most recent discovered preference. The reason for this is grounded in the

definition from Chapter 2, which states that preferences are not goals that are fully

specified at the outset of the interaction, but rather come into play as users must

evaluate alternatives. This is echoed by the exploratory character of the interaction

found in the empirical analysis in chapters 3 and 4.

With the guideline of recency in mind, we outline heuristics for resolving the

conflicts C1-5. Inverses (C1’-3’) are handled symmetrically by reversing polarity on

sentinels and strengths.

C1 Superlative preferences are treated as very strong direct preferences, indepen-

dent of which conversational circumstance they occur in. Thus, a preference �x is

assigned as pstr(x) = 6. If a comparative preference y � x is detected later, the C1

conflict arises. Since there is no room for a higher preference strength beyond 6 the

solution is to assign pstr(y) = 6 and attach a sentinel < ‡ pstr(y) : −1 > to pstr(x).

A viable alternative would be to leave the original pstr(x) = 6 since it is (was) a very

strong preference. However, the former solution embraces the recency guideline and

encourages a dynamic preference model11.

C2 C2 has the same preference statement types as C1, albeit in different order. Note

that we assume that the respective strengths of the comparative statement C2(1) has

been resolved using either IC1 or IC2 (above). The simplest solution to C2 is to

simply treat the superlative C2(2) as a stand-alone superlative; i.e. pstr(x) = 6.

11This approach is suitable for “taste”- or gratification-based domains, but it is possible that the
latter alternative would be suitable for more objective domains (such as purchasing a digital camera,
where preferences concern hard requirements such as size, resolution, battery longevity, etc.).

126 Chapter 5. Storing and Utilizing Situation-Based User Preferences

The previously detected preference strength for y remains as is. However, strictly,

this imposes problems of maintaining the meaning of the comparative C2(1). An

alternative solution would be to allow pstr(x) and pstr(y) to both “hit the ceiling”

when the superlative preference for x is detected (independently of what pstr(y) was

before); thus trying to conserve the preference of C2(1). This could be viewed as a

problem—and violation of the recency guideline—since a user may potentially “get

stuck” with an old comparative preference. We argue for the former option, since we

view the C2(1) and C2(2) as a case of the user “changing her mind” regarding x.

C3 This potential conflict deals with the fact that indirect preference statements

(usually factual questions) may increase the preference strength through combina-

tion [Carberry et al., 1999]. A previously detected comparative C3(1) may thus in

theory be overridden by a series of indirect preference statements. Since the system

should respect any direct preferences (such as the comparative C3(1)), we need a

heuristic to avoid this. Simply put; accumulated preferences via indirect preference

utterance types never supersede direct preference statements. For instance, if a user

has previously said that he likes Jazz better than Rock, but accumulates a strong

positive preference toward Rock based on “Rock” queries (indirect preferences), the

model does not infer that the user thinks that Rock is better than Jazz. The solution

is to apply a maximum sentinel on the preference strength for (Genre = Rock) and

connect it to the preference strength for (Genre= Jazz). For this example we assume

that any IC issue has been resolved so that the preference strength for (Genre=Jazz)

is known to be 4, and that the reliability is known to be 3. The resulting preflet from

this example in a specific dialogue state could be written as:

Genre(1.0) → Jazz(4,3), Rock(3,3,<>(Genre=Jazz)>)

If a user later uses a (direct) comparative statement that affects these preferences,

such as “I think that rock is better than jazz”, the associated maximum sentinel is

replaced with a standard comparative modification sentinel.

C4 and C5 Solving conflict types 4 and 5 could be an interesting application for

constraint (logic) programming. However, this is beyond the scope of this thesis.

5.5. Summary 127

From an interaction point of view, it might also be better to not try and resolve

conflicts “under the hood”, but instead fuel the dialogue by bringing the conflicts up

for discussion with the user. Awaiting either a constraint programming solution, or

explicitly discussing conflicting preferences in the dialogue, we present a somewhat

naive solution to the problem: In order to avoid combinatorial explosion we do not al-

low sentinels referring to other sentinels. The older of the two sentinels is “grounded”

as a fixed strength, and the more recent sentinel is constructed as usual. In cases

where the older sentinel’s value cannot be determined, a medium strength and low

reliability is suggested (e.g. strength 3 and reliability 2). However, these values can

be tuned in the given application.

5.5 Summary

We have provided a user preference model framework that supports and utilizes nat-

ural language dialogue tailored for recommendation dialogue. The work extends the

preference-detection model of Carberry et al. [1999] with an additional conversa-

tional circumstance, and with the addition of comparative and superlative preference

statements. The framework is centered around the concept of preflets, which are

collections of situation-based preferences for a particular user, allowing users to have

different preferences for the same entity type or value in different situations. Preflets

also allow a recommender engine to use the preference evaluation score formula to

estimate predictions of domain items based on a specific preflet.

The pcql formalism was also introduced. pcql handles preferential and factual

statements and requests by the use of fp state formulas as arguments to action tags.

pcql and preflets form important constructs for the recommendation dialogue

model bcorn presented in the next chapter.

6
BCORN: Managing Recommendation

Dialogue

This chapter presents the bcorn model for a generic recommendation di-

alogue strategy with conventional, information-providing, and recommen-

dation capabilities. An implementation of bcorn is also described: the

music conversational recommender system CoreSong, which is evaluated

in Study III with end-users in order to verify the behavior-based conver-

sational recommendation strategy.

This chapter ties together several aspects of the previous chapters into the

bcorn recommendation dialogue strategy model. First, we introduce dialogue behav-

iors which are expressed computationally in dialogue behavior diagrams (Section 6.1).

Second, bcorn is described (Section 6.2). The bcorn model is constructed using

dialogue behavior diagrams that each describes a natural chunk of an agent’s dialogue

strategy. The empirical base for the behaviors of bcorn was presented in Chapters 3

130 Chapter 6. BCORN: Managing Recommendation Dialogue

and 4. Since a central concept of bcorn is that recommendation dialogue is viewed as

an emergent phenomenon of several dialogue behavior diagram instances that are run

in parallel, Section 6.3 discusses how emergence is handled. bcorn is implemented

in the CoreSong conversational music recommender system, which is covered in

Section 6.4. CoreSong is used in an overhearer end-user evaluation, described in

Section 6.5.

6.1 Dialogue Behavior Diagrams

The basic concept of the architecture outlined in this chapter is the dialogue behavior.

A dialogue behavior is an informal term denoting a result of linguistic actions in a

context (see Chapter 2). Some dialogue behaviors are general (e.g. a conventional

dialog behavior of greeting and farewell), and some are specific (e.g. a ticket booking

dialogue behavior). A dialogue agent thus needs a dialogue strategy model that

includes dialogue behaviors that can co-exist but at the same time have a clear order

of priority. It is also imperative that the model adjusts to the needs of different

back-end resources at hand in a particular application.

Similar to the behavior-based model proposed by Brooks [1991b], bcorn is con-

structed using state automata organized in strata1. A stratum is a technical term

that refers to internal structures used to generate dialogue behaviors. Strata express

dialogue behaviors of the dialogue agent that are both natural conceptually and effi-

cient computational mechanisms. The complete dialogue strategy of an agent is the

result of running several strata in parallel in a strata machine, leading to an emer-

gent agent behavior. A desirable characteristic of such emergent behavior is to be

coherent, flexible, and effective.

Computationally, a dialogue behavior is coded into a state automaton. For ex-

ample, “answering a question”, or “greeting a dialogue partner” may be considered

as natural dialogue behaviors, if these notions also can be coded into a well-behaved

state automaton.

The states of the automaton we use are decorated with command statements,

that can be either atomic statements or variable assignments. The special variable %

1In order to avoid confusion with all implications from Brooks’ original work, which has inspired
this work in part, we use the term stratum instead of layer.

6.1. Dialogue Behavior Diagrams 131

always holds the return value of the previously issued command.

We define three different commands: in, out, and call.

in The in command reads tokens from a designated input stream.

out The command out takes one argument which it writes on a designated output

stream. Each automaton uses one separate unique input and one output stream

(which is sufficient for the needs of bcorn, but could be generalized).

call The command call is used to invoke and use results from other software mod-

ules, denoted jointly as external resources. The call command has the signature call

〈ext-resource, {arg}∗〉. Here ext-resource is the name of an external resource and {arg}∗

is a list of arguments sent to the ext-resource in the invocation. Each invocation of

an external resource returns a value, but they are not necessarily functional modules

and often carry an internal persistent state.

A Dialogue Behavior Diagram (dbd) describes a state automaton where each state

contains (one or more) commands and transitions are decorated with (possibly empty)

conditions. The dbd automaton is similar to the uml activity diagram2. The condi-

tions on the state transitions are standard boolean expressions, formed using variables

and primitive functions for the value data types of those variables3.

A dbd is executed by traversing the transitions and executing the commands like

a flow chart execution. The transitions are fired when the conditions of the variables

are met. That is, the transitions do not consume input. Instead, it is the in command

that consumes input. The dbd automaton will pause each time it reaches a state

with the command in, until the next input token is available. The dbd automaton

will stop indefinitely if it reaches a state where there is no outgoing transition with a

satisfied condition.

The execution of the dbd automaton can be expressed with automata trajectory

semantics. We assume a state environment as a part of each state in which the

2States are depicted as a square with rounded corners. Entry nodes are depicted as black dots
and exit nodes as black dots with a surrounding circle. An exit node marks that a stop is normal.

3We use C-style boolean operators (==, !, >, <).

132 Chapter 6. BCORN: Managing Recommendation Dialogue

commands and conditions are executed. The state environment consists of the input

and output streams, and a value assignment for the variables (including %).

An execution trajectory T of a dbd automaton D for a given input stream I is a

sequence s1
c1⇒ s2

c2⇒ . . .
cn−1⇒ sn such that:

• s1 is a start state of D with a state environment that includes I, an empty

output stream and an empty variable assignment map.

• si+1 is a state obtained following an outgoing transition with a condition ci of

the state si where:

– the state environment of si+1 is obtained by executing the commands of

si;

– the condition ci is evaluated to true in the state environment of si+1.

By the produced state environment of T we understand a (final outgoing) state en-

vironment obtained by executing the commands of the last node sn in the state

environment of sn. By the produced output stream O of T we mean the output

stream O found in the produced state environment of T . Let D be a deterministic

dbd4, and T the unique execution trajectory for a given input stream I. Then we

call the produced output stream of T for the dialogue behavior of D w.r.t. I.

Similar to the uml activity diagram5, the dbd can use a sub-diagram within a

super-state, called a sub-behavior dbd. The sub-behavior diagrams use explicit entry

and exit nodes, similar to activity sub-diagrams. The value of the % variable when

exiting the exit node is the same as that of the previous node. This value is also the

value of the whole diagram that is exported to the invoking super dbd after the exit

point.

From an interaction perspective, the dbd design supports the three-entity inter-

action model [Ibrahim and Johansson, 2002b] (see Chapter 2) since the in and out

commands in the dbds implement the user–agent linguistic communication interac-

tion, and the call command implements the agent’s domain information presentation.

4We only consider deterministic automata, since this is all we need in practice.
5Since activity diagrams naturally relate to statechart diagrams, the emerging standard of W3C’s

State Chart xml is an option for specifying dialogue behavior diagrams.

6.2. BCORN Dialogue Behaviors 133

Exactly what is, and what is not, considered a “reasonable” dialogue behavior is

a design question which the dbd framework leaves open to the dbd developer. The

dbd is a conceptual framework in which the actual design of the bcorn model can

be expressed.

6.2 BCORN Dialogue Behaviors

This section details the four dbds that constitute the bcorn model: Conventional,

Direct Delivery, Indirect Delivery, and Interview. The dialogue behaviors

of these four dbds have been conceptualized through the empirical investigations

described in Chapters 3 and 4.

In an implementation, the dbds are instantiated into strata which means that the

names of external resources in the dbd are connected with implementations of said

external resources. Each dbd has as many dbd instances as needed for a particular

application.

6.2.1 Conditions and PCQL in BCORN

Before detailing the behaviors, a description of the conditions used in the dbds is

needed. As the internal message-passing format for bcorn is pcql, a set of specific

condition functions are defined that query fp state formulas of pcql action state-

ments (see Chapter 5). Table 6.1 shows the available condition functions for bcorn

dbd instances. These convenience functions are used directly as guards on the dbd

transitions. Examples of their use is found in the upcoming sections.

6.2.2 PCQL Action Tags and Dialogue Acts

In the recommendation dialogue characterization presented in Chapter 3, a set of

dialogue acts was described. Before moving on to the dbd descriptions below, we

will summarize the relation between the pcql action tags found in the diagrams, and

the dialogue acts found previously. bcorn employs pcql action tags that specify

recommendation dialogue in detail for two reasons: (a) generic dialogue acts are often

not specific enough to aid in the user preference modeling [Pohl et al., 1995], and (b)

134 Chapter 6. BCORN: Managing Recommendation Dialogue

Table 6.1: bcorn condition functions and return types.

Function Return PCQL example (x) Return
get-value(attr, x) String inform J (YN=Yes) K Yes

Note: (attr = YN)

get-tag(x) String inform J	� (Genre= ‘Rock’) K inform
no-of-values(x) Integer result Jπ Genre Kvalues J {Jazz, Rock} K 2
is-empty(x) Boolean result Jπ Genre Kvalues J {Jazz} K false
is-ask(x) Boolean ask Jπ Album, (Artist= ‘The Hives’) K true
is-neg-pref(x) Boolean inform J⊕� (Artist= ‘Moby’) K false
is-pos-pref(x) Boolean inform J⊕� (Artist= ‘Moby’) K true

the action tags specify and aid in the template-based generation process. Table 6.2

lists the action tags of bcorn’s dialogue behavior diagrams, and Table 6.3 shows the

available action tags attached to pcql interpretations of user utterances.

6.2.3 Conventional

Conventions form the basis of dialogue sessions, and include opening and closing of

dialogs. Figure 6.1 shows a dbd describing bcorn’s conventional dialogue behavior.

It starts with a welcome message as the pcql action statement

welcomeJ K

in node 11 (Figure 6.1). Greetings and farewells will be returned as expected (nodes

13 and 14), and any other user input will be followed by an exhortation to try again

(node 15). The transition between node 12 and 13 illustrates the use of bcorn’s

condition functions. Consider the case where the user utterance “Good bye” has been

interpreted as the pcql statement

byeJ K

The get-tag function takes the incoming pcql statement as argument and returns

the action tag (bye), causing the guard on the transition to evaluate to true.

On its own, the dialogue behavior of the conventional dbd does not do much to

6.2. BCORN Dialogue Behaviors 135

Table 6.2: System action tags and dialogue acts in CoreSong.

Action Tag Dialogue Act
Conventional
greet opening
bye closing
try-again factual-request
welcome opening
Direct Delivery
result factual-statement
related factual-statement
next request (pref. or fact.)
Interview
noresult factual-statement
excess factual-statement
relax preference-request
constrain preference-request
Indirect Delivery
motivate motivation
recommend recommendation
acknowledge acknowledge
askrate preference-request

Table 6.3: User action tags and dialogue acts in CoreSong.

Action Tag Dialogue Act
greet opening
bye closing
ask factual-request
inform factual-statement

preference-statement
yes yes

acknowledge
no no

136 Chapter 6. BCORN: Managing Recommendation Dialogue

Figure 6.1: The Conventional dbd.

help a user with any task. However, it is a well-defined dialogue behavior that fits as

a part of a dialogue agent’s complete strategy.

A user of information-providing or recommender systems expects some sort of

useful delivery. This is catered for by the dialogue behaviors of bcorn’s other dbds

as detailed below.

6.2.4 Direct Delivery

On a fundamental level, the goal for a bcorn system is to provide the user with

a delivery. This can, for instance, be an explicitly requested piece of information,

or a recommendation of some sort. Figure 6.2 shows the direct delivery dbd. For

user statements of the type ask (requests), the dbd uses a call LookUp in node 24,

typically to a database, or any information repository that the user may wish to

query. In cases where a successful call LookUp has been made (that is, a non-empty

result set not larger than a predefined size limit is returned), a direct delivery in the

form of a pcql statement with a result tag and an fp formula with a values part

is passed as an argument to the out command in node 25.

In other cases, the call LookUp may not be successful and hence no delivery is

made. In such cases the dbd returns to node 21 and awaits new user input. Such

cases are handled by the interview behavior (see Section 6.2.5).

6.2. BCORN Dialogue Behaviors 137

Figure 6.2: The Direct Delivery dbd.

In order to support domain exploration and to drive the dialogue forward (con-

versational impetus) and to support preference elicitation by presenting related in-

formation (see Chapters 3 and 4), one extra step is performed in the case of positive

preference statements. Node 22 transforms such statements into tailored requests,

and fetches information related to the preference from an external resource in node

23 (e.g. utterance S1a in Table 6.4).

Note that the Direct Delivery dbd only has the power of delivering results; and

is only helpful when the user has provided a complete query. A more cooperative

agent will help the user to complete erroneous or ambiguous requests. Such help is

available in the interview dialogue behavior.

6.2.5 Interview

The purpose of the interview is to collect relevant information about domain entity

types (e.g. genres, artists or albums in the music domain) or specific items (e.g. song

titles). Figure 6.3 shows the Interview dbd. This is a useful dialogue behavior in

138 Chapter 6. BCORN: Managing Recommendation Dialogue

Table 6.4: Example of direct delivery in the music domain. Known entity types
and values are in italics. [list] denotes domain information from the database.
S = system, U = user.

Dialogue in/out
U1 Pearl Jam is an excellent band 21
S1a Ok. Pearl Jam has made the following albums: [list] 23
S1b What else can I do for you? 26
U2 What songs are on the album Vitalogy? 21
S2a These are the songs on the album Vitalogy: [list] 25
S2b What else can I do for you? 26

cases where user requests cannot be completed (perhaps due to an incomplete or

ambiguous request, or if there are no matches to a valid request). It is also useful

in preferential interviews used for recommendations, where the agent acquires user

domain preferences in order to construct user preference data for a recommender

engine.

Even though they implement the same dbd, the point of difference between the

two is that the former has the characteristic of a specific goal formulated by the

user, whereas the latter is dynamic and depends on the underlying external resource

LookUp. That is, for preferential interviews there is not a specific number of attributes

that need to be filled (as in a static slot-filling approach), but rather depends on the

kind of attributes and values elicited by the user and how useful these are to the

recommender engine.

If call LookUp returns an exceptional result (such as no, or too many, matches

in a database) a clarification sub-dialogue is needed to sort things out. This falls

under the dialogue behavior described by this dbd since the system asks the user to

complete her original request. Table 6.5 shows an example of the resulting surface

generation for the execution trajectory6

51 ⇒ 54 ⇒ . . . ⇒ 57 ⇒ 51

in Figure 6.3. In this example, the incoming user utterance U1 is formalized as the

6We omit conditions on the transitions when these are not relevant for the ongoing discussion.

6.2. BCORN Dialogue Behaviors 139

Figure 6.3: The Interview dbd.

pcql statement

ask Jπ Album, (Artist= ‘The Hives’), (Year< 1985) K

Since we have an ask tag (and a projection π in the fp state formula), the

condition is-ask on the transition between nodes 51 and 54 evaluates to true. The

invocation of LookUp in node 54 results in an empty result set, since the query is valid

(i.e. all entity types are recognized) but no entries in the database satisfy the given

constraints (artist and year). The condition is-empty on the transition between nodes

54 and 55 therefore evaluates to true, causing the transition to node 55, where the

status is written to the out stream with the command out. A surface realizer may

later generate this is as utterance S1a in Table 6.5. Following the interview dialogue

behavior, node 56 invokes call Relax. This external resource’s task is to return an

entity type that needs to be relaxed7. In our example, year is the chosen type. This

7The implementation of Relax can be of varying complexity, such as a static ordered list of types,
or a more elaborate algorithm that calculates the optimal type to be relaxed. The preflet solution
(Chapter 5 is suitable for this example.

140 Chapter 6. BCORN: Managing Recommendation Dialogue

Table 6.5: Example of an interview with attribute relaxation in the music domain.
Known entity types and values are in italics. S = system, U = user.

Dialogue in/out
U1 List all albums by The Hives released before 1985. 51
S1a There are no albums that match. 55
S1b Do you want to relax the year constraint? 57
U2 Ok 51

is incorporated into an fp state that is assigned to the % variable. Node 57 invokes

the command out with the following pcql action statement:

relax Jπ YN, Year K

This statement is surface realized as S1b in Table 6.5. The dbd transits to node 51,

awaiting new user input.

Queries that result in very large result sets (i.e. exceeding a defined limit number

of values) need constraining instead of relaxation. Constraints are handled in a similar

manner as relaxations described above.

If the Interview dbd is used in conjunction with a recommender engine and a

preference model, the agent’s role is to interview the user for preferences in order to

be able to provide recommendations. Then the LookUp interface is implemented using

a recommender engine8 which—like the external resource for information database

lookups in the previous section—returns sets of items. This kind of interview is

exemplified in Table 6.6, which corresponds to the execution trajectory:

51 ⇒ 54 ⇒ 58 ⇒ 59 ⇒ 60

The recommender engine used in the external resource LookUp delivers a list whose

number of values is larger than the pre-defined limit, causing the dbd to transit to

8We have experimented with content-based and hybrid engines [Burke, 2002]. A pure collabo-
rative filtering engine does not make use of entity type preferences, but rely solely on explicit item
ratings. Such a dbd ’s external resources Relax and Constrain would have to operate on items
rather than entity types. This does not, however, affect the design of the Interview dbd.

6.2. BCORN Dialogue Behaviors 141

Table 6.6: Sample preference interview in the music domain. S = system, U = user.

Dialogue in/out
U1 I like the artist Pearl Jam. 51
S1a I need more preferences in order to give you recommen-

dations.
58

S1b Please provide a genre you like. 60

node 58 in Figure 6.3 (corresponding to utterance S1a in Table 6.6). The external

resource Constrain utilizes the user’s preference model (e.g. a preflet) to find an entity

type that the user has not yet given any preferences for, and returns a corresponding

pcql statement with a constrain tag. Node 60 then invokes out with the complete

pcql action statement

constrain J⊕ Genre K

as argument, which is later realized as utterance S1b in Table 6.6. Preferential in-

terviews are the foundations for the second kind of delivery in bcorn: the indirect

delivery.

6.2.6 Indirect Delivery

In certain situations, the direct delivery dialogue behavior is insufficient. Rather

than a straight-forward lookup and black-box presentation of an explicitly requested

piece of information, it is in the nature of some resources to deliver results “when

they are ready”. A typical case of this is conversational recommendations based on

incrementally acquired user preferences detected using the interview. A delivery in

this case (i.e. an item recommendation) can be made only when enough preferences

have been acquired, and is not a direct response to a user-initiated query. Instead,

the agent takes initiative as soon as it has a recommendation ready. In such cases

the agent is usually unaware of if the delivery is previously unknown or known to the

user, or if it truly satisfies the user’s preferences.

Following design guidelines for recommender system interaction design, a recom-

mender agent should (a) deliver a recommendation modestly (since we cannot know

whether the recommended item is unknown and new to the user), (b) monitor the user

142 Chapter 6. BCORN: Managing Recommendation Dialogue

Figure 6.4: The Indirect Delivery dbd.

response to the recommendation, and (c) convey system transparency by explaining

the rationale behind the recommendation (see Chapters 2, 3, and 4). Consider the

dialogue excerpt in Table 6.7 as an instance of the execution trajectory

32 ⇒ . . . ⇒ 37

in the dbd depicted in Figure 6.4. In this example, the external resource LookUp

is implemented as a hybrid content-based and collaborative filtering recommender

engine. In node 32 the returned result-set satisfies the condition on the outgoing

transition from node 32 to 33. After necessary house-keeping (the e variable assign-

6.3. Emergent Dialogue Strategy 143

Table 6.7: Sample recommendation in the form of an indirect delivery in the music
domain. S = system, U = user.

Dialogue in/out
S1a You might like the song Higher by Creed in the genre

Alternative Rock because it is liked by others who like
Pearl Jam.

34

S1b Have you heard it? 35
U2 Yes 36
S2 What do you think about it? 37

ment) an external resource Motivate is invoked. This resource’s responsibility is to

generate a motivation for the recommendation, based on this particular user’s prefer-

ence profile. A preceding interview has resulted in several preferences for this user’s

profile, including positive ratings for the genre Alternative Rock and the artist Pearl

Jam, which is why these are used in the motivation (S1a)9. The actual delivery is

then made as a Yes/No question in node 35. The dbd then stops in node 36 awaiting

new input. Since the pcql fp state formula of the incoming user pcql statement

has the entity type YN with value Yes, the dbd transits to node 37 where a follow-

up question is performed (node 37) in order to get feedback on the already known

recommendation.

6.3 Emergent Dialogue Strategy

Hitherto, we have considered individual dialogue behaviors implemented as dbds. In

particular, we have discussed the bcorn dbds and explained their dialogue behaviors.

A dialogue agent’s complete behavior is described by a set of dbd instances that each

runs as a dbd strata machine. Each stratum in a dbd strata machine consists of one

dbd instance. Furthermore, the dbd strata machine streams input and merges each

stratum’s output into one coherent pcql representation of the agent’s turn.

Since each dbd instance in a dbd strata machine does not model any other dbd

9The collaborative filtering aspect is evident in the motivation phrasing, since one can refer to
other users’ music taste [Herlocker et al., 2000].

144 Chapter 6. BCORN: Managing Recommendation Dialogue

instances, and runs autonomously on the same input, there is no central control of the

dialogue. The dialogue systems complete behavior instead emerges from the different

dbds [Wärnest̊al et al., 2007a]. By emergent functionality in a system, we understand

components that operate simultaneously in order to achieve a desired behavior. This

is contrasted to hierarchical systems, where sub-functions are invoked from a central

component or representation. According to Steels [1990, page 454]:

a component implements a behavior whose side effect contributes to the

global functionality [...] Each behavior has a side effect and the sum of

the side effects gives the desired functionality.

This approach to dialogue system design is inspired by the layered subsumption ar-

chitecture (see Chapter 2) where layers correspond to behaviors that are organized

hierarchically.

It is important to note that a dbd strata machine generates pcql statements, and

for most applications the raw output stream will be a case of over-generation. That

is, any specific application needs to consider reduction and integration of the pcql

output. By pushing such decisions beyond the dbd strata machine we achieve a less

complex and more generic dialogue management mechanism. Thus, the agent’s com-

plete dialogue strategy emerges from combinations (weaving) of the dbd instances’

outputs. The dialogue manager itself does not determine surface strings to send to

the natural language generator module(s). A bcorn implementation outputs pcql

statements, which are tailored to be on a sufficient level of abstraction for the gen-

eration task. Since each dbd instance operates without modeling its siblings in the

dbd strata machine, the outputs from the dbds need to be integrated (and typically

reduced) so that the system utterance makes sense to the user. Combining the behav-

iors’ output into a coherent system turn is by no means trivial, since it is important to

design for the coherence, informativeness, and flexibility required for natural language

dialogue. One pragmatic way that has been found sufficient in the implementations

is to use two heuristic principles, which are further explained in Section 6.4.2, where

the approach is exemplified with the CoreSong implementation.

6.4. Implementing BCORN: CoreSong 145

Figure 6.5: The standard CoreSong behavior configuration. Two external resources,
database (db) and recommender engine (rec), coupled with interview and differ-
ent delivery behaviors. Interp = Interpretation Module, Gen = Generation Module,
IS = Input Streamer, OW = Output Weaver. This constitutes configuration 4 in the
experiment, see Section 6.5.

6.4 Implementing BCORN: CoreSong

Let us consider the role of bcorn in a complete conversational recommender sys-

tem. This section describes such a system, called CoreSong. The architecture in

Figure 6.5 shows CoreSong’s dbd strata machine (with five dbd instances) and

auxiliary components. CoreSong is a music conversational recommender system

that allows users to engage in recommendation dialogue as outlined in the previous

chapters. The interaction is typed and the language is English.

Detected user preferences are used in two ways: First, it is naturally used to

generate new music recommendations. Second, it aids the user in sorting any local

music files the user might possess. CoreSong thus deals with already “known”

music as well as previously unknown music. Since CoreSong is deployed as a web

application that runs in a web browser it requires the user’s permission to upload

music information in the server databases. Technically, the application is written

in Ruby10, and its back-end consists of MySql11 databases. The user’s local music

collection information is taken by parsing mp3 tags for genre, artist, and album of

the files and uploaded in a MySql database on the server.

10Ruby version 1.8.5. and Ruby on Rails version 1.1.6.
11MySql version 5.0.27

146 Chapter 6. BCORN: Managing Recommendation Dialogue

There are three external resources in the implementation. First, there is a database

with music information. It encapsulates genre, artist, album, and year information

for 8,500+ songs (distributed over 40+ genres, 2,000+ artists, and 650+ albums).

The music database is connected to one Direct Delivery dbd instance, as well as

an Interview dbd instance (see Figure 6.5). Second, there is a content-based rec-

ommender engine that utilizes the same music information as the music database.

An experimental collaborative filtering hybrid recommender engine has been used in

some tests, where user ratings influence the choice of recommended items, but in the

version used in Study III (see Section 6.5) the content-based version was used. Third,

CoreSong uses the preflet construct described in Chapter 5, and preflet information

is stored in MySql tables in the back-end.

Figure 6.6 shows CoreSong’ user interface. In Figure 6.6, A is the dialogue chat

area, and B is the view of database results. Furthermore, C is the area in which the

user’s local music collection is displayed (and sorted according to the active preflet).

D is the strata configuration, where dbd instances can be turned on and off. This

feature is not intended to be used by end-users in a sharp version; rather, it is used

in order to control the generation of dialogues in the experiment (see Section 6.5).

Moreover, the current recommendation is presented in the area E, where standard

playback controls allows the user to start and stop the recommended song. The design

of the user interface follows the guidelines of separating linguistic communication (A)

between the user and the agent from the views and direct manipulation interaction (B,

C, and E) of information from the back-end in the three-entity model [Ibrahim and

Johansson, 2002b]. The next two sections describe CoreSong’s input and output

functionality.

6.4.1 Input: Interpretation and Streaming

In general, the two auxiliary components Interpreter and Generator (see Figure 6.5)

can be arbitrarily advanced depending on what natural language interpretation and

generation capabilities a particular system is required to have.

In CoreSong, the Interpreter takes typed natural language as input and produces

pcql representations as output, using primarily the tags greet, bye, ask, and

inform. Other tag sets are obviously possible, but for the purpose of executing the

6.4. Implementing BCORN: CoreSong 147

Figure 6.6: CoreSong’s graphical user interface.

dbds presented previously, these four are sufficient. The Interpreter is implemented

as a simple but effective domain-specific cascade parser that identifies words and

phrases in passes.

The Interpreter also includes a basic contextual interpretation and anaphora res-

olution. As argued by Jönsson [1993], a plan-based approach that models goals and

intentions is overkill for the kind of system dealt with here. Thus, the anaphora

resolution relies on a very simple mechanism in CoreSong. A stack of entities and

attributes in focus (the attentional state) is maintained by the Interpreter and is used

when mapping from pronouns (“it”, “they”, “he”, “his”, etc.) to entities. This ap-

proach obviously has limits, but works for local focus management12 in the systems

12Global focus shifts are not addressed herein, even though Johansson [2003a] suggests that multi-
modal interaction by pointing at previously introduced entities on-screen is a frequently used method
for performing global focus shifts.

148 Chapter 6. BCORN: Managing Recommendation Dialogue

reported on here. The output of the Interpreter thus contains explicit references to

domain entity types and values in the outgoing pcql statements.

The dbd strata machine’s Input Streamer feeds the incoming pcql statement

to each of the dbd instances. Each dbd thus processes the incoming token stream

independently.

6.4.2 Output: Weaving and Generation

Since each dbd instance operates without modeling its siblings in the dbd strata

machine, the complete output from the dbds need to be (a) integrated, (b) reduced,

and (c) surface realized from its pcql form, so that the system utterance makes sense

to the user. (a) and (b) are done in the Output Weaver, whereas (c) is performed by

a template-based surface realizer. A template-based natural language generating

system map its non-linguistic input (pcql) with no intermediate representations to

the linguistic surface structure (cf. [Reiter and Dale, 1997, pages 83–84]). Even though

a more advanced generation system might be desirable, the template-based approach

coupled with pcql is sufficient for our conversational recommender systems. Indeed,

as argued by van Deemter et al. [2005], the template-based approach is not necessarily

inferior to standard (or “real”) generation systems, and might thus be a suitable choice

even for future expansions of the approach put forward here.

The Output Weaver in CoreSong utilizes a set of heuristics in order to address

(a) and (b). The solution is pragmatic and divided into two constructs in the Output

Weaver: behavior priority and an order heuristic.

Behavior Priority

We index dbds with a priority and order the out pcql statements accordingly (as-

cending order). The request with highest priority will be chosen. This hinders the

occurrence of two requests back to the user which obviously could be confusing. The

order of dbds are (lowest to highest priority): Conventional, Direct Delivery, Indirect

Delivery, and Interview. dbd instances connected to the recommender engine have

higher priority than those of the music database. Note that interview and delivery be-

haviors of the same external resource are naturally designed to be mutually exclusive.

The complete order of dbd instances is shown in Figure 6.5.

6.4. Implementing BCORN: CoreSong 149

Order Heuristic

Table 6.8 shows an example dialogue from CoreSong where the Output Weaver has

applied the heuristics.

Table 6.8: Sample bcorn dialogue in the music do-

main. The dbd column shows the dbd instance that

won output priority. The out column contains the node

that produced the output. Abbreviations used: S = sys-

tem, U = user, DB = database, REC = recommender,

DD = direct delivery, ID = direct delivery, I = interview.

Dialogue DBD out PCQL

U1 I like the artist Pearl

Jam.

inform J⊕ (Artist= ‘Pearl Jam’) K

S1a These are the albums

made by Pearl Jam:

[a1, a2, ..., an]

db-dd 25 result Jπ (Album), (Artist=

‘Pearl Jam’) Kvalues J {a1, a2, ..., an} K

S1b I need more preferences

in order to give you rec-

ommendations.

rec-i 58 excess J Artist= ‘Pearl Jam’ K

S1c Please provide a genre

you like.

rec-i 60 constrain J⊕ Genre K

U2 What albums have the

genre alternative?

ask Jπ Album, (Genre=Alternative) K

S2a These albums belong to

the genre Alternative:

[a1, a2, ..., an]

db-dd 25 result Jπ Album, (Genre=Alternative) K
values J {a1, a2, ..., an} K

S2b You might like the song

Once on the album Ten

by the artist Pearl Jam

in the genre Alternative.

rec-id 36 motivate J (Song= ‘Once’),

(Album= ‘Ten’), (Artist= ‘Pearl Jam’),

(Genre=Alternative) K

S2c Have you heard it? rec-id 33 recommend Jπ YN, (Song= ‘Once’) K
Continued on next page

150 Chapter 6. BCORN: Managing Recommendation Dialogue

Table 6.8 – continued from previous page

Dialogue DBD out PCQL

U3 List all albums by The

Hives released before

1985.

ask Jπ Album, (Artist= ‘The Hives’),

(Year< 1985) K

S3a There are no albums

that match.

db-i 55 empty Jπ Album,

(Artist= ’The Hives’), (Year< 1985) K
S3b Do you want to relax

the year constraint?

db-i 57 constrain Jπ YN, Year K

U4 Yes inform J YN=Yes K
S4a These are the albums

released by The Hives:

[a1, a2, ..., an]

db-dd 25 result Jπ Album, (Artist= ‘The Hives’) K
values J {a1, a2, ..., an} K

S4b You might like the song

Escape on the album

The Reason by the

artist Hoobastank in the

genre Alternative.

rec-id 36 motivate J (Song= ‘Escape’), (Album=

‘The Reason’), (Artist=Hoobastank),

(Genre=Alternative) K

S4c Have you heard it? rec-id 33 recommend Jπ YN, (Song= ‘Escape’) K
U5 Yes inform J YN=Yes K
S5a What do you think

about it?

rec-id 37 askrate J} (Song= ‘Escape’) K

Due to the behavior priority, there is only one request action available each turn. The

order heuristic places this request at the end of the output, so that informing pcql

action statements are guaranteed to precede the request. This guarantees that the

constrain request S1c (node 60) in Table 6.8 always occur after the direct delivery

S1a (node 25) even though their statements origin from different dbd instances.

6.4. Implementing BCORN: CoreSong 151

Surface Realization

Surface realization (issue (c) above) is handled by the Generator. It is responsible for

converting the “weaved” pcql statements into natural language and can be arbitrarily

advanced13.

The Generator in CoreSong uses a template-based approach [Jurafsky and Mar-

tin, 2000], and consists of a template collection, with one template for each out com-

mand in each instance. Slots in the templates are filled in by querying the appropriate

external resource(s).

For example, consider the motivate template, which corresponds to node 34 in

Figure 6.4. In the preceding node (33), the external resource Motivate is responsi-

ble for binding a song recommendation from the recommender engine to the vari-

able e, as well as a list m of attributes to be used in the motivation on the form

{egenre, eartist, ealbum} from the active preflet (see Section 5.3.2). The template in the

Generator for node 34 has the following form:

You might like the song < e > on the album < ealbum > by the

artist < eartist > in the genre < egenre >.

An example of a filled out template can be found as utterances S2b and S4b in

Table 6.8. This template could be even more dynamic considering that the preposi-

tional phrases could be re-arranged so that the attribute with the highest preference

strength attached to it would be placed first. This could for example render the

template as follows for users where the artist preference in question has a higher

preference strength than the album and genre:

You might like the song < e > by the artist < eartist > on the

album < ealbum > in the genre < egenre >.

Phrases corresponding to attributes for which there is no preference recorded could be

removed completely. However, this should probably be done with care, since introduc-

ing previously “unknown” attributes (from the user model perspective) could work

as conversational impetus (see Section 4.4) and trigger new preference elicitations.

13Note that content selection step—traditionally part of a natural language generator (cf. [Dale et
al., 1998; Jurafsky and Martin, 2000])—is managed by the heuristics of the Output Weaver, whereas
subsequent generation steps (lexical selection, sentence structure etc.) are left to the generator
component(s).

152 Chapter 6. BCORN: Managing Recommendation Dialogue

Simpler templates (typically those connected to pcql statements with empty fp

state formulas) requires no slots to be filled and can be used “as is” (e.g. all nodes in

the Conventional dbd, etc.).

6.4.3 Preflet Updates

A normalized preference score for each song in the current preflet (e.g. with the de-

scriptor Situation = Work) is calculated after each turn by the score evaluation formula

(see Section 5.4.3), which multiplies detected preference strengths and closeness-of-

match with the entity type weights. Recommendations can then be made by selecting

songs with the highest preference scores above a pre-defined threshold (e.g. 0.50), and

realized in the on-going dialogue (such as utterance S8a/S8b in Figure 6.7). Consider

the following preflet based on parts of the dialogue in Figure 6.7:

User : U

Situation : Work

Genre(1.0) → Rock(5), Alternative(3)

Artist(2.0) → Creed(6)

This structure contains the entity type name Genre with strength-annotated values

for Rock and Alternative. The strength for Rock is 5 since it is interpreted as being

part of the initial problem description (Volunteered-Background), and the strength

for Alternative is 3 since it is an indirect preference statement in the form of a question.

Similarly, it contains the type Artist with a value Creed with strength 6 due to the

superlative preference statement in U4 in Figure 6.7. Furthermore, the importance

factor for Artist is raised due to the (meta-)preference in U5. These preferences are

valid for user U for play lists in the situation Work.

6.5 Evaluation

To validate the behavior based approach to dialogue management an “overhearer” ex-

periment [Whittaker and Walker, 2004] was conducted by using four different behavior

configurations of the CoreSong system. The reason for using the overhearer model

is to avoid natural language interpretation problems (since the coverage of grammar

6.5. Evaluation 153

U1 I want a play list for work
S1a I need more preferences in order to give you recommen-

dations.
S1b Is there a particular genre you prefer in that situation?
U2 I like rock
S2a These artists belong to the genre Rock: [list]

S2b I need more preferences in order to give you recommen-
dations.

S2c Any of these you like in particular?
U3 What alternative artists are there?
S3a These artists belong to the genre Alternative: [list]

S3b Is there a particular artist you like?
U4 Creed is the best
S4a These albums belong to the artist Creed: [list]

S4b I need more preferences in order to give you recommen-
dations.

S4c Are there any other genres, artists or albums you prefer
at work?

U5 Artist is more important than genre
S5a I need more preferences in order to give you recommen-

dations.
S5b Are there any other genres, artists or albums you prefer

at work?
U6 What albums are there by Audioslave?
S6a These albums are in the artist Audioslave. [list]

S6b You might like the song Original Fire on the album Rev-
elations by the artist Audioslave in the genre Alterna-
tive.

S6c Have you heard it?
U7 No

Figure 6.7: Sample dialogue excerpt from the CoreSong system with factual state-
ments and queries; and descriptive, comparative and superlative preferences. [list]

denotes a listing of items from an external resource. S = system, U = user.

154 Chapter 6. BCORN: Managing Recommendation Dialogue

and lexicon is not our focus), and letting participating users’ personal music prefer-

ences, that may not be covered by our recommender engine and database, affect the

participants’ experience of dialogue interaction. Furthermore, it allows us to compare

alternative dialogue strategies in the same dialogue context (see Section 2.4.3).

6.5.1 Participants

The experiment was conducted with 30 participants (20 male and 10 female), recruited

via student email lists of the Cognitive Science program. The participants’ age varied

between 20 and 35, and none of the previously participated in neither Study I nor

Study II.

6.5.2 CoreSong Configurations

For each of the two external resources (database and recommender engine) used by

CoreSong, three dbd instances are implemented: one interview, one direct delivery,

and one indirect delivery. Four different dbd instance configurations were used to

generate the test dialogues, as shown in Table 6.9.

The first configuration works as a traditional information-retrieval system, where

one direct delivery and one interview dbd instance connected to the database are

activated. As no recommendations or explicit preference modeling is carried out, this

configuration is called the “question-and-answer” configuration (q-a).

In the second configuration we introduce the recommender engine, and connect

one direct delivery and one interview dbd to it. This is done “on top of” the q-

a configuration. Note that we have two external resources, with identical dialogue

behaviors attached. We call this the “blunt” configuration, since recommendations

are given without motivations and follow-up questions.

Third, the database resource is dropped, and the indirect delivery is introduced

along with an interview. These two instances are connected to the recommender

engine. Since this configuration is expected to result in many preference questions

from the system’s part, but no responses to user queries, we call this the “prying”

configuration.

The fourth configuration is the “default” CoreSong configuration. This is where

we connect the indirect delivery behavior to the recommender engine, and the direct

6.5. Evaluation 155

Table 6.9: Experiment configurations. DD = Direct Delivery, IW = Interview,
ID = Indirect Delivery, Db = Database, Rec = Recommender Engine.

Configuration DD(Db) IW(Db) DD(Rec) ID(Rec) IW(Rec)
q-a x x
blunt x x x x
prying x x
recommender x x x x

delivery to the database, and one interview dbd instance to each external resource.

This configuration is called the “recommender” configuration, since this is the role

that CoreSong’s dbd instances were originally designed to play. Figure 6.5 shows

the strata machine layout for the recommender configuration.

For each dbd instance, the set of templates for the Generator was designed. In

particular, the direct delivery and interview dbds require customization depending

on the external resource connected. For instance, this means that node 25 in the

direct delivery dbd (Figure 6.2) has the following template when it is instantiated

with the database external resource:

These < ex > belong to the < ey > < vy >.

The list of matching entities ({vx1 , vx2 , . . . , vxn}) is displayed in area B in the graphical

user interface (Figure 6.6).

In the blunt configuration however, a direct delivery dbd is instantiated with

the recommender engine. In this case, node 25’s pcql statement is rendered as

the following template, reflecting the “meaning” of a delivery with that particular

external resource. (We know that the entity type for recommender engine deliveries

always is Song.)

I think you will like the song < e >.

Following the direct delivery dbd design, no motivation is given.

The different configurations effectively modify CoreSong’s complete dialogue

strategy. The q-a configuration, for example, with only the database resource, re-

sults in a question-answer information dialogue system without recommendation ca-

pabilities, whereas the prying configuration supports a preference interview with no

156 Chapter 6. BCORN: Managing Recommendation Dialogue

U1 What genres are there?
S2a I found these genres in the database: [list].
S2b What else do you want to know?
U2 I like the genre Rock & Roll
S3a These are the artists that belong to the genre Rock &

Roll: [list].
S3b What else do you want to know?
U3 What songs were made by Elvis Presley?
S4a I found these songs by the artist Elvis Presley in the

database: [list].
S4b What else do you want to know?
U4 I like the album Live at Madison Square Garden
S5a These are the songs that belong to the album Live at

Madison Square Garden: [list].
S5b You might like the song Suspicious Minds.
S5c What else do you like?

Figure 6.8: Sample dialogue for the blunt experiment configuration. [list] denotes
lists of genres, artists, albums or songs. S = system, U = user.

power to deliver answers to factual requests. The blunt configuration has the power

to deliver both database results and recommendations; but the recommendations

are not delivered with motivations and follow-up questions as the indirect delivery

(found in the recommender configuration) is designed to do. Consider the sample

dialogues in Figures 6.8 and 6.9, that correspond to the blunt and recommender

configurations respectively. Contrast this to a conversation where there is no rec-

ommendation, as in the q-a configuration (Figure 6.10). To illustrate the difference

in behavior we use the same user utterances as in Figure 6.8.

For each of the four CoreSong configurations, a dialogue was generated and put

on a web page (see Figure 6.11). The guideline for generating the dialogues was to

have a similar sequence of user utterances in all four cases, but yet let the “user” be

somewhat cooperative. That is, if CoreSong asks a direct question in one config-

uration, the “user” in the generated dialogue will answer, even if the same question

would not arise in another configuration. See the dialogue excerpts in Figures 6.8,

6.9, and 6.10.

6.5. Evaluation 157

U1 What genres are there?
S2a I found these genres in the database: [list].
S2b I’d like to know more about your preferences.
S2c What else do you like?
U2 I like the genre Rock & Roll
S3a These are the artists that belong to the genre Rock &

Roll: [list].
S3b I’d like to know more about your preferences.
S3c What else do you like?
U3 What songs were made by Elvis Presley?
S4a I found these songs by the artist Elvis Presley in the

database: [list].
S4b I’d like to know more about your preferences.
S4c What else do you like?
U4 I like the album Live at Madison Square Garden
S5a You might like the song Suspicious Minds because it is

a Rock & Roll song by Elvis Presley.
S5b Have you heard it?
U5 Yes
S6a Ok. What do you think about it?
U6 It’s good

Figure 6.9: Sample dialogue for the recommender experiment configuration. [list]
denotes lists of genres, artists, albums or songs. S = system, U = user.

U1-
U4

(Assuming the same user utterances as in Figure 6.8.)

S5a These are the songs that belong to the album Live at
Madison Square Garden: [list].

S5b What else do you want to know?

Figure 6.10: Sample dialogue for the q-a experiment configuration. [list] denotes
lists of genres, artists, albums or songs. S = system, U = user.

158 Chapter 6. BCORN: Managing Recommendation Dialogue

6.5.3 Procedure

Each participant was presented with the four test dialogues, one at a time, displayed

in a web browser. For each of the dialogues they were asked to fill out a questionnaire

on a 5-point Likert-scale regarding their agreement with four statements (1 meaning

total disagreement, and 5 complete agreement), before moving on to the next dia-

logue. Figure 6.11 shows an example of a web page used in the experiment with the

dialogue, and the Likert-scale questionnaire (the complete page is not shown due to

size restrictions). There was also an opportunity to comment on each dialogue in a

free text field at the end of each questionnaire. A session took about 10-15 minutes

to complete. Participants were not paid.

The statements are intended to determine informativeness (information quality),

preference modeling, coherence, and naturalness (variation and dynamics) of the di-

alogue excerpts. For example, the statement: “The system’s utterances are easy to

understand and provide relevant information” reflects informativeness [Whittaker and

Walker, 2004].

6.5.4 Results

The results of the four aspects for the four behavior configurations are shown in

Figures 6.12, 6.13, 6.14, and 6.15. In general, the participants considered the q-a

and recommender configurations to have the highest information quality (86.2%

and 85.5% respectively). This is expected, since they both are equipped with the

database direct delivery behavior. The prying configuration, lacking in database

delivery functionality, received a lesser rating on informativeness. For our cur-

rent work, the notion of coherence is of high importance, since this quality of the

dialogue was thought to be at risk when abandoning a monolithic central dialogue

strategy model. It is therefore interesting to note that the coherence measure is high

for all four configurations (prying has the lowest of 70.3%; followed by blunt with

79.3%; recommender 84.1%; and q-a 86.2%). Furthermore, the recommender

configuration—which represents the highest complexity since it encapsulates two ex-

ternal resources, each with different delivery behaviors—was high-ranking in all four

aspects: Information quality was high (85.5%), as well as perceived preference man-

agement (80.0%) and naturalness (79.3%) in the dialogue, without losing coherence

6.6. Summary 159

(84.1%).

The data for the configurations over the parameters were compared using a one-

way analysis of variance (ANOVA)14. As expected, preference management was per-

ceived as significantly lower in the q-a configuration compared to the other three

configurations, where preferences indeed were modeled and de facto influenced the

dialogue. Information quality was perceived as significantly lower in the prying

configuration compared to the other three (which all included delivery of database

results). prying also received significantly lower ratings on coherence compared to

the other three configurations. This is most likely due to that factual user queries were

only used as indicators of indirect preferences, and were not responded to in the way

that configurations with delivery behaviors did. Still, its average rating of coherence

is 70.3%, which is relatively high considering that some user utterances (e.g. factual

requests) are in fact “ignored”! The recommender configuration received a sig-

nificantly higher rating on naturalness compared to the other three configurations.

There was no significant difference between the blunt and the prying configura-

tions in terms of naturalness and variation. Not surprisingly, the behavior of the q-a

configuration was perceived as rather unnatural (46.9%).

The results show that bcorn’s non-centralized approach that views dialogue strat-

egy modeling as an emergent phenomenon is feasible, and encourages future devel-

opment of the approach. They also imply that the individual dbds of bcorn are

soundly designed, and that natural and coherent recommendation dialogue can be

explained in terms of the suggested dialogue behaviors.

6.6 Summary

The bcorn recommendation dialogue strategy model consists of dbd strata that

each encapsulates empirically derived chunks of dialogue behaviors that occur in rec-

ommendation dialogue. It uses the pcql formalism as message-passing format both

in and out of the system, and as communication language within a bcorn system.

The CoreSong implementation is a functional music conversational recommender

system that was evaluated in the overhearer evaluation paradigm. The results (a)

14p < 0.001 n.s. for all differences reported below.

160 Chapter 6. BCORN: Managing Recommendation Dialogue

indicates that the behavior-based approach gives rise to coherent and natural recom-

mendation dialogue with high informativeness, and (b) verifies the soundness of the

conventional, direct delivery, interview, and indirect delivery dbd designs.

6.6. Summary 161

Figure 6.11: Part of web page for the overhearer evaluation.

162 Chapter 6. BCORN: Managing Recommendation Dialogue

Figure 6.12: Graph of experiment results for the Informativeness aspect. The x axis
corresponds to the four behavior configurations presented in Table 6.9.

6.6. Summary 163

Figure 6.13: Graph of experiment results for the Preference Management aspect. The
x axis corresponds to the four behavior configurations presented in Table 6.9.

164 Chapter 6. BCORN: Managing Recommendation Dialogue

Figure 6.14: Graph of experiment results for the Coherence aspect. The x axis
corresponds to the four behavior configurations presented in Table 6.9.

6.6. Summary 165

Figure 6.15: Graph of experiment results for Naturalness aspect. The x axis corre-
sponds to the four behavior configurations presented in Table 6.9.

7
Conclusion

We end with a coda, which is both a summary of the previous chapters as

well as a discussion around the implications and how this research could

continue in the future.

Dialogue management for conversational recommender systems has been the

focus of the previous chapters. In this final chapter, a concluding summary is first

provided in Section 7.1, before some indications of areas for future research are given

in Section 7.2.

7.1 Summary

This thesis reports on work on recommendation dialogue for dialogue strategy man-

agement in conversational recommender dialogue systems. The research field resides

in the intersection of natural language interaction, and personalization for recom-

mender systems, and the work is motivated from an interaction perspective. For

168 Chapter 7. Conclusion

example, natural language dialogue can allow users to express their preferences qual-

itatively, and in contexts where they are motivated to elicit them. Furthermore,

detecting a user’s preferences and using them for recommending items is a collabo-

rative venture, where coherent conversation with a dialogue partner seems a natural

choice of interaction style. Since users benefit from using a recommendation agent

that “thinks” like them, either in terms of attribute weights or decision strategies [Ak-

soy et al., 2006], we want to discover natural and coherent dialogue strategies, and

human-like preference modeling, and then through systematic analysis arrive at a

computational model suitable for conversational recommender system dialogue inter-

action.

We started out by surveying theories on dialogue system design and development;

user preference modeling and recommender systems; conversational approaches to

recommender systems; and software engineering, interaction design, and evaluation

of conversational recommender systems (Chapter 2).

Based on the survey, the first step to further examine recommendation dialogue

was to study human dialogue participants in a movie recommendation situation

(Chapter 3). By applying the dialogue distilling analysis method, we arrived at

design implications for dialogue strategy control in the context of conversational rec-

ommender systems. As noted by Larsson et al. [2000], the dialogue distilling process

itself provides important insights on the properties of human-computer dialogue in-

teraction. The analysis in Chapter 3 provides guidelines for (among other issues)

focus management, implications depending on the recommender engine utilized in an

application, avoiding recommender bias to maintain objectivity, and how to reach

efficiency and effectiveness in the human-computer dialogue.

The corpus is also a source for characterization of typical recommendation dia-

logue. In particular, we described (a) the roles and attached initiatives, which have an

impact on how the dialogue progresses; (b) the relations between information requests

and preferential statements; (c) a list of re-occurring dialogue act types in the corpus

(deliberately coarse-grained) characterizing the dialogue moves found in the corpus;

and (d) a classification of two principal dialogue behaviors called interview and deliv-

ery. The symmetry between preferential interview and factual interview (clarification

sub-dialogue) and the properties of direct vs. indirect delivery was found to be useful

when describing recommendation dialogue in the bcorn dialogue model.

7.1. Summary 169

The guidelines arrived at from the distillation, the dialogue characterization, and

the act set were used as the basis of a domain-dependent statechart representation

of movie recommendation dialogue presented in Chapter 4. This model was imple-

mented in the acorn system, and verified in a user study (Chapter 4). The user

study indicated that the model gave rise to effective and efficient dialogue with high

user satisfaction. The study also gave implications concerning the value of enter-

tainment in order to encourage exploration of the domain. High entertainment value

resulted in longer dialogues and more efficient preference elicitation. This is termed

conversational impetus and consists of presenting related information in order to trig-

ger preference statements from the user, consistent with the theory of Carberry et

al. [1999] and findings of Swearingen and Sinha [2002]. It was also found that it is

important to time explanations of recommendations in the dialogue properly.

Based on the empirical studies I and II as well as design and implementation

of conversational recommender system prototypes, a behavior-based dialogue model

called bcorn was then presented in Chapter 6. bcorn is based on three constructs:

First, bcorn utilizes a user preference modeling framework (preflets) that supports

and utilizes natural language dialogue, and allows for descriptive, comparative, and

superlative preference statements, in various situations (Chapter 5).

Second, bcorn uses the message-passing notation pcql, which is used for describ-

ing preferential and factual statements and requests as well as for supporting manage-

ment of preferences in conversational recommender systems (Chapter 5). pcql action

statements consist of an action tag and a factual and preferential state formula (the

fp state), and uses a set of factual and preferential operators that cover descriptive,

comparative, and superlative preference statements, as well as factual requests and

statements over entities in a domain description. It is obvious that the pcql notation

covers more than what is required by e.g. the CoreSong conversational recommender

system. Indeed, there might also be other, more traditional, formalisms in which the

needed preferential and factual statements could be expressed. However, a contribu-

tion of this work has been to provide the conceptual framework for a generic notation

of preferential and factual expressions, closely connected to the theory of Carberry et

al. [1999], and directly useful in the specific context of conversational recommender

system dialogue. pcql should thus be seen as work toward generics, that will continue

beyond this thesis.

170 Chapter 7. Conclusion

Third, we introduced the compact and precise dialogue behavior diagram (dbd)

notation that is used to describe bcorn’s generic recommendation dialogue strategy

with conventional, information-providing, and recommendation capabilities. Each

dbd describes a natural chunk of a recommender agent’s dialogue strategy, and dbd

instances are connected to required external resources (Chapter 6). Each dbd in

bcorn is based on the classification of recommendation dialogue in terms of interview

and delivery.

The dbd notation bears strong resemblance to uml activity diagrams, and there-

fore to state diagrams (equivalent to Harel statecharts). dbds can be viewed as a more

restricted form of statecharts, with commands that directly support a three-entity in-

teraction model found to work effectively in natural language interface design [Ibrahim

and Johansson, 2002b]; and a notation that is tailored to fit recommendation dialogue

descriptions for conversational recommender systems.

In the CoreSong implementation of bcorn, the dbds are run in parallel to give

rise to coherent, flexible, and effective dialogue in conversational recommender sys-

tems, as indicated by the overhearer evaluation (Study III). The evaluation consisted

of generating music recommendation dialogues from four different configurations of

CoreSong and let users rate the dialogues on Likert-scales regarding the four pa-

rameters information quality, preference management, coherence, and naturalness for

each configuration. CoreSong was configured by switching dbd instances on or

off, and varying the connections between external resources and dbds. The evalua-

tion provided significant differences between the parameters and the configurations.

These results are very promising for the approach for recommendation dialogue man-

agement, and indicates that coherent and natural recommendation dialogue of high

information quality can be achieved using the behavior-based bcorn model.

We will end this concluding summary with a quotation by Bill Buxton: “notation

is a tool of thought” [Buxton, 2007, page 33]. It is important to remember that

architecture descriptions typically lean toward informal verbal descriptions and/or

flowchart notation, with rather abstract components. They strongly support their

own conceptual design philosophies and design methodologies (sometimes without

explicitly stating them) [Bryson, 2001]. A formalism bears the promise of a separa-

tion between form and content. That is, a formalism is in some sense free of content

and should therefore be used to formalize theory. However, in practice very few

7.2. Future Work 171

“formalisms” are actually completely free from content. On the contrary, many for-

malisms seem to imply theoretical stand-points. In addition, many formalisms have

been proved to be equivalent—at least in a mathematical sense. However, this equiv-

alence does not take into account the human designer/developer that carries out the

creative work. A formalism encourages designers to think in terms of the formalism

(and the associated theoretical chunks that come with it). In order to maintain a cre-

ative and exploratory view on how to design and build conversational recommender

systems (indeed, any interactive system), we need to maintain a plethora of archi-

tectures, models, formalisms, and notations. Choosing the right one to describe and

solve the problem at hand is a crucial skill for designers and developers. For example,

finite-state machines imply states and transitions; effectively encouraging designers

and developers to view problems in terms of such states and transitions, whereas a

neural network approach will, on the other hand, support views related to the bi-

ological neuron [Pfeiffer and Scheier, 1999]. Nevertheless, they could both express

the same functionality—or behavior—in a system. Thus, bcorn encourages a view

of human-machine recommendation dialogue as a layer-based approach organized in

dialogue behavior diagrams centered around preferential and factual statements and

requests expressed modeled in pcql action statements. As shown in this dissertation,

the approach has been a successful one, and the involved notations have proved to

be a tool for both understanding and expressing the empirically derived qualities of

recommendation dialogue for conversational recommender systems.

7.2 Future Work

There are several directions in which this research could continue. Some of them

oriented toward Linguistics research (e.g. focusing on dialogue modeling), and some

oriented toward Computer Science (e.g. focusing on development of the formal aspects

introduced herein, or on tools and platform development). There are also other types

of implications, e.g. hci and interaction design issues, that need to go hand in hand

with research and development in the cross-disciplinary approach advocated in this

thesis. This section notes some interesting ventures for future research.

172 Chapter 7. Conclusion

Extending the behavior-based approach

One of the most obvious directions, from a dialogue strategy perspective, is to verify

the behavior-based model for other types of dialogues. This work has addressed

dialogue structure with shorter dialogue-task distance than traditional information

retrieval dialogue [Dahlbäck, 1997]. Working toward even shorter distance, such as

(general and dynamic) planning dialogue (cf. [Allen et al., 2001]), is an interesting

way of exploring the limitations of the proposed approach.

More advanced forms of recommendation dialogue is also an interesting research

area. A recommendation dialogue enhancement could be to add dialogue behavior(s)

about conflicting preferences. Such features of recommendation dialogue did not

occur in the studies reported on in this thesis, and could require long-term studies

over several dialogue sessions. Such studies could have implications on extensions of

the preflet construct as well as on pcql. As (negotiative) recommendation dialogue

thus becomes more complex, it is likely that argumentation needs to be addressed

in more detail (cf. [Larsson, 2002]). Exploring the limitations of the behavior-based

approach, as well as studying the amount of work needed to maintain and design

dialogue systems in this approach are interesting research issues.

Turn-taking

Whereas this thesis has focused on recommendation dialogue management with strict

turn-taking, an important aspect of “natural” (spoken) dialogue is the dynamics of

turn-taking and continuous feedback. Since the layered approach has been used to

address such factors successfully [Thórisson, 1997; Lemon et al., 2003], it seems a

promising direction for the work presented in this thesis as well. Suitable sources for

working with turn-taking in similar notations as the dbds presented in this thesis is

the work by Lager and Kronlid [2004]. The empirical material collected in Study I

could serve as a base for developing dynamic turn-taking in recommendation dialogue.

Adaptive generation

As shown in this thesis, a promising way to encourage preference eliciting is to em-

ploy a dialogue strategy with entertaining dialogues that encourage domain explo-

ration but still allows for efficient handling of user tasks. It is likely that this is a

7.2. Future Work 173

coupling between support for our notion of conversational impetus and “good” nat-

ural language generation and prompt design. What constitutes “good” phrasing for

a specific system and use context is obviously a challenging problem. Dale et al.

state in the context of objects in large information repositories: “providing systems

with the required communicative sophistication requires the addition of natural lan-

guage generation technologies” [Dale et al., 1998, page 111]. User-adaptive generation

considerations in conversational recommender systems should thus be an important

integration aspect to study in detail in the future. bcorn could, from an engineering

perspective, be an interesting platform for such work, since the emergent nature of

output weaving brings the dialogue strategy very close to the generation problem.

Moving from the current template-based approach to a more generic and scalable

solution employing state-of-the-art natural language generation techniques [Jurafsky

and Martin, 2000], such as adaptive generation based on user models [Walker et al.,

2004], would be a natural next step.

Related to this is the generation aspect of explanations of recommendations. In

bcorn this is catered for in the motivate tag and associated templates. User-

adaptive explanations of recommendations is a very important issue for the user

experience, which has been voiced by other authors (e.g. [Höök, 2000; Herlocker

et al., 2000; Buczak et al., 2002]), and highlighted in Study II presented in this

thesis (Chapter 4). Explanations are dependent on the user’s preferences, as well

as the chosen recommender engine. That is, a collaborative filtering engine reaches

its recommendations in a different way than e.g. a content-based engine. This needs

to be handled when generating the explanation. Working toward generic solutions

for generation of motivations of user-dependent recommendations for recommender

engine architectures is thus another important point for future research.

Interpretation

This thesis focuses on dialogue management and the systems reported on herein uses

rudimentary interpretation modules. However, it lies in the nature of personalized

preferential dialogue to allow users to express e.g. preferences in a free and natural

way. This requires robust interpretation mechanisms (e.g. [Jönsson and Strömbäck,

1998]). Investigating the possibilities of constructing robust and generic grammars

174 Chapter 7. Conclusion

and lexicons for recommendation dialogue, and take stock on the work effort to cus-

tomize these for different application domains is an interesting area of research.

Tools and platforms

bcorn and its components have been designed for simplicity to promote rapid de-

velopment of conversational recommender system applications. However, much more

can be done in terms of work toward open development tools and simulation envi-

ronments for dialogue system development, (cf. [Cunningham, 2000; Degerstedt and

Jönsson, 2004; 2006]). An important part of Language Technology research is to sup-

port and ease sharing of results and development environments to other researchers

and industry. One key to this is to work toward standards in the community to ease

“readability” of software engineering artifacts. This includes, for instance, adapting

bcorn and the dbd notation to the w3c statechart standard scxml1.

1http://www.w3.org/TR/scxml/

Bibliography

[Aksoy et al., 2006] Lerzan Aksoy, Paul N. Bloom, Nicholas H. Lurie, and Bruce

Cooil. Should recommendation agents think like people? Journal of Service Re-

search, 8(4):297–315, May 2006.

[Allen et al., 2000] James Allen, Donna Byron, Myroslava Dzikovska, George Fergu-

son, Lucian Galescu, and Amanda Stent. An Architecture for a Generic Dialogue

Shell. Natural Language Engineering, 6(3-4):213–228, September 2000.

[Allen et al., 2001] James F. Allen, Donna K. Byron, Myroslava Dzikovska, George

Ferguson, Lucian Galescu, and Amanda Stent. Towards conversational human-

computer interaction. AI Magazine, 22(4):27–37, 2001.

[Baudisch and Brueckner, 2002] P. Baudisch and L. Brueckner. TV Scout: Guiding

users from printed TV program guides to personalized TV recommendation. In

Proceedings of the 2nd Workshop on Personalization in Future TV, Malaga, Spain,

2002.

[Beck, 2000] Kent Beck. Extreme Programming Explained. Addison-Wesley, 2000.

[Berglund and Johansson, 2004] Aseel Berglund and Pontus Johansson. Using

Speech and Dialogue for Interactive TV Navigation. Universal Access in the Infor-

mation Society, 3(3–4):224–238, October 2004.

[Billsus and Pazzani, 2000] D Billsus and M J Pazzani. User modeling for adaptive

news access. User Modeling and User-Adapted Interaction, 10:147–180, 2000.

[Bridge, 2002] Derek Bridge. Towards Conversational Recommender Systems: A Di-

alogue Grammar Approach. In D.W.Aha, editor, Proceedings of the Workshop in

175

176 BIBLIOGRAPHY

Mixed-Initiative Case-Based Reasoning, Workshop Programme at the Sixth Euro-

pean Conference in Case-Based Reasoning, pages 9–22, 2002.

[Brooks, 1991a] Rodney A. Brooks. Intelligence without reason. In International

Joint Conference on Artificial Intelligence’91, pages 569–595, 1991.

[Brooks, 1991b] Rodney A. Brooks. Intelligence without representation. Artificial

Intelligence, 47:139–159, 1991.

[Brooks, 1997] Rodney A. Brooks. From earwigs to humans. practice and future of

autonomous agents. Robotics and Autonomous Systems, 20:291–304, 1997.

[Bryson, 2001] Joanna J. Bryson. Intelligence by Design: Principles of Modularity

and Coordination for Engineering Complex Adaptive Agents. PhD thesis, MIT,

Department of EECS, Cambridge, MA, June 2001.

[Buczak et al., 2002] Anna Buczak, John Zimmerman, and Kaushal Kurapati. Per-

sonalization: Improving Ease-of-Use, Trust and Accuracy of a TV Show Recom-

mender. In Proceedings of the 2nd Workshop on Personalization in Future TV,

Malaga, Spain, 2002.

[Bunt, 1994] Harry Bunt. Context and Dialogue Control. Think, 3:19–31, 1994.

[Burke et al., 1997] Robin D. Burke, Kristian J. Hammond, and Benjamin C. Young.

The findme approach to assisted browsing. IEEE Expert, 12(4):32–40, 1997.

[Burke, 2002] Robin D. Burke. Hybrid Recommender Systems: Survey and Experi-

ments. User Modeling and User-Adapted Interaction, 12:331–370, 2002.

[Buxton, 2007] Bill Buxton. Sketching User Experiences: Getting the Design Right

and the Right Design. Morgan Kaufmann, 2007.

[Carberry et al., 1999] Sandra Carberry, Jennifer Chu-Carroll, and Stephanie Elzer.

Constructing and Utilizing a Model of User Preferences in Collaborative Consul-

tation Dialogues. Computational Intelligence, 15(3):185–217, 1999.

[Carenini et al., 2003] Giuseppe Carenini, Jocelyin Smith, and David Poole. Towards

More Conversational and Collaborative Recommender Systems. In Proceedings of

BIBLIOGRAPHY 177

the International Conference of Intelligent User Interfaces, pages 12–18, Miami,

Florida, USA, 2003.

[Chin, 2001] David Chin. Empirical evaluation of user models and user-adapted sys-

tems. User Modeling and User-Adapted Interaction, 11(1–2):181–194, 2001.

[Chu-Carroll, 2000] Jennifer Chu-Carroll. Mimic: An adaptive mixed initiative spo-

ken dialogue system for information queries. In Proceedings of 6th Applied Natural

Language Processing Conference, pages 97–104, 2000.

[Clark, 1996] Herbert H. Clark. Using Language. Cambridge University Press, 1996.

[Cunningham, 2000] Hamish Cunningham. Software Architecture for

Language Engineering. PhD thesis, University of Sheffield, 2000.

http://gate.ac.uk/sale/thesis/.

[Dahlbäck et al., 1998] Nils Dahlbäck, Arne Jönsson, and Lars Ahrenberg. Wizard

of oz studies – why and how. In Mark Maybury & Wolfgang Wahlster, editor,

Readings in Intelligent User Interfaces. Morgan Kaufmann, 1998.

[Dahlbäck, 1997] Nils Dahlbäck. Towards a dialogue taxonomy. In Elisabeth Maier,

Marion Mast, and Susann LuperFoy, editors, Dialogue Processing in Spoken Lan-

guage Systems, number 1236, pages 29–40. Springer Verlag Series LNAI-Lecture

Notes in Artificial Intelligence, 1997.

[Dale and Reiter, 1995] Robert Dale and Ehud Reiter. Computational interpretations

of the Gricean maxims in the generation of referring expressions. Cognitive Science,

19(2):233–263, 1995.

[Dale et al., 1998] Robert Dale, Jon Oberlander, Maria Milosavljevic, and Alistair

Knott. Integrating natural language generation and hypertext to produce dynamic

documents. Interacting with Computers, 11:109–135, 1998.

[Degerstedt and Jönsson, 2004] Lars Degerstedt and Arne Jönsson. Open resources

for language technology. In Proceedings of 4th International Conference on Lan-

guage Resources and Evaluation, LREC 2004, Lisboa, Portugal, 2004.

178 BIBLIOGRAPHY

[Degerstedt and Jönsson, 2006] Lars Degerstedt and Arne Jönsson. LinTest – a de-

velopment tool for testing dialogue systems. In Proceedings of the 9th International

Conference on Spoken Language Processing (Interspeech’06), 2006.

[Degerstedt and Johansson, 2003] Lars Degerstedt and Pontus Johansson. Evolu-

tionary Development of Phase-Based Dialogue Systems. In Proceedings of the 8th

Scandianvian Conference on Artificial Intelligence, pages 59–67, Bergen, Norway,

November 2003.

[Degerstedt and Jönsson, 2001] Lars Degerstedt and Arne Jönsson. A Method for

Systematic Implementation of Dialogue Management. In Workshop notes from the

2nd IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems,

Seattle, WA, 2001.

[Dybkjær et al., 1997] Laila Dybkjær, Niels Ole Bernsen, and Hans Dybkjær. A

Methodology for Diagnostic Evaluation of Spoken Human-Machine Dialogue. In-

ternational Journal of Human Computer Studies, 48:605–625, 1997.

[Dybkjær et al., 1998] L. Dybkjær, N.O. Bernsen, R. Carlson, L. Chase, N. Dahlbäck,

K. Failenschmid, U. Heid, P. Heisterkamp, A. Jönsson, H. Kamp, I. Karlsson,

J.v. Kuppevelt, L. Lamel, P. Paroubek, and D. Williams. The DISC approach to

spoken language systems development and evaluation. In Proceedings of the First

International Conference on Language Resources and Evaluation, Granada, 1998.

[Fischer, 2001] Gerhard Fischer. User modeling in human-computer interaction. User

Modeling and User-Adapted Interaction, 11(1/2):65–86, 2001.

[Foster and White, 2005] Mary Ellen Foster and Michael White. Assessing the im-

pact of adaptive generation in the COMIC multimodal dialogue system. In In-

grid Zukerman, Jan Alexandersson, and Arne Jönsson, editors, Proceedings of the

4th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems,

pages 24–31, Edinburgh, Scotland U.K., 2005.

[Fowler, 2000] Martin Fowler. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Object Technology Series, 2000.

BIBLIOGRAPHY 179

[Garlan and Shaw, 1993] David Garlan and Mary Shaw. An Introduction to Soft-

ware Architecture. Advances in Software Engineering and Knowledge Engineering,

Series on Software Engineering and Knowledge Engineering, 2:1–39, 1993.

[Göker and Thompson, 2000] Mehmet Göker and Cynthia Thompson. Personalized

conversational case-based recommendation. In Advances in Case-Based Reasoning.

Proceedings of the 5th European Workshop on Case-Based Reasoning, pages 99–111,

Trento, Italy, 2000.

[Grice, 1975] Paul H. Grice. Logic and conversation. In Peter Cole and Jerry L.

Morgan, editors, Syntax and Semantics (vol. 3) Speech Acts. Academic Press, 1975.

[Gupta and Grover, 2003] Arpita Gupta and P. S. Grover. Proposed evaluation

framework for adaptive hypermedia systems. In Proceedings of the 3rd Workshop

on Empirical Evaluation of Adaptive Systems, in conjunction with AH2004, pages

161–171, Eindhoven, The Netherlands, 2003.

[Gustafson et al., 2000] Joakim Gustafson, Linda Bell, Jonas Beskow, Johan Boye,

Rolf Carlson, Jens Edlund, Björn Granström, David House, and Mats Wirén.

AdApt – a multimodal conversational dialogue system in an apartment domain. In

Proceedings of 6th International Conference on Spoken Language Processing (IC-

SLP2000/INTERSPEECH2000), Beijing, China, 2000.

[Harel, 1987] David Harel. Statecharts: A visual formalism for complex systems. Sci.

Comput. Programming, 8:231–274, 1987.

[Herlocker et al., 2000] J. Herlocker, J. Konstan, and J. Riedl. Explaining collab-

orative filtering recommendations. In Proceedings of ACM 2000 Conference on

Computer Supported Cooperative Work, pages 241–250, December 2000.

[Höök, 2000] Kristina Höök. Steps to take before IUIs become real. Journal of In-

teracting with Computers, 12(4):409–426, February 2000.

[Höök et al., 1996] K. Höök, J. Karlgren, A. Waern, N. Dahlbäck, C. Jansson,

K. Karlgren, and B. Lemaire. A Glass Box Approach to Adaptive Hypermedia.

User Modeling and User-Adapted Interaction, 6(2–3):157–184, 1996.

180 BIBLIOGRAPHY

[Hulstijn, 1999] Joris Hulstijn. Modelling Usability: development methods for dia-

logue systems. In J. Alexandersson, editor, Proceedings of the 1st IJCAI workshop

on Knowledge and Reasoning in Practical Dialogue Systems, Stockholm, 1999.

[Hulstijn, 2000] Joris Hulstijn. Dialogue Models for Inquiry and Transaction. PhD

thesis, Universiteit Twente, 2000.

[Ibrahim and Johansson, 2002a] Aseel Ibrahim and Pontus Johansson. Multimodal

dialogue systems: a case study for interactive tv. In Proceedings of the 7th ERCIM

Workshop “User Interfaces for All”, pages 209–218, Paris, France, 2002.

[Ibrahim and Johansson, 2002b] Aseel Ibrahim and Pontus Johansson. Multimodal

Dialogue Systems for Interactive TV Applications. In Proceedings of the 4th IEEE

ICMI Conference, pages 117–222, Pittsburgh (PA), USA, 2002.

[Jacobson et al., 1992] I. Jacobson, M. Christerson, P Jonsson, and G Overgaard.

Object-Oriented Software Engineering: A Use Case Driven Approach. ACM Press:

Addison-Wesley Publishing, 1992.

[Jönsson and Dahlbäck, 2000] Arne Jönsson and Nils Dahlbäck. Distilling Dialogues

- A Method Using Natural Dialogue Corpora for Dialogue Systems Development. In

Proceedings of 6th Applied Natural Language Processing Conference, pages 44–51,

2000.

[Johansson et al., 2002] Pontus Johansson, Lars Degerstedt, and Arne Jönsson. Iter-

ative Development of an Information-Providing Dialogue System. In Proceedings

of the 7th ERCIM Workshop “User Interfaces for All”, pages 29–36, Paris, France,

2002.

[Johansson, 2003a] Pontus Johansson. MadFilm - a multimodal approach to handle

search and organization in a movie recommendation system. In Proceedings of

the 1st Nordic Symposium on Multimodal Communication, pages 53–65, Helsingör,

Denmark, 2003.

[Johansson, 2003b] Pontus Johansson. Natural Language Interaction in Personalized

EPGs. In Proceedings of the 3rd UM Workshop “Personalization in Future TV”,

pages 27–31, Pittsburgh (PA), USA, 2003.

BIBLIOGRAPHY 181

[Johansson, 2004] Pontus Johansson. Design and Development of Recommender Di-

alogue Systems. Licentiate Thesis 1079, Linköping Studies in Science and Technol-

ogy, Linköping University, 2004.

[Jönsson and Dahlbäck, 1988] Arne Jönsson and Nils Dahlbäck. Talking to a Com-

puter is not Like Talking to your Best Friend. In Proceedings of the First Scandi-

navian Conference on Artificial Interlligence, Tromsø, 1988.

[Jönsson and Strömbäck, 1998] Arne Jönsson and Lena Strömbäck. Robust interac-

tion through partial interpretation and dialogue management. In Proceedings of

Coling/ACL’98, Montréal, 1998.

[Jönsson, 1993] Arne Jönsson. Dialogue Management for Natural Language Interfaces

– An Empirical Approach. PhD thesis, Linköping University, 1993.

[Jönsson, 1997] Arne Jönsson. A Model for Habitable and Efficient Dialogue Manage-

ment for Natural Language Interaction. Natural Language Engineering, 3(2/3):103–

122, 1997.

[Jurafsky and Martin, 2000] Daniel Jurafsky and James H. Martin. Speech and Lan-

guage Processing. Prentice-Hall, 2000.

[Kass and Finin, 1988] Robert Kass and Tim Finin. Modeling the User in Natural

Language Systems. Computational Linguistics, 14(3):5–22, 1988.

[Kay, 2000] Judy Kay. User Modeling for Adaptation. In C. Stephanidis, editor,

User Interfaces for All, Human Factors Series, pages 271–294. Lawrence Erlbaum

Associates, 2000.

[Kirsh, 1991] David Kirsh. Today the earwig, tomorrow man? Artificial Intelligence,

47(1–3):161–184, 1991.

[Kobsa, 1993] Alfred Kobsa. User Modeling: Recent Work, Prospects, and Hazards.

In M Schneider-Hufschmidt, T Kuhme, and U Malinowski, editors, Adaptive User

Interfaces: Principles and Practice. Springer Verlag, Berlin, Amsterdam, North-

Holland, 1993.

182 BIBLIOGRAPHY

[Lager and Kronlid, 2004] Torbjörn Lager and Fredrik Kronlid. The CURRENT

Platform: Building Conversational Agents in Oz. In P. van Roy, editor, Proceedings

of MOZ 2004, LNAI 3389, pages 161–174. Springer-Verlag, 2004.

[Langley et al., 1999] Pat Langley, Cynthia Thompson, Renee Elio, and Afsaneh

Haddadi. An adaptive conversational interface for destination advice. In Pro-

ceedings of the 3rd International Workshop on Cooperative Information Agents,

Uppsala, Sweden, 1999.

[Larman and Basili, 2003] Craig Larman and Victor Basili. Iterative and incremental

development: A brief history. IEEE Computer, 36(6):47–56, 2003.

[Larsson and Traum, 2000] Staffan Larsson and David Traum. Information state and

dialogue management in the TRINDI dialogue move engine toolkit. Natural Lan-

guage Engineering Special Issue on Best Practice in Spoken Language Dialogue

Systems Engineering, 6(3–4):323–340, 2000.

[Larsson et al., 2000] Staffan Larsson, Lena Santamarta, and Arne Jönsson. Using

the Process of Distilling Dialogues to Understand Dialogue Systems. In Pro-

ceedings of 6th International Conference on Spoken Language Processing (IC-

SLP2000/INTERSPEECH2000), Beijing, China, 2000.

[Larsson, 2002] Staffan Larsson. Issue-based Dialogue Management. PhD thesis,

Göteborg University, 2002.

[Lemon et al., 2003] Oliver Lemon, Lawrence Cavedon, and Barbara Kelly. Managing

dialogue interaction: A multi-layered approach. In Proceedings of the 4th SIGdial

Workshop on Discourse and Dialogue, pages 168–177, Sapporo, Japan, July 2003.

[Linden et al., 1997] Greg Linden, Steve Hanks, and Neal Lesh. Interactive Assess-

ment of User Preference Models: The Automated Travel Assistant. In Proceedings

of the 6th Conference on User Modeling, pages 67–78, 1997.

[Litman and Pan, 1999] Diane J. Litman and Shimei Pan. An empirical evaluation of

an adaptable spoken dialogue system. In Proceedings of the Seventh International

Conference on User Modeling, pages 55–64, 1999.

BIBLIOGRAPHY 183

[Martin, 1999] Robert C. Martin. Iterative and Incremental Development I-III. C++

Report, 1999.

[McGlashan et al., 1992] Scott McGlashan, Norman Fraser, Nigel Gillbert, Eric Bi-

lange, Paul Heisterkamp, and Nick Youd. Dialogue management for telephone

information systems. In Proceedings of the Third Conference on Applied Natural

Language Processing, Trento, Italy, pages 245–246, 1992.

[McTear, 2002] Micheal F. McTear. Spoken Dialogue Technology: Enabling the Con-

versational User Interface. ACM Comput. Surv., 34(1):90–169, 2002.

[Middleton et al., 2002] Stuart E. Middleton, Harith Alani, Nigel R. Shadbolt, and

David C. De Roure. Exploiting synergy between ontologies and recommender sys-

tems. In The Eleventh International World Wide Web Conference (WWW2002),

Hawaii, USA, 2002. Semantic Web Workshop 2002, WWW2002.

[Montaner et al., 2003] Miquel Montaner, Beatriz López, and Josep Llúıs De La

Rosa. A taxonomy of recommender agents on the internet. Artificial Intelligence

Review, 19(4):285–330, June 2003.

[Nielsen, 1993] Jacob Nielsen. Usability Engineering. Academic Press, Inc., 1993.

[Norman, 1988] Donald A. Norman. The Design of Everyday Things. The MIT Press,

1988.

[O’Neill and McTear, 2000] Ian M. O’Neill and Michael F. McTear. Object-Oriented

Modelling of Spoken Language Dialogue Systems. Natural Language Engineering,

6, 2000.

[Pakucs, 2003] Botond Pakucs. Towards dynamic multi-domain dialogue processing.

In Proceedings of EuroSpeech’03, Geneva, Switzerland, September 2003.

[Pang et al., 2002] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs

up? Sentiment Classification using Machine Learning Techniques. In Proceedings

of EMNLP’02, pages 79–86, 2002.

184 BIBLIOGRAPHY

[Paramythis et al., 2001] A. Paramythis, A. Totter, and C. Stephanidis. A modular

approach to the evaluation of adaptive user interfaces. In Proceedings of Workshop

on Empirical Evaluations of Adaptive Systems at UM’01, pages 9–24, July 2001.

[Pfeiffer and Scheier, 1999] Rolf Pfeiffer and Christian Scheier. Understanding Intel-

ligence. MIT Press, 1999.

[Pieraccini and Huerta, 2005] Roberto Pieraccini and Juan Huerta. Where do we go

from here? Research and commercial spoken dialog systems. In Proceedings of the

6th SIGdial Workshop on Discourse and Dialogue, Lisbon, Portugal, 2005.

[Pohl et al., 1995] Wolfgang Pohl, Alfred Kobsa, and Oliver Kutter. User model

acquisition heuristics based on dialogue acts. In Proceedings of the International

Workshop on the Design of Cooperative Systems, pages 471–486, Antibes-Juan-les-

Pins, France, 1995.

[Rashid et al., 2002] Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K.

Lam, Sean M. McNee, Joseph A. Konstan, and John Riedl. Getting to know

you: learning new user preferences in recommender systems. In Yolanda Gil and

David B. Leake, editors, Proceedings of the 2002 International Conference on In-

telligent User Interfaces (IUI-02), pages 127–134, New York, 2002. ACM Press.

[Reeves and Nass, 1996] B. Reeves and C. Nass. The Media Equation. Cambridge:

Cambridge University Press, 1996.

[Reiter and Dale, 1997] Ehud Reiter and Robert Dale. Building applied natural-

language generation systems. Natural Language Engineering, 3(1):57–87, 1997.

[Rich, 1979] Elaine Rich. User modeling via stereotypes. Cognitive Science, 3:329–

354, 1979.

[Rich, 1989] Elaine Rich. Stereotypes and user modeling. In Alfred Kobsa and Wolf-

gang Wahlster, editors, User Models in Dialog Systems, pages 35–51. Springer-

Verlag, Berlin, 1989.

[Sparck Jones, 1989] Karen Sparck Jones. Realism about user modeling. In Alfred

Kobsa and Wolfgang Wahlster, editors, User Models in Dialog Systems, pages 341–

BIBLIOGRAPHY 185

363. Springer-Verlag, Symbolic Computation Series, 1989. Also available as Tech-

nical Report 111, University of Cambridge Computer Laboratory.

[Steels, 1990] Luc Steels. Towards a theory of emergent functionality. In J-A. Meyer

and S. Wilson, editors, From Animals to Animats (Proceedings of the 1st Interna-

tional Conference on Simulation of Adaptive Behavior), pages 451–461. Bradford

Books (MIT Press), 1990.

[Steels, 1994] Luc Steels. A case study in the behavior-oriented design of autonomous

agents. In Dave Cliff, Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wil-

son, editors, From Animals to Animats, pages 445–452. MIT Press, 1994.

[Swearingen and Sinha, 2002] Kirsten Swearingen and Rashmi Sinha. Interaction De-

sign for Recommender Systems. In Interactive Systems (DIS2002), London, June

2002.

[Thompson et al., 2004] Cynthia Thompson, Mehmet Göker, and Pat Langley. A

personalized system for conversational recommendations. Journal of Artificial In-

telligence Research, 21:393–428, 2004.

[Thórisson, 1997] Kristinn R. Thórisson. Layered modular action control for com-

municative humanoids. In Computer Animation ’97, Geneva, Switzerland, pages

134–143, 1997.

[Thórisson, 2002] Kristinn R. Thórisson. Natural turn-taking needs no manual: Com-

putational theory and model, from perception to action. In Björn Granström, David

House, and Inger Karlsson, editors, Multimodality in Language and Speech Systems,

pages 173–207. The Netherlands: Kluwer Academic Publishers, Dordrecht, 2002.

[van Deemter et al., 2005] Kees van Deemter, Mariët Theune, and Emiel Krahmer.

Real versus template-based natural language generation: A false opposition? Com-

putational Linguistics, 31(1):15–24, 2005.

[Viethen and Dale, 2006] Jette Viethen and Robert Dale. Algorithms for generating

referring expressions: Do they do what people do? In Proceedings of the Interna-

tional Conference on Natural Language Generation, Sydney, Australia, July 2006.

186 BIBLIOGRAPHY

[Walker et al., 1998] Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, and

Alicia Abella. Paradise: A framework for evaluating spoken dialogue agents. In

Mark Maybury & Wolfgang Wahlster, editor, Readings in Intelligent User Inter-

faces. Morgan Kaufmann, 1998.

[Walker et al., 2004] M.A. Walker, S.J. Whittaker, A. Stent, P. Maloor, J. Moore,

M. Johnston, and G. Vasireddy. Generation and evaluation of user tailored re-

sponses in multimodal dialogue. Cognitive Science, 28:811–840, 2004.

[Weibelzahl and Weber, 2002] Stephan Weibelzahl and Gerhard Weber. Advantages,

opportunities, and limits of empirical evaluations: Evaluating adaptive systems.

Künstliche Intelligenz, 3/02:17–20, 2002.

[Whittaker and Walker, 2004] Steve Whittaker and Marilyn Walker. Evaluating di-

alogue strategies in multimodal dialogue systems. In W. Minker, D. Bühler, and

L. Dybkjaer, editors, Spoken Multimodal Human-Computer Dialogue in Mobile En-

vironments, pages 247–268. Kluwer Academic Publishers, 2004.

[Wärnest̊al et al., 2007a] Pontus Wärnest̊al, Lars Degerstedt, and Arne Jönsson.

Emergent conversational recommendations: A dialogue behavior approach. In

Proceedings of the 8th SIGDIAL Workshop on Discourse and Dialogue, Antwerp,

Belgium, September 2007. SigDial.

[Wärnest̊al et al., 2007b] Pontus Wärnest̊al, Lars Degerstedt, and Arne Jönsson. In-

terview and delivery: Dialogue strategies for conversational recommender systems.

In Proceedings of the 16th Nordic Conference of Computational Linguistics (Nodal-

ida), Tartu, Estonia, May 2007.

[Wärnest̊al et al., 2007c] Pontus Wärnest̊al, Lars Degerstedt, and Arne Jönsson.

PCQL: A formalism for human-like preference dialogues. In Proceedings of the

5th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems,

Hyderabad, India, January 2007.

[Wärnest̊al, 2005] Pontus Wärnest̊al. User evaluation of a conversational recom-

mender system. In Ingrid Zukerman, Jan Alexandersson, and Arne Jönsson, editors,

Proceedings of the 4th IJCAI Workshop on Knowledge and Reasoning in Practical

Dialogue Systems, pages 32–39, Edinburgh, Scotland U.K., 2005.

BIBLIOGRAPHY 187

[Yankelovich, 1997] Nicole Yankelovich. Using Natural Dialogs as the Basis for Speech

Interface Design. In Automated Spoken Dialog Systems. MIT Press, 1997.

[Zukerman and Litman, 2001] Ingrid Zukerman and Diane Litman. Natural language

processing and user modeling: Synergies and limitations. User Modeling and User-

Adapted Interaction, 1-2:129–158, 2001.

A
Corpora

Study I and Study II resulted in two corpora, which are presented here.

A.1 Corpus I

Domain: Movie recommendations

Agents: Human-Human

Language: Swedish

Modality: Spoken

Number of dialogues: 24

Total number of utterances: 2684

Total time: 7 hours, 37 minutes

Mean time per dialog: 19 minutes

Mean number of utterances per dialog: 112

Total Preferential statements: 1361 (50.7% of total)

Descriptive: 878 (64.5% of pref.statements; 32.7% of total)

189

190 Chapter A. Corpora

Comparative: 242 (17.8% of pref.statements; 9.0% of total)

Superlative: 242 (17.8% of pref.statements; 9.0% of total)

Total Factual statements: 768 (28.6% of total)

A.2 Corpus II

Domain: Movie recommendations

Agents: Human-Computer

Language: Swedish

Modality: Written

Number of dialogues: 20

Total number of utterances: 452

Mean number of utterances per dialog: 11

B
Experiment Scenarios

Below is a summary of instructions, scenarios, and questionnaire statements and

questions for Studies I–III. (Translated from Swedish.)

B.1 Study I

B.1.1 Recommender’s Instructions

Introduction In this scenario you play the role of a professional “movie recom-

mender”. Your task is to find out your customer’s movie preferences in order to

create a preference profile. With this profile and the movie information repository

Internet Movie Database (www.imdb.com) you should be able to recommend 5 pre-

viously unseen movies to your customer that you feel confident that he or she will

like. As a professional movie recommender, it is your responsiblity to try to make the

interview and recommendation dialogue pleasant and efficient.

191

192 Chapter B. Experiment Scenarios

Specific tasks and tips

1. Make a list of 5 of the customer’s favorite movies, and try to find out what

makes them his or her favorites

2. Try to find common characteristics for the favorite movies in terms of e.g. actors,

genres, directors, plot elements etc. These characteristics can help you motivate

your 5 recommendations.

3. You have a note pad and pencil that you can use to make notes about your

customer’s preferences and favorite movies.

4. Before the session is complete you should have recommended at least 5 previ-

ously unseen movies.

5. When you have completed the session, you end the conversation and both you

and your customer will be asked to fill out a questionnaire about your dialogue

B.1.2 Customer’s Instructions

In this scenario you play the role of a customer to a professional “movie recom-

mender”. Your goal is to get a number of movie recommendations that suit your

movie preferences. You and your recommender will engage in a dialogue in order to

build a movie preference profile for you. Throughout the dialogue you will receive

recommendations. If you have already seen a movie that is recommended to you,

you are encouraged to let your recommender know this. When you have completed

the session and received at least 5 movie suggestions that you have not seen before,

both you and your recommender will be asked to fill out a questionnaire about your

dialogue.

B.2 Study II

The scenario presented to the participants consisted of three sub-tasks. They are

presented here in an abbreviated form translated from Swedish.

B.2. Study II 193

B.2.1 Task 1

Find out if the actor Brad Pitt has acted in any comedies. Please mark your answer

in the protocol.

B.2.2 Task 2

Find out what actors/actresses are starring in the movie Entrapment. Note the name

of one of them, and ask acorn to recommend a drama starring that actor/actress.

Please note the actor/actress and recommended title in the protocol.

B.2.3 Task 3

Ask for a comedy starring Adam Sandler, and note the recommended title in the

protocol. Then find out who has directed the movie, and note his/her name in the

protocol.

B.2.4 Questionnaire Statements

1. I could solve the task efficiently

2. It was easy to solve the task

3. It felt natural to solve the task by engaging in a dialogue with acorn

4. acorn asked relevant questions that helped me solving the task

5. The recommendations were effective and matched what I had told the system

6. acorn finds information and recommendations fast

7. The database contains enough movies for me to solve the task

8. The database contains enough information about every movie for me to solve

the task

9. acorn understood my input

10. I knew what I could and could not say during the dialogue

194 Chapter B. Experiment Scenarios

11. acorn worked as I expected it to

12. acorn adapted to me

13. It was easy to decide “whose turn” it was to say something

14. acorn’s utterances were easy to understand

15. I rarely needed to ask for help

16. acorn’s instructions were relevant and had enough detail

17. acorn’s graphical user interface is attractive

18. The graphical user interface is important in this kind of system

19. It is entertaining to interact with acorn

20. It is interesting to use acorn

21. Overall, I am satisfied with the interaction with acorn

22. I would consider to use acorn in the future

23. I think this type of system would be beneficial in other contexts and domains

B.3 Study III

B.3.1 User Instructions

The instructions have been translated from Swedish.

The dialogues you are about to read are transcripts between a human user and

a conversational music recommender system. Please read each dialogue and imagine

that you are the user. Make an intuitive judgment of your overall impression of the

dialouge qualities to the four statements that follow each dialouge on a five-graded

scale, where 1 means that you strongly disagree, and 5 means that your strongly

agree. You also have the option to provide free text comments for each dialogue if

you want to develop your impression.

B.3. Study III 195

B.3.2 Questionnaire Statements

The following four statements were posed in the questionnaire. The statements have

been translated from Swedish.

Informativeness

The system’s utterances are easy to understand and provide relevant information

Preference Management

The system detects and utilizes the user’s music preferences in order to give relevant

and personalized song recommendations.

Coherence

The dialouge is understandable, unambiguous, and clear.

Naturalness

The dialogue is flexible, dynamic and natural.

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

No 94 Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity

of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

No 292 Mats Wirén: Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

No 371 Bengt Savén: Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

No 383 Andreas Kågedal: Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

No 461 Lena Strömbäck: User-Defined Constructions in

Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och flexi-
bla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Syn-
thesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

No 563 Eva L Ragnemalm: Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN
91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and

Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN
91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems,
2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-
318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication Among
Programmers Worldwide, 2002,
ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the
Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av informa-

tionsystem, 2003, ISBN 91-7373-618-X.
No 821 Mikael Kindborg: Concurrent Comics - program-

ming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-
Time Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Improve
Development and Testing - An Emperical Study in
Software Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineer-
ing Tool Data Representation and Exchange, 2004,
ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for

Digital TV, 2004, ISBN 91-7373-940-5.
No 869 Jo Skåmedal: Telecommuting’s Implications on

Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enterprise
Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of On-
tologies in Information-Providing Dialogue Sys-
tems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Health-
care Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish
human-human and human-machine travel booking
dialogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign Lin-
quistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using Fi-
nite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-
inventory systems - Modellling and Analysis in
both a traditional and an e-business context, 2004,
ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interac-
tion, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-
5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Schedul-
ing Techniques for Real-Time Embedded Systems,
2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as Con-
structing and Opposing Customer Focus: Three Case
Studies on Management Accounting and Customer
Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other Exten-
sions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Infor-
mation Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for
Constraint Satisfaction and Related Problems -
Methods and Applications, 2005, ISBN 91-85297-
99-2.

No 963 Calin Curescu: Utility-based Optimisation of Re-
source Allocation for Wireless Networks, 2005.
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic Situa-
tions, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-
85457-54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour,
2005, ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application Inte-
gration for Business-to-Business Communications,
2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for Auto-
mated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Re-
usable and Reconfigurable Real-Time Software us-
ing Aspects and Components, 2006, ISBN 91-
85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with De-
tailed Contact Analysis, 2006, ISBN 91-85497-43-
X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact Sat-
isfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level
Language for Modeling with Partial Differential
Equations, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-
79-8.

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN
91-85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Coopera-
tion, 2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code
Generation for Digital Signal Processors, 2006,
ISBN 91-85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of
Equation-Based Simulation Programs, 2006, ISBN
91-85523-68-2.

No 1023 Sonia Sangari: Some Visual Correlates to Focal
Accent in Swedish, 2006, ISBN 91-85523-67-4.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and Specifica-
tions, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natu-
ral Language Processing, 2006, ISBN 91-85643-
88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of
Glasses - Applying Systemic Accident Models on
Road Safety, 2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which can-
not be seen - A Cognitive Systems Engineering per-
spective on requirements management, 2006, ISBN
91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for
Semantic Web Technology, 2007, ISBN 91-85643-
31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion
in Software Testing, 2007, ISBN 978-91-85715-74-
9.

No 1075 Almut Herzog: Usable Security Policies for
Runtime Environments, 2007, ISBN 978-91-
85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for satisfiability and related prob-
lems, 2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architec-
tures, 2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-
hensible Data Mining Models - An Evolutionary
Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogene-
ous Scheduling Policies, 2007, ISBN 978-91-
85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous
Shape Writing for Text Entry and Control, 2007,
ISBN 978-91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007,
ISBN 978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting
socially through embodied action, 2007, ISBN 978-
91-85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Manage-
ment in Conversational Recommender Systems,
2007, ISBN 978-91-85831-47-0.

Linköping Studies in Information Science

No 1 Karin Axelsson: Metodisk systemstrukturering- att
skapa samstämmighet mellan informa-tionssyste-
markitektur och verksamhet, 1998. ISBN-9172-19-
296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet
- en studie av datorstödd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos in-
formationssystem och affärsprocesser, 2000. ISBN
91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi
för metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden -
Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-
963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005, ISBN
91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-
85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese Chris-
tiansson: Mötet mellan process och komponent -
mot ett ramverk för en verksamhetsnära kravspeci-
fikation vid anskaffning av komponentbaserade in-
formationssystem, 2006, ISBN 91-85643-22-X.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070330093304
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 165
 410
 None
 Left
 22.6772
 0.0000

 Both
 1
 AllDoc
 2

 CurrentAVDoc

 Uniform
 673.5118
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 219
 221
 220
 221

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070330093304
 680.3150
 S5
 Blank
 467.7165

 Tall
 1
 0
 No
 165
 410

 None
 Left
 22.6772
 0.0000

 Both
 1
 AllDoc
 2

 CurrentAVDoc

 Uniform
 673.5118
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 215
 221
 220
 221

 1

 HistoryList_V1
 qi2base

