
Knowledge Processing Middleware

Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty
{frehe, jonkv, patdo}@ida.liu.se

Dept. of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

Abstract. Developing autonomous agents displaying rational and goal-directed
behavior in a dynamic physical environment requires the integration of a great
number of separate deliberative and reactive functionalities. This integration must
be built on top of a solid foundation of data, information and knowledge hav-
ing numerous origins, including quantitative sensors and qualitative knowledge
databases. Processing is generally required on many levels of abstraction and in-
cludes refinement and fusion of noisy sensor data and symbolic reasoning. We
propose the use of knowledge processing middleware as a systematic approach
for organizing such processing. Desirable properties of such middleware are pre-
sented and motivated. We then argue that a declarative stream-based system is
appropriate to provide the desired functionality. Different types of knowledge
processes and components of the middleware are described and motivated in the
context of a UAV traffic monitoring application. Finally DyKnow, a concrete ex-
ample of stream-based knowledge processing middleware, is briefly described.1

1 Introduction

When developing autonomous agents displaying rational and goal-directed behavior in
a dynamic physical environment, we can lean back on decades of research in artifi-
cial intelligence. A great number of deliberative and reactive functionalities have al-
ready been developed, including chronicle recognition, motion planning, task planning
and execution monitoring. Integrating these approaches into a coherent system requires
reconciling the different formalisms they use to represent information and knowledge
about the world. To construct these world models and maintain a correlation between
them and the environment, information and knowledge must be extracted from data col-
lected by sensors. However, most research done in a symbolic context tends to assume
crisp knowledge about the current state of the world while information extracted from
the environment often consists of noisy and incomplete quantitative data on a much
lower level of abstraction. This causes a wide gap between sensing and reasoning.

Bridging this gap in a single step, using a single technique, is only possible for
the simplest of autonomous systems. As complexity increases, one typically requires
a combination of a wide variety of methods, including more or less standard function-
alities such as various forms of image processing and information fusion as well as

1 This work is partially supported by grants from the Swedish Aeronautics Research Coun-
cil (NFFP4-S4203), the Swedish Foundation for Strategic Research (SSF) Strategic Research
Center MOVIII and the Center for Industrial Information Technology CENIIT (06.09).



application-specific and possibly even scenario-specific approaches. Such integration is
often done ad hoc using a variety of mechanisms within a single architecture, partly by
allowing the sensory and deliberative layers of a system to gradually extend towards
each other and partly by introducing intermediate processing levels.

We propose using the term knowledge processing middleware for a principled and
systematic framework for organizing incremental and potentially distributed processing
of knowledge at many levels of abstraction. Rather than being a robotic architecture it-
self, knowledge processing middleware should provide an infrastructure for integrating
the necessary components in such an architecture and managing the information flow
between these components. It should support incremental processing of sensor data and
facilitate generating a coherent view of the environment at increasing abstraction levels,
eventually providing knowledge at a level natural to use in symbolic deliberative func-
tionalities. It should also support the integration of different deliberation techniques.

In the next section, an example scenario is presented as further motivation for the
need for a systematic knowledge processing middleware framework. Desirable proper-
ties of such frameworks are investigated and a specific stream-based architecture suit-
able for a wide range of systems is proposed. As a concrete example, our framework
DyKnow is briefly described. We conclude with some related work and a summary.

2 A Traffic Monitoring Scenario

Traffic monitoring is an important application domain for autonomous unmanned aerial
vehicles (UAVs), where tasks such as detecting accidents and traffic violations and find-
ing accessible routes for emergency vehicles provide a plethora of cases demonstrating
the need for an intermediary layer between sensing and deliberation.

One approach to detecting traffic violations uses a formal declarative description of
each type of violation. This can be done using a chronicle [1], which defines a class
of complex events using a simple temporal network where nodes correspond to occur-
rences of high level qualitative events and edges correspond to metric temporal con-
straints. For example, to detect a reckless overtake, events corresponding to changes in
qualitative spatial relations such as beside(car1, car2) and on(car, road) might be used.
Creating such representations from low-level sensory data, such as video streams, in-
volves a great deal of work at different levels of abstraction which would benefit from
being separated into distinct and systematically organized tasks. Figure 1 provides an
overview of how this processing could be organized. We emphasize that this is intended
to illustrate one potential use for knowledge processing middleware rather than to pro-
pose a specific robotic architecture to be used in UAV applications.

At the lowest level, a helicopter state estimator uses data from an inertial measure-
ment unit (IMU) and a GPS sensor to determine the current position and attitude of the
UAV. This information is fed into a camera state estimator, together with the current
angles of the pan-tilt unit on which color and infrared cameras are mounted, to deter-
mine the current camera state. The image processing system uses the camera state to
determine where the cameras are currently pointing. The two video streams can then be
analyzed in order to extract vision objects representing hypotheses regarding moving
and stationary physical entities, including their approximate positions and velocities.



Chronicle 

RecognitionRecognition

Qualitative spatial relations

Qualitative Spatial 

Reasoning

Car objects

Anchoring
Temporal Logic 

Progression

Geographical 

Information System

Car objects

Road 

objects
Formula events

Formula states

Image 

Vision objects

Formula events

Color camera Image 

Processing

Camera state

Color camera

IR camera

Helicopter State 

Estimation

Camera State 

Estimation

Helicopter

state

IMU GPS Pan-tilt unit

Fig. 1. Incremental Processing

Each vision object must be associ-
ated with a symbol for use in higher
level services, a process known as an-
choring [2, 3]. Identifying which vi-
sion objects correspond to vehicles is
also essential, which requires knowl-
edge about normative sizes and behav-
iors of vehicles. Behaviors can be de-
scribed using formulas in a metric tem-
poral modal logic, which are incremen-
tally progressed through states that in-
clude current vehicle positions, veloci-
ties, and other relevant information. An
entity satisfying all requirements can be
hypothesized to be a vehicle, a hypoth-
esis that may be withdrawn if the pro-
gressor signals that the entity has ceased

to satisfy the normative behavior.
As an example, vehicles usually travel on roads. Given that image processing pro-

vides absolute world coordinates for each vision object, the anchoring process can
query a geographic information system to determine the nearest road segment and de-
rive higher level predicates such as on-road(car) and in-crossing(car). These would be
included in the states sent to the progressor as well as in the vehicle objects sent to
the next stage of processing, which involves deriving qualitative spatial relations be-
tween vehicles such as beside(car1, car2) and close(car1, car2). These predicates, and
the concrete events corresponding to changes in the predicates, finally provide sufficient
information for the chronicle recognition system to determine when higher-level events
such as reckless overtakes occur.

In this example, a considerable number of distinct processes are involved in bridging
the gap between sensing and deliberation and generating the necessary symbolic repre-
sentations from sensor data. However, to fully appreciate the complexity of the system,
we have to widen our perspective. Towards the smaller end of the scale, we can see that
a single process in Figure 1 is sometimes merely an abstraction of what is in fact a set
of distinct processes. Anchoring is a prime example, encapsulating tasks such as the
derivation of higher level predicates which could also be viewed as a separate process.
At the other end of the scale, a complete UAV system also involves numerous other sen-
sors and information sources as well as services with distinct knowledge requirements,
including task planning, path planning, execution monitoring, and reactive procedures.

Consequently, what is seen in Figure 1 is merely an abstraction of the full com-
plexity of a small part of the system. It is clear that a systematic means for integrat-
ing all forms of knowledge processing, and handling the necessary communication
between parts of the system, would be of great benefit. Knowledge processing mid-
dleware should fill this role, by providing a standard framework and infrastructure for
integrating image processing, sensor fusion, and other data, information and knowledge
processing functionalities into a coherent system.



3 Knowledge Processing Middleware

As stated in the introduction, any form of knowledge processing middleware should
provide a principled and systematic framework for bridging the gap between sensing
and deliberation in a physical agent. While it is unlikely that one will ever achieve
universal agreement on the detailed requirements for such middleware, the following
requirements have served as important guiding principles.

First, the framework should permit the integration of information from distributed
sources, allowing this information to be processed at many different levels of abstrac-
tion and transformed into a suitable form for use by a deliberative functionality. In
traffic monitoring, the primary input will consist of low level sensor data such as im-
ages, a signal from a barometric pressure sensor, a GPS signal, laser range scans, and
so on. There might also be high level information available such as geographical in-
formation and declarative specifications of traffic patterns and normative behaviors of
vehicles. The middleware must be sufficiently flexible to allow the integration of these
sources into a coherent processing system. Since the appropriate structure will vary be-
tween applications, a general framework should be agnostic as to the types of data and
information being handled and should not be limited to specific connection topologies.

Many applications, including traffic monitoring, provide a natural abstraction hier-
archy starting with quantitative sensor signals, through image processing and anchor-
ing, to representations of objects with both qualitative and quantitative attributes, to
high level events and situations where objects have complex spatial and temporal re-
lations. Therefore a second requirement is the support of quantitative and qualitative
processing as well as a mix of them.

A third requirement is that both bottom-up data processing and top-down model-
based processing should be supported. Different abstraction levels are not independent.
Each level is dependent on the levels below it to get input for bottom-up data processing.
At the same time, the output from higher levels could be used to guide processing in a
top-down fashion. For example, if a vehicle is detected on a particular road segment,
then a vehicle model could be used to predict possible future locations, which could be
used to direct or constrain the processing on lower levels.

A fourth requirement is support for management of uncertainty. Many types of un-
certainty exist, at the quantitative sensor data level as well as in the symbolic identity of
objects and in temporal and spatial aspects of events and situations. It should be possi-
ble to use different approaches in different architectures implemented with knowledge
processing middleware, and to integrate multiple approaches in a single application.

Physical agents acting in the world have limited sensory capabilities and limited
resources. At times these resources may be insufficient for satisfying all currently exe-
cuting tasks, and trade-offs may be necessary. For example, reducing update frequencies
would cause less information to be generated, while increasing the maximum permitted
processing delay would provide more time to complete processing. Similarly, an agent
might decide to focus its attention on the most important aspects of its current situa-
tion, ignoring events or objects in the periphery, or to focus on providing information
for the highest priority tasks or goals. Resource-hungry calculations can sometimes be
replaced with more efficient but less accurate ones. Each trade-off will have effects on
the quality of the information produced and the resources used. A fifth requirement on



knowledge processing middleware is therefore support for flexible configuration and
reconfiguration. This is also necessary for context-dependent processing. For example,
one may initially assume that vehicles follow roads. If a vehicle goes off road, this
simplifying assumption must be retracted and processing may need to be reconfigured.

It should be possible to provide an agent implemented using knowledge processing
middleware with the ability to reason about trade-offs and reconfigure itself without
outside help, which requires introspective capabilities. Specifically, the agent must be
able to determine what information is currently being generated as well as the potential
effects of any changes it may make in the processing structure. Therefore a sixth re-
quirement is for the framework to provide a declarative specification of the information
being generated and the processing functionalities that are available, with sufficient
content to make rational trade-off decisions.

To summarize, we believe knowledge processing middleware should support declar-
ative specifications for flexible configuration and dynamic reconfiguration of context
dependent processing at many different levels of abstraction.

4 Stream-Based Knowledge Processing Middleware

The previous section focused on a set of requirements, intentionally leaving open the
question of how these requirements should be satisfied. We now go on to propose
stream-based knowledge processing middleware, one specific type of framework which
we believe will be useful in many applications. A concrete implementation, DyKnow,
will be discussed later in this paper.

Due to the need for incremental refinement of information at different levels of
abstraction, we model computations and processes within the stream-based knowledge
processing framework as active and sustained knowledge processes. The complexity of
such processes may vary greatly, ranging from simple adaptation of raw sensor data to
image processing algorithms and potentially reactive and deliberative processes.

In our experience, it is not uncommon for knowledge processes at a lower level to
require information at a higher frequency than those at a higher level. For example,
a sensor interface process may query a sensor at a high rate in order to average out
noise, providing refined results at a lower effective sample rate. This requires knowl-
edge processes to be decoupled and asynchronous to a certain degree. In stream-based
knowledge processing middleware, this is achieved by allowing a knowledge process to
declare a set of stream generators, each of which can be subscribed to by an arbitrary
number of processes. A subscription can be viewed as a continuous query, which cre-
ates a distinct asynchronous stream onto which new data is pushed as it is generated.
The contents of a stream may be seen by the receiver as data, information or knowledge.

Decoupling processes through asynchronous streams minimizes the risk of losing
samples or missing events, something which can be a cause of problems in query-based
systems where it is the responsibility of the receiver to poll at sufficiently high frequen-
cies. Streams can provide the necessary input for processes that require a constant and
timely flow of information. For example, a chronicle recognition system needs to be
apprised of all pertinent events as they occur, and an execution monitor must receive
constant updates for the current system state at a given minimum rate. A push-based



stream system also lends itself easily to “on-availability” processing, i.e. processing
data as soon as it is available, and the minimization of processing delays, compared to
a query-based system where polling introduces unnecessary delays in processing and
the risk of missing potentially essential updates as well as wastes resources. Finally,
decoupling also facilitates the distribution of processes within a platform or between
different platforms, another important property of many complex autonomous systems.

Finding the correct stream generator requires each stream generator to have an iden-
tity which can be referred to, a label. Though a label could be opaque, it often makes
sense to use structured labels. For example, given that there is a separate position esti-
mator for each vehicle, it makes sense to provide an identifier i for each vehicle and to
denote the (single) stream generator of each position estimator by position[i]. Knowing
the vehicle identifier is sufficient for generating the correct stream generator label.

Even if many processes connect to the same stream generator, they may have dif-
ferent requirements for their input. As an example, one could state whether new in-
formation should be sent “when available”, which is reasonable for more event-like
information or discrete transitions, or with a given frequency, which is more reasonable
with continuously varying data. In the latter case, a process being asked for a subscrip-
tion at a high frequency may need to alter its own subscriptions to be able to generate
stream content at the desired rate. Requirements may also include the desired approxi-
mation strategy when the source knowledge process lacks input, such as interpolation or
extrapolation strategies or assuming the previous value persists. Thus, every subscrip-
tion request should include a policy describing such requirements. The stream is then
assumed to satisfy this policy until it is removed or altered. For introspection purposes,
policies should be declaratively specified.

While it should be noted that not all processing is based on continuous updates,
neither is a stream-based framework limited to being used in this manner. For example,
a path planner or task planner may require an initial state from which planning should
begin, and usually cannot take updates into account. Even in this situation, decoupling
and asynchronicity are important, as is the ability for lower level processing to build
on a continuous stream of input before it can generate the desired snapshot. A snapshot
query, then, is simply a special case of the ordinary continuous query.

4.1 Knowledge Processes

For the purpose of modeling, we find it useful to identify four distinct types of knowl-
edge process: Primitive processes, refinement processes, configuration processes and
mediation processes.

Primitive processes serve as an interface to the outside world, connecting to sensors,
databases or other information sources that in themselves have no explicit support for
stream-based knowledge processing. Such processes have no stream inputs but provide
a non-empty set of stream generators. In general, they tend to be quite simple, mainly
adapting data in a multitude of external representations to the stream-based framework.
For example, one process may use a hardware interface to read a barometric pressure
sensor and provide a stream generator for this information. However, greater complexity
is also possible, with primitive processes performing tasks such as image processing.

The remaining process types will be introduced by means of an illustrating example



VoCoLinkViolations

Violated

links

VoCoLink CreateVoCoLinkMonitors
Vision to car object links

links

Vision object

labels

CreateVoToCo

labels

CreateVoToCo

Fig. 2. Before creating vision object

Maintain vision object #51 

VoCoLinkViolations

Violated

links

VoCoLinkMonitor

Maintain vision object #51 

to car object #72 link

VoCoLink CreateVoCoLinkMonitors
Vision to car object links

links

Vision object

labels

CreateVoToCo

labels

CreateVoToCo

Car object #72GIS
Road objects

VoToCo
Vision object #51

Car object #72GIS
Road objects

Fig. 3. VisionObject#51 linked to CarObject#72.

from the traffic monitoring scenario, where car objects must be generated and anchored
to sensor data collected using cameras. This example shows one of many potential
solutions that can be implemented with the help of knowledge processing middleware
and has been successfully used in test flights with an experimental UAV platform [4].

In the implemented approach, the image processing system produces vision objects
representing entities found in an image, having visual and thermal properties similar to
those of a car. A vision object state contains an estimation of the size of the entity and
its position in absolute world coordinates. When a new vision object has been found,
it is tracked for as long as possible by the image processing system and each time it is
found in an image a new vision object state is pushed on a stream.

Anchoring begins with this stream of vision object states, aiming at the generation
of a stream of car object states providing a more qualitative representation, including
relations between car objects and road segments. An initial filtering process, omitted
here for brevity, determines whether to hypothesize that a certain vision object in fact
corresponds to a car. If so, a car object is created and a link is established between the
two objects. To monitor that the car object actually behaves like a car, a maintenance
constraint describing expected behavior is defined. The constraint is monitored, and if
violated, the car hypothesis is withdrawn and the link is removed. A temporal modal
logic is used for encoding normative behaviors, and a progression algorithm is used for
monitoring that the formula is not violated.

Figure 2 shows an initial process setup, existing when no vision objects have been
linked to car objects. As will be seen, processes can dynamically generate new processes
when necessary. Figure 3 illustrates the process configuration when VisionObject#51 has
been linked to CarObject#72 and two new refinement processes have been created.

The first process type to be considered is the refinement process, which takes a
set of streams as input and provides one or more stream generators producing refined,
abstracted or otherwise processed values. Several examples can be found in the traffic
monitoring application, such as:

– VoCoLink – Manages the set of links between vision objects and car objects, each
link being represented as a pair of labels. When a previously unseen vision object
label is received, create a new car object label and a link between them. When a
link is received from the VoCoLinkViolations process, the maintenance constraint of
the link has been violated and the link is removed. The output is a stream of sets of



links. A suitable policy may request notification only when the set of links changes.
– VoToCo – Refines a single vision object to a car object by adding qualitative infor-

mation such as which road segment the object is on and whether the road segment is
a crossing or a road. Because quantitative data is still present in a car object, a suit-
able policy may request new information to be sent with a fixed sample frequency.
Using a separate process for each car object yields a fine-grained processing net-
work where different cars may be processed at different frequencies depending on
the current focus of attention.

– VoCoLinkMonitor – An instantiation of the formula progressor. Monitors the mainte-
nance constraint of a vision object to car object link, using the stream of car object
states generated by the associated VoToCo. The output is false iff the maintenance
constraint has been violated.

The second type of process, the configuration process, takes a set of streams as input
but produces no new streams. Instead, it enables dynamic reconfiguration by adding or
removing streams and processes. The configuration processes used in our example are:

– CreateVoCoLinkMonitors – Takes a stream of sets of links and ensures VoCoLinkMon-
itor refinement processes are created and removed as necessary.

– CreateVoToCos – Takes a stream of vision to car object links and ensures VoToCo
refinement processes are created and removed as necessary.

Finally, a mediation process generates streams by selecting or collecting information
from other streams. Here, one or more of the inputs can be a stream of labels identifying
other streams to which the mediation process may subscribe. This allows a different
type of dynamic reconfiguration in the case where not all potential inputs to a process
are known in advance or where one does not want to simultaneously subscribe to all
potential inputs due to processing cost. One mediation process is used in our example:

– VoCoLinkViolations – Takes a stream of sets of links identifying all current con-
nections between vision objects and car objects. Dynamically subscribes to and
unsubscribes from monitor information from the associated VoCoLinkMonitors as
necessary. If a monitor signals a violation (sending the value “false”), the corre-
sponding link becomes part of the output, a stream of sets of violated links.

In Figure 2 the VoCoLinkViolations mediation process subscribes to no streams, since
there are no VoCoLinkMonitor streams. In Figure 3 it subscribes to the stream of monitor
results of the maintenance constraint of the new VisionObject#51 to CarObject#72 link.

This example shows how stream-based knowledge processing middleware can be
applied in a very fine-grained manner, even at the level of individual objects being
tracked in an image processing context. At a higher level, the entire anchoring process
can be viewed as a composite knowledge process with a small number of inputs and
outputs, as originally visualized in Figure 1. Thus, one can switch between different ab-
straction levels while remaining within the same unifying framework. In previous work
it has been shown how stream-based knowledge processing middleware can provide
support for the different functional levels in the JDL Data Fusion Model [5].



4.2 Timing

Any realistic knowledge processing architecture must take into account the fact that
both processing and communication takes time, and that delays may vary, especially in
a distributed setting. As an example, suppose one knowledge process is responsible for
determining whether two cars are too close to each other. This test could be performed
by subscribing to two car position streams and measuring the distance between the cars
every time a new position sample arrives. Should one input stream be delayed by one
sample period, distance calculations would be off by the distance traveled during that
period, possibly triggering a false alarm. Thus, the fact that two pieces of information
arrive simultaneously must not be taken to mean that they refer to the same time.

For this reason, stream-based knowledge processing middleware should support
tagging each piece of information in a stream with its valid time, the time at which
the information was valid in the physical environment. For example, an image taken at
time t has the valid time t. If an image processing system extracts vision objects from
this image, each created vision object should have the same valid time even though some
time will have passed during processing. One can then ensure that only samples with
the same valid time are compared. Valid time is also used in temporal databases [6].

Note that nothing prevents the creation of multiple samples with the same valid time.
For example, a knowledge process could very quickly provide a first rough estimate
of some property, after which it would run a more complex algorithm and eventually
provide a better estimate with identical valid time.

The available time, the time when a piece of information became available through
a stream, is also relevant. If each value is tagged with its available time, a knowledge
process can easily determine the total aggregated processing and communication delay
associated with the value, which is useful in dynamic reconfiguration. Note that the
available time is not the same as the time when the value was retrieved from the stream,
as retrieval may be delayed by other processing.

The available time is also essential when determining whether a system behaves
according to specification, which depends on the information actually available at any
time as opposed to information that has not yet arrived.

5 DyKnow

A concrete example of a stream-based knowledge processing middleware framework
called DyKnow has been developed as part of our effort to build UAVs capable of car-
rying out complex missions [5, 7, 8]. Most of the functionality provided by DyKnow
has already been presented in the previous section, but one important decision for each
concrete instantiation is the type of entities it can process. For modeling purposes, Dy-
Know views the world as consisting of objects and features.

Since we are interested in dynamic worlds, a feature may change values over time.
To model the dynamic nature of the value of a feature a fluent is introduced. A fluent is a
total function from time to value, representing the value of a feature at every time-point.
Example features are the speed of a car, the distance between two cars, and the number
of cars in the world.



Since the world is continuous and the sensors are imperfect the exact fluent of a fea-
ture will in most cases never be completely known, instead it has to be approximated.
In DyKnow, an approximation of the value of a feature over time is represented by a
fluent stream. A fluent stream is a totally ordered sequence of samples, where each sam-
ple represents an observation or an estimation of the value of the feature at a particular
time-point.

To satisfy the sixth requirement of having a declarative specification of the informa-
tion being generated, DyKnow introduces a formal language to describe knowledge pro-
cessing applications. An application declaration describes what knowledge processes
and streams exists and the constraints on them. To model the processing of a dependent
knowledge process a computational unit is introduced. A computational unit takes one
or more samples as inputs and computes zero or more samples as output. A computa-
tional unit is used by a dependent knowledge process to create a new fluent generator.
A fluent generator declaration is used to specify the fluent generators of a knowledge
process. It can either be primitive or dependent. To specify a stream a policy is used.

The DyKnow implementation sets up stream processing according to an application
specification and processes streams to satisfy their policies. Using DyKnow an instance
of the traffic monitoring scenario has successfully been implemented and tested [4].

6 Related Work

There is a large body of work on hybrid architectures which integrate reactive and de-
liberative decision making [9–13]. This work has mainly focused on integrating actions
on different levels of abstraction, from control laws to reactive behaviors to delibera-
tive planning. It is often mentioned that there is a parallel hierarchy of more and more
abstract information extraction processes or that the deliberative layer uses symbolic
knowledge, but only a few of these approaches are described in some detail [14–16].

We now focus on some approaches providing general support for integrating sensing
and reasoning as opposed to approaches tackling important but particular subproblems
such as symbol grounding, simultaneous localization and mapping, or transforming
signals to symbols. With general support we mean that a system explicitly supports at
least a few of the requirements, and does not prevent any of the remaining requirements
from being met. However, the explicit support for the requirements often widely differ.

4D/RCS is a general cognitive architecture which can be used to combine different
knowledge representation techniques [17]. It consists of a multi-layered hierarchy of
computational nodes each containing sensory processing, world modeling, value judg-
ment, behavior generation, and a knowledge database. The idea of the design is that the
lowest levels have short-range and high-resolution representations of space and time
appropriate for the sensor level while higher levels have long-range and low-resolution
representations appropriate for deliberative services. Each level thus provides an ab-
stract view of the previous levels. Each node may use its own knowledge representation
and thereby support multiple different representation techniques. However, the archi-
tecture does not, to our knowledge, explicitly address the issues related to connecting
different representations and transforming one representation into another. These are
fundamental issues which stream-based knowledge processing middleware explicitly



supports. However, it ought to be possible to combine the two approaches and imple-
ment the 4D/RCS architecture using DyKnow.

The CoSy Architecture Schema Toolkit (CAST) built on top of the Boxes and Lines
Toolkit (BALT) is a tool for creating cognitive architectures [18]. An architecture con-
sists of a collection of interconnected subarchitectures (SAs). Each SA contains a set
of processing components that can be connected to sensors and effectors and a working
memory which acts like a blackboard within the SA. A processing component can either
be managed or unmanaged. An unmanaged processing component runs constantly and
directly pushes its results into the working memory. A managed process, on the other
hand, monitors the working memory content for changes and suggests new possible
processing tasks. Since these tasks might be computationally expensive a task manager
uses a set of rules to decide which task should be executed next based on the current
goals of the SA. One special SA is the binder which creates a high-level shared repre-
sentation that relates back to low-level subsystem-specific representations [19]. It binds
together content from separate information processing subsystems to provide symbols
that can be used for deliberation and action.

The BALT middleware provides a set of processes which can be connected either
by 1-to-1 pull connections or 1-to-N push connections. With its push connections and
its support for distributing information and integrating reasoning components it can be
seen as a basic stream-based knowledge processing middleware. A difference is that it
does not provide any declarative policy-like specification to control push connections.
CAST further adds support for a structured way of processing data on many levels
of abstraction and the binder supports an explicit integration of representations from
several SAs. A difference compared to DyKnow is the lack of a declarative specification
of the processing of an architecture.

7 Summary

As autonomous physical systems become more sophisticated and are expected to handle
increasingly complex and challenging tasks and missions, there is a growing need to
integrate a variety of functionalities developed in the field of artificial intelligence. A
great deal of research in this field has been performed in a purely symbolic setting,
where one assumes the necessary knowledge is already available in a suitable high-
level representation. There is a wide gap between such representations and the noisy
sensor data provided by a physical platform, a gap that must somehow be bridged in
order to ground the symbols that the system reasons about in the physical environment
in which the system should act.

When physical autonomous systems grow in scope and complexity, bridging the gap
in an ad-hoc manner becomes impractical and inefficient. At the same time, a system-
atic solution has to be sufficiently flexible to accommodate a wide range of components
with highly varying demands. Therefore, we began by discussing the requirements that
we believe should be placed on any principled approach to bridging the gap. As the next
step, we proposed a specific class of approaches, which we call stream-based knowl-
edge processing middleware and which is appropriate for a large class of autonomous
systems. This step provides a considerable amount of structure for the integration of



the necessary functionalities, but still leaves certain decisions open in order to avoid
unnecessarily limiting the class of systems to which it is applicable. Finally, DyKnow
was presented to give an example of an existing implementation of such middleware.

References

1. Ghallab, M.: On chronicles: Representation, on-line recognition and learning. In: Proc.
KR’96. (1996) 597–607

2. Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robotics and Au-
tonomous Systems 43(2-3) (2003) 85–96

3. Heintz, F., Doherty, P.: Managing dynamic object structures using hypothesis generation and
validation. In: Proc. Workshop on Anchoring Symbols to Sensor Data. (2004)

4. Heintz, F., Rudol, P., Doherty, P.: From images to traffic behavior – a UAV tracking and
monitoring application. In: Proc. Fusion’07, Quebec, Canada (2007)

5. Heintz, F., Doherty, P.: A knowledge processing middleware framework and its relation to
the JDL data fusion model. J. Intelligent and Fuzzy Systems 17(4) (2006)

6. Jensen, C., Dyreson, C., eds.: The consensus glossary of temporal database concepts - febru-
ary 1998 version. In: Temporal Databases: Research and Practice. (1998)

7. Doherty, P., Haslum, P., Heintz, F., Merz, T., Nyblom, P., Persson, T., Wingman, B.: A
distributed architecture for autonomous unmanned aerial vehicle experimentation. In: Proc.
DARS’04. (2004)

8. Heintz, F., Doherty, P.: DyKnow: An approach to middleware for knowledge processing. J.
Intelligent and Fuzzy Systems 15(1) (2004) 3–13

9. Bonasso, P., Firby, J., Gat, E., Kortenkamp, D., Miller, D., Slack, M.: Experiences with an
architecture for intelligent, reactive agents. J. Experimental and Theoretical AI 9 (1997)

10. Arkin, R.C.: Behavior-Based Robotics. MIT Press (1998)
11. Pell, B., Gamble, E.B., Gat, E., Keesing, R., Kurien, J., Millar, W., Nayak, P.P., Plaunt, C.,

Williams, B.C.: A hybrid procedural/deductive executive for autonomous spacecraft. In:
Proc. AGENTS ’98. (1998) 369–376

12. Atkin, M.S., King, G.W., Westbrook, D.L., Heeringa, B., Cohen, P.R.: Hierarchical agent
control: a framework for defining agent behavior. In: Proc. AGENTS ’01. (2001) 425–432

13. Scheutz, M., Kramer, J.: RADIC – a generic component for the integration of existing
reactive and deliberative layers for autonomous robots. In: Proc. AAMAS’06. (2006)

14. Lyons, D., Arbib, M.: A formal model of computation for sensory-based robotics. Robotics
and Automation, IEEE Transactions on 5(3) (1989) 280–293

15. Konolige, K., Myers, K., Ruspini, E., Saffiotti, A.: The Saphira architecture: a design for
autonomy. J. Experimental and Theoretical AI 9(2–3) (1997) 215–235

16. Andronache, V., Scheutz, M.: APOC - a framework for complex agents. In: Proceedings of
the AAAI Spring Symposium, AAAI Press (2003) 18–25

17. Schlenoff, C., Albus, J., Messina, E., Barbera, A.J., Madhavan, R., Balakrisky, S.: Using
4D/RCS to address AI knowledge integration. AI Mag. 27(2) (2006) 71–82

18. Hawes, N., Zillich, M., Wyatt, J.: BALT & CAST: Middleware for cognitive robotics. In:
Proceedings of IEEE RO-MAN 2007. (2007) 998–1003

19. Jacobsson, H., Hawes, N., Kruijff, G.J., Wyatt, J.: Crossmodal content binding in
information-processing architectures. In: Proc. HRI’08, Amsterdam, The Netherlands (2008)


