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Primary System Detection for Cognitive Radio:
Does Small-Scale Fading Help?

Erik G. Larsson and Giorgio Regnoli

Abstract— We consider the effect of small-scale fading on the
detection of weak signals in cognitive radio systems. We formulate
a model for the detection problem taking fading into account,
and give the associated likelihood ratio tests. Additionally we give
an expression for the asymptotic detection performance and use
this to consider the tradeoff between the detection performance
and the coherence time and bandwidth of the channel.

Index Terms— Cognitive radio, detection.

I. INTRODUCTION

THE idea with cognitive radio is that spectrum licensed to
primary users may be used in an unlicensed fashion by

secondary users, provided that these secondary users do not
create harmful interference for the primary users. For example,
frequencies used for cellular telephony or TV broadcasting
may be locally reused for a local sensor network provided that
the latter transmits with low enough power. Cognitive radio
has received much attention during the last few years [1], [2].
Much of this interest is sparked by recent measurements which
show that radio spectrum by large is vastly under-utilized [3].
As a consequence, regulatory agencies consider policies that
will let licensed spectrum be used by unlicensed users under
certain conditions.

One basic challenge with cognitive radio is that before an
unlicensed user can begin transmitting, she must ensure that
nobody else is using the carrier in question. One way to do this
is to scan the corresponding band for some time and detect
whether any primary signal is present. If no signal is detected,
it may be concluded “safe” to begin transmission at a small
predetermined power. (The validity of the assumption, that it
is actually safe to transmit if no signal is heard, is debatable.
Yet some proposed rulemaking relies on a paradigm of the
type “transmit-if-you-cannot-detect”.) Typically, the received
primary signal is very weak [4]. The fundamental problem is
then to detect whether a weak signal is present or not.

The problem of weak signal detection for cognitive radio
has been previously studied in [5]. In particular it has been
shown that an energy detector is unfeasible as its performance
will be limited by uncertainties in the secondary receivers’
noise floor. In this paper we consider the setup of [5] but using
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a more realistic model for radio propagation, that includes
small-scale fading. It turns out that this changes the problem
fundamentally.

II. MODEL

We consider a block-fading channel. We shall assume that
measurements from K blocks are available, and that these
blocks are subject to independent but stationary (and flat)
fading. Each block has a bandwidth of B Hz and a time
duration of T seconds, and thus a time-bandwidth product
of BT . The value of T is effectively the coherence time of
the channel and B is its coherence bandwidth. This means
that each block is fully described by approximately 2BT
independent samples [6]. We shall set L = 2BT , and refer to
L as the “coherence time-bandwidth product”. Thus the total
number of samples available at the receiver is N = KL =
2KBT . Note that there is no fundamental difference between
channel variations across time and across frequency. What
matters is how many signal samples per channel realization
(L) that are available and that these samples are uncorrelated.

Two degenerate special cases emerge. If K = 1, N = L
then we say that we have slow fading. Only a single realization
of the fading process is observable. At the other extreme, if
L = 1, N = K, then we talk about fast fading. A new channel
realization is then observed for each received sample.

The objective is to discriminate between two hypotheses
H0 (no signal present), and H1 (signal present), defined as
follows: {

H0 : yk,l = ek,l

H1 : yk,l = hksk,l + ek,l

(1)

with k = 1, . . . ,K and l = 1, . . . , L. Here hk is the
complex channel gain for block k. The primary transmitted
signal samples are sk,l. We shall take the noise ek,l to be
i.i.d. complex Gaussian with zero mean and power σ2 per
complex dimension.

The detection problem in (1) can be easily ill-posed under
many circumstances. For example, suppose σ2 is unknown and
one is trying to detect a Gaussian signal of unknown power
over a static channel (K = 1). This is impossible, since there
is no way for the receiver to discriminate between signal and
noise (they both have a Gaussian density, and so their sum is
also Gaussian). On the other hand, on a non-constant channel
(K > 1) the receiver may be able to detect the time-variability
of the received power and based on this infer whether a signal
was transmitted or only noise is received. Hence it is clear
that fading may actually help the detection of weak signals.
However in the limit when K = N (fast fading), then only a
single sample of the fading process is observed per realization
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and one may no longer be able to discriminate between signal
and noise. Thus it is also evident that if the coherence time-
bandwidth product is small enough, fading may no longer be
helpful. This suggests that for fixed N , there is an “optimal”
coherence time-bandwidth product L.

III. DETECTORS

In the event sk,l and hk were known to the receiver then
optimal detection is accomplished by a standard matched filter.
This was studied in [5] in the cognitive radio context. We
shall next give statistical tests for the case that the signal and
channels are unknown.

In the case that {sk,l} are known but {hk} are unknown, it
is straightforward to compute the generalized likelihood-ratio
test (GLRT) [7, Ch. 6]. If σ2 is known, we find

Λ1(y) � ln
(

maxh p(y|H1,h)
p(y|H0)

)
=

1
σ2

(
K∑

k=1

‖Πsk
yk‖2

)
≷ η

(2)
where yk = [yk1, . . . , ykL]T , sk = [sk1, . . . , skL]T and Πx

denotes orthogonal projection, i.e., Πxy = x(xHx)−1xHy.
Also, ‖ · ‖ is the Euclidean norm. If σ2 is unknown,

Λ2(y) � N

[
ln

K∑
k=1

L∑
l=1

|yk,l|2 − ln
K∑

k=1

L∑
l=1

|y′k,l|2
]

≷ η (3)

where y′k,l is the observed data with the estimated signal
component projected out, i.e., y′k = (I −Πsk

)yk.
The more interesting case is when the signal {sk,l} is

also unknown. It may still have a known modulation format,
but such knowledge is generally not helpful for detection, as
argued in [5]. Thus to model an unknown signal we shall
assume that it is Gaussian with zero mean and variance σ2

s

(per dimension), where σ2
s generally is an unknown parameter.

The GLR test can be derived with the following result. If σ2

is known (but σ2
s unknown), the test is:

Λ3(y) � −L

(
K∑

k=1

ln

(
L∑

l=1

|yk,l|2
))

+
K∑

k=1

L∑
l=1

|yk,l|2
σ2

≷ η

(4)
(Note that the detector in (4) is not an energy detector.) If
both σ2 and σ2

s are unknown, the test is:

Λ4(y) � N ln

(
K∑

k=1

L∑
l=1

|yk,l|2 − L

K∑
k=1

ln

(
L∑

l=1

|yk,l|2
))

≷ η

(5)
The last model, with {sk,l} (including σ2

s ), {hk} and σ2

unknown is probably the most realistic one in practice1 and
therefore in the rest of the paper we focus on the test in (5).
(The others were presented for completeness.)

IV. ASYMPTOTIC PERFORMANCE OF (5)

The case of most interest is when both the signal {sk,l} the
channels {hk}, and the noise power σ2 are unknown, because
in this case the only hope is to be able to detect the primary
signal from time-variations in the received signal strength. The

1Cf. the arguments in [5] where it was shown that the receiver’s uncertainty
in knowledge of σ2 is a major limiting factor for the performance of a standard
energy detector.

associated detector is (5). We can derive its asymptotic per-
formance by using the general theory for distributions of the
GLRT test statistic [7]. There is one nuisance parameter (σ2),
and 2K unknown real-valued parameters which are present
under H1 but not under H0. (The variance of the signal, σ2

s

can be combined into the coefficients {hk}.) Conditioned on
{hk}, we have asymptotically

2 · Λ4(y) as.∼
{

χ2
2K under H0

χ′22K(λ) under H1

for N � 1 (6)

where χ2
r and χ′2r (γ) are central respectively non-central χ2

distributions with r degrees of freedom (and non-centrality
parameter γ). Also,

λ = KL
σ4

s

σ4

∑K
k=1 |hk|4

K
(7)

We have then the false alarm probability

Pf = P (χ2
2K > η) = Qχ2

2K
(η)

For fixed λ, we have the following detection probability:

Pd|λ = P (χ′22K(λ) > η|λ) = P
(
χ′22K(λ) > Q−1

χ2
2K

(Pf )|λ
)

The average detection probability is then

Pd =
∫ ∞

0

p(λ)Qχ′2
2K(λ)

(
Q−1

χ2
2K

(Pf )
)
dλ (8)

(note that λ ≥ 0).
In an effort to obtain a closed-form expression we make

the following calculation. In i.i.d. Rayleigh fading, {hk} are
complex normal with zero mean. Without loss of generality
we can assume that they have unit variance (variance 1/2 per
dimension) and we then find after some calculations

E[|hk|4] = 2, Var[|hk|4] = 20

E[λ] = 2KL
σ4

s

σ4
, Var[λ] = 20KL2 σ8

s

σ8

This shows that in the limit when K →∞ we have

1
K

λ → L
σ4

s

σ4
E[|hk|4] = 2L

σ4
s

σ4

where the convergence speed of the limit is O(1/K). Hence
for large K we have the following approximation of (8):

Pd|K→∞ ≈ Q
χ′2

2K

(
2KL

σ4
s

σ4

)(
Q−1

χ2
2K

(Pf )
)

(9)

By applying the central limit theorem, one can furthermore
obtain the following approximation [7]:

χ′2r (γ) as.∼ N
(
r + γ,

√
2r + 4γ

)
for large r. Applying this to (9) we obtain

Pf = Q

(
η − 2K√

4K

)
, Pd = Q

⎛⎝η − 2KL
σ4

s

σ4 − 2K√
4K + 8KL

σ4
s

σ4

⎞⎠
where Q(t) = P (N(0, 1) > t) = (1/

√
2π)

∫∞
t

e−x2/2dx is
the standard Gaussian Q-function. More compactly

Pd|K→∞ = Q

⎛⎝√
K Q−1(Pf )−KL

σ4
s

σ4√
K + 2KL

σ4
s

σ4

⎞⎠ (10)
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Fig. 1. Detection performance (in terms of the probability of a miss) for
fixed N = 1000 as a function of K. The false-alarm probability is fixed at
Pf = 0.7 and σ2

s/σ2 = −10 dB.
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Fig. 2. Asymptotic (large K, Eq. (10)) detection performance for different
L, K and N = KL as a function of the SNR σ2

s/σ2, at Pf = 0.7.

Equation (10) is derived only to illustrate the fundamental
hardness of the problem and it is valid only for large K (i.e.,
there must be fair number of independent fading realizations).
It breaks down as K becomes small. We see from (10) that
Pd generally increases with increasing K, L and signal-to-
noise ratio (SNR, defined as σ2

s/σ2). When N = KL → ∞,
Pd → 1, as it should. Furthermore, for a large number of
samples and fixed L, doubling K is equivalent to a 1.5 dB
increase in SNR. This means that determining the presence
of a primary signal by relying on detecting time-variations in
its received signal strength is very expensive in terms of the
number of samples required. Note that if K is large then one
is essentially comparing maxk |ĥk| (where ĥk is an estimate
of the gain during block k) to the average received signal
level. Any predictions of performance for such a procedure
are going to be dependent on the characteristics of the fading
and especially on the tail of its distribution.

V. ILLUSTRATIONS

In Figure 1 we illustrate the detector performance obtained
via Monte-Carlo simulation and by using the asymptotic
expressions developed in Section IV, for fixed N = 1000
as a function of K. The false-alarm probability is fixed at

Pf = 0.7 and σ2
s/σ2 = −10 dB. (This is a rather high false

alarm probability, but not unrealistic if one considers that
many cognitive users collaborate on the spectrum detection
and obtain independent conclusions which are fused.) There
exists an optimal value of K around K ≈ 10, although the
closed-form formula (10) is unable to predict this. (This should
come as no surprise since the associated approximations were
developed assuming K →∞.)

Figure 2 shows the asymptotic expression (10) as a function
of SNR for some different K, L and N = KL at Pf =
0.7. (The figure also shows empirical Monte-Carlo simulation
results.) The predicted SNR thresholds are relatively sharp.
Additionally, while we have found that detection is possible
even with unknown noise variance at the receiver, this example
shows explicitly how hard the detection problem really is: at
fixed L, an increase in the number of samples N by a factor
10 buys only a few dB increase in SNR performance.

VI. CONCLUSIONS

We have developed a basic model that accounts for small-
scale fading effects on the detection of primary signals in a
cognitive radio system. This represents an extension of what
was previously done in [5], where only stationary channels
were considered. In [5] the energy detector was analyzed and
it was found that its performance is going to be limited by
the receiver’s knowledge of its own noise level. By contrast,
we have explained why small-scale fading fundamentally
changes the nature of the detection problem in the sense that
unknown signals can be detected over an unknown channel,
even if the receiver noise level is completely unknown—
provided that the fading is fast enough but not too fast. The
reason is that the detector can detect time-variations in the
received signal strength. In theory, this phenomenon can be
exploited to overcome the fundamental problems of the energy
detector which were identified in [5]. However, quantitative
arguments that we have presented suggest that collecting a
huge, perhaps highly impractical, number of samples would
be necessary even for relatively high false alarm probabilities.
Possibly, correlation of the received signals could alleviate
the situation somewhat, however, most information-bearing
signals are relatively white.
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