
8th World Congress on Structural and Multidisciplinary Optimization
June 1-5, 2009, Lisbon, Portugal

A Neuro-Mechanical Shape Memory Device

Carl-Johan Thore and Anders Klarbring
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1. Abstract
In this paper we present what we call a Neuro-Mechanical Shape Memory Device (NMSMD), together
with a method for configuration of such devices. This work builds on previous efforts dealing with the
concept of Neuro-Mechanical Networks, and a NMSMD is here defined as a Neuro-Mechanical Network
(NMN) which has the ability to take on certain predefined shapes when subject to external (mechanical
or other) stimuli.
From a mathematical point of view, the NMSMD is described by a coupled system of equations governing
the behavior of an active truss with a neural network superimposed onto it. It is shown that with certain
restrictions on the model parameters and an appropriate neuro-mechanical coupling term, a Liapunov
function for the complete system can be found.
In order to configure a NMSMD, we begin by setting up a ground structure and introducing a set of
stimuli vectors, load cases, and associated shapes to be taken on by the device. We then solve an opti-
mization problem with the objective of minimizing a measure of the sum of deviations from the desired
shapes. As design variables we use the element volumes and the neural network weights. The problem
is solved using the MMA algorithm, and some numerical examples to illustrate the idea are provided in
the paper.
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3. Introduction
The term Neuro-Mechanical Network refers to a system in which the basic structural unit is a multifunc-
tional element. In addition to providing basic structural integrity, such elements may possess means for
actuation, sensing, rudimentary signal processing and possibly other performance-linked functions. The
concept of NMN was first introduced in [1] and further developed in [2]. More recently, methods from
structural optimization was applied in [3].
In its current formulation, NMN is probably best described as a, partly biologically inspired, concept
within the fields of smart structures [4], adaptronics [5], or mechatronics [6]. More specifically it might
fall under optimization of smart structures, see [7] and in particular [8] which provide a survey of the
application of optimization methods to smart structures. As for the biological inspiration, we mention
the electromechanical coupling in the heart, see for instance [9], and the combined neural and mechanical
model of fish swimming presented in [10].
A NMN might be further classified as a network system, a term which is here used for systems consisting
of a large number of similar, simple but active, elements. Network systems have been under study in
the field of neural networks [11] since at least the 1940s [12]. Examples of mechanical network systems
have been studied within the framework of distributed or cooperative control, see for instance [13], [14]
and [15]. An imaginative and interesting idea that could also mentioned in this context is the concept of
Claytronics [16].
In this paper we present a special type of NMN which we refer to as Neuro-Mechanical Shape Memory
Devices. Such devices are designed to take on certain predefined shape in response to external, mechanical
or other, stimuli. In the literature, this is often referred to as (static) shape control, see for instance [17]
for a review. While the examples presented in this work are simple, shape control in general will probably
find real applications in for instance aerospace engineering [18]. As a recent source of inspiration from
this field we mention the work presented in [19] on static shape control of plates bonded with piezoelectric
laminae. Although the mechanical structure is different, the governing equations have the same form as
our active truss-equation, and the optimization problem is similar. In contrast to our work, however,
the mechanical structure is not subject to optimization, and there is only a one-way coupling from the
electric control system to the mechanical structure.
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From a mathematical point of view, the NMSMD is naturally split in two subsystems: a mechanical and
a neural subsystem. In this case, the neural subsystem consists of a recurrent (artificial) neural network,
known as a Hopfield network. For such a network, it was shown in [20] and for neurons with continuous
activation in [21], that, with appropriate restrictions on the network parameters, a Liapunov function
can be found. This means that the network has stable limit points, i.e., the state of the network evolves
in time until it reaches a stable equilibrium. For a given network, several equilibrium points may exist,
and an important fact is that the location of the equilibrium points can be controlled by altering the
parameters of the network. This is the basis for so called associative or content-addressable memories
[20, 21, 22].
The remainder of this paper is organized as follows: In section 3.1 we present the state equations and show
that a Liapunov function can be found. We then formulate an optimization problem for configuration of
the NMSMD in section 3.2. This is followed by two numerical examples in section 4, and the paper ends
with some concluding remarks and suggestions for future work in section 5.

3. Theory

3.1. Mathematical model
From a mathematical point of view, the NMSMD is described by a strongly coupled system of non-linear
equations governing the behavior an active truss and a superimposed neural network. The truss has
m potential elements and n mechanical degrees of freedom. The state variables in our model are the
nodal displacements and the neural network control signals, collected in the vectors u ∈ R

n and v ∈ R
m,

respectively. The state variables are assumed to be functions of time, and a superposed dot is used to
denote time differentiation. For the mechanical model we assume small deformations and linear elasticity.
The equations of state for the NMSMD are, see [24] and cf. [25, 11],

F = A(x)u̇ + K(x)u + BT fa(x,v), (1)

Cv̇ = φ(ε) + Ws(x,v) − Rv + I. (2)

In Eq. (1), A(x) is a damping matrix, x is the vector of element volumes, K(x) = BT D(x)B is the
stiffness matrix, in which B is a matrix which relate strains to displacements through ε = Bu, and the
constitutive matrix is given by D(x) = diag {xiki}, where ki are stiffness constants. The vector fa(x,v)
contains the active forces, which are projected onto the appropriate degrees of freedom by multiplication
by BT in Eq. (1).
In the neural network equation, i.e. Eq. (2), C is a diagonal matrix with constant, positive entries, φ(ε)
is a vector of outputs from strain sensors mounted on the elements, W is the weight matrix∗, s(x,v) is
the vector of outputs from the artificial neurons, and R = diag {1/Ri}, where Ri are positive constants.
External inputs to the combined neuro-mechanical system are F , a vector of forces applied to the nodes,
and I, a vector of non-mechanical stimuli. An interpretation of Eqs. (1) and (2) on the element level is
given in Fig. 1.

Σ sz−1

Figure 1: Schematic view of a typical element. z−1 denotes a unit time delay. When the elements are
assembled to form a truss, the resulting network is governed by Eqs. (1) and (2).

∗Note that the neural network weights should not be interpreted as passive components, e.g. resistors. If so, then
the non-zero entries of the matrix R would be functions of the weights. For an implementation where the weights are
active components, see [23]. Another possibility is of course to interpret the neurons as software entities implemented on
microcontrollers attached to the elements.
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The entries of the vectors fa(x,v) and s(x,v) have the following structure:

fa
i (xi, vi) = xiβi tanh(aivi)

si(xi, vi) = xiϕi(vi) = xi tanh(aivi),

where βi and ai are constants. Scaling with the element volume ensures that elements that vanish in
the optimization produce no output. The hyperbolic tangent limits the output from the neurons and the
active forces, respectively, since tanh(·) ∈ (−1, 1). In particular, the free stroke of element i is limited by
βi/ki.
Inspired by the work of Hopfield [21], we like to find a Liapunov function for Eqs. (1) and (2). The
following is a candidate Liapunov function:

L(u,v) = α(Π(u) + uT BT fa(x,v)) +E(v),

where α is a positive constant, and

Π(u) =
1

2
uT K(x)u − uT F ,

E(v) = −
1

2
sT (x,v)Ws(x,v) +

m∑

i=1

1

Ri

∫ si(xi,vi)

0

ϕ−1
i

( s

xi

)
ds− sT (x,v)I.

Given that K(x) and W are symmetric, A(x) is positive definite, C and ∂s/∂v are positive definite
diagonal matrices, and

φ(ε) = −α
∂fa

∂s
ε = −α diag {βi} ε,

it is readily shown that
∂L(u,v)

∂t
= −u̇T A(x)u̇ − v̇T C

∂s

∂v
v̇ ≤ 0

holds, with equality only if u̇ = 0 and v̇ = 0. Together with the fact that K(x) is positive definite so
that L is coercive, stability in the Liapunov sense is thus guaranteed.

3.2. Optimization problem
The goal of the optimization is to create a device that for a given external stimuli will take on a certain
shape, here defined as a set of nodal coordinates. To this end, we introduce a set of stimuli vectors
Iθ, θ = 1, . . . ,Θ, a set of corresponding target displacements uθ

tar ∈ R
p(θ), and a set of loads F θ

l ,
l = 1, . . . , L(θ), for each stimuli. Loads may be seen as external stimuli, or used to ensure mechanical
stability of the resulting structure.
In the optimization, a subset of the element volumes and the neural network weights are allowed to vary.
For the element volumes we use a SIMP-like interpolation scheme and write

xi =

{
ρq

i x̄i if i ∈ X

x̄i otherwise,
(3)

where q > 1 and x̄i are constants and X is the set of indices corresponding to the volumes subject to
optimization. The variables ρi should satisfy 0 ≤ ρi ≤ 1. For the neural network weights we use

Wij = Wji =

{
ωijW if j ∈ Ni and i ∈ Nj

0 otherwise,

where W is a constant, and Ni is the set of indices corresponding to elements in some neighborhood of
element i. The variables ωij ∈ [−1, 1], which we refer to as active weights, are used as design variables,
and are collected in a vector ω ∈ R

K . In this paper we work with a nested version of the optimization
problem, so in the following the state variables are considered as functions of the design, where a design
is characterized by a pair of vectors (ρ, ω).
As a suitable objective in the optimization, we consider the following measure of the deviation from the
desired shapes:

1

2

N∑

i=1

(
hi(x(ρ),W (ω), Iθi ,F θi

li
,uθi

tar)
)2
,
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where

N =

Θ∑

θ=1

p(θ)L(θ),

and
hi(x(ρ),W (ω), Iθi ,F θi

li
,uθi

tar) = cθi

ri
u(x(ρ),W (ω), Iθi ,F θi

li
) − (utar)

θi

ri

where cθi
ri

are row vectors with ones in the positions corresponding to the degree of freedom of interest
and zeros in all other places. The indices θi, ri and li depend on i in such a way that we obtain a correct
pairing of all quantities.
In addition to upper and lower bounds on ρ and ω, the number of elements are restricted by introducing
the constraint function

g(ρ) =
∑

i∈X

ρi −M,

where M is a constant. It should be noted that this constraint, together with appropriate loads, is neces-
sary to make the interpolation scheme defined in (3) meaningful. Without this constraint, intermediate
values of the ρi:s are no less efficient than the extremal values, and the power law approach will not work
as intended, i.e, to drive the variables towards 0 or 1.
For algorithmic purposes, in addition to the design variables we introduce the auxiliary variables yi, i =
1, . . . , 2N + 1. The first 2N yi:s allow us to state the optimization problem in a form suitable for
least squares problems [26], while y2N+1 is used to penalize violation of the volume constraint. The
optimization problem for configuration of the NMSMD now reads as follows:





min
(ρ, ω, y)

1

2

2N∑

i=1

y2
i + cy2N+1 + γψ(ω)

s. t.





hi(x(ρ),W (ω), Iθi ,F θi

li
,uθi

tar) − yi ≤ 0 i = 1, . . . , N

− hi(x(ρ),W (ω), Iθi ,F θi

li
,uθi

tar) − yi+N ≤ 0 i = 1, . . . , N

g(ρ) − y2N+1 ≤ 0

0 ≤ ρ ≤ 1, −1 ≤ ω ≤ 1, y ≥ 0,

where 1 denotes a vector of ones of appropriate size, and c is a constant. In this problem we have added
a neural network complexity penalty term γψ(ω), where

ψ(ω) =
1

K

K∑

k=1

ω2
k,

and γ is a constant. The motivation for this term is that weights that do not contribute to the improvement
of the design should become small, resulting in a less complex design and possibly improve the convergence
properties of the optimization solver (In the field of neural networks, complexity regularization is used to
counter problems with overfitting which may result in poor generalization to new data [11]).

In each iteration of the optimization procedure, we need to solve
∑Θ

θ=1 L(θ) state problems of the form

F θ
l = A(x(ρ))u̇θ

l + K̃(x(ρ))uθ
l + BT fa(x(ρ),vθ

l )

Cv̇l
θ = φ(Buθ

l ) + W (w)s(x(ρ),vθ
l ) − Rvθ

l + Iθ,

where, in contrast to the previously stated equations, we here use a perturbed stiffness matrix K̃(x(ρ)) =
BT (D(x(ρ)) + D(δ1))B, where δ is a small number. This is done in order to avoid situations where the
stiffness matrix become singular during the optimization. The state problems are solved using an explicit
Runge-Kutta method as implemented in the Matlab routine ode45. An alternative that was also tried is
to solve for the equilibrium points directly using Newtons method with line search. In practice, however,
this was found to be a less effective approach.
The solution scheme is outlined in Fig. 2. Given an initial design, the first step is to solve the state
problems in the way described above. We then compute objective and constraint function values to-
gether with respective sensitivities, the latter calculated using an adjoint analytical method. Next, the
MMA-subproblem is generated and solved using a primal-dual interior point method to obtain a new
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Figure 2: Outline of the solution scheme.

design. The procedure is terminated if the change in the design between two consecutive iterations gets
below a certain value and the design is feasible with respect to all constraints.

4. Numerical Examples

4.1. A small example
In this example we start with the smallest possible ground structure as shown in Fig. 3. There are six
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Figure 3: Ground structure. Black circles indicate range of direct signal connections. In the first example
a constant force is applied to node number four and an input stimuli is applied to element number one.

elements and, taking account of the symmetry of the weight matrix, W (ω), 18 active weights. The black
circles indicate the range of the direct signal connections. The objective is that the y-coordinate of node
four should be 0.55 when the device is subject to an input stimuli applied to element number one and
a constant force applied at node number four. The volume of element one is fixed (it was noted that
if this was not so, the solver often ended up in a local minima where element number one disappeared
and all available material was used on elements three and five in order to obtain a small displacement
for node four). An example solution is shown in the top left plot in Fig. 4. The active force of element
three produce an elongation of that element which pushes node number four upwards. The wires show
the relative importance of the signals in the neural network, i.e. Wijsj , with arrows indicating directions.
The top right plot shows the time evolution of the mechanical state. The structure begins by making
a downwards dip, but turn upwards again after a short period of time and eventually reaches the state
shown in the top left plot. Finally, time histories for displacements and control voltages are shown in the
bottom plots of Fig. 4.

4.2. Inverting the mechanical response
In this subsection we use the same ground structure as in the previous example. The y-coordinate of
node number four should remain fixed at y = 0.5, for all stimuli and loads, while the x-coordinate should
be 0.55 when no stimuli is applied, and 0.45 if a stimuli is applied to element number one, i.e., the stimuli
is used to invert the mechanical response. In both cases a constant force is applied to node number four.
A third load case with a constant horizontal force applied at node four was used in order ensure that
element number five remained large enough to have a mechanically stable structure. The resulting designs
are shown in Fig. 5. As can be seen, there are now five elements present, and the signaling patterns are
fairly complex.
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Figure 4: Top left: Final configuration. Red color signifies positive signals and active forces, respectively,
while blue signifies the opposite. Note that a positive active force strives contract the corresponding ele-
ment. Top right: Time evolution of the mechanical state. Bottom left: Time histories for displacements.
Bottom right: Time histories for control voltages.

5. Concluding remarks and future work
In this paper we have demonstrated the configuration of what we call a Neuro-Mechanical Shape Memory
Device. The configuration process was cast as an optimization problem which was solved using the
gradient based MMA-algorithm, and two numerical examples were shown. In order to obtain simple
designs, regularization was imposed in the form of a power law and a constraint for the element volumes,
and a penalty term for the neural network weights. In the first example, this yielded a simple design
with only three elements, whereas in the second example, the resulting design was comparatively more
complex. It is possible that the complexity of the neural network could be reduced further by using the
1-norm, which is known to produce sparse models, for penalization. This comes, however, at the cost of
introducing a non-differentiable term in the optimization problem.
In the first example, the time evolution of the mechanical state was shown and the trajectory found
to agree with intuition, but for larger and more complex structures this might not be the case. In
fact, since we only consider equilibrium states in the optimization process we do not have any control
over what happens between the initial and final (equilibrium) states. To some extent, however, the use
of regularization to obtain simple designs will probably ensure that trajectories are simple. Another
potential problem that can be encountered in the design of mechanisms is buckling, which may occur in
intermediate states even if elastic stability in the final state is guaranteed, see for instance [27]. Clearly,
these issues are of interest for further investigations.
A natural extension of the presented work would be to take into account the effect of large deformations,
possibly following along the lines of [27]. Furthermore, interesting results for recurrent neural networks
have been presented in for instance [28] and [22]. In the former, a condition on the weight matrix is de-
rived which ensures that for a given external input, the network will evolve to a unique minima regardless
of its initial state. In the latter reference, the authors show that there are limits on the set of memories,
or equilibrium points, that can be stored in a Hopfield-network with continuous activation. It is pos-
sible that these results could be extended to apply to the neuro-mechanical model presented in this paper.
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Figure 5: Left: No stimuli is applied but the structure senses the applied force and acts so as to move
node four towards (0.55, 0.5). Right: A stimuli is applied to element one, causing the device to displace
node four to the left while maintaining its position in the y-direction.
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