
  

  

Linköping University Post Print 

  

  

MIMO Detection Methods: How They Work 

  

  

Erik G. Larsson 

  

  

  

  

N.B.: When citing this work, cite the original article. 

  

  

  

©2009 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE. 

Erik G. Larsson, MIMO Detection Methods: How They Work, 2009, IEEE signal processing 

magazine, (26), 3, 91-95. 

http://dx.doi.org/10.1109/MSP.2009.932126 

 

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-21997 
 

http://dx.doi.org/10.1109/MSP.2009.932126
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-21997


IEEE SIGNAL PROCESSING MAGAZINE   [91]   MAY 2009

[lecture NOTES]
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I
n communications, the receiver 
often observes a linear superposition 
of separately transmitted informa-
tion symbols. From the receiver’s 
perspective, the problem is then to 

separate the transmitted symbols. This is 
basically an inverse problem with a 
finite-alphabet constraint. This lecture 
will present an accessible overview of 
state-of-the-art solutions to this problem. 

RELEVANCE
The most important motivating applica-
tion for the discussion here is receivers 
for multiple-antenna systems such as 
multiple-input, multiple-output (MIMO), 
where several transmit antennas simul-
taneously send different data streams. 
However, essentially the same problem 
occurs in systems where the channel 
itself introduces time- or frequency-dis-
persion, in multiuser detection, and in 
cancellation of crosstalk. 

PREREQUISITES
General mathematical maturity is 
required along with knowledge of basic 
linear algebra and probability. 

PROBLEM STATEMENT
Concisely, the problem is to recover the 
vector s [ R

n from an observation of 
the form 

 y5Hs1 e,  y [ R
m, (1) 

where H [ R
m3n is a known (typically, 

estimated beforehand) channel matrix 
and e [ R

m  represents noise. We 
assume that e , N 10, sI 2 . The ele-
ments of s, say sk, belong to a finite 
alphabet S of size |S|. Hence there are 
|S|n possible vectors s. For simplicity of 

our discussion, we assume that all 
quantities are real-valued. This is most-
ly a matter of notation, since Cn is iso-
morphic to R2n. We also assume that 
m $ n, that is, (1) is not underdeter-
mined, and that H  has full column 
rank. This is so with probability one in 
most applications. We also assume that 
H  has no specific structure. If H  has 
structure, for example, if it is a Toeplitz 
matrix, then one should use algorithms 
that can exploit this structure. 

We want to detect s in the maxi mum-
likelihood (ML) sense. This is equivalent to 

 The problem: min
s[S 

n
7y2Hs 7. (2) 

Problem (2) is a finite-alphabet-con-
strained least-squares (LS) problem, 
which is known to be nondeterministic 
polynomial-time (NP)-hard. The compli-
cating factor is of course the constraint 
s [ S 

n, otherwise (2) would be just clas-
sical LS regression. 

SOLUTIONS
As a preparation, we introduce the 
QL-decomposition of H : H5QL, where 
Q [ R

m3n is orthonormal (QTQ5 I ), 
and L [ R

n3n is lower triangular. Then 

7y2Hs 7 25 7QQT 1  y2Hs 2 7 2
 1 7 1I2QQT 2 1  y2Hs2 7 2
 5 7QTy2 Ls 7 2
 1 7 1I2QQT 2  y 7 2,
where the last term does not depend on s. 
It follows that we can reformulate (2) as 

Equivalent problem:  min
s[S 

n
7 y|2 Ls 7 , 

where y| ! QT y  (3)

or, in yet another equivalent form, as 

min 5s1,c, sn6  
skPS     

5f1 1s1 2 1 f2 1s1, s2 2
 1c1 fn 1s1, c, sn 2 6,
where

  fk 1s1, c, sk 2 !ay|k2a
k

l51
Lk, l slb

2

. (4)

Problem (4) can be visualized as a 
decision tree with n1 1 layers, |S| 
branches emanating from each nonleaf 
node, and |S|n leaf nodes. See Figure 1. 
To any branch, we associate a hypotheti-
cal decision on sk, and the branch metric 
fk 1s1, c, sk 2 . Also, to any node (except 
the root), we associate the cumulative 
m e t r i c  f1 1s1 2 1c1 fk 1s1, c, sk 2 , 
which is just the sum of all branch met-
rics accumulated when traveling to that 
node from the root. Finally, to each node, 
we associate the symbols 5s1, c, sk6 it 
takes to reach there from the root. 

Clearly, a naive but valid way of solving 
(4) would be to traverse the entire tree to 
find the leaf node with the smallest cumu-
lative metric. However, such a brute-force 
search is extremely inefficient, since there 
are |S|n leaf nodes to examine. We will 
now review some efficient, popular, but 
approximate solutions to (4). 

ZERO-FORCING (ZF) DETECTOR
The ZF detector first solves (2), neglect-
ing the constraint s [ S 

n  

s| ! arg min 
s[R

n
7y2Hs 7

5 arg min 
s[R

n
7 y, 2 Ls 7 5 L21y,. (5) 

Of course, L21 does not need to be explic-
itly computed. For example, one can do 
Gaussian elimination: take s|15 y|1/L1,1, 
then s|25 1 y|22 s|1 L2,1 2 /L2,2, and so forth. 
ZF then approximates (2) by projecting 
each s|k onto the constellation S 
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 ŝk5 3 s|k 4 ! arg min
sk[S 

 

|sk2 s|k|. (6) 

We see that s|5 s1 L21QTe, so s| in (5) is 
free of intersymbol interference. This is 
how ZF got its name. However, 
 unfortunately ZF works poorly unless H is 
well conditioned. The reason is that the 
 correlation between the noises in s|k is 
neglected in the projection operation (6). 
This correlation can be very strong, espe-
cially if H is ill conditioned (the covariance 
matrix of s| is S!s 

#
 1LTL 221 2 . There are 

some variants of the ZF approach. For 
example, instead of computing s| as in (5), 
one can use the MMSE estimate (take 
s|5 E 3s| y 4). This can improve perfor-
mance somewhat, but it does not overcome 
the fundamental problem of the approach. 

ZF DETECTOR WITH 
DECISION FEEDBACK (ZF-DF) 
Consider again ZF, and suppose we use 
Gaussian elimination to compute s| in 
(5). ZF-DF [1] does exactly this, with the 
modification that it projects the symbols 
onto the constellation S in each step of 
the Gaussian elimination, rather than 
afterwards. More precisely, 
 1) Detect s1 

via ŝ15 arg min
s1[S

f1 1s1 2
 5 c y|1

L1,1
d .

 2) Consider s1 known (s15 ŝ1) and 
detect s2 

via ŝ25 arg min
s2[S  

f2 1 ŝ1, s2 2
5 c y

|
22 ŝ1L2,1

L2,2
d .

 3 )  Cont inue  for  k5 3, . . . , n
  ŝk5 arg min

sk[S  
fk 1 ŝ1, c, ŝk21, sk 2  

  5 c y
|

k2S
k21
l51 Lk, l ŝl

Lk, k
d .

In the decision-tree perspective, 
ZF-DF can be understood as just examin-
ing one single path down from the root. 
When deciding on sk, it considers 
s1, c, sk21 known and takes the sk that 
corresponds to the smallest branch met-
ric. Clearly, after n steps we end up at one 
of the leaf nodes, but not necessarily in the 
one with the smallest cumulative metric. 

In Figure 2(a), ZF-DF first chooses 
the left branch originating from the root 
(since 1 , 5), then the right branch 
(since 2 . 1) and at last the left branch 
(because 3 , 4), reaching the leaf node 
with cumulative metric 11 11 35 5. 

The problem with ZF-DF is error 
propagation. If, due to noise, an incor-
rect symbol decision is taken in any of 
the n steps, then this error will propa-
gate and many of the subsequent deci-
sions are likely to be wrong as well. In 

its simplest form (as explained above), 
ZF-DF detects sk in the natural order, 
but this is not optimal. The detection 
order can be optimized to minimize the 
effects of error propagation. Not sur-
prisingly, it is best to start with the sym-
bol for which ZF produces the most 
reliable result: that is, the symbol sk for 
which Sk, k is the smallest, and then 
proceed to less and less reliable sym-
bols. However, even with the optimal 
ordering, error propagation severely 
limits the performance. 

SPHERE DECODING (SD)
The SD [2], [9] first selects a user 
parameter R, called the sphere radius. It 
then traverses the entire tree (from left 
to right, say). However, once it encoun-
ters a node with cumulative metric 
 larger than R, then it does not follow 
down any branch from this node. Hence, 
in effect, SD enumerates all leaf nodes 
w h i c h  l i e  i n s i d e  t h e  s p h e r e 
7 y|2 Ls 7 2 # R. This also explains the 
algorithm’s name. 

In Figure 2(b), we set the sphere radi-
us to R 5 6. The SD algorithm then tra-
verses the tree from left to right. When it 
encounters the node “7” in the right sub-
tree, for which 7 . 6 5 R, SD does not 
follow any branches emanating from it. 
Similarly, since 8 . 6, SD does not visit 

Root Node

s1 = −1

s2 = −1

s3 = −1 s3 = −1 s3 = −1s3 = +1 s3 = +1 s3 = −1s3 = +1 s3 = +1

s2 = −1s2 = +1 s2 = +1

f1 (−1) = 1

f2 (−1, −1) = 2

f3 (. . .) = 4 f3 (. . .) = 1 3 4 3 1 1 9

Leaves

{1, 1, 1}{1, 1,  −1}{1,  −1, 1}{1,  −1,  −1}{−1,  1,  1}{−1,  1,  −1}{−1,  −1,  1}{−1,  −1,  −1}

f2 (−1, 1) = 1 f2 (1, −1) = 2 f2 (1, 1) = 3

f1 (1) = 5
s1 = +1

1 5

72

7 5 6 10 8 9 17

3 8

4

  [FIG1]  Problem (4) as a decision tree, exemplified for binary modulation (S = {–1, +1}, |S| = 2) and n = 3. The branch metrics fk(s1, .  .  ., sk) 
are in blue written next to each branch. The cumulative metrics f1(s1)+ .  .  . + fk(s1, .  .  .  , sk) are written in red in the circles representing 
each node. The double circle represents the optimal (ML) decision. 
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any branches below the node “8” in the 
rightmost subtree. 

SD in this basic form can be much 
improved by a mechanism called prun-
ing. The idea is this: Every time we reach 
a leaf node with cumulative metric M, we 
know that the solution to (4) must be 
contained in the sphere 7 y|2 Ls 7 2 # M. 
So if M , R, we can set R J M, and con-
tinue the algorithm with a smaller sphere 
radius. Effectively, we will adaptively 
prune the decision tree, and visit much 
fewer nodes than those in the original 
sphere. Figure 2(c) exemplifies the prun-
ing. Here the radius is initialized to 
R5 `, and then updated any time a leaf 
node is visited. For instance, when visit-
ing the leaf node “4,” R will be set to 
R5 4. This means that the algorithm 

will not follow branches from nodes that 
have a branch metric larger than four. In 
particular, the algorithm does not exam-
ine any branches stemming from the 
node “5” in the right subtree. 

The SD algorithm can be improved in 
many other ways, too. The symbols can be 
sorted in an arbitrary order, and this order 
can be optimized. Also, when traveling 
down along the branches from a given 
node, one may enumerate the branches 
either in the natural order or in a zigzag 
fashion (e.g., sk5 525, 23, 21, 21, 3, 56 
versus sk5 521, 1, 23, 3, 25, 56). The 
SD algorithm is easy to implement, 
although the procedure cannot be directly 
parallelized. Given large enough initial radi-
us R, SD will solve (2). However, depending 
on H, the time the algorithm takes to finish 

will fluctuate, and may occasionally be 
very long. 

FIXED-COMPLEXITY 
SPHERE DECODER (FCSD)
FCSD [3] is, strictly speaking, not really 
sphere decoding, but rather a clever 
combination of brute-force  enumeration 
and a low-complexity, approximate detec-
tor. In view of the decision tree, FCSD 
visits all |S|r nodes on layer r, where r, 
0 # r # n is a user parameter. For each 
node on layer r, the algorithm considers 
5s1, . . ., sr6  fixed and formulates and 
solves the subproblem  

min5sr11, c, sn6
sk[S

5fr11 1s1, c, sr11 2

 1 . . .1 fn 1s1, c, sn 2 6. (7)

1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

ZF-DF

1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

SD, No Pruning

(here: R = 6)

1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

SD, Pruning

(here: R = ∞) 1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

FCSD
(here: r = 1)

(a) (b)

(c) (d)

  [FIG2]  Illustration of detection algorithms as a tree search. Solid-line nodes and branches are visited. Dashed nodes and branches are 
not visited. The double circles represent the ultimate decisions on s. (a) ZF-DF: At each node, the symbol decision is based on choosing 
the branch with the smallest branch metric. (b) SD, no pruning: Only nodes with Sn

k51fk 1s1, .  .  .  , sk 2 # R are visited. (c) SD, pruning: 
Like SD, but after encountering a leaf node with cumulative metric M, the algorithm will set R :5 M. (d) FCSD: Visits all nodes on the 
r th layer, and proceeds with ZF-DF from these. 
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In effect, by doing so, FCSD will reach 
down to |S|r of the |S|n leaves. To form its 
symbol decisions, FCSD selects the leaf, 
among the leaves it has visited, which 
has the smallest cumulative metric 
f1 1s1 2 1c1 fn 1s1, c, sn 2 .

The subproblem (7) must be solved 
once for each combination 5s1, ..., sr6, 
that is |S|r times. FCSD does this approx-
imately, using a low-complexity method 
(ZF or ZF-DF are good choices). This 
works well because (7) is overdetermined: 
there are n observations ( y|1, c, y|n), 
but only n2 r unknowns (sr11, c, sn). 
More precisely, the equivalent channel 
matrix when solving (7) will be a tall sub-
matrix of H, which is generally much 
better conditioned than H. 

Figure 2(d) illustrates the algorithm. 
Here r5 1. Thus, both nodes “1” and “5” 
in the layer closest to the root node are 
visited. Starting from each of these two 
nodes, a ZF-DF search is performed. 

Naturally, the symbol ordering can be 
optimized. The optimal ordering is the 
one which renders the problem (7) most 
well-conditioned. This is achieved by 
sorting the symbols so that the most 
“difficult” symbols end up near the tree 
root. Note that “difficult symbol” is non-
trivial to define precisely here, but intui-
tively think of it as a symbol sk for which 
Sk,k is large. 

The choice of r offers a tradeoff 
between complexity and performance. 
FCSD solves (2) with high probability 
even for small r, it runs in constant time, 
and it has a natural parallel structure. 
Relatives of FCSD that produce soft out-
put also exist [4]. 

SEMIDEFINITE-RELAXATION 
(SDR) DETECTOR
The idea behind SDR [5], [6] is to relax the 
finite-alphabet constraint on s into a 
matrix inequality and then use semidefi-
nite programming to solve the resulting 
problem. We explain how it works, for 
binary phase-shift keying (BPSK) symbols 
(sk [ 5616). Define 

s2 ! c s
1
d ,    S ! s2 s2T 5 c s

1
d 3sT 1 4,

C ! c LTL 2 LTy,

2 y, TL 0
d .

Then 

7 y|2 Ls 7 25 sTcs1 7 y| 7 2
5 Trace5CS6 1 7 y| 7 2

so solving (3) is the same as finding the 
vector s [ Sn that minimizes Trace {CS}. 

SDR exploits that the constraint 
s [ Sn is equivalent to requiring that 
rank {S} 5 1, sn115 1 and diag {S} 5 
{1, . . . , 1}. It then proceeds by minimizing 
Trace {CS} with respect to S, but relaxes 
the rank constraint and instead requires 
that S be positive semidefinite. This 
relaxed problem is convex, and can be effi-
ciently solved using so-called interior 
point methods. Once the matrix S is 
found, there are a variety of ways to deter-
mine s, for example to take the dominant 
eigenvector of S (forcing the last element 
to unity) and then project each element 
onto S like in (6). The error incurred by 
the relaxation is generally small. 

LATTICE REDUCTION (LR)
AIDED DETECTION
The idea behind LR [8], [9] is to trans-
form the problem into a domain where 
the effective channel matrix is better 
conditioned than the original one. How 
does it work? If the constellation S is 
uniform, then S may be extended to a 
scaled enumeration of all integers, and 
S 

n may be extended to a lattice S 
n. For 

illustration, if S5 5 23,2 1, 1, 36, then 
S 

n5 5c,23,21, 1, 3, c6 3c 3
5c,23,21, 1, 3, c6 . LR decides  
first on an n 3 n matrix T that has inte-
ger elements (Tk,l [ Z ) and which maps 
t h e  l a t t i c e  S 

n  o n t o  i t s e l f : 
Ts [ S 

n 4s [ S 
n. That is, T should be 

invertible, and its inverse should have 
integer elements. This happens precisely 
if its determinant has unit magnitude: 
|T|5 61. Naturally, there are many 
such matrices (T5 6 I  is one trivial 
example). LR chooses such a matrix T 
for which, additionally, HT is well condi-
tioned. It then computes 

 ŝr ! arg min
s9PSn

 || y2 1HT 2s r||. (8) 

Problem (8) is comparatively easy, since 
HT is well conditioned, and simple 
methods like ZF or ZF-DF generally 

work well. Once ŝ r is found, it is trans-
formed back to the original coordinate 
system by taking ŝ5 T21ŝ r. 

LR contains two critical steps. First, a 
suitable matrix T must be found. There 
are good methods for this (e.g., see refer-
ences in [8], [9]). This is computationally 
expensive, but if the channel H  stays 
constant for a long time then the cost of 
finding T may be shared between many 
instances of (2) and complexity is less of 
an issue. The other problem is that while 
the solution ŝ always belongs to S

2 n, it 
may not belong to S 

n. Namely, some of 
its elements may be beyond the borders 
of the original constellation. Hence a 
clipping-type operation is necessary and 
this will introduce some loss. 

SOFT DECISIONS
In practice, each symbol sk typically is 
composed of information-carrying bits, 
say 5bk, 1, c, bk, p6. It is then of interest 
to take decisions on the individual bits 
bk,i, and often, also to quantify how reli-
able these decisions are. Such reliability 
information about a bit is called a “soft 
decision,” and is typically expressed via 
the probability ratio 

P 1bk,i5 1| y 2
P 1bk,i5 0| y 2 5

g s:bk,i 1s251 P 1s| y 2
g s:bk,i 1s250 P 1s| y 2

5

g s:bk,i 1s251expa2 1
s

 || y2Hs||2bP 1s 2
g s:bk,i 1s250expa2 1

s
 || y2Hs||2bP 1s 2

.  

(9)

Here “s:bk,i 1s 2 5 b” means all s for which 
the ith bit of sk is equal to b, and P 1s 2  is 
the probability that the transmitter sent s. 
To derive (9), use Bayes rule and the 
Gaussian assumption made on e [4].

Fortunately, (9) can be relatively well 
approximated by replacing the two sums 
in (9) with their largest terms. To find 
these maximum terms is a slightly 
modified version of (2), at least if all s 
are equally likely so that P 1s 2 5 1/|S|n. 
Hence, if (2) can be solved, good approx-
imations to (9) are available too. An 
even better approximation to (9) is 
obtained if more terms are retained, i.e., 
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not only the largest one [7], [4]. This is 
naturally accomplished by many of the 
methods we discussed, by simply includ-
ing the terms corresponding to all leaf 
nodes in the decision tree that the algo-
rithm has visited. If the symbol vectors 
have different a priori probabilities, 
then under certain circumstances P 1s 2  
can be incorporated by appropriately 
modifying y and H [6], [4]. 

CONCLUSIONS
The goal of this lecture has been to pro-
vide an overview of approaches to (2), in 
the communications receiver context. 
Which method is the best in practice? 
This depends much on the purpose of 
solving (2): what error rate can be toler-
ated, what is the ultimate measure of 
performance (e.g., frame-error-rate, 
worst-case complexity, or average com-
plexity), and what computational plat-
form is used. Additionally, the bits in s 
may be part of a larger code word and 

different s vectors in that code word may 
either see the same H (slow fading) or 
many different realizations of H  (fast 
 fading). This complicates the picture, 
because notions that are important in 
slow fading (such as spatial diversity) are 
less important in fast fading, where 
diversity is provided anyway by time vari-
ations. Detection for MIMO has been an 
active field for more than ten years, and 
this research will probably continue for 
some time. 
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