
On the Equivariance of the Orientation and

the Tensor Field Representation

Klas Nordberg Hans Knutsson Gösta Granlund
Computer Vision Laboratory, Department of Electrical Engineering
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Abstract

The tensor representation has proven a successful
tool as a mean to describe local multi-dimensional ori-
entation. In this respect, the tensor representation
is a map from the local orientation to a second or-
der tensor. This paper investigates how variations of
the orientation are mapped to variation of the tensor,
thereby giving an explicit equivariance relation. The
results may be used in order to design tensor based
algorithms for extraction of image features defined in
terms of local variations of the orientation, e.g. multi-
dimensional curvature or circular symmetries. It is as-
sumed that the variation of the local orientation can
be described in terms of an orthogonal transforma-
tion group. Under this assumption a corresponding
orthogonal transformation group, acting on the ten-
sor, is constructed. Several correspondences between
the two groups are demonstrated.

1 Introduction

The tensor representation for orientation was in-
troduced by [Knutsson, 1989] as a tool for managing
orientation representation of images with dimension-
ality greater than two. The representation may be em-
ployed for arbitrary dimensionality, even though the-
oretical investigations and practical implementations
have been carried out only for images of dimension-
ality two, three and four, see [Knutsson et al., 1992a]
and [Knutsson et al., 1992b]. The main idea is to let
the eigensystem of a symmetric and positive semidef-
inite tensor, in practice corresponding to an n × n
matrix, represent the orientation structure of a neigh-
bourhood. As a simple example, consider the case of
two-dimensional images. The local orientation of an
image neighbourhood is then represented by a 2 × 2
tensor T. Due to its symmetry, the tensor can be de-

composed as

T = λ1 ê1 ê?
1 + λ2 ê2 ê?

2, (1)

where {ê1, ê2} are orthonormal eigenvectors of T
with corresponding eigenvalues {λ1, λ2}. The posi-
tive semidefiniteness of T implies that the eigenvalues
can be ordered such that λ1 ≥ λ2 ≥ 0. The tensor
representation suggested by [Knutsson, 1989] uses the
eigenvalues of T to describe both the energy content
and the orientation structure of the neighbourhood
and it uses the eigenvectors to describe the direction
of the orientation. This is exemplified with the follow-
ing three ideal cases.

• λ1 = λ2 > 0. The neighbourhood is isotropic, i.e.
does not contain any oriented structure.

• λ1 > 0, λ2 = 0. The neighbourhood contains
a dominant orientation which is perpendicular to
ê1.

• λ1 = λ2 = 0. The neighbourhood contains no
energy.

The three-dimensional case is almost as simple. Here,
the local orientation is represented by a 3 × 3 tensor
T which is decomposed as

T = λ1 ê1 ê?
1 + λ2 ê2 ê?

2 + λ3 ê3 ê?
3. (2)

Again, {ê1, ê2, ê3} are orthonormal eigenvectors of T
with corresponding eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0.
The orientation representation is exemplified with the
following four ideal cases.

• λ1 = λ2 = λ3 > 0. The neighbourhood is
isotropic.

• λ1 = λ2 > 0, λ3 = 0. The neighbourhood con-
tains iso-curves with one dominant orientation
which is perpendicular to the plane spanned by
ê1 and ê2.



• λ1 > 0, λ2 = λ3. The neighbourhood contains
iso-surfaces with one dominant orientation. The
iso-surfaces are perpendicular to ê1.

• λ1 = λ2 = λ3 = 0. The neighbourhood contains
no energy.

[Knutsson et al., 1992a] describes how tensors with
the above characteristics may be constructed using the
responses from quadrature filters.

In general, an arbitrary variation of the orienta-
tion structure will be reflected both in the eigenvalues
and the eigenvectors of T. As an example, the varia-
tion may indicate a transition from a line to a plane
structure in three dimensions. In the following, how-
ever, it is assumed that there is no variation in the
eigenvalues of T, implying that the character of the
orientation structure is constant and only the orien-
tation changes. Furthermore it is assumed that this
variation can be described as some type of transfor-
mation, A, acting on the eigenvectors of the tensor,
i.e. acting on the orientation. As an example, con-
sider a two-dimensional image containing a circle. An
image neighbourhood on the circle will then contain
a dominant orientation which is described by a vec-
tor ê perpendicular to the circle segment and, hence,
represented by a tensor T = êê?. When moving along
the circle, the dominant orientation will change with a
speed determined by the radius of the circle. In fact,
this variation can be described as a rotation of the
vector ê. Consequently, also the representation ten-
sors along the circle will vary somehow. The relations
between the variation of the vectors and that of the
tensors is, however, not apparent.

Generally, A may be of arbitrary type, but in the
following section it is assumed to be a linear operator,
corresponding to an n × n matrix. For instance, in
the above example A would be represented by a ro-
tation matrix. Let {êk} denote the eigenvectors of T.
According to the above, {êk} will change between two
image points, x0 to x1, as

{êk}x1 = A{êk}x0 . (3)

The representation tensor, T, is a function of the
eigensystem, i.e.

T = T({êk}), (4)

and will therefore transform according to

Tx1 = T(A{êk}x0). (5)

Since T is a linear combination of outer products of
the eigenvectors, Equation (5) may be rewritten as

Tx1 = A Tx0 A?, (6)

Though correct, this description of how T transforms
is of little practical use and it would be much more
convenient to find an operator A, corresponding to A,
such that

Tx1 = A[ Tx0 ]. (7)

The concept of equivariance was introduced by
[Wilson and Knutsson, 1988] and [Wilson and Spann,
1988] in order to make a formal theory for feature
representation. It implies that transformations of a
feature are reflected in transformations of the repre-
sentation. In view of the previous discussion, A and A
form such a pair of transformations called equivariance
operators. The purpose of this paper is to establish
a pair of equivariance operators for the tensor repre-
sentation of orientation. The results may be used in
order to design tensor based algorithms for extraction
of features defined in terms of local variation of the
orientation, e.g. curvature or circular symmetries.

2 Derivation of results

Let V and V ? denote a vector space and its cor-
responding dual space, both of the type Rn for some
integer n. The vector space V

∗
⊗V is then the set of all

linear maps from from V to itself. For convenience,
elements of V are referred to as vectors whereas ele-
ments of V

∗
⊗V are referred to as tensors. Let v be an

arbitrary vector and define

T = v v?, (8)

where the ?-sign indicates transpose. This implies that
T is a tensor. We will now consider the case where v
is a function of a real variable x, defined as

v = v(x) = exH v0, (9)

where H is an anti-Hermitian tensor. The exponential
function is here defined in terms of the familiar Taylor
series,

exH = I + xH + x2

2 H2 + . . . (10)



valid for any tensor H. This functions has the inter-
esting property of mapping anti-Hermitian tensors to
orthogonal tensors, see e.g. [Nordberg, 1992]. Hence,
for x ∈ R, Equation (10) defines a continuous set of
orthogonal tensors which in fact forms a group.

The motivation for introducing the exponential
function is that it provides a mean to realize both
rotations and other quite general orthogonal transfor-
mations. It can be proved, see e.g. [Nordberg, 1992],
that any n × n anti-Hermitian tensor, H, can be de-
composed as

H =
n∑

k=1

i λk fk f?
k , (11)

where {fk, k = 1, . . . , n} are orthonormal eigenvectors
of T with corresponding eigenvalues iλk where λk ∈ R.
It should be noted that in general the eigenvectors fk
are complex implying that the ?-operation also must
include complex conjugation. Furthermore, these vec-
tors are not proper elements of V but rather a com-
plexified version thereof. For all cases of interest for
this paper, H is real which implies that its eigenvec-
tors as well as their corresponding eigenvalues come
in complex conjugate pairs. Furthermore, the real
and imaginary part of the eigenvectors are orthogo-
nal, at least for eigenvectors with non-zero eigenval-
ues. Hence, each pair of complex conjugate eigenvec-
tors, fk and f̄k, will define a two-dimensional subspace
of V . The corresponding eigenvalues, ±iλk, will then
determine the relative speed by which exH rotates the
projection of v on the subspace. In practice, we are
often interested in operators exH which are periodic
in the parameter x. If normalizing the period to 2π,
this implies that all λk are integers. For more details
on this subject see e.g. [Nordberg, 1992]. Hence, it
is possible to construct an orthogonal operator which
rotates the projection of v on arbitrary orthogonal
two-dimensional subspaces of V , the angular velocity
relative to x being arbitrary integers, by choosing H
appropriately.

Insertion of Equation (9) into the right hand side
of Equation (8) gives

T = T(x) = exH v0 v?
0 e−xH. (12)

If v describes the orientation of an image neighbour-
hood, and Equation (9) describes how the vector
changes when moving along some path in the image,
then Equation (12) will describe how the orientation
tensor changes along the same path. In the form pre-
sented by Equation (12), however, the variation of T
with respect to x is quite obscure. The right hand

side consists of the matrix product between a vari-
able orthogonal tensor, the tensor v0v

?
0 and the trans-

pose of the first orthogonal tensor. There is, however,
another way of expressing this product. Let the pa-
rameter x have some fixed value x0. The mapping
Q : V

∗
⊗V → V

∗
⊗V , defined as

Q[ X ] = ex0H X e−x0H, (13)

is then a linear map. Allowing x to vary implies
that Q is a function of x and suggest the notation
Q(x) instead of Q. The introduction of the map Q(x)
means that the right hand side of Equation (12) can
be rewritten as

T(x) = Q(x)[ v0 v?
0 ]. (14)

Hence, the tensor T is the image of v0v
?
0 under the

map Q(x).

We will now investigate the structure of Q. A
scalar product on V

∗
⊗V is defined by the function

s : V
∗
⊗V × V

∗
⊗V → R, where

s(X,Y) = trace[ X?Y ]. (15)

This gives

s(Q(x) X,Q(x) Y) =

trace[ (Q(x) X)? Q(x)Y ] =

trace[ (exH X e−xH)? exH Y e−xH ] =
(16)

trace[ exH X?e−xH exH Y e−xH ] =

trace[ e−xH exH X? e−xH exH Y ] =

trace[ X?Y ] = s(X,Y),

which implies that Q(x) is an orthogonal transforma-
tion on V

∗
⊗V for all x ∈ R. Evidently, Q(x)Q(y) =

Q(x + y) which implies that the set of all Q forms a
group under composition of transformations. Hence,
if v is subject to an orthogonal transformation group,
then T is subject to an orthogonal transformation
group as well. Let H be a fixed and anti-Hermitian
tensor. A linear map H : V

∗
⊗V → V

∗
⊗V , is then de-

fined by

H[ X ] = H X−X H. (17)



Using the notation H0 = I, where I is the identity
tensor, the following equation, which is easily proved
by induction, gives an explicit form for repeated ap-
plications of H on X

Hk[ X ] =
k∑

l=0

(k
l ) Hk−l X (−H)l. (18)

This equation is valid for all integers k ≥ 0, using the
convention that H0 = I where I is the identity map
on V

∗
⊗V . With this results at hand, insertion of Equa-

tion (10) into Equation (13) gives

Q(x)[ X ] =
[

∞∑
k=0

xk

k! Hk

]
X

[
∞∑

l=0

(−x)l

l! Hl

]
=

∞∑
k=0

∞∑
l=0

xk+l

k! l! Hk X (−H)l =
(19)

∞∑
k=0

k∑
l=0

xk

(k−l)! l! Hk−l X (−H)l =

∞∑
k=0

xk

k!

k∑
l=0

(k
l ) Hk−l X (−H)l =

[
∞∑

k=0

xk

k! Hk

]
[ X ] = exH [ X ].

Inserted into Equation (14) this gives

T(x) = exH[ v0v
?
0 ]. (20)

Hence, if the vector v is transformed by the operator
exH, then the tensor T is transformed by the operator
exH, where H is defined by Equation (17).

We have now established a correspondence between
the transformations of the vector v and of the ten-
sor T, given by Equations (9), (17) and (20). In this
form, however, the correspondence is quite implicit
and does not reveal any interesting properties. By ex-
amining the eigensystem of H and H and how they
are related, much more information can be obtained.
The eigensystem of H has already been treated in the
text accompanying Equation (11). When considering
the eigensystem of H it is natural to use the term
eigentensor for any tensor which after the mapping of
H equals itself times a scalar constant. Assume that
{fk, k = 1, . . . , n} and {iλk} is the eigensystem of H.
It is then straightforward to prove that

H[ fkf
?
l ] = i (λk − λl) fkf

?
l . (21)

Hence, any tensor of the type fkf
?
l is an eigentensor

of H with corresponding eigenvalue i(λk − λl). In
fact, these tensors are the only eigentensors of H.
More details on the eigensystem of H is found in
[Nordberg, 1992], Section 5.6. Since the eigenvectors
and eigenvalues of H come in complex conjugate pairs,
so must the eigentensors and the corresponding eigen-
values of H as well. Consequently, H constitutes an
anti-Hermitian map from V

∗
⊗V to itself. This result

could also have been derived using the scalar product
defined by Equation (15). In the same way as each
pair of eigenvectors of H defines a two-dimensional
subspace of V , each pair of eigentensors, fk f?

l and
f̄k f̄?

l , will define a two-dimensional subspace of V
∗
⊗V .

Consequently, the operator exH rotates the projection
of T on each such subspace with a relative speed de-
termined by λk − λl.

To summarize, if the transformation properties of v
can be accounted to an orthogonal operator exH, then
T is transformed by the operator exH. The eigen-
system of the anti-Hermitian tensor H describes how
v is transformed in terms of how its projections on
two-dimensional subspaces of V , defined by the eigen-
vectors, rotate with a speed relative to x determined
by the corresponding eigenvalues. Given the eigensys-
tem of H it is possible to construct the eigensystem of
H. The eigentensors of H are simply the outer prod-
uct between any possible choice of two eigenvectors of
H, i.e. fkf

?
l , and the corresponding eigenvalues are the

differences i(λk − λl). The eigentensors, fkf
?
l , will de-

fine a number of two-dimensional subspaces of V
∗
⊗V

and T will transform according to rotations in each
such subspace with relative speed (λk − λl).

3 Examples

The previous section showed a correspondence be-
tween the transformation of v and that of T in terms
of the eigensystems of H and H, two anti-Hermitian
mapping in V and V

∗
⊗V respectively. In this section

the correspondence is exemplified for the cases n = 2
and n = 3.

The two-dimensional case
Assume n = 2. Orthogonal transformations of v are
then simple two-dimensional rotations. With

f̂1 = [ f1+if2√
2

], f̂2 = [ f1−if2√
2

], (22)

where f1 and f2 are two arbitrary orthonormal vectors
in R2, the anti-Hermitian tensor H which defines the



transformation of v can be expressed as

H = i f̂1 f̂?
1 − i f̂2 f̂?

2 . (23)

The operator exH will then rotate any vector in R2

around the origin by the angle x. Furthermore, the
eigenvalues of H are ±i and, according to the results
from the previous section, this implies that H, the
anti-Hermitian map which governs the transformation
of T, has the following eigensystem.

Eigentensor Eigenvalue

f̂1 f̂?
1 0

f̂2 f̂?
2 0

f̂1 f̂?
2 2i

f̂2 f̂?
1 −2i

(24)

It is easy to prove that independently of the choice of
f1 and f2, this amounts to

Eigentensor Eigenvalue

1
2

(
1 i
−i 1

)
0

1
2

(
1 −i
i 1

)
0

e2iα

2

(
1 −i
−i −1

)
2i

e−2iα

2

(
1 i
i −1

)
−2i

(25)

where α is a constant determined by the choice of f1
and f2. The exponential factors in front of the last
two eigentensors can, however, be omitted since it is
the eigenspaces of H which are of interest rather than
specific eigentensors. The first eigentensor pair of H,
with eigenvalue 0, defines a two-dimensional subspace
of V

∗
⊗V which is spanned by the tensors

(
1 0
0 1

)
and

(
0 1

−1 0

)
. (26)

Since the eigenvalues are 0, this implies that the pro-
jection of T on this subspace is invariant with respect
to the parameter x. The second eigentensor pair, with
eigenvalues ±2i, defines a two-dimensional subspace of
V
∗
⊗V which is spanned by the tensors

(
1 0
0 −1

)
and

(
0 1
1 0

)
. (27)

Since the eigenvalues are ±2i, this implies that the
projection of T on this subspace rotates with twice
the speed of v. Hence, the tensor representation of
two-dimensional orientation is in fact a type of double
angle representation. This representation was intro-
duced by [Granlund, 1978] who suggested that a two-
dimensional vector should be used to represent the
orientation by constructing the representation vector
such that it rotates with twice the speed of the orienta-
tion. In the tensor case a 2×2 tensor, corresponding to
a four dimensional vector, is used instead and it is the
projection of the tensor on a specific two-dimensional
subspace which rotates with twice the speed of the
orientation.

The three-dimensional case
Assume n = 3. Any orthogonal transformation of v
is then described by a two-dimensional plane in which
the projection of v is rotated by the angle x. Let
{f1, f2, f3} be an orthonormal of set of vectors such
that f1 and f2 span the plane of rotation. With f̂1 and
f̂2 as defined by Equation (22), the anti-Hermitian ten-
sor can be written

H = i f̂1 f̂?
1 − i f̂2 f̂?

2 + 0 · f3f?
3 (28)

The eigenvalues of H are thus ±i and 0. Hence, the
eigensystem of H is

Eigentensor Eigenvalue

f̂1f̂
?
1 , f̂2f̂

?
2 , f3f

?
3 0

f̂1f
?
3 , f3f̂

?
2 i

f3f̂
?
1 , f̂2f

?
3 −i

f̂1f̂
?
2 2i

f̂2f̂
?
1 −2i

(29)

According to the above, the projection of T on the
two-dimensional subspace defined by f̂1f̂

?
2 and f̂2f̂

?
1 will

rotate will twice the speed of the parameter x. Hence,



in the three-dimensional case, the orthogonal trans-
formation of T will depend on the plane of rotation
of v. As an example consider a cylinder in three di-
mensions. If cutting the cylinder with a plane perpen-
dicular to its axes of symmetry, the result will be a
circle. The normal vectors of the cylinder along the
circle will lie in the plane. If moving along the cir-
cle, the normal vectors will transform according to a
rotation in the plane. The three-dimensional rotation
is determined by the three orthonormal vectors f1, f2
and f3, where the first two span the plane of rotation
and the third is perpendicular to it. The orientation
tensor, T, along the circular path will, according to
the above, transform according to rotations in differ-
ent two-dimensional subspaces of V

∗
⊗V with relative

speed 2, 1 and 0. In the case of a cylinder, however,
the projection of the tensor on the planes with relative
speed 1 and 0 vanishes. The tensor will only have non-
vanishing projection on the two-dimensional subspace
defined by f̂1f̂

?
2 and f̂2f̂

?
1 and this projection rotates

with twice the speed of x.

4 Discussion

This paper have demonstrated an equivariance of
the orientation and the tensor field representation.
The equivariance is based on the assumption that
there is one and the same transformation A which
acts on all eigenvectors of the representation tensor.
This transformation is furthermore assumed to form
an orthogonal operator group, exH. These assump-
tions may of course not valid for any possible type of
variation between two adjacent neighbourhoods of an
image. If valid, however, then Section 2 have proved
the possibility to construct an orthogonal operator
group, exH, which acts on the representation tensor T.
The latter group then describes the equivalent trans-
formation of T relative to the former of the orien-
tation. Both H and H are anti-Hermitian maps, on
V and V

∗
⊗V respectively, and their eigensystems are

closely related. As a general results from Section 2, we
see that if iλ is the eigenvalue of H with largest ab-
solute value then the corresponding value for H is 2iλ.
Hence, in terms of rotations, there is always a projec-
tion of T on some two-dimensional subspace which
rotates with twice the speed compared to the eigen-
vectors of T. In general, there are also projections of
T which rotates in other subspaces with relative speed
less than 2λ.

The tensor representation of orientation has in-
spired a number of algorithms for detection of lo-

cal gradients in the tensor field, e.g. [B̊arman, 1991],
[Westin, 1991] or [Westin and Knutsson, 1992]. These
algorithms are based on correlating the tensors in each
neighbourhood with a fixed set of tensor filters. By
choosing the filters appropriately and combining the
filter outputs carefully, estimates of e.g. local curva-
ture can be obtained. The results of this paper suggest
that the variation of the local tensor field in an image
may be seen as a consequence of the variation of the
orientation field. Assuming that the latter is subject
to an orthogonal transformation group, it has been
proved that the representation tensor is subject to an
orthogonal transformation group as well. This implies
the possibility of designing algorithms for detection of
local variation of orientation, e.g. three-dimensional
curvature, based on the transformation characteristics
of the representation tensor T. For a given feature, de-
fined in terms of local variation of the orientation, it
must first be established what transformation group
acts on the orientation. If the transformation can be
assumed to be orthogonal, the result will then be the
eigensystem of H. Given this eigensystem, this paper
explains how to form H, describing the transforma-
tion group of the tensor T. Hence, one way of defining
new algorithms is to search of image neighbourhoods
in which the tensor transforms according to the trans-
formations group exH. Another way is to estimate
the transformation group in each neighbourhood of
the image. If the assumption of orthogonal groups is
valid, this implies that H is estimated for each neigh-
bourhood and also that this anti-Hermitian map may
be used to represent the variation of the neighbour-
hood.
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tory, Linköping University, Sweden.

[Westin, 1991] C.-F. Westin. Feature extraction based
on a tensor image description. Thesis No. 288, ISBN
91–7870–815–X.

[Westin and Knutsson, 1992] C.-F. Westin and H.
Knutsson. Extraction of local symmetries using
tensor field filtering. In Proceedings of 2nd Singa-
pore International Conference on Image Processing.
IEEE Singapore Section.

[Wilson and Knutsson, 1988] R. Wilson
and H. Knutsson. Uncertainty and inference in the
visual system. IEEE Transactions on Systems, Man
and Cybernetics, 18(2).

[Wilson and Spann, 1988] R. Wilson and
M. Spann. Image segmentation and uncertainty. Re-
search Studies Press.


