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1 Abstract
This paper presents a general approach for obtaining optimal
filters as well as filter sequences. A filter is termed optimal
when it minimizes a chosen distance measure with respect to
an ideal filter. The method allows specification of the metric
via simultaneous weighting functions in multiple domains,
e.g. the spatio-temporal spaceandthe Fourier space.
It is shown how convolution kernels for efficient spatio-
temporal filtering can be implemented in practical situations.
The method is based on applying a set of jointly optimized fil-
ter kernels in sequence. The optimization of sequential filters
is performed using a novel recursive optimization technique.
A number of optimization examples are given that demon-
strate the role of key parameters such as: number of kernel
coefficients, number of filters in sequence, spatio-temporal
and Fourier space metrics. In multidimensional filtering ap-
plications the method potentially outperforms both standard
convolution and FFT based approaches by 2-digit numbers.

2 Introduction
This paper initially presents a formulation of the basic op-
timization problem and continues to discuss consequences
of important constraints and choices of appropriate metrics
for the optimization. As an example it is in most applica-
tions important that the filtered signal maintains a high spatio-
temporal resolution. It is shown how, to this end, a spatio-
temporal weighting function can be used to introduce a dis-
tance metric that favors spatio-temporally localized kernels.
This ‘designer metric’ approach is general in that it is im-
plementation independent, i.e. the chosen metric is meant to
‘tell it all’ and consequently the design is equally valid if the
filters are implemented as convolutions, using an FFT based
approach or any other technique. To illustrate the basic fea-
tures of the optimizer and the effect of different metrics some
simple one-dimensional single filter examples are given.

3 Multiple Space Optimization
In this section the basic approach and the used notation is pre-
sented. Descriptions of desired filter features can be specified
simultaneously in multiple linear transform spaces here re-
ferred to as representation spaces. The representation spaces
are defined by:

C0 = f1: : :Ng; One set ofkernel
coefficient indices

Ck; k = 1: : :K K sets ofrepresentation
space coordinates

The optimization produces a set of kernel coefficients, or
simply a kernel, f̃0. The optimizer solves a least squares
problem and can be seen as a function, i.e.

f̃0 = g( ffkg;fwkg;fBkg ) ; k = 0: : :K; (1)

The intended use of the arguments is explained by the
following table:

f0 = f0(n); n2 C0 Ideal kernel
function

w0 = w0(n); n2 C0 Kernel weighting
function

fk = fk(ck); ck 2 Ck Ideal function in
representation space k

wk = wk(ck); ck 2 Ck Weighting function in
representation space k

Bk = bk(ck;n); ck 2 Ck Basis function matrix
n2 C0 corresponding to

representation space k.
The discrete mapping from kernel space to representation
spacek is defined by:

f̃k � Bk f̃0 (2)

Typical representation space examples are the Fourier space,
the spatio-temporal space and wavelet spaces. (Note that
B0 = I , signifying that the kernel space is mapped onto it-
self.)

3.1 Error measure
The optimizer finds the kernel coefficients that minimizes
a weighted distance measure. The definition of the chosen
measure, the error:ε, is given by:

ε2 =
K

∑
k=0

kWk (fk� f̃k)k
2 (3)

where theWk are diagonal weighting matrices. The diagonal
terms given by the corresponding weighting function.

3.2 Minimizing the error
To find the minimum ofε it is convenient to first rewrite equa-
tion (3) making the role of the kernel coefficients,f̃0, explicit.
The raisedT denotes the conjugate transpose.

ε2 =
K

∑
k=0

(fk�Bkf̃0)
TW2

k(fk�Bkf̃0) (4)

The error measure is quadratic and finding the minimum can
be done by computing the partial derivatives ofε2 with re-
spect to the kernel coefficientsf̃0 and solving equation (5).
Differentiating equation (4) yields:

∂ε2

∂f̃0
= 2

K

∑
k=0

BT
k W2

k (Bkf̃0� fk) = 0 (5)

which results in:
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∑
k=0

BT
k W2

kBk| {z }
A

f̃0 =
K

∑
k=0

BT
k W2

kfk| {z }
h

(6)

Equation (6) can be simplified to:

A f̃0 = h (7)

Solving for f̃0 gives the optimal kernel coefficients.

4 Basic Representation Spaces
The kernel domain, the spatio-temporal domain and the
Fourier domain are the three most common representation
spaces. In cases where the input is ‘raw’ spatio-temporal
data the kernel space coordinates are simply a sub-set of the
spatio-temporal coordinates. In general, however, this is not
true and it is in most cases important to consider the desired
properties of the optimized kernel in these three basic spaces.
The role of the different representation spaces is described
and discussed below.

4.1 The kernel space ‘C0’
In most cases the kernel space naturally inherits the spatio-
temporal dimensions of the input signal (the dimensions over
which the convolution is performed). The kernel space may
in addition have extra ‘dimensions’ such as scale, bandwidth
and orientation.
The optimized kernel is constituted by a set of optimal coef-
ficients, f0(n); n2 f1: : :Ng. A fundamental constraint best
expressed in the kernel domain is simply that the number
of coordinates,N, is limited. (In fact it is the object of the
present exercise to keep this number as low as possible.)

4.2 The spatio-temporal space ‘C1’
The spatio-temporal space is in most cases given by the input
signal. A fundamental constraint naturally expressed in this
space is that, in all digital applications, the signals are repre-
sented by samples. As a rule the samples are distributed in a
cartesian fashion uniformly in each dimension.
For clarity and to adhere to common convention the spatio-
temporal coordinate,c1, ideal function,f1(c1), and weighting
function,w1(c1), will, when appropriate, also be denotedx,
f (x), andw(x) respectively.

Spatio-temporal locality
In most applications it is important that the filtered signal
maintains a high spatio-temporal resolution. Thespatio-
temporal weighting function, w(x), can be used to introduce a
distance metric that favors/forces spatio-temporally localized
kernels. An example of a suitable weighting function is given
by: w(x) = jxjγ; γ > 0.
The pro-locality feature is of particular interest in FFT based
implementation where control of spatio-temporal locality is
completely lost using standard approaches. In convolution
based implementation the feature can be used to introduce a
continuous metric as opposed to the ‘hard metric’ introduced
by limited spatio-temporal kernel size.

4.3 The Fourier space ‘C2’
For the same reasons as in the spatio-temporal case the
Fourier coordinate,c2, ideal function,f2(c2), and weighting
function,w2(c2), will, when appropriate, also be denotedu,
F(u), andw(u) respectively. The continuous Fourier space
is defined via the Fourier transform and the spatio-temporal
space:

F̃(u) =
N

∑
n=1

f̃ (xn) e�i u�xn (8)

Any given distribution of spatio-temporal coordinates,xn,
can be interpreted as fundamental constraints on the Fourier
space representation of attainable filter functions.

Fourier space metric
TheFourier weighting function w(u) can be used to produce
an appropriate Fourier space metric. The metric will deter-
mine the importance of a close fit for different spatial fre-
quencies. In general the weighting function should be chosen
based on all a-priori information available about the situa-
tions in which the optimized filters are to be used. (Note that
optimizing without using a weighting function is equivalent
to settingw(u) = 1.)
The suggestion made here is that one major factor determin-
ing the importance of a close fit is the expected spectrum of
the signal to be filtered.

Expected spectra
For purely spatial signals there is, in general, no reason to
expect a non-isotropic spectrum, i.e. the expected spectrum
will only depend on the Fourier domain radius,ρ = kuk. To
find a suitable form for the expected spectrum two observa-
tions can be made. First, there does not seem to be a large
difference in terms of spectrum when imaging the real world
at very different scales, say a microscope image vs a satel-
lite image. Secondly, for normal images the energy is usually
concentrated around the origin and decreases asρ increases.
Equation(9) gives a class of weight functions that provides a
reasonable degree of variability and has been proven useful
in practice.

w(u) = ρα ∏
i

cosβ(
ui
2 ) + c (9)

Fourier space sampling
Up til now the Fourier space has been treated as continuous.
However, to find an optimal filter in practice implies sam-
pling the Fourier space. In the present work the Fourier space
sampling is performed in a regular cartesian manner.
In principle the higher the sampling density the ‘closer’ the
sampled case solution will be to the continuous case. In prac-
tise using 2-3 times as many points, for each dimension, as
the spatial size in pixels (voxels etc.) has proven to be ade-
quate.

5 Distortion Measures
Assessing the quality of an optimized kernel is difficult using
only the distance measure since it is an absolute measure and
not directly related to the kernel quality. For a quick quality
assessment it is helpful to calculate a few distortion measures.

Normalized error
An overall distortion measure is obtained simply by normal-
izing the error measure, i.e.

δ =

s
∑K

k=0kWk (fk� f̃k)k2

∑K
k=0kWk fkk2

(10)

Distortion in spacek
A somewhat more detailed information about the outcome
of the optimization can be obtained by calculating distortion
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Figure 1:Left:Optimization result using a constant Fourier weighting
function, i.e effectively equivalent to standard DFT. Right:Optimization
result using a Fourier weighting function corresponding to monotoni-
cally decreasing signal spectrum: w(u) ∝ S(u) ∝ juj�1.
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Figure 2: Left: Optimization result using a spatiotemporal weight-
ing function favoring locally concentrated kernels: w(x) ∝ x2. Right:
Optimization result using both Fourier and spatiotemporal weighting
functions: w(u) ∝ juj�1, w(x) ∝ x2.

measures separately for each representation space. In anal-
ogy with equation(10) the distortion in spacek is defined:

δk =
kWk (fk� f̃k)k

kWk fkk
(11)

Equation (11) gives the distortion in spacek in the metric
given by the weighting function,wk. The distortion gives the
ratio between the RMS error and the RMS value of the ideal
function,fk , and is invariant to scaling ofwk and/orfk.

6 Single Filters
In this section a few examples of optimization of simple sin-
gle filters are given. The examples illustrates the basic fea-
tures of the optimizer and the effect of different metrics. To
simplify visualization of the results all optimized kernels are
one-dimensional. Note, however, that the method is com-
pletely ‘invariant’ to spatio-temporal dimensionality.
Figure 1 and 2 shows how changing the spatio-temporal and
Fourier weighting functions can be used to design a suitable
metric and obtain a filter having the desired features. The
shaded areas indicate the ideal Fourier function, the solid
lines shows the optimization results and the dashed lines
shows the weighting functions.

7 Sequential Filters
Using N coefficients it is always possible to find a best ap-
proximation to a given filter using all coefficients at once for a
single filter. In many cases, however, a far more efficient way
of attaining essentially the same filter is to distribute coeffi-
cients over a number of filters. These filters are then applied
in sequence to obtain the final filter response.
Using this technique it is in many cases possible to attain
equally good filter approximations using only a fraction of
the the number of coefficients required for the single filter
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Figure 3: Optimization result for sequential filter consisting of four
component filters. The implementation of the filter requires the equiv-
alent of 18 complex coefficients. The result is shown at two different
scales. The solid lines shows the resulting filter in Fourier space. The
dashed line shows the ideal function (lognormal). The dash dotted
line shows the weighting function w(u) ∝ juj�0:5. Fourier space
distortion: δ2 = 0:1.

approach. In many situations it is in this way possible to re-
duce computational load by 2-digit numbers.
The proposed method involves the following four steps:

1. Chose the number,M, of filters in sequence that is likely
to be appropriate in the present situation.

2. Chose the number of coefficients,Nm, to be used by each
filter in the sequence,m= 1::M.

3. Chose the spatio-temporal coordinate for each coeffi-
cient in theM filters.

4. Optimize the values of theN = ∑mNm coefficients (dis-
tributed over theM filters) so that the combined effect
of the filter sequence approximates the ideal filter as
closely as possible.

7.1 Products in Fourier space
The final step in the sequential filter optimization procedure
is to find the values of allN coefficients of the sequential filter
such that the difference between the reference function,F(u),
andF̃(u) is minimized according to the distance measure.
The required analysis is best carried out in the Fourier do-
main as the effect of sequentially applied filters is obtained
by simple multiplication of individual filter responses.
A sequential filter,F̃(u) is to approximate an ideal filter,
F(u), by M sequential filter components,̃Fm(u). In the
Fourier domain this is expressed as:

F(u)� F̃(u) =
M

∏
m=1

F̃m(u) (12)

Again, the motivation for this operation is that the filters
Fm(u) can potentially be implemented using a considerable
smaller number of kernel coefficients than a direct (M = 1)
implementation ofF(u).
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Figure 4:Spatial view of the optimization result in figure 3. Solid line
shows filter magnitude. Dashed line shows real part. Dash dotted line
shows imaginary part

Figure 5:Fourier space view of optimization result for 2D sequential
filter consisting of 12 component filters. Using this filter requires the
equivalent of 24 complex multiplications per pixel. w(u) ∝ kuk�1

andw(x) = 0.

7.2 Recursive Filter Optimization
Even if the number and spatio-temporal positions of all coef-
ficients are considered given optimizing a sequential filter is
no longer a quadratic problem and finding the optimum must
be done using an iterative search.
A method that has proven to work well in practice is to op-
timize a single filter component with respect to the present
value of the otherM�1 components. In this way a ‘rotat-
ing’ recursion of the single filter optimization method can be
used to rapidly find a set of close to optimal component fil-
ters. Convergence of the algorithm is fast and typically less
than 10 iterations are needed. For a theoretical analysis of
how to convert the kernel optimizer for recursive use see [7].

7.3 Optimization results
To demonstrate the potential of the sequential filtering ap-
proach the result of two optimizations are shown in figures
3 to 6. Figures 3 and 4 show an optimized 1D sequential
filter consisting of four component filters. Each component
filter has five coefficients, the coefficients being spread by 1,
2, 4 and 8 spatio-temporal sample distance units respectively.
Using the filter requires the equivalent of 18 complex multi-
plications per output value. This implies that, for a 20 second
signal sampled at 50kHz, this filter implementation reduces
the number of multiplications compared to standard convo-
lution and FFT based approaches by factors 4 and 5 respec-
tively. Figures 5 and 6 show an optimized 2D sequential filter
consisting of 12 component filters. Each component filter has

Figure 6: Spatial view of optimization result for the filter shown in
figure 5.

five coefficients. The coefficients are placed along lines at 0,
45, 90 and 135 degrees each direction spread by 1, 2 and 4
spatio-temporal sample distance units respectively. Most of
the coefficients can be real-valued and using the filter only re-
quires the equivalent of 24 complex multiplications per out-
put pixel. In other words, for a 512�512 image, the imple-
mentation of the filteroutperforms standard convolution and
FFT by factors exceeding30and10 respectively.
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