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ABSTRACT

Resource allocation and transmit optimization for the multiple-
antenna Gaussian interference channel are important but dif cult
problems. Recently, there has been a large interest in algo-
rithms that nd operating points which are optimal in the sum-rate,
proportional-fair, or minimax sense. Finding these points entails
solving a nonlinear, non-convex optimization problem. In this pa-
per, we develop an algorithm that solves these problems exactly, to
within a prescribed level of accuracy and in a nite number of steps.
The main idea is to rewrite the objective functions so that methods
for monotonic optimization can be used. More precisely, we write
each objective function as a difference between two functions which
are strictly increasing over a normal constraint set. The so-obtained
reformulated, equivalent problem can then be solved ef ciently by
using so-called polyblock optimization. Numerical examples illus-
trate the advantages of the proposed framework compared to an ex-
haustive grid search.

Index Terms— Resource allocation, interference channel, non-
convex optimization, outer polyblock approximation

1. INTRODUCTION

Interference channels (IFC) consist of at least two transmitters and
two receivers. The rst transmitter wants to transfer information to
the rst receiver and the second transmitter to the second receiver,
respectively. This happens at the same time on the same frequency
causing interference at the receivers. Information-theoretic studies
of the IFC have a long history [1, 2, 3]. These references have pro-
vided various achievable rate regions, which are generally larger in
the more recent papers than in the earlier ones. However, the capac-
ity region of the general IFC remains an open problem. For certain
limiting cases, for example when the interference is weak or very
strong, respectively, the sum-capacity is known [4]. If the interfer-
ence is weak, it can simply be treated as additional noise. For very
strong interference, successive interference cancellation (SIC) can
be applied at one or more of the receivers. Multiple-antenna IFCs
are studied in [5]. Multiple-input multiple-output (MIMO) IFCs
have also recently been studied in [6], from the perspective of spatial
multiplexing gains. In [7], the rate region of the single-input single-
output (SISO) IFC was characterized in terms of convexity and con-
cavity. The MIMO IFC is also considered from a game-theoretic
point of view in [8].

This work was supported in part by the Swedish Research Council (VR)
and the Swedish Foundation for Strategic Research (SSF). E. Larsson is a
Royal Swedish Academy of Sciences (KVA) Research Fellow supported by
a grant from the Knut and Alice Wallenberg Foundation.

An explicit parameterization of the Pareto boundary for the
achievable rate region of the K-user Gaussian MISO IFC, for the
case when all multiuser interference is treated as additive Gaus-
sian noise at the receivers, was derived in [9]. For the special
case of two users, any point in the rate region can be achieved
by choosing beamforming vectors that are linear combinations of
the zero-forcing (ZF) and the maximum-ratio transmission (MRT)
beamformers. Hence, all important (i.e., Pareto-ef cient), operating
points can be expressed by two real-valued parameters between zero
and one 0 ≤ λ = [λ1, λ2] ≤ 1.

In the current work, we build on the parameterization in [10] and
focus on the maximum sum-rate operating point, the proportional-
fair operating point and the max-min rate point. The corresponding
optimization problems are non-convex problems which are dif cult
to solve directly. In particular, the max-min problem is non-smooth
and therefore derivate-based (gradient) optimization methods cannot
be applied. A suboptimal iterative algorithm based on alternating
projection was proposed in [10]. In general, this algorithm converges
to a local optimum. Therefore, we are interested in formulating a
general non-convex optimization framework which takes as much as
possible of the problem structure into account, and which is able to
nd the global optima of the problems.

This paper is structured as follows. First, we review the con-
cepts of monotonic optimization and difference of monotonic func-
tions (d.m.) maximization, and adapt these to the problem statement
at hand. Next, we analyze the properties of the achievable rates as a
function of λ1 and λ2. The optimization problems are reformulated
as difference of increasing functions programming problems, and -
nally, as monotonic optimization problems in a standard form. All
theoretical results and the proposed algorithms are illustrated by nu-
merical simulations. The results show the advantages of the mono-
tonic optimization framework compared to simple exhaustive grid
searches.

2. SYSTEM MODEL

In the setup that we consider, BS1 and BS2 have n transmit antennas
each, that can be used with full phase coherency. MS1 and MS2,
however, have a single receive antenna each. Hence our problem
setup constitutes a multiple-input single-output (MISO) IFC, which
is standard in the literature [5].

We assume that transmission consists of scalar coding followed
by beamforming, and that all propagation channels are frequency-
at. This leads to the following basic model for the matched- ltered,

symbol-sampled complex baseband data received at MS1 and MS2:
y1 = hT

11w1s1 + hT
21w2s2 + e1, y2 = hT

22w2s2 + hT
12w1s1 +

e2, where s1 and s2 are transmitted symbols, hij is the (complex-
valued) n × 1 channel-vector between BSi and MSj , and wi is the
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beamforming vector used by BSi. The variables e1, e2 are noise
terms which we model as i.i.d. complex Gaussian with zero mean
and variance σ2 per complex dimension. We assume that each base
station can use the transmit power P , but that power cannot be traded
between the base stations. Without loss of generality, we shall take
P = 1. This gives the power constraint ||wi||2 ≤ 1, i = 1, 2.
Throughout, we de ne the signal-to-noise ratio (SNR) as 1/σ2.

We do not consider the possibility of doing time-sharing be-
tween the systems.

3. RECENT RESULTS AND PROBLEM STATEMENT

The ZF and MRT beamformers are well known in the literature and
their operational meaning in a game-theoretic framework is studied
in [11]. They are given by:

wMRT
1 =

h∗
11

‖h11‖ and wMRT
2 =

h∗
22

‖h22‖ .

wZF
1 =

Π⊥
h∗

12
h∗

11∥∥∥Π⊥
h∗

12
h∗

11

∥∥∥ and wZF
2 =

Π⊥
h∗

21
h∗

22∥∥∥Π⊥
h∗

21
h∗

22

∥∥∥
for BS1 and BS2, respectively, where Π⊥

X = I−X(XHX)−1XH

denotes orthogonal projection onto the orthogonal complement of
the column space of X .

The following theorem is proved in [9].

Theorem 1 Any point on the Pareto boundary of the rate region is
achievable with the beamforming strategies

wi(λi) =
λiw

MRT
i + (1 − λi)w

ZF
i

‖λiwMRT
i + (1 − λi)wZF

i ‖ and

for some λ1, λ2, 0 ≤ λi ≤ 1.

The achievable rates as a function of λ = [λ1, λ2] read

R1(λ) = log

(
1 +

|wT
1 (λ1)h11|2

σ2
n + |wT

2 (λ2)h21|2
)

R2(λ) = log

(
1 +

|wT
2 (λ2)h22|2

σ2
n + |wT

1 (λ1)h12|2
)

. (1)

Based on the characterization in (1), we are interested in solving
the following problems:

P1: Maximize the weighted sum-rate:

max
0≤λ≤1

{ωR1(λ) + (1 − ω)R2(λ)} (2)

for some given ω, 0 ≤ ω ≤ 1.

P2: The proportional fairness problem:

max
0≤λ≤1

{R1(λ) · R2(λ)}. (3)

P3: The max-min problem (Egalitarian solution)

max
0≤λ≤1

min{R1(λ), R2(λ)}. (4)

All three programming problems (2), (3), and (4) are non-linear
and non-convex. The iterative algorithm proposed in [10] is one pos-
sible approach to solving them, but it does not necessarily converge
to the global optimum. Among algorithms that we are aware of up
to this point, only an exhaustive grid search over λ ∈ [0, 1]2 could

guarantee that the global optimum is found. In the following two sec-
tions, we propose a new optimization approach that nds the global
solution to the problems (2), (3), and (4) to with a given accuracy
and in a nite number of steps. This is our main contribution.

4. PRELIMINARIES: MONOTONIC OPTIMIZATION

Effectively the approach is to turn a non-convex but d.m. objective
function (given by (2), (3) or (4)) into a strictly increasing function
Φ(x). The price to pay is that we must enlarge the dimension of the
problem (from 2 to 3). However, we are fortunate that the constraint
set in the enlarged coef cient space is normal (in the sense de ned
in [12]). Therefore the outer polyblock approximation can be used
to nd the global optimum.

4.1. Increasing functions and normal sets

At rst, we need the basic concepts of increasing functions and nor-
mal sets. This material is contained partly in [12]. However, we need
the notion of a strictly increasing function and therefore we provide
a complete presentation and some alternative proofs.

De nition 1 For two vectors x′, x ∈ R
n we write x′ ≥ x and say

that x′ dominates x if x′
i ≥ xi for all i = 1, ..., n. We write x′ > x

and say that x′ strictly dominates x if x′
i > xi for all i = 1, ..., n.

De nition 2 A function f : R
n → R is said to be increasing on R

n
+

if f(x) ≤ f(x′) whenever 0 ≤ x ≤ x′. The function is said to
be increasing in the box [a, b]n ⊂ R

n
+ if f(x) ≤ f(x′) whenever

a1 ≤ x ≤ x′ ≤ b1. A function is said to be strictly increasing if
for x′ ≥ x ≥ 0 and x′ �= x follows that f(x′) > f(x). (Here
1 = [1, ..., 1]T .)

If the domain of these increasing functions is a normal set, we will
later obtain a characterization of the set on which the maximum is
achieved.

A set G is said to be normal if for all x ∈ G all points in the
box [0, x] are also in G. More precisely:

De nition 3 A set G ⊂ R
n
+ is called normal if for any two points

x, x′ ∈ R
n
+ such that x′ ≤ x, if x ∈ G, then x′ ∈ G, too.

For the characterization of the maximum of an increasing func-
tion over a normal set, we need the notion of upper boundary.

De nition 4 A point y ∈ R
n
+ is called an upper boundary point of

a bounded closed normal set D if y ∈ D and while the set Ky =
y + R

n
++ = {y′ ∈ R

n
+|y′ > y} lies outside D, i.e.

Ky ⊂ R
n
+ \ D.

The set of upper boundary points of D is called the upper boundary
of D and it is denoted by ∂+D.

In other words, a point y ∈ D is an upper boundary point of D if
there is no point in D that strictly dominates y.

The following result shows that the maximum of a strictly in-
creasing function over a normal set is always achieved on the upper
boundary of the normal set. The statement is somewhat weaker than
Proposition 7 in [12].

Proposition 1 The maximum of a strictly increasing function f(x)
over a normal set D, if it exists, is attained on ∂+D.
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4.2. Monotonic optimization and polyblock approximation

The monotonic optimization problem in standard form [13] is

max
x

f(x) s.t. x ∈ D (5)

where D is a normal set. We assume that D is normalized such that
the smallest box containing D is the unit box.

From Proposition 1 we know that the maximum of f(x) over
D is attained at the upper boundary ∂+D. The main idea to solve
the non-convex optimization problem (5) is to approximate ∂+D by
polyblocks.

De nition 5 A set P ⊂ R
n
+ is called a polyblock if it is the union of

a nite number of boxes.

The polyblock P is generated by a set of vertices T . The min-
imal set of vertices consists of only proper vertices, i.e., vertices
which are not dominated by any other vertex is T . It follows that for
all z, z′ ∈ T with z �= z′ we have neither z > z′ nor z < z′. An-
other important consequence of Proposition 1 is that the maximum
of an increasing function over a polyblock is achieved at a proper
vertex.

The main idea of the outer polyblock algorithm is to construct a
nested sequence of polyblocks {Pk} which approximate the normal
set D from above, that is

P1 ⊃ P2 ⊃ ... ⊃ D such that

max{f(x|x ∈ Pk)} ↘ max{f(x)|x ∈ D}. (6)

De ne the maximizer at iteration k as

x̃(k) = arg max
x∈Tk

f(x)

where Tk is the minimal vertex set of Pk .
Let the set of vertices in step k be Tk = {x(k)

1 , ..., x
(k)

K(k)}.
Also, let x̄(k) denote the unique intersection point of ∂+D and δx̃(k)

with δ ∈ [0, 1]. Then the set of (not necessarily minimal) vertices in
step k + 1 is constructed as follows

Tk+1 = Tk \ {x̃(k)}
n⋃

ν=1

{x̃(k) − [x̃(k)
ν − x̄(k)

ν ]eν} (7)

where en is the nth column of the identity matrix. Let Pk and Pk+1

be the polyblocks induced by the minimal set of vertices Tk and
Tk+1, respectively.

Proposition 2 The constructed polyblock Pk and Pk+1 ful ll

D ⊂ Pk+1 ⊂ Pk \ {x̃(k)}. (8)

Finally, we can remove all dominated vertices of Tk+1 to obtain
the minimal set of vertices needed for the next step k + 2.

4.3. Outer polyblock algorithm and stopping criteria

The general outer polyblock algorithm is described in Algorithm 1.
The algorithm performs two steps iteratively. First, it nds the ver-
tex x that maximizes f(·). Then, it subdivides the blocks in a
clever way to approximate the proximity of the upper boundary point
δx ∈ ∂+D. Next, dominated vertices are removed. The compu-
tational effort time is dominated by step that nds the intersection

Result: Solve optimization problem (5)
Input: Constraint set D, accuracies ε and η.
initialization: Set T = 1 , k = 1;1

while ε, η-accuracy and maximum number of steps is not2

reached do
x(k) = arg max{f(x)|x ∈ T, x ≥ ε1};3

if x(k) ∈ D then4

x∗ = x(k) is ε-optimal solution;5

else6

Compute the intersection point y(k) of ∂+D with7

δx(k) with 0 ≤ δ ≤ 1;
ȳ(k) = arg max{f(ȳ(k−1)), f(y(k))};8

if f(ȳ(k)) ≥ f(x(k)) − η then9

x∗ = ȳ(k) is an (ε, η)-approximate solution of10

(5);
else11

Compute n extreme points of the rectangle12

[y(k), x(k)] that are adjacent to x(k):
x(k),i = x(k) − (x

(k)
i − y

(k)
i )ei for 1 ≤ i ≤ n;

Z = [T \ {x(k)}] ∪ {x(k),1, ..., x(k),n};13

T is obtained from Z after dropping all vectors14

which are dominated by others;
end15

end16

k = k + 1;17

end18

Output: Solution x∗ to (5)
Algorithm 1: General outer polyblock algorithm

point between the line to the current best vertex and the upper bound-
ary of the constraint set. The removal of dominated vertices is ef -
ciently implemented according to [14, Proposition 4.2]. There are
three stopping criteria: when ε- or η-accuracy is reached, or when a
maximum number of steps is exceeded.

In the implementation, we used Bolzano’s bisection procedure to
compute the intersection point and to determine δ in Line 7, as sug-
gested in [13, Section 8]. Note that this problem is one-dimensional
regardless of the initial problem dimension.

5. SOLUTION BY MONOTONIC OPTIMIZATION

5.1. Reformulation as d.m. problems

The next three results show that the weighted sum-rate maximiza-
tion problem in (2) as well as the proportional-fair rate maximization
problem in (3) and the max-min problem in (4) are d.m. program-
ming problems.

Theorem 2 Problems P1, P2 and P3 (see Section 3) are d.m. pro-
gramming problems.

Thus, the three problems of interest can be formulated as the
following general d.m. problem

max
λ∈[0,1]2

φ(λ) − ψ(λ) (9)

with strictly increasing functions φ(·) and ψ(·). Next, we substitute
ψ(λ) = ψ(1)(1 − t) in (9) and obtain the equivalent programming
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Fig. 1. Sum-rate R1 + R2 over 0 ≤ λ ≤ 1.

problem with x = [λ1, λ2, t]

max φ(x) + ψ(1)(x3 − 1)︸ ︷︷ ︸
Φ(x)

s.t. x ∈ D (10)

with constraint set

D = {x ∈ R
3
+ : x1 ≤ 1, x2 ≤ 1, x3 ≤ 1 − ψ(x1, x2)

ψ(1)
}. (11)

Note that the function Φ(x) is strictly increasing. The key to proceed
is now:

Lemma 1 The set D de ned in (11) is normal.

Furthermore, the constraint set is compact, bounded, and con-
nected. The programming problem in (9) corresponds exactly to the
problem (5). Therefore, we can apply the outer polyblock approx-
imation algorithm shown in Alg. 1 to solve all three problems, the
weighted sum-rate maximization in (2), the proportional fair prob-
lem in (3), and the max-min problem in (4).

6. ILLUSTRATIONS

To illustrate the results, we took nT = 3 and chose randomly the
following channel realization:

h11 = [0.0937 + 1.1175i; 1.1264 + 0.0556i; 0.7201 + 0.4820i],

h12 = [−0.7245 + 0.3036i;−0.8728 − 0.0395i; 0.2042 + 0.2601i]

h21 = [−0.3288 − 1.4935i; 0.2623 + 0.9598i; 0.5150 + 0.7231i],

h22 = [0.7339 − 0.2231i;−0.2756 − 1.0983i;−0.9767 − 0.5006i].

Figure 1 shows the objective function of the problem (2) at an
SNR of 0 dB. Figure 2 illustrates the upper boundary of D. The
function on the vertical axis (1 − ψ(λ)

ψ(1)
) is non-convex, yet well ap-

proximated by the outer polyblock algorithm.

The solution found by Algorithm 1 achieves individual rates
R1(λ

∗) = 1.891 and R2(λ) = 1.5713 and thus a sum-rate of
3.4623. A 20 × 20 grid search (which corresponds to 400 func-
tion evaluations) gives the optimum as (R1 + R2) = 3.4619 <
(R1(λ)+R2(λ)). We performed the same simulation with a 10×10
grid search and 200 polyblock iterations. The sum-rate achievable
with the grid search was 3.4595 whereas the polyblock algorithm
obtained a sum-rate of 3.4622. This shows the advantage of the
polyblock algorithm compared to a grid search.
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Fig. 2. Constraint set D and vertices of the outer polyblock approx-
imation after 400 iterations.
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