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Selfishness and Altruism on the MISO Interference Channel:
The Case of Partial Transmitter CSI

Johannes Lindblom, Eleftherios Karipidis, and Erik G. Larsson

Abstract—We study the achievable ergodic rate region of
the two-user multiple-input single-output interference channel,
under the assumptions that the receivers treat interference as
additive Gaussian noise and the transmitters only have statistical
channel knowledge. Initially, we provide a closed-form expression
for the ergodic rates and derive the Nash-equilibrium and
zero-forcing transmit beamforming strategies. Then, we show
that combinations of the aforementioned selfish and altruistic,
respectively, strategies achieve Pareto-optimal rate pairs.

Index Terms—Beamforming, ergodic rate region, game theory,
interference channel, Pareto optimality.

I. INTRODUCTION

WE consider two independent closely-located wireless
systems that operate concurrently in the same spec-

tral band. System i, i ∈ {1, 2}, consists of a base station
BSi transmitting information to a mobile station MSi. The
systems interfere with each other since each MS receives a
superposition of the transmitted signals. In information theory,
this spectrum sharing scenario is modeled by the interference
channel (IFC) [1]. We study the multiple-input single-output
(MISO) IFC [2], where each BS employs n > 1 transmit
antennas and each MS a single receive antenna. The BSs
operate in an uncoordinated manner and the fundamental
question raised is how to choose their beamforming vectors.
A conflict situation is associated with this choice, since a
beamforming vector which is good for one communication
link may generate substantial interference to the other. Our
focus is on the Pareto-optimal (PO) beamforming vectors,
which correspond to operating points on the Pareto boundary
of the rate region. These are points for which it is impossible to
improve the rate of one link without simultaneously decreasing
the rate of the other.

The capacity region for general IFCs is still an open
problem, but various achievable rate regions are known [3].
When the transmitters have perfect channel state information
(CSI), the achievable instantaneous rate region of the MISO
IFC can be obtained as proposed in [4]. For the same scenario,
a game-theoretic viewpoint was adopted in [5] to show that
linear combinations of the Nash-equilibrium (NE) and zero-
forcing (ZF) beamforming strategies can achieve any point on
the Pareto boundary of the rate region.
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Contributions: In this letter, we assume that the trans-
mitters only have statistical channel knowledge (hereafter,
referred to as partial CSI). Therefore, we study the achievable
ergodic rate region. First, we provide a closed-form expression
for the ergodic rates. Second, we derive, for the scenario under
study, the NE (selfish) and ZF (altruistic) beamforming strate-
gies. Third, we show that the PO beamforming vectors can
be interpreted as mixtures of the aforementioned strategies.
This result extends the corresponding one for the perfect CSI
case [5]. Furthermore, it is alternative to and provides an
interpretation of the characterization in [6].

Notation: R{X} and N {X} denote the range-space and
null-space of X , respectively. ΠX � X(XHX)−1XH is the
orthogonal projection on X . Note that ΠR{X}+ΠN{X} = I .

II. SYSTEM MODEL

We assume that transmission consists of scalar coding fol-
lowed by beamforming1 and that all propagation channels are
frequency-flat. The matched-filtered symbol-sampled complex
baseband data received by MSi is modeled as

yi = hH
ii wisi + hH

jiwjsj + ei, j �= i, i, j ∈ {1, 2}, (1)

where si ∼ CN (0, 1) and wi ∈ Cn are the transmitted
symbol and the employed beamforming vector by BSi, and
ei ∼ CN (0, σ2

i ) models the receiver noise. The conju-
gated2 channel vector between BSi and MSj is modeled as
hij ∼ CN (0, Qij). Under the partial CSI scenario, BSi has
knowledge of the channel covariance matrices Qii and Qij .
We denote rij � rank

{
Qij

}
. Each BS can use transmit power

up to P ; hereafter, we set P = 1 to simplify the exposition.
This gives the power constraints ‖wi‖2 ≤ 1, i ∈ {1, 2}.

III. CLOSED-FORM ERGODIC RATE EXPRESSION

In [6], we derived a closed-form expression for the ergodic
rates of the MISO IFC. Here, we present this result in a
reshaped manner. For fixed channel vectors and a given pair
of beamforming vectors, the following instantaneous rates (in
nats/channel use) are achievable

Ri(wi, wj) = log

(
1 +

|hH
ii wi|2

|hH
jiwj |2 + σ2

i

)
, (2)

1Single-stream beamforming is highly practical, but not generally optimal
on MISO channels with partial CSI. In [7], we characterized the PO transmit
strategies for the MISO IFC with multi-stream beamforming. The results there
are weaker in that they lack the interpretation in terms of selfishness and
altruism, which is one of the main results (Prop. 3) of this letter.

2We incorporate conjugation in definition to simplify subsequent notation.
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for j �= i and i, j ∈ {1, 2}. We obtain the ergodic rates
averaging over the channels. From [6], we have

R̄i(wi, wj) � Ehii,hji [Ri(wi, wj)]

= pii(wi)
fi(pii(wi)) − fi(pji(wj))

pii(wi) − pji(wj)
,

(3)

for j �= i and i, j ∈ {1, 2}, where

fi(x) � eσ2
i /x

∫ ∞

σ2
i /x

e−t

t
dt and (4)

pji(wj) �
∥∥∥Q1/2

ji wj

∥∥∥2

= wH
j Qjiwj . (5)

In (5), pji(wj) corresponds to the average power that MSi re-
ceives from BSj . Lemma 1 in [6] determines that R̄i(wi, wj)
is monotonously increasing with pii(wi) for fixed pji(wj)
and monotonously decreasing with pji(wj) for fixed pii(wi).

IV. NASH-EQUILIBRIUM STRATEGY

In absence of cooperation, each BS “selfishly” chooses its
beamforming vector to maximize the rate towards its intended
MS, disregarding the interference caused to the other. The
only reasonable outcome of such a spectrum conflict is a
NE. This is an operating point where none of the systems
can increase its rate by unilaterally changing its beamforming
vector. Namely, the NE strategy is the pair of beamforming
vectors {wNE

1 ,wNE
2 }, for which

R̄i(wNE
i , wNE

j ) ≥ R̄i(wi, w
NE
j ) (6)

for i, j ∈ {1, 2}, j �= i, and all feasible wi.

Proposition 1. A Nash equilibrium is reached when each BS
employs its maximum-ratio transmission strategy, i.e., when
wNE

i is the dominant eigenvector of Qii.

Proof: The BSs independently choose their beamforming
vectors. Given that system j employs a beamforming vector
wj , the interference power pji(wj) caused to system i is fixed.
Since R̄i(wi, wj) is monotonously increasing with the useful
signal power pii(wi) for fixed pji(wj), the best response of
system i is the solution of the following optimization problem

max
wi∈Cn, ‖wi‖2≤1

wH
i Qiiwi. (7)

The optimal solution of this quadratically-constrained
quadratic problem is the dominant eigenvector of Qii.

Problem (7) has a unique solution whenever the maximum
eigenvalue of Qii has multiplicity 1. Otherwise, any linear
combination of the corresponding eigenvectors maximizes the
objective function and the equilibrium point is not unique.

V. ZERO-FORCING STRATEGY

The so-called ZF strategy results when each BS chooses
its beamforming vector “altruistically”, to maximize its own
rate, but without causing any interference. The effect of this
strategy is the decoupling of the communication links. Note
that this is only possible when R{Qii} � R{Qij

}
.

Proposition 2. Provided that R{Qii} � R{Qij

}
, the zero-

forcing beamforming strategy wZF
i is the dominant eigenvector

of ΠN{Qij}QiiΠN{Qij}.

Proof: Let wZF
i be the solution of the optimization

max
wi∈Cn, ‖wi‖2≤1

wH
i Qiiwi (8)

s. t. wH
i Qijwi = 0. (9)

Constraint (9) corresponds to finding wi ∈ N {
Qij

}
, such

that no interference is caused. By choosing wi = ΠN{Qij}xi,
where xi is any vector in Cn, constraint (9) is satisfied. Then,
(8)–(9) can be equivalently reformulated as

max
xi∈Cn

xH
i ΠN{Qij}QiiΠN{Qij}xi (10)

s. t.
∥∥∥ΠN{Qij}xi

∥∥∥2

≤ 1. (11)

The vector xopt
i which maximizes (10) is the dominant

eigenvector of ΠN{Qij}QiiΠN{Qij}. Since

xopt
i ∈ R

{
ΠN{Qij}QiiΠN{Qij}

}
⊆ N {

Qij

}
, (12)

the constraint (11) is satisfied with∥∥∥ΠN{Qij}xopt
i

∥∥∥2

=
∥∥xopt

i

∥∥2
= 1. (13)

When R{Qii} ⊆ R{Qij

}
, then ΠN{Qij}QiiΠN{Qij} is

the all-null matrix, which has no dominant eigenvector.

VI. PARETO-OPTIMAL STRATEGIES

In this section, we provide a characterization of the PO
beamforming strategies for the MISO IFC. The result extends
the work in [5], where the case of perfect CSI was considered.
Therein, it was proven that all operating points on the Pareto
boundary of the achievable instantaneous rate region are
reached by beamforming vectors that are linear combinations
of the NE (selfish) and ZF (altruistic) strategies.

For the partial CSI case, we showed in [6], [7] that, when
R{Qii} � R{Qij

}
,3 the PO beamforming vectors satisfy

wPO
i ∈ R{Qii, Qij

}
and

∥∥wPO
i

∥∥2
= 1. (14)

In the following, we give an alternative characterization of the
PO beamforming vectors.

Proposition 3. Provided that R{Qii} ⊃ R{Qij

}
, all

Pareto-optimal beamforming vectors satisfy

wPO
i ∈ R

{
Qii,ΠN{Qij}Qii

}
and (15a)∥∥wPO

i

∥∥2
= 1. (15b)

The characterization in (15a) is important from a game-
theoretic viewpoint, since it interprets the PO beamform-
ing strategies as combinations of the selfish and altruis-
tic ones. The vectors in R{Qii} correspond to the self-
ish strategy, since wNE

i ∈ R{Qii}, and the ones in

R
{
ΠN{Qij}Qii

}
to the altruistic strategy, since wZF

i ∈
R
{
ΠN{Qij}QiiΠN{Qij}

}
⊆ R

{
ΠN{Qij}Qii

}
.

We note that (14) and (15) hold under the conditions that
R{Qii} � R{Qij

}
and R{Qii} ⊃ R{Qij

}
, respectively.

The former requires that R{Qii} has some components in

3This condition was missing in the formulation of Prop. 1 in [6].
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Fig. 1. Exemplary ergodic rate region; SNR = 7 dB; n = 5

the N {
Qij

}
, so that the altruistic strategy is defined. The

latter is stronger, since it says that the direct link has to
offer rich enough scattering so that R{Qii} consists of the
entire R{Qij

}
and some part of N {

Qij

}
. The reason for

tightening the condition is to ensure that, in addition to the
existence of the ZF strategy, the following equality holds

R{Qij

}
= R

{
ΠR{Qij}Qii

}
. (16)

This is a technical condition needed for the proof of (15a).
Condition (16) means in particular that R{Qii} must not be
orthogonal to R{Qij

}
, which excludes the scenario that there

is no coupling among the communication links.
Proof of (15a): The idea is to show that when (16) holds,

the characterizations in (14) and (15a) are equivalent, i.e.,

R{Qii, Qij

}
= R

{
Qii,ΠN{Qij}Qii

}
� Ai. (17)

To do so, first note that the left-hand side of (17) can be written

R{Qii, Qij

}
= R

{
ΠN{Qij}Qii, Qij

}
(16)= R

{
ΠN{Qij}Qii,ΠR{Qij}Qii

}
� Bi.

In order to show Ai = Bi, we prove that Ai ⊆ Bi and Bi ⊆
Ai. The first part is true when all vectors xi ∈ Ai also lie
entirely in Bi. Any vector xi ∈ Ai can be written as

xi = Aiαi + Biβi

=
(
ΠN{Qij} + ΠR{Qij}

)
Aiαi + Biβi,

where αi ∈ Crii and βi ∈ Cmin {rii,n−rij}, and the
columns of Ai and Bi constitute bases of R{Qii} and

R
{
ΠN{Qij}Qii

}
, respectively. Clearly, we have xi ∈ Bi,

which shows Ai ⊆ Bi. To show Bi ⊆ Ai we first define

Ci � ΠN{Qij}Ai and Di � ΠR{Qij}Ai.

The matrices Ci and Di do not necessarily have full col-
umn rank, but their columns span R

{
ΠN{Qij}Qii

}
and

R
{
ΠR{Qij}Qii

}
, respectively. A vector yi ∈ Bi can now

be written as

yi = Ciγi + Diδi = ΠN{Qij}Aiγi + ΠR{Qij}Aiδi

= ΠN{Qij}Ai(γi − δi) +
(
ΠR{Qij} + ΠN{Qij}

)
Aiδi

= Ci(γi − δi) + Aiδi,

for some vectors γi ∈ Crii and δi ∈ Crii . This shows yi ∈
Ai, completing the second part of the proof.

Proof of (15b): The proof is by contradiction. Assuming
that

∥∥wPO
i

∥∥2
< 1, we can construct w′

i � wPO
i + ui.

Choosing ui ∈ R
{
ΠN{Qij}Qii

}
and such that ‖w′

i‖2 = 1,

we effectively increase pii (hence, R̄i) without affecting pij

(hence, R̄j). Thus, wPO
i is not PO. For details, see [6].

VII. NUMERICAL EXAMPLE

We illustrate in Fig. 1 an ergodic rate region of a MISO IFC,
where the transmitters have 5 antennas and all the channel
covariance matrices are rank deficient. We depict the NE
and ZF operating points that correspond to the beamforming
strategies defined in Prop. 1 and 2, respectively. We determine
the Pareto boundary by randomly generating a large number
of beamforming vectors according to Prop. 3 and selecting the
uppermost resulting rate pairs. In this simulation, we see that
the NE operating point is far inside the rate region, whereas
the ZF point is close to the Pareto boundary. This is generally
the case when interference is the major limiting factor.

VIII. DISCUSSION

We studied the achievable ergodic rate region of the two-
user MISO IFC, under the assumption that the transmit-
ters only have partial CSI. Our main contributions are the
derivations of the NE and ZF beamforming strategies, and
a characterization of the PO strategies as combinations of
selfishness and altruism. The results are useful for future re-
search (especially, further game-theoretic analysis) on resource
allocation problems that can be modeled by the MISO IFC.
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