

Linköping University Post Print

MIMO Detection Methods: How They Work

Erik G. Larsson

N.B.: When citing this work, cite the original article.

©2009 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Erik G. Larsson, MIMO Detection Methods: How They Work, 2009, IEEE signal processing

magazine, (26), 3, 91-95.

http://dx.doi.org/10.1109/MSP.2009.932126

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-21997

http://dx.doi.org/10.1109/MSP.2009.932126
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-21997

IEEE SIGNAL PROCESSING MAGAZINE [91] MAY 2009

[lecture NOTES]

 Digital Object Identifier 10.1109/MSP.2009.932126

I
n communications, the receiver
often observes a linear superposition
of separately transmitted informa-
tion symbols. From the receiver’s
perspective, the problem is then to

separate the transmitted symbols. This is
basically an inverse problem with a
finite-alphabet constraint. This lecture
will present an accessible overview of
state-of-the-art solutions to this problem.

RELEVANCE
The most important motivating applica-
tion for the discussion here is receivers
for multiple-antenna systems such as
multiple-input, multiple-output (MIMO),
where several transmit antennas simul-
taneously send different data streams.
However, essentially the same problem
occurs in systems where the channel
itself introduces time- or frequency-dis-
persion, in multiuser detection, and in
cancellation of crosstalk.

PREREQUISITES
General mathematical maturity is
required along with knowledge of basic
linear algebra and probability.

PROBLEM STATEMENT
Concisely, the problem is to recover the
vector s [R

n from an observation of
the form

 y5Hs1 e, y [R
m, (1)

where H [R
m3n is a known (typically,

estimated beforehand) channel matrix
and e [R

m represents noise. We
assume that e , N 10, sI 2 . The ele-
ments of s, say sk, belong to a finite
alphabet S of size |S|. Hence there are
|S|n possible vectors s. For simplicity of

our discussion, we assume that all
quantities are real-valued. This is most-
ly a matter of notation, since Cn is iso-
morphic to R2n. We also assume that
m $ n, that is, (1) is not underdeter-
mined, and that H has full column
rank. This is so with probability one in
most applications. We also assume that
H has no specific structure. If H has
structure, for example, if it is a Toeplitz
matrix, then one should use algorithms
that can exploit this structure.

We want to detect s in the maxi mum-
likelihood (ML) sense. This is equivalent to

 The problem: min
s[S

n
7y2Hs 7. (2)

Problem (2) is a finite-alphabet-con-
strained least-squares (LS) problem,
which is known to be nondeterministic
polynomial-time (NP)-hard. The compli-
cating factor is of course the constraint
s [S

n, otherwise (2) would be just clas-
sical LS regression.

SOLUTIONS
As a preparation, we introduce the
QL-decomposition of H : H5QL, where
Q [R

m3n is orthonormal (QTQ5 I),
and L [R

n3n is lower triangular. Then

7y2Hs 7 25 7QQT 1 y2Hs 2 7 2
 1 7 1I2QQT 2 1 y2Hs2 7 2
 5 7QTy2 Ls 7 2
 1 7 1I2QQT 2 y 7 2,
where the last term does not depend on s.
It follows that we can reformulate (2) as

Equivalent problem: min
s[S

n
7 y|2 Ls 7 ,

where y| ! QT y (3)

or, in yet another equivalent form, as

min 5s1,c, sn6
skPS

5f1 1s1 2 1 f2 1s1, s2 2
 1c1 fn 1s1, c, sn 2 6,
where

 fk 1s1, c, sk 2 !ay|k2a
k

l51
Lk, l slb

2

. (4)

Problem (4) can be visualized as a
decision tree with n1 1 layers, |S|
branches emanating from each nonleaf
node, and |S|n leaf nodes. See Figure 1.
To any branch, we associate a hypotheti-
cal decision on sk, and the branch metric
fk 1s1, c, sk 2 . Also, to any node (except
the root), we associate the cumulative
m e t r i c f1 1s1 2 1c1 fk 1s1, c, sk 2 ,
which is just the sum of all branch met-
rics accumulated when traveling to that
node from the root. Finally, to each node,
we associate the symbols 5s1, c, sk6 it
takes to reach there from the root.

Clearly, a naive but valid way of solving
(4) would be to traverse the entire tree to
find the leaf node with the smallest cumu-
lative metric. However, such a brute-force
search is extremely inefficient, since there
are |S|n leaf nodes to examine. We will
now review some efficient, popular, but
approximate solutions to (4).

ZERO-FORCING (ZF) DETECTOR
The ZF detector first solves (2), neglect-
ing the constraint s [S

n

s| ! arg min
s[R

n
7y2Hs 7

5 arg min
s[R

n
7 y, 2 Ls 7 5 L21y,. (5)

Of course, L21 does not need to be explic-
itly computed. For example, one can do
Gaussian elimination: take s|15 y|1/L1,1,
then s|25 1 y|22 s|1 L2,1 2 /L2,2, and so forth.
ZF then approximates (2) by projecting
each s|k onto the constellation S

Erik G. Larsson

MIMO Detection Methods: How They Work

1053-5888/09/$25.00©2009IEEE

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on April 21, 2009 at 05:22 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [92] MAY 2009

[lecture NOTES] continued

 ŝk5 3 s|k 4 ! arg min
sk[S

|sk2 s|k|. (6)

We see that s|5 s1 L21QTe, so s| in (5) is
free of intersymbol interference. This is
how ZF got its name. However,
 unfortunately ZF works poorly unless H is
well conditioned. The reason is that the
 correlation between the noises in s|k is
neglected in the projection operation (6).
This correlation can be very strong, espe-
cially if H is ill conditioned (the covariance
matrix of s| is S!s

#
 1LTL 221 2 . There are

some variants of the ZF approach. For
example, instead of computing s| as in (5),
one can use the MMSE estimate (take
s|5 E 3s| y 4). This can improve perfor-
mance somewhat, but it does not overcome
the fundamental problem of the approach.

ZF DETECTOR WITH
DECISION FEEDBACK (ZF-DF)
Consider again ZF, and suppose we use
Gaussian elimination to compute s| in
(5). ZF-DF [1] does exactly this, with the
modification that it projects the symbols
onto the constellation S in each step of
the Gaussian elimination, rather than
afterwards. More precisely,
 1) Detect s1

via ŝ15 arg min
s1[S

f1 1s1 2
 5 c y|1

L1,1
d .

 2) Consider s1 known (s15 ŝ1) and
detect s2

via ŝ25 arg min
s2[S

f2 1 ŝ1, s2 2
5 c y

|
22 ŝ1L2,1

L2,2
d .

 3) Cont inue for k5 3, . . . , n
 ŝk5 arg min

sk[S
fk 1 ŝ1, c, ŝk21, sk 2

 5 c y
|

k2S
k21
l51 Lk, l ŝl

Lk, k
d .

In the decision-tree perspective,
ZF-DF can be understood as just examin-
ing one single path down from the root.
When deciding on sk, it considers
s1, c, sk21 known and takes the sk that
corresponds to the smallest branch met-
ric. Clearly, after n steps we end up at one
of the leaf nodes, but not necessarily in the
one with the smallest cumulative metric.

In Figure 2(a), ZF-DF first chooses
the left branch originating from the root
(since 1 , 5), then the right branch
(since 2 . 1) and at last the left branch
(because 3 , 4), reaching the leaf node
with cumulative metric 11 11 35 5.

The problem with ZF-DF is error
propagation. If, due to noise, an incor-
rect symbol decision is taken in any of
the n steps, then this error will propa-
gate and many of the subsequent deci-
sions are likely to be wrong as well. In

its simplest form (as explained above),
ZF-DF detects sk in the natural order,
but this is not optimal. The detection
order can be optimized to minimize the
effects of error propagation. Not sur-
prisingly, it is best to start with the sym-
bol for which ZF produces the most
reliable result: that is, the symbol sk for
which Sk, k is the smallest, and then
proceed to less and less reliable sym-
bols. However, even with the optimal
ordering, error propagation severely
limits the performance.

SPHERE DECODING (SD)
The SD [2], [9] first selects a user
parameter R, called the sphere radius. It
then traverses the entire tree (from left
to right, say). However, once it encoun-
ters a node with cumulative metric
 larger than R, then it does not follow
down any branch from this node. Hence,
in effect, SD enumerates all leaf nodes
w h i c h l i e i n s i d e t h e s p h e r e
7 y|2 Ls 7 2 # R. This also explains the
algorithm’s name.

In Figure 2(b), we set the sphere radi-
us to R 5 6. The SD algorithm then tra-
verses the tree from left to right. When it
encounters the node “7” in the right sub-
tree, for which 7 . 6 5 R, SD does not
follow any branches emanating from it.
Similarly, since 8 . 6, SD does not visit

Root Node

s1 = −1

s2 = −1

s3 = −1 s3 = −1 s3 = −1s3 = +1 s3 = +1 s3 = −1s3 = +1 s3 = +1

s2 = −1s2 = +1 s2 = +1

f1 (−1) = 1

f2 (−1, −1) = 2

f3 (. . .) = 4 f3 (. . .) = 1 3 4 3 1 1 9

Leaves

{1, 1, 1}{1, 1, −1}{1, −1, 1}{1, −1, −1}{−1, 1, 1}{−1, 1, −1}{−1, −1, 1}{−1, −1, −1}

f2 (−1, 1) = 1 f2 (1, −1) = 2 f2 (1, 1) = 3

f1 (1) = 5
s1 = +1

1 5

72

7 5 6 10 8 9 17

3 8

4

 [FIG1] Problem (4) as a decision tree, exemplified for binary modulation (S = {–1, +1}, |S| = 2) and n = 3. The branch metrics fk(s1, . . ., sk)
are in blue written next to each branch. The cumulative metrics f1(s1)+ . . . + fk(s1, . . . , sk) are written in red in the circles representing
each node. The double circle represents the optimal (ML) decision.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on April 21, 2009 at 05:22 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [93] MAY 2009

any branches below the node “8” in the
rightmost subtree.

SD in this basic form can be much
improved by a mechanism called prun-
ing. The idea is this: Every time we reach
a leaf node with cumulative metric M, we
know that the solution to (4) must be
contained in the sphere 7 y|2 Ls 7 2 # M.
So if M , R, we can set R J M, and con-
tinue the algorithm with a smaller sphere
radius. Effectively, we will adaptively
prune the decision tree, and visit much
fewer nodes than those in the original
sphere. Figure 2(c) exemplifies the prun-
ing. Here the radius is initialized to
R5 `, and then updated any time a leaf
node is visited. For instance, when visit-
ing the leaf node “4,” R will be set to
R5 4. This means that the algorithm

will not follow branches from nodes that
have a branch metric larger than four. In
particular, the algorithm does not exam-
ine any branches stemming from the
node “5” in the right subtree.

The SD algorithm can be improved in
many other ways, too. The symbols can be
sorted in an arbitrary order, and this order
can be optimized. Also, when traveling
down along the branches from a given
node, one may enumerate the branches
either in the natural order or in a zigzag
fashion (e.g., sk5 525, 23, 21, 21, 3, 56
versus sk5 521, 1, 23, 3, 25, 56). The
SD algorithm is easy to implement,
although the procedure cannot be directly
parallelized. Given large enough initial radi-
us R, SD will solve (2). However, depending
on H, the time the algorithm takes to finish

will fluctuate, and may occasionally be
very long.

FIXED-COMPLEXITY
SPHERE DECODER (FCSD)
FCSD [3] is, strictly speaking, not really
sphere decoding, but rather a clever
combination of brute-force enumeration
and a low-complexity, approximate detec-
tor. In view of the decision tree, FCSD
visits all |S|r nodes on layer r, where r,
0 # r # n is a user parameter. For each
node on layer r, the algorithm considers
5s1, . . ., sr6 fixed and formulates and
solves the subproblem

min5sr11, c, sn6
sk[S

5fr11 1s1, c, sr11 2

 1 . . .1 fn 1s1, c, sn 2 6. (7)

1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

ZF-DF

1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

SD, No Pruning

(here: R = 6)

1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

SD, Pruning

(here: R = ∞) 1 5

2 1 2 3

4 1 3 4 3 1 1 9

1 5

3 2 7 8

7 4 5 6 10 8 9 17

FCSD
(here: r = 1)

(a) (b)

(c) (d)

 [FIG2] Illustration of detection algorithms as a tree search. Solid-line nodes and branches are visited. Dashed nodes and branches are
not visited. The double circles represent the ultimate decisions on s. (a) ZF-DF: At each node, the symbol decision is based on choosing
the branch with the smallest branch metric. (b) SD, no pruning: Only nodes with Sn

k51fk 1s1, . . . , sk 2 # R are visited. (c) SD, pruning:
Like SD, but after encountering a leaf node with cumulative metric M, the algorithm will set R :5 M. (d) FCSD: Visits all nodes on the
r th layer, and proceeds with ZF-DF from these.

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on April 21, 2009 at 05:22 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [94] MAY 2009

[lecture NOTES] continued

In effect, by doing so, FCSD will reach
down to |S|r of the |S|n leaves. To form its
symbol decisions, FCSD selects the leaf,
among the leaves it has visited, which
has the smallest cumulative metric
f1 1s1 2 1c1 fn 1s1, c, sn 2 .

The subproblem (7) must be solved
once for each combination 5s1, ..., sr6,
that is |S|r times. FCSD does this approx-
imately, using a low-complexity method
(ZF or ZF-DF are good choices). This
works well because (7) is overdetermined:
there are n observations (y|1, c, y|n),
but only n2 r unknowns (sr11, c, sn).
More precisely, the equivalent channel
matrix when solving (7) will be a tall sub-
matrix of H, which is generally much
better conditioned than H.

Figure 2(d) illustrates the algorithm.
Here r5 1. Thus, both nodes “1” and “5”
in the layer closest to the root node are
visited. Starting from each of these two
nodes, a ZF-DF search is performed.

Naturally, the symbol ordering can be
optimized. The optimal ordering is the
one which renders the problem (7) most
well-conditioned. This is achieved by
sorting the symbols so that the most
“difficult” symbols end up near the tree
root. Note that “difficult symbol” is non-
trivial to define precisely here, but intui-
tively think of it as a symbol sk for which
Sk,k is large.

The choice of r offers a tradeoff
between complexity and performance.
FCSD solves (2) with high probability
even for small r, it runs in constant time,
and it has a natural parallel structure.
Relatives of FCSD that produce soft out-
put also exist [4].

SEMIDEFINITE-RELAXATION
(SDR) DETECTOR
The idea behind SDR [5], [6] is to relax the
finite-alphabet constraint on s into a
matrix inequality and then use semidefi-
nite programming to solve the resulting
problem. We explain how it works, for
binary phase-shift keying (BPSK) symbols
(sk [5616). Define

s2 ! c s
1
d , S ! s2 s2T 5 c s

1
d 3sT 1 4,

C ! c LTL 2 LTy,

2 y, TL 0
d .

Then

7 y|2 Ls 7 25 sTcs1 7 y| 7 2
5 Trace5CS6 1 7 y| 7 2

so solving (3) is the same as finding the
vector s [Sn that minimizes Trace {CS}.

SDR exploits that the constraint
s [Sn is equivalent to requiring that
rank {S} 5 1, sn115 1 and diag {S} 5
{1, . . . , 1}. It then proceeds by minimizing
Trace {CS} with respect to S, but relaxes
the rank constraint and instead requires
that S be positive semidefinite. This
relaxed problem is convex, and can be effi-
ciently solved using so-called interior
point methods. Once the matrix S is
found, there are a variety of ways to deter-
mine s, for example to take the dominant
eigenvector of S (forcing the last element
to unity) and then project each element
onto S like in (6). The error incurred by
the relaxation is generally small.

LATTICE REDUCTION (LR)
AIDED DETECTION
The idea behind LR [8], [9] is to trans-
form the problem into a domain where
the effective channel matrix is better
conditioned than the original one. How
does it work? If the constellation S is
uniform, then S may be extended to a
scaled enumeration of all integers, and
S

n may be extended to a lattice S
n. For

illustration, if S5 5 23,2 1, 1, 36, then
S

n5 5c,23,21, 1, 3, c6 3c 3
5c,23,21, 1, 3, c6 . LR decides
first on an n 3 n matrix T that has inte-
ger elements (Tk,l [Z) and which maps
t h e l a t t i c e S

n o n t o i t s e l f :
Ts [S

n 4s [S
n. That is, T should be

invertible, and its inverse should have
integer elements. This happens precisely
if its determinant has unit magnitude:
|T|5 61. Naturally, there are many
such matrices (T5 6 I is one trivial
example). LR chooses such a matrix T
for which, additionally, HT is well condi-
tioned. It then computes

 ŝr ! arg min
s9PSn

 || y2 1HT 2s r||. (8)

Problem (8) is comparatively easy, since
HT is well conditioned, and simple
methods like ZF or ZF-DF generally

work well. Once ŝ r is found, it is trans-
formed back to the original coordinate
system by taking ŝ5 T21ŝ r.

LR contains two critical steps. First, a
suitable matrix T must be found. There
are good methods for this (e.g., see refer-
ences in [8], [9]). This is computationally
expensive, but if the channel H stays
constant for a long time then the cost of
finding T may be shared between many
instances of (2) and complexity is less of
an issue. The other problem is that while
the solution ŝ always belongs to S

2 n, it
may not belong to S

n. Namely, some of
its elements may be beyond the borders
of the original constellation. Hence a
clipping-type operation is necessary and
this will introduce some loss.

SOFT DECISIONS
In practice, each symbol sk typically is
composed of information-carrying bits,
say 5bk, 1, c, bk, p6. It is then of interest
to take decisions on the individual bits
bk,i, and often, also to quantify how reli-
able these decisions are. Such reliability
information about a bit is called a “soft
decision,” and is typically expressed via
the probability ratio

P 1bk,i5 1| y 2
P 1bk,i5 0| y 2 5

g s:bk,i 1s251 P 1s| y 2
g s:bk,i 1s250 P 1s| y 2

5

g s:bk,i 1s251expa2 1
s

 || y2Hs||2bP 1s 2
g s:bk,i 1s250expa2 1

s
 || y2Hs||2bP 1s 2

.

(9)

Here “s:bk,i 1s 2 5 b” means all s for which
the ith bit of sk is equal to b, and P 1s 2 is
the probability that the transmitter sent s.
To derive (9), use Bayes rule and the
Gaussian assumption made on e [4].

Fortunately, (9) can be relatively well
approximated by replacing the two sums
in (9) with their largest terms. To find
these maximum terms is a slightly
modified version of (2), at least if all s
are equally likely so that P 1s 2 5 1/|S|n.
Hence, if (2) can be solved, good approx-
imations to (9) are available too. An
even better approximation to (9) is
obtained if more terms are retained, i.e.,

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on April 21, 2009 at 05:22 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [95] MAY 2009

not only the largest one [7], [4]. This is
naturally accomplished by many of the
methods we discussed, by simply includ-
ing the terms corresponding to all leaf
nodes in the decision tree that the algo-
rithm has visited. If the symbol vectors
have different a priori probabilities,
then under certain circumstances P 1s 2
can be incorporated by appropriately
modifying y and H [6], [4].

CONCLUSIONS
The goal of this lecture has been to pro-
vide an overview of approaches to (2), in
the communications receiver context.
Which method is the best in practice?
This depends much on the purpose of
solving (2): what error rate can be toler-
ated, what is the ultimate measure of
performance (e.g., frame-error-rate,
worst-case complexity, or average com-
plexity), and what computational plat-
form is used. Additionally, the bits in s
may be part of a larger code word and

different s vectors in that code word may
either see the same H (slow fading) or
many different realizations of H (fast
 fading). This complicates the picture,
because notions that are important in
slow fading (such as spatial diversity) are
less important in fast fading, where
diversity is provided anyway by time vari-
ations. Detection for MIMO has been an
active field for more than ten years, and
this research will probably continue for
some time.

AUTHOR
Erik G. Larsson (erik.larsson@isy.liu.se)
is a professor and head of division for
communication systems in the EE
department (ISY) of Linköping
University, Sweden. For more informa-
tion, visit www.commsys.isy.liu.se.

REFERENCES
[1] G. D. Golden, G. J. Foschini, R. A. Valenzuela,
and P. W. Wolniansky, “Detection algorithm and
initial laboratory results using V-BLAST space-time

communications architecture,” IEE Electron. Lett.,
vol. 35, pp. 14–16, Jan. 1999.

[2] E. Viterbo and J. Boutros, “A universal lattice
code decoder for fading channels,” IEEE Trans. In-
form. Theory, vol. 45, pp. 1639–1642, July 1999.

[3] L. G. Barbero and J. S. Thompson, “Fixing the
complexity of the sphere decoder for MIMO detec-
tion,” IEEE Trans. Wireless Commun., vol. 7, pp.
2131–2142, June 2008.

[4] E. G. Larsson and J. Jaldén, “Soft MIMO detection
at fixed complexity via partial marginalization,” IEEE
Trans. Signal Processing, vol. 56, pp. 3397–3407,
Aug. 2008.

[5] P. Tan and L. Rasmussen, “The application of
semidefinite programming for detection in CDMA,”
IEEE J. Select. Areas Commun., vol. 19, pp. 1442–
1449, Aug. 2001.

[6] B. Steingrimsson, Z.-Q. Luo, and K. Wong, “Soft
quasi-maximum-likelihood detection for multiple-
antenna wireless channels,” IEEE Trans. Signal
Processing, vol. 51, no. 11, pp. 2710–2719, Nov.
2003.

[7] B. M. Hochwald and S. Brink, “Achieving near-
capacity on a multiple-antenna channel,” IEEE
Trans. Commun., vol. 51, no. 3, pp. 389–399, Mar.
2003.

[8] C. Windpassinger and R. Fischer, “Low-complexi-
ty near-maximum-likelihood detection and precoding
for MIMO systems using lattice reduction,” in Proc.
IEEE Information Theory Workshop, 2003, pp.
345–348.

[9] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger,
“Closest point search in lattices,” IEEE Trans.
Inform. Theory, vol. 48, pp. 2201–2214, Aug.
2002. [SP]

[dsp TIPS&TRICKS] continued from page 82

AUTHOR
Maurice Givens (Maurice.Givens@gastechnol-
ogy.org) is a specialist in the research and
design of digital signal processing at Gas
Technology Institute and an adjunct lecturer at
Wright College, Chicago. He is a registered
professional engineer, a Senior Member of the
IEEE, and a senior member of NARTE.

REFERENCES
[1] R. Harris, D. Chabries, and P. Bishop, “A variable step
(VS) adaptive filter algorithm,” IEEE Trans. Acoust. Speech
Signal Processing, vol. ASSP-34, pp. 309–316, Apr. 1986.

[2] J. Evans, P. Xue, and B. Liu, “Analysis and implementa-
tion of variable step size adaptive algorithms,” IEEE Trans.
Signal Processing, vol. 41, pp. 2517–2535, Aug. 1993.

[3] T. Haweel and P. Clarkson, “A class of order statistic
LMS algorithm,” IEEE Trans. Signal Processing, vol. 40,
pp. 44–53, Jan. 1992.

[4] T. Aboulnasr and K. Mayyas, “A robust variable step-
size LMS-type algorithm: Analysis and simulations,” IEEE
Trans. Signal Processing, vol. 45, pp. 631–639, Mar. 1997.

[5] D. Pazaitis and A. Constantinides, “A novel kurtosis
driven variable step-size adaptive algorithm,” IEEE Trans.
Signal Processing, vol. 47, pp. 864–872, Mar. 1999.

[6] R. Kwong and E. Johnston, “A variable step size LMS
algorithm,” IEEE Trans. Signal Processing, vol. 40, pp.
1633–1642, July 1992. [SP]

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on April 21, 2009 at 05:22 from IEEE Xplore. Restrictions apply.

	Larsson_SPM09-TitlePage.pdf
	Larsson_SPM09

