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Abstract

A sensor is a device that transforms a physical, chemical, or biological stimulus
into a readable signal. The integral part that sensors make in modern technology
is considerable and many are those trying to take the development of sensor tech-
nology further. Sensor systems are becoming more and more complex and may
contain a wide range of different sensors, where each may deliver a multitude of
signals.

Although the data generated by modern sensor systems contain lots of infor-
mation, the information may not be clearly visible. Appropriate handling of data
becomes crucial to reveal what is sought, but unfortunately, that process is not al-
ways straightforward and there are many aspects to consider. Therefore, analysis
of multidimensional sensor data has become a science.

The topic of this thesis is signal processing of multidimensional sensordata.
Surveys are given on methods to explore data and to use the data to quantify
or classify samples. It is also discussed how to avoid the rise of artifacts and
how to compensate for sensor deficiencies. Special interest is put on methods
being practically applicable to chemical gas sensors. The merits and limitations
of chemical sensors are discussed and it is argued that multivariate data analysis
plays an important role using such sensors.

The contribution made to the public by this thesis is primarily on techniques
dealing with difficulties related to the operation of sensors in applications. In
the second paper, a method is suggested that aims at suppressing the negative
effects caused by unwanted sensor-to-sensor differences. If such differences are not
suppressed sufficiently, systems where sensors occasionally must be replaced may
degrade and lose performance. The strong-point of the suggested method is its
relative ease of use considering large-scale production of sensor components and
when integrating sensors into mass-market products. The third paper presents a
method that facilitates and speeds up the process of assembling an array of sensors
that is optimal for a particular application. The method combines multivariate
data analysis with the ‘Scanning Light Pulse Technique’. In the first and fourth
papers, the problem of source separation is studied. In two separate applications,
one using gas sensors for combustion control and one using acoustic sensors for
ground surveillance, it has been identified that the current sensors outputs mix-
tures of both interesting- and interfering signals. By different means, the two
papers applies and evaluates methods to extract the relevant information under
such circumstances.
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Populärvetenskaplig
sammanfattning

En sensor är en komponent som överför en fysikalisk, kemisk, eller biologisk storhet
eller kvalitet till en utläsbar signal. Sensorer utgör idag en viktig del i flertalet
högteknologiska produkter och sensorforskning är ett aktivt omr̊ade.

Komplexiteten p̊a sensorbaserade system ökar och det blir möjligt att registr-
era allt fler olika typer av mätsignaler. Mätsignalerna är inte alltid direkt tydbara,
varvid signalbehandling blir ett väsentligt verktyg för att vaska fram den viktiga
information som sökes. Signalbehandling av sensorsignaler är dessvärre inte en
okomplicerad procedur och det finns m̊anga aspekter att beakta. Av denna an-
ledning har signalbehandling och analys av sensorsignaler utvecklats till ett eget
forskningsomr̊ade.

Denna avhandling avhandlar metoder för att analysera komplexa multidimen-
sionella sensorsignaler. En introduktion ges till metoder för att, utifr̊an mätningar,
klassificera och kvantifiera egenskaper hos mätobjekt. En överblick ges av de effek-
ter som kan uppst̊a p̊a grund av imperfektioner hos sensorerna och en diskussion
föres kring metoder för att undvika eller lindra de problem som dessa imperfek-
tioner kan ge uppkomst till. Speciell vikt lägges vid s̊adana metoder som medför
en direkt applicerbarhet och nytta för system av kemiska sensorer.

I avhandlingen ing̊ar fyra artiklar, som vart och en belyser hur de metoder som
beskrivits kan användas i praktiska situationer.

vii





List of Papers

Papers included in thesis

I Initial studies on the possibility to use chemical sensors
to monitor and control boilers
Henrik Petersson, Martin Holmberg
Sensors and Actuators B, volumes 111–112, 2005, pages 487–493
The respondent took part in the planning and execution of the experimental
work. With support from his supervisor, the respondent developed, applied
and evaluated methods for data analysis. The respondent prepared, with ad-
ditional input from his supervisor, a manuscript for publication in a scientific
journal.

II Calibration Transfer Procedures Based on Sensor Models
Henrik Petersson, Martin Holmberg
submitted manuscript
The respondent took part in the planning of the experimental work. With
support from his supervisor, the respondent developed, applied and evaluated
methods for data analysis. The respondent prepared, with additional input
from his supervisor, a manuscript for publication in a scientific journal.

III Sensor Array Optimization using Variable Selection and
Scanning Light Pulse Technique
Henrik Petersson, Roger Klingvall, Martin Holmberg
submitted manuscript
The respondent took part in planning of the experimental work. With support
from his supervisor, the respondent developed, applied and evaluated methods
for data analysis. In co-operation with co-authors, the respondent prepared
a manuscript for publication in a scientific journal.

IV Classification of Vehicles in a Multi-Object Scenario using
Acoustic Sensor Arrays
Henrik Petersson, Andris Lauberts, Martin Holmberg
submitted manuscript
With support from his supervisor, the respondent developed, applied and
evaluated methods for data analysis. In co-operation with co-authors, the
respondent prepared a manuscript for publication in a scientific journal.

ix



Related publications

a The characteristics and utility of SiC-FE gas sensors for
control of combustion in domestic heating systems [MIS-
FET sensors]
M. Andersson, H. Petersson, N. Padban, J. Larfeldt, M. Holm-
berg, A.L. Spetz
Proceedings of the IEEE Sensors, volume 3, 2004, pages 1157–
1160

b Gas sensor arrays for combustion control
M. Andersson, H. Wingbrant, H. Petersson, L. Unéus, H. Sven-
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1
Introduction

The topic of this thesis is signal processing – how to visualize, explore and extract
information from signals and collections of data. Signal processing is a wide science
applicable to many different problems and applications. This thesis emphasizes
methods versatile for the processing and exploration of signals generated by sensor
systems.

A sensor is a device that transforms a physical, chemical or biological stimulus
into a readable signal. As an example, the thermometer is a relatively simple
sensor used to read the temperature. The lambda-sond of a modern automobile is
a more advanced sensor, integrated in the exhaust system to read the fuel-to-air
ratio. Today, sensors make an integral part in modern technology and the list of
existing sensor technologies can be extended in length.

This thesis will briefly introduce some general properties that, to various extent,
are common to all sensors and link these properties to their impact on the work of
analyzing sensor data. A few sensor types will be described due to their presence
in the works included in the thesis. Readers seeking expertise knowledge in sensors
and sensor science will be able to find more comprehensive information elsewhere.

To indicate the core concept of the thesis, a parallel will now be made to the
human sense of taste. It must be made clear that the parallel is not made to plant
an idea that the thesis is related to the development of an artificial tongue. The
parallel is made since the sense of taste is a complex sensory system we all are
aware of.

The human tongue can be divided into five separate areas, each with a different
sensitivity to taste. The areas sense bitterness, saltiness, sourness, sweetness and
umami(richness), respectively. Now, think upon each area as if it was a sensor,
then each sensor is non-selective and has the ability to get stimulated by many
different molecules. There are many species that e. g. makes the sourness sensor
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2 Introduction

signal for sourness. The sourness signal alone, however, does not define what is
known as taste. It is our brain’s ability to analyze the joint signal pattern from
the different taste sensors 1 that results in our full perception of taste and makes
us able to differentiate between flavors.

Likewise our perception of taste is the result of a joint information processing of
the signals provided by each of the many taste receptors, many technical systems
can improve in functionality by incorporating procedures for joint processing of
sensor signals. This thesis puts special interest in such procedures.

1.1 Outline of the Thesis

The thesis gives a survey on methods for exploring data and for classifying or
quantifying samples from information contained within sensor signals. It will be
discussed how to avoid the rise of artifacts and how to counteract for potential
defects in sensor systems. Special interest is put on methods being practically
applicable to chemical gas sensors. Merits and limitations of chemical sensors
are discussed and it is explained why multivariate data analysis is of particular
importance using such sensors.

The next chapter will introduce the reader to various aspects of sensing and a
few sensor technologies which are relevant for this thesis will be described. Chapter
3 introduces to the area of multivariate data processing. Techniques specialized for
the problems of classification, regression and source separation will be presented
in chapter 4, chapter 5 and chapter 6 respectively. Chapter 7 will discuss how to
counteract for drift and differences between sensors. Chapter 8 will conclude the
thesis and give a summary of the work conducted by the respondent.

1Here, it is disregarded that also our olfactory system plays an important role in the perception
of taste.



2
Sensors

An impressive amount of different sensor types has been exploited and to give a
collective view of the entire field must be a difficult task. Certainly, this thesis
will leave more to wish for readers primarily interested in sensor science. This
chapter serves to highlight the merits and limitations that sensors might have and
which make the processing of sensor data interesting. The chapter also serves as
an introduction to sensor technologies appearing throughout the thesis.

2.1 The definition of a sensor

A sensor is a device that transforms a physical, chemical, or biological stimulus into
a readable signal. Mostly, the readable signal falls in the electrical domain, while
the domain in which the stimulus is generated varies, see Table 2.1. A sensing
mechanism must be exploited to get a stimulus from a certain domain. Different
sensing mechanisms present their own sets of merits and limitations which results
in different problems to consider while analyzing data.

Many devices fit into the definition of a sensor above and there is room for
confusion. An engineer who needs a sensor for integration into the on-board di-
agnostic system of a car engine to control exhausts does not want a delicate piece
of equipment taking up half of the engine compartment. In that case, a small,
robust, reasonably accurate, and inexpensive device is what is needed. In other
cases, prime accuracy is a major concern while complexity, cost, ease-of-handling
etc might be of less importance. In the mindset of this thesis, a sensor is needed
in the first example while the latter example rather calls for an instrument.

The differentiation between sensors and instruments is not necessarily an aca-
demic trifle, but there might be practical differences in how to analyze the gener-
ated data. Assume there is a certain “cost” of inconvenience related to making a
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4 Sensors

Table 2.1: A list of examples on possible domains in which stimuli can be generated.

Domain Example of input signals
Mechanical length, area, volume, time derivatives such as

linear/angular-velocity/acceleration, mass flow, force,
torque, pressure, acoustic wavelength and intensity

Thermal temperature, specific heat, entropy, heat flow, state of
matter

Electrical voltage, current, charge, resistance, inductance, capaci-
tance, dielectric constant, polarization, electric field, fre-
quency, dipole moment

Magnetic field intensity, flux density, magnetic moment, permaebil-
ity

Radiant intensity, phase, wavelength, polarization, reflectance,
transmittance, refractive index

Chemical composition, concentration, reaction rate, pH, oxida-
tion/reduction potential

Biological kinetic constants, affinity, specificity, physiological re-
sponses, concentration, hormones, antigens

measurement. In applications requiring an instrument, that cost is probably not a
limiting factor and additional costs can presumably also be taken while analyzing
the data. Sensor applications, on the other hand, might put tougher demands
on the signal processing procedures in terms of e. g. which auxiliary actions that
are allowed. Going back to on-board diagnostics example above, such applica-
tion would probably require that any necessary signal processing must be resource
efficient, instant and require no human interaction.

2.2 Sensor utilization imply signal processing

The sensing mechanism transforms a stimulus into a readable signal, as said. The
generated signal(s) must thereafter usually undergo refinements to take a useable
form. These refinements are made by applying different techniques for signal
processing. Typically, the reason to conducting such processing include to:

improve interpretability In its simplest form, improvement in interpretability
is reached by e. g. re-scaling the sensor signals and transforming them into
physically meaningful measures, such as temperature, pH etc.

alleviate for shortcomings Most sensor devices have shortcomings causing ar-
tifacts within the rendered signals. Under the right circumstances, many of
these artifacts can be suppressed using appropriate signal processing tech-
niques.

enhance information The incorporation of signal analysis and statistics makes
it possible to raise alarms etc when significant deviations from normal condi-
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tions occur. While using several sensors, a joint analysis of the signals may
reveal hidden patterns that can be extracted and correlated to important
properties of the samples under investigation. Advanced signal processing
can be used to enhance the information contained within sensor signals,
yielding a higher level of usability.

From the glimpses given above, the respondent now states that

“By the usage of sensors comes the necessity to, in a more or less ad-
vanced manner, process the generated signals and analyze the recorded
data”

This statement can serve as a justification of the thesis.
Introductory views will be given below to some of the shortcomings sensors

might have that needs to be alleviated. Those “shortcomings” will also be pre-
sented that can be exploited by signal processing techniques to effectively improve
the performance of a sensor system.

2.3 Problematic shortcomings

Perfection is rare in reality. All sensors have their shortcomings rendering errors
and uncertainties in data. Some shortcomings can be related back to theoretical
limitations of the sensing principles, while others are related to construction- and
production weaknesses.

2.3.1 Noise

Noise is associated with randomly appearing disturbances and errors. The term
has its origin among radio engineers, experiencing ill-sounds in transmissions
caused by random fluctuations in radio signals. By now, the term is generally
adopted in all fields of science.

Noise can be characterized in terms of its origin and in terms of its character-
istics. When analyzing sensor data, noise is already present within the recorded
signals and primary interest is to explore its characteristics, to find proper tech-
niques for counteraction, and to assure it causes a minimum of damage. A hard-
ware designer, on the other hand, focuses on eliminating the noise’s source of
origin.

The characteristics of noise

The spectral properties of noise are interesting to explore. If the noise appears in a
bounded region of the power spectrum, the construction of a filter is a traditional
approach for alleviation. The process is complicated, though, if the sought infor-
mation is located in the same frequency range as the noise. Spectral filtering is
applicable only when time-continuous signal are under analysis. White noise is the
term used to describe noise with a homogeneous distribution over the frequency
range. For white noise, the momentary magnitude of the noise signal will have a
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Figure 2.1: A square wave signal with different signal-to-noise ratios (10, 2 and 1).

Gaussian distribution and its influence can be alleviated for by means of statistical
approaches. Using statistical approaches, not only time-continuous signals can be
processed for noise suppressing purposes.

The signal-to-noise ratio (S/N) is another characteristic, defined as the power
ratio between a useful signal and the noise. As a general rule, detection of a
signal, by visual means, becomes difficult when the ratio gets below approximately
S/N < 2, see Figure 2.1. Signal processing methods, often those that are based
on a statistical analysis, can improve the detection capability finding signals also
under bad S/N conditions. On the other hand, poor S/N ratios impair many
statistical methods making it more difficult for them to e. g. discriminate between
different types of measured specimens, see Figure 2.2.

The absolute noise level is another measure of importance. In many setups the
noise magnitude is constant regardless of the magnitude of the main signal. In
those cases, the noise level directly affects the detection limit of the system.

The sources of noise

Although the source of noise play only a minor role while analyzing data, a few
typical processes responsible for the rise of noise will be described below for ori-
entational purposes (see e. g. [1] for further details).

All electronic equipments are to various extent affected by thermal noise and
shot-noise. Both kinds generate white noise and occur due to microscopic effects
explained within thermal physics. Thermal noise is caused by the thermal move-
ment of charge carriers, such as electrons, in resistors, capacitors, electrochemical
cells, and other resistive elements. The random, but periodical, movements in-
crease with temperature and produce charge inhomogeneities in the resistive ele-
ments, generating voltage fluctuations. Shot noise is encountered wherever charged
particles flow across junctions such as vacuum tubes, or across pn-interfaces in
semiconductors. The transfer of individual charges occurs randomly, causing small
fluctuations in the overall current and thereby the generation of noise.

1/f -noise and environmental noise are both examples of non-white noise sources.
1/f -noise is characterized by having a magnitude inversely proportional to the
frequency and its contribution often becomes significant below ∼ 100Hz. The
source(s) of origin for 1/f noise is not well understood.
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(a) poor S/N -ratio (= 2) (b) high S/N -ratio (= 10)

Figure 2.2: Two different specimens have been measured repeatedly. To the left, signal-
to-noise ratio is low and there is no pronounced statistical difference between the spec-
imens. To the right, the two group-means are still the same as in the left figure, but
the signal-to-noise ratio is high. In the right figure, there is no difficulty to claim the
existence of a difference between the specimens.

Environmental noise is due to a composite of electromagnetic radiation gen-
erated by power-lines, radio, electrical motors, lightning, etc. The radiation is
picked up in measurement equipments since internal conductors also function as
antennas. The phenomenon is illustrated in Figure 2.3, where a recorded power
spectrum shows both 1/f -noise and typical environmental disturbances.

2.3.2 Drift

Drift is described as a temporal shift of sensors’ response under apparent constant
physical and chemical conditions [2]. Due to drift, the outcome of a series of
experiments may vary with time, unpredictably but systematically, even though
the same instrumentation and sensors are used throughout the session. For an
example of drift see Example 2.1.

Most procedures for signal and data analysis assume that sensors are static in
terms of their characteristics and they cannot handle the temporal changes caused
by drift.

Examples of processes rendering drift are the degradation of sensor surfaces due
to ageing or due to exposure of harmful gases. Considering entire sensor systems,
drifting may also be due to ageing of amplifier components in auxiliary equip-
ments etc. Moreover, the sensor might be sensitive to changes in environmental
parameters such as e. g. air pressure. If such fluctuations are not under control,
the unaware user risk to experience drifting signals.

Short-term drift and memory effects are phenomena that strictly are not drift
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Figure 2.3: Flicker noise and some sources of environmental noise in a univer-
sity laboratory. The spectra was recorded in 1968. Today, the number of sources
generating environmental noise is presumably even denser.(Reproduced from T. Choor,
J.Chem.Educ.,1968,45,A540)

but add very similar effects to the output. Short-term drift occur in some systems
where the instrumentation needs some time to reach its equilibrium state. Until
equilibrium is reached, the sensor output is unstable and said to be under influence
of short-term drift [3]. Memory effects occur due to species leaving remnants on the
sensor, affecting its characteristics. If this occur, the sensor “remember” previous
samples meaning that traces of previous measurements can be seen in the signal
from fresh measurements. The memory effect may vanish with time and the system
will then return to its original state. In some cases, the effect remains for a very
long time, or never vanishes, and it becomes impossible to distinguish the memory
effects from true drift [3].

In practice, it is rarely necessary to be able to discriminate between drift,
short-term-drift, and memory effects. On the other hand, it is many times vital to
identify if any of these processes are present and if so use data analysis procedures
that are robust to their effects.

2.3.3 Reproducibility

Some sensing principles are such that it becomes troublesome to manufacture
sensors without significant sensor-to-sensor variations.

The difficulty to manufacture sensors with reproducible characteristics causes
problem when conducting long term experiments, or when striving for commer-
cialization. The reason is that many data analysis procedures establish a model
describing the relation between the sensor signals and the measure to acquire. Ide-
ally, a model should be applicable to all sensors of the same kind and hence only
need to be established once. However, in cases where sensor-to-sensor differences
are significant, it might not be sufficient to apply the same model to all sensor
individuals.

Since model building many times is a costly and time-consuming procedure,
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Example 2.1: An example of drift
A specific gas mixture has been measured during 60 days with three different
sensors. Due to drift, the response is not constant and varies with time. Probably,
the same cause of drift affects all three sensors, although the outcome of the effect
is different.

Figure reproduced with permission. T. Artursson et al. , Journal of Chemometrics, 14(2000),pp711-
723. Copyright John Wiley & Sons Limited

it is rarely an alternative to establish unique models to each sensor individual.
Better choices are to mathematically counteract for the sensor differences, or to
adapt an already established model to the character of a slightly different sensor.
Such techniques will be described later.

2.3.4 Non-linearity

For sake of simplicity, it is often favorable if the sensing mechanism results in a lin-
ear relationship between the sensed stimuli and the signal generated by the sensor.
Linear sensor responses enable the usage of linear mathematics to analyze data
and they are therefore, as compared to non-linear counterparts, not as complex
and cumbersome to work with. If it is known that the response is non-linear, data
can sometimes be pre-linearized in a pre-processing procedure.
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2.4 Exploitable “shortcomings”

The sensitivity of a sensor is defined in terms of how much its output changes
in response to the state of a specified measurand1. If the sensitivity towards
one particular measurand by far exceeds the sensitivity towards any other, then
the current sensor-type is said to be selective. Selective sensors are desired in
applications aiming at detecting or quantifying single targets. In reality, many
sensor types are markedly responsive to several different measurands and therefore
considered to be non-selective. If a non-selective sensor is used alone, uncertainties
are introduced by the fact that different combinations of measurand states can
generate the very same response. Thereby, it becomes difficult to relate a certain
sensor output to the state of a particular measurand.

The trouble experienced with non-selectiveness can be avoided. An obvious ap-
proach, although rarely realistic in practice, is to re-design the sensor and thereby
reduce the sensitivity towards interfering measurands.

A practical approach to avoid uncertainties from interfering measurands is to
make sure they are kept constant throughout all measurement sessions. This ap-
proach is sometimes applicable to laboratory setups, but rarely in other situations.

Under certain conditions, non-selectiveness can be counteracted for by assem-
bling several sensors together in a sensor array. The concept of using sensor arrays
will soon be outlined in a separate section below.

If a sensor is non-selective, it is many times interesting to learn the character
of the non-selectiveness. The least complicated characteristics is when the con-
tributions from each measurand simply add together forming a summary output.
Cross-sensitivity is a term used to denote when the response depends on an inter-
action between the contributing measurands. For example, the degree of presence
of one measurand could inhibit or amplify the sensitivity towards another. Sensors
with excessive cross-sensitivity are in general difficult to handle.

2.4.1 Sensor Arrays

A sensor array constitutes a system of locally gathered sensor elements. It could
also mean a single sensor with a multidimensional output.

As previously indicated, non-selectiveness can be overcome by assembling ar-
rays of sensors [4]. This can be done whenever the incorporated sensors have
different patterns of sensitivity. In a simplified view, the different sensors can be
said to measure a sample “from different angles” and the “complete picture” can
be put together through joint analysis of the sensor signals. Pattern Recogni-
tion procedures (PR) are the mathematical tools used for such multidimensional
analysis.

Some applications aim at sensing loosely defined parameters such as “air qual-
ity”. Typically, one sensor alone cannot perceive all aspects of such a complex
entity. Fortunately, an elegant benefit of using sensor arrays in conjunction with
pattern recognition procedures comes with that also loosely defined parameters can

1By the term measurand it is meant any physical measure, chemical specimen etc being
quantified by the measurement.
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be handled. In the same manner as with the counteraction of non-selectiveness,
this is possible since the different sensors, together, measure a “complete picture”
of the environment. The pattern recognizer thereafter extracts pieces of informa-
tion that are related to the desired parameter.

The two scenarios given above motivate the approach of using various kinds of
sensor array assemblies and apply pattern recognition techniques to the generated
signals. The remaining part of this chapter will introduce a few sensor technologies
and give a couple of examples on sensor arrays that have been used in practice.
The thesis will thereafter turn focus and more thoroughly treat mathematical
techniques for pattern recognition.

2.5 Chemical Sensors. . . some examples

A chemical sensor is a device that transforms chemical states into readable sig-
nals. Large interests are nowadays put on chemical sensors, not least because of
increasing demands on environmental monitoring, food quality supervision and
safety issues. These and similar applications require small and cost effective de-
vices capable of sensing gases, toxins etc.

Conceptually, chemical sensors are very different from physical sensors, not
least because of the range of measurands they cover. Approximately 100 physical
properties can be detected using physical sensors, while chemical sensors cover a
range of measurands that is several orders of magnitude larger [5]. Among the more
widespread and well-known chemical sensors, the pH-electrode and the lambda-
sond can be mentioned. The different types of chemical sensors that have been
exploited is impressive, and the few sensor types presented below is merely a small
selection. A more extensive overview can be found in [5].

2.5.1 Metal Oxide Sensors

Gas sensitive metal oxide sensors MOS are well studied and have been available
on the market since 1968 [6]. The basic structure of a MOS sensor consists of a
ceramic tube coated with sintered and doped metal-oxide. The gas is sensed by
its effect on the electrical resistance of the semiconducting metal-oxide, which is
a result of the changes in conductivity caused by reactions with oxygen species
on the surface of the metal-oxide particles [7]. Commonly used metal-oxides are
SnO2, TiO2, ZrO2, and Ga2O3 doped with catalytic metals such as Pd, Pt or Al.
The doping enables sensors to get enhanced selectivity toward certain gases.

The SnO2 based Taguchi-sensor is considered the most important type of MOS
sensors with respect to practical applications. A range of different Taguchi-sensors
are available on the market, sensitive to measurands like ammonia, alcohols, sulfur
compounds, carbon monoxides, methane, hydrogen, CFC etc.

2.5.2 Metal Insulator Semiconductor structures

Field effect sensors are based on metal–insulator–semiconductor MIS structures.
The MIS structure can be configured in two ways: as a field effect transistor (MISFET)
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Figure 2.4: Schematic illustration of a MIS structure. To the left it is configured as a
FET device and to the right as a capacitor.

or as a capacitor (MISCAP) (see Figure 2.4). The gas sensing principle is the same
for both configurations and relies on a change in the semiconductor’s surface po-
tential caused by the sensed gas. In MISFET devices, such change will affect
the drain–source current flowing through the semiconductor. For MISCAPs, the
capacitance will change as soon as the surface potential is altered.

The metal layer of the MIS structure typically consists of catalysts such as
Pt, Pd or Ir, where the particular choice of metal influences the characteristics
of the sensor. The physics describing how different gas-metal combinations alter
the surface potential, and thereby the response characteristics, will be left out of
this thesis. A short example of one such interaction will be given though: In the
MISFET configured palladium-gate hydrogen sensor, invented by Lundström et al.
[8], hydrogen atoms are generated at the palladium gate due to dehydrogenation
of molecules. The hydrogen atoms diffuse through the metal and reach the metal–
insulator interface, where they adsorb and generate a dipole-layer. The dipole-layer
gives rise to a change in work function between the gate and the semiconductor,
causing a change in drain-source current [6, 7].

Field effect sensors have been commercialized [9, 10] and make an active re-
search area. An interesting development is the exploration of alternative semi-
conductor materials. Wide-bandgap materials like SiC, AlN, GaN, AlGaN and
diamond have potential to function in harsh environments [11]. Particularly Metal
Insulator Silcon Carbide Field Effect Transistors MISiCFET have been utilized
and studied at the department of Applied Physics, Linköpings University, Swe-
den. These devices have proven to function well in harsh environments such as in
automobiles and at combustion plants [12].

2.5.3 Scanning Light Pulse Technique

The Scanning Light Pulse Technique (SLPT) was introduced in 1983 as a tech-
nique for investigating insulator–semiconductor interfaces [13]. In short, a light
pulse is used to raise a current due to the formation of electron–hole pairs in the
depletion area of the semiconductor. The current depends on the difference in
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workfunction of the metal and the semiconductor, and also on the applied voltage.
It is changes in the workfunction at the metal–insulator interface that is utilized
for gas sensing [14]. Note that the current is created locally in the region being
illuminated, so the measurement gives a local gas response.

SLPT is a powerful tool since it can be used to scan surfaces and render maps of
local gas responses. By scanning a surface with non-uniform properties, an infinite
amount of discrete sensor candidates can theoretically be evaluated in a single run.
This is exceedingly convenient when testing-out which sensor configuration that
yields the best achievable sensitivity, stability, selectivity or reproducibility within
a particular application. SLPT can therefore be used as a workbench technique
for MIS gas-sensor development.

2.5.4 Electrochemical Sensors

Electrochemistry is concerned with the interplay between electricity and chem-
istry occurring at an electrode–solution interface [15]. Many sensor technologies
for liquid phase applications have been inspired by phenomena observed and de-
scribed therein. Electrochemical techniques are usually categorized into poten-
tiometry, conductometry and voltammetry. Potentiometry is concerned with the
measurement of potential appearing between two electrodes. In conductometry the
solutions conductance is measured and traced-back to the movement of charged
elements present in the solution. The current arising when a potential is applied
between two electrodes is studied in voltammetry. Readers with particular interest
in electrochemical techniques are referred to textbooks such as [15, 16].

2.5.5 Sensor Arrays

Electronic Noses

Gardner and Bartlett once defined an electronic nose (e-nose) as [7]:

“An electronic nose is an instrument which comprises an array of
electronic chemical sensors with partial specificity and an appropriate
pattern recognition system, capable of recognizing simple or complex
odors.”

By this definition, the term is restricted to odor recognition only. However, the
architecture of the described e-nose has much in common with many other gas
sensitive sensor systems and the term has been generally adopted.

One example of an electronic nose is the high temperature electronic nose (HTe-
nose) [17, 18, 12] used within the experiments described later in this thesis and in
the included papers. In brief, the HTe-nose is developed for harsh environments
and consists of three field effect sensors (see Figure 2.5), nine metal oxide sensors,
and a lambda sensor.

Many other electronic noses have been described in the literature and some
have thereto been commercialized. There is no room to give a fair overview here
and the interested reader is recommended to read the thorough overview provided
by Pearce et al. [3].
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Figure 2.5: Three MISiCFET devices integrated on a chip and mounted on a holder
together with a heater and a Pt100 element. The diameter of the holder is 15mm.

Electronic Tongues

Different electronic tongues (e-tongue) have been described in literature, see [19] for
an overview. The e-tongue developed at Linköpings university utilizes an electro-
chemical technique termed pulsed voltammetry [20]. Simplified, the voltammetric
e-tongue consists of a set of noble-metal-electrodes onto which pulse-trains of elec-
trical potentials are applied. The applied pulse-train gives rise to a sequence of
current pulses, a voltammogram, that can be analyzed. The shape of the voltam-
mogram depends on e. g. the specimen composition, the electrode material, and
the applied pulse train.



3
Multivariate Data Analysis

When several, maybe hundreds, of signals are registered simultaneously it is a
delicate task to visualize, explore, and search for results in data. Each signal may
potentially be the response from many varying processes and might thereto co-vary
with other registered signals. This gives rise to the formation of signal patterns
and implies that signals must be analyzed jointly and not one-by-one in order to
not loose valuable information.

Multivariate data analysis is an important tool to find dependencies between
several variables and to learn under which circumstances certain signal patterns
are likely to occur. Multivariate data analysis can also be applied to situations
when the objective is to relate certain signal patterns to certain properties of the
analyzed samples. These, and other similar tasks, are solved by analyzing data
solely; equations of physics etc must not be needed and it is hence possible to
deal with complex problems where the underlying mechanisms are unknown, see
Example 3.1.

Techniques for multivariate data analysis have been developed and applied
within numerous scientific areas, where psychology, image processing, bioinfor-
matics, and metrology are some examples. This thesis is related to a fifth example,
the utilization of multivariate techniques for sensor applications.

This chapter will define the terms and nomenclatures following through the
thesis. Procedures for exploring and reducing datasets will also be presented. Such
procedures are often a prerequisite for further processing. General concepts related
to learning from data will be given. Methods to make classifications, quantitative
assessments, signal separations, and various compensations will then be treated
separately in the four following chapters.

15
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Example 3.1: A data analysis problem
A simple data analysis example comes from entry level physics class. A series
of known masses (output) are attached to a spring and the spring’s elongation
(input) is measured for each mass. The experimental data is plotted in a diagram,
mass versus elongation, and it becomes apparent that a straight line can be drawn
in the diagram that fits nicely to the data. Without knowledge of gravitational
laws and Newtonian mechanics a relation has been found that can be used to
determine the mass (output) of unknown species by measuring the elongation
(input) of that particular spring. A ridiculous example maybe, but the same
approach can be applied to far more difficult and multi-variate problems where
the property to be estimated depends on many variables simultaneously.

3.1 Introduction to terms and nomenclature

Let us consider an assembly of n sensors. Within a narrow (time-)frame k, the
sensor responses are recorded and encoded into numerical numbers, whereby an
observation of the current state of nature is being generated. The numerically
encoded observation is stored into a vector xk,

xk = [xk1, xk2, . . . , xkn] (3.1)

Each element xki of the vector represents the response value, or the signal, from
sensor i as observed within the frame k.

A dataset is a collection of observations. Assuming that N observations have
been made, the observations {xk}Nk=1 are compactly collected in a data matrix.

X =




x1

x2

...
xN


 =




x11 x12 · · · x1n

x21 x22 · · · x2n

...
. . .

...
xN1 · · · · · · XNn


 (3.2)

The literals x, X are often reserved to denote single observations and datasets
of response observations, respectively. In many situations each observation xk as-
sociates to one or several properties yk of the sample under study. Possible sample
properties could be quantitative measures, such as a chemical concentration, or
qualitative measures, such as a numeric code representing a particular category.
The literals y, Y are often reserved to denote associated sample properties.

Each observation can be thought of as a point in an abstract n-dimensional
space, Rn . This space is known as sensor space, response space or input space. Ac-
cordingly, the associated properties y are thought of as points in an m-dimensional
output space, Rm.
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For reasons to become apparent later on, it is sometimes favorable to transform
sensor data into another representational form for further processing. Such an
operation can be viewed upon as a mapping from sensor space Rn into a new
feature-space Rd. The term feature is generally used when referring to information
providing a useful description of the observations.

3.2 Exploratory Analysis

The exploratory analysis serves as an initial examination of data and provides aid
for settling which data analysis procedures to proceed with.

A typical exploratory analysis consists of two parts: (i) plotting data, and
(ii) calculating summary statistics. By plotting sensor responses, malfunctioning
equipment can be detected and information about magnitudes and dynamical
ranges can be retrieved. From calculated statistics, by which it is meant estimates
of means and covariances etc, it is sometimes possible to identify clusters, to detect
obvious outliers1, and to find strong interdependencies between variables.

It is of good practice to not satisfy with plots of individual sensor responses,
but to proceed and also visualize the complete dataset in a single plot. By doing
so the multivariate nature of data can be explored and patterns of joint signal
expressions can be found. Naturally, to make such visualization on screen or paper,
the multidimensional data must first be given a 2- or 3-dimensional representation,
see Example 3.2. Techniques for making low-dimensional representations of data
play a crucial role in multivariate data analysis.

3.3 Dimensionality reduction, feature selection and
extraction

Dimensionality reduction techniques are helpful for finding a low dimensional rep-
resentation of multivariate data while retaining as much of the relevant information
in the original data as possible. Formally, the concern is to find a mapping from
Rn to Rd

G : Rn → Rd, d < n (3.3)

Any procedure for dimensionality reduction must define a criterion J(G) by which
it is possible to judge whether a mapping is better than another [21].

3.3.1 Feature Selection

Given a set of n features, the problem of feature selection is to find a subset
that contains the (d < n) features that are most suitable for solving the present
task. Let J(·) be a criterion assessing the robustness and accuracy of the solu-
tion when subset X′ is used, then the most straight forward approach to feature
selection would be to first generate all possible subsets and then identify the one

1outlier is the term used to describe erroneous observations that strongly deviates from the
expected.
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Example 3.2: Dimensionality Reduction
An electronic nose (EN3320, Applied Sensors AB), consisting of 23 sensors, were
used to measure soil samples contaminated with different toxins (1000ppm). The
input space has been reduced into a 2-dimensional representation using a Principal
Component Analysis algorithm (described later). The reduced 2-dimensional
feature space can easily be plotted and it becomes clear that the instrument can
be used to discriminate between differently intoxicated samples.

rendering the highest value of J(X′). Such exhaustive search will find the optimal
subset, but the computational burden will be too excessive even for moderately
sized datasets. A number of techniques have been described, adding or deleting
features sequentially (forward- and backward- selection respectively) avoiding an
exhaustive evaluation. Unfortunately, although sequential techniques are com-
putationally efficient and often useful it has been shown that none of them are
guaranteed to find the optimal subset [22, 23].

3.3.2 Feature Extraction

Feature extraction methods create a new space of features based on transforma-
tions of the original data set. Both linear and non-linear transforms have been
reported, although linear projection techniques are more frequently used in prac-
tice.
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A linear projection technique defines a set of weight vectors spanning a sub-
space Rd of the original data space Rn. Geometrically, the weight vectors define
the orientation of a d-dimensional hyper-plane inside the original n-dimensional
data space. The feature extraction is made by projecting the original data onto
the hyper-plane, whereby the image onto the hyper-plane defines the new fea-
tures. Different sub-space techniques uses different criterions J(·) and thereby
yield differently oriented hyper-planes, see Figure 3.1 for an illustration.

Principal Component Analysis

The best-known projection technique for feature extraction is Principal Component
Analysis (PCA) [24, 25, 26, 27]. By analysing the covariance structure of sensor
data, PCA determines the d-dimensional sub-space (d < n) with closest fit to the
original data, see Figure 3.1. The weight vectors, given the literals pi, are denoted
loading vectors. The loading vectors are mutually orthogonal and normed to unit
length. By projecting an observation xk onto the loading vectors, a d-dimensional
score vector tk is retrieved. The score values defines the extracted features.

tk = xk[p1,p2, . . . ,pd] = xkP (3.4)

Geometrically, the score values of an observation are the coordinates of its pro-
jected image, within the coordinate system defined by the loading vectors and the
hyper-plane they span. The first dimension of this coordinate system is the first
principal component, and so on. A complete set of data X can of course also be
projected onto the sub-space resulting in a matrix T of score values,

T = XP (3.5)

Turning back to what was actually meant by closest fit, PCA minimizes the
sum of squared residuals εi comparing the original data with the reduced feature
set, see Figure 3.1 and the expression below

N∑

i=1

‖xi − tiPT ‖22 =
N∑

i=1

‖xi − (xiP)PT ‖22 (3.6)

The minimization is effectively solved by making an eigenvector decomposition

[λ,D] = Eig(XTX) (3.7)

and by identifying the eigenvectors as loading vectors.
Apart from the classic PCA formulation, a range of extensions has been sug-

gested for feature extraction purposes. If data is comprehended from multiple
sources, e. g. from several sensor arrays with different modality, Rännar et al.
have suggested to deploy hierarchical PCA [28] extracting features from each nat-
ural subset and pass them to further “top-level” extractions. Multi-way PCA [29]
is another extension working on multi-mode data 2. A variety of adaptive PCA

2generalized matrices with more than two “dimensions”: row,column,...
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Figure 3.1: Dimensionality reduction using PCA. The sensor response space is R3. Two
loading vectors have been calculated that define a 2-dimensional plane/sub-space onto
which the observations are projected. The sub-space is oriented in such way that the
sum of squared residuals,

∑N
k=1 ε2

k, is as small as possible.

formulations has also been reported where APEX [30] is one example. Adaptive
algorithms make calculations in a recursive fashion requiring only one observation
per iteration. This has the effect that arbitrarily large datasets can be analyzed,
which is good for on-line purposes, and that the feature extraction continuously
adapts to changes in the analyzed data.

Canonical Correlation Analysis

Some applications present samples that are best assessed using a quantitative scale.
In those cases, a natural aim is to find features that stand in linear relationship
to the desired scale.

Canonical Correlation Analysis (CCA) [31, 24] is a well established linear sub-
space technique that might be appropriate to use as a feature extractor under
the described circumstances. A clear distinction from PCA lies in that CCA
requires supervision in finding features to extract from sensor data {xk}Nk=1. The
supervision is provided in terms of a complementary dataset {yk}Nk=1 containing
quantitative properties against which each observation should be matched.

CCA provides two subspaces of paired canonical variates,

U = [a1, a2, . . . , am]TX = ATX (3.8)
V = [b1, b2, . . . , bm]TY = BTY

The technique seeks for vectors ai and bi that maximizes the correlation

ρi = corr(ui,vi) = corr(aTi X,bTi Y) (3.9)
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subject to that ui and vi have unit variance and that the kth solution (uk,vk) is
uncorrelated to all (k − 1) previous pairs of canonical variates.

The vectors ai and bi are found directly from the generalized eigenvector equa-
tions,

S−1
XXSXY S−1

Y Y SY XA = ρ2A (3.10)
S−1
Y Y SY XS−1

XXSXY B = ρ2B

where S(·)(·) denote each respective covariance matrix estimate.

Other linear feature extractors

Another common projection technique is Independent Component Analysis (ICA)
[32, 33, 34]. The method does not rely on any second order statistics (variance–
covariance), as PCA does, and is appropriate to use under circumstances where
data does not show a structured variance, like in noisy environments etc. ICA is a
method strongly related to the problem of source separation and will be described
to greater detail in chapter 6.

Non-linear feature extractors

The Self Organizing Map (SOM), first described by Kohonen [35], is a non-linear
feature extraction technique that might be found conceptually interesting since it
is neurobiologically inspired, trying to mimic how the brain maps sensory inputs
to different areas in the cerebral cortex [27].

The algorithm is easy to implement, but it has unfortunately been difficult
to analyze its general mathematical properties [27]. The SOM can be viewed as
a swarm of nodes (points) distributed in the original n-dimensional input space.
The nodes are interconnected to their nearest neighbors, typically forming a 1- or
2-dimensional grid, but any general d-dimensional grid is possible. The algorithm
iterates as follows: one-by-one, all available observations in {xk}Nk=1 are in turn
presented to the algorithm and placed in Rn-space. The grid-node being closest to
the currently placed observation is designated as “winner” and allows to adapt by
moving-up even closer to the observation. Also nodes neighboring the winner, with
respect to their position in the grid, are allowed to adapt by moving-up slightly
closer. When all observations have been presented sufficiently many times to the
algorithm, the adaptations will become smaller and the grid structure settles. Each
observation can now be encoded according to its position relative to the position
of the nodes in the settled grid, see Figure 3.2.

Other non-linear feature extractors include different extensions to PCA, among
which kernel-PCA [36] stands out due to its computational core is still based on
linear algebra.

3.3.3 Notes on selecting between Selection and Extraction

No definite rules exist to decide between feature extraction or selection, but the
data analysts must make a wise choice based on experience considering the re-
quirements of the application and the nature of the data. Typically, selection
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(a) initial placement of SOM grid (b) the SOM after adaption

Figure 3.2: A 1-dimensional self-organizing map consisting of 20 interconnected nodes
(gray boxes) is randomly placed in sensor-space (figure a), where also some measure-
ments can be seen (black dots). After adaption, the map has stabilized capturing the
distribution of sensor data (figure b).

techniques lead to future savings in cost and time, since left out features (=sensor
signals) do not have to be measured in the future. Since the selected features
remain untransformed, selection techniques will also merit by the fact that the
reduced feature set retains the original physical interpretation. This might help
to understand the process behind the generated patterns. On the other hand,
some sensor systems deliver raw-data where the physical interpretability is weak
already from the beginning and no significant loss in interpretability is made if
the analyst favors to use feature extraction. Features generated by an extractor
may also provide better discriminative ability as compared to a subset of selected
features.

3.4 Modeling and Learning

Sensors are deployed because we want to use the information they provide to
support some kind of decision. For instance, it is reasonable to think of an appli-
cation where action is taken in accordance to the concentration, or the category, of
a measured sample. Although the feature extraction techniques just described are
helpful tools for visualization purposes and for finding a suitable representation of
data, they can generally not be used to foretell e. g. the category of a sample. We
will soon look into techniques for providing categorical information (classification)
and quantitative information (regression) out of sensor data, but before doing that
a general setting for such procedures will be presented.
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3.4.1 Modeling

While modeling, we are concerned with the problem of finding a desired depen-
dence between sensor data, described by the random vector X ∈ Rn, and a prop-
erty of interest, described by the random scalar y . Ordinarily, we do not have
knowledge of the exact functional relationship between X and y . At this stage,
we propose the model

y = f(X ) + ε (3.11)

where f(·) is a deterministic function and ε is a random expectative error. The
error term is introduced to handle the “ignorance” on influential factors such as
noise that cannot be accounted for in the model function.

The model function gives an estimate of the actual output

ŷ = f(X ) (3.12)

and can take many forms. In some cases, the sensor mechanism is well understood
and can be mathematically expressed in terms of physical laws. In other cases,
little is known regarding the sensing mechanism. If so, empirical knowledge can be
utilized to formulate a purely mathematical model, a procedure known as learning.

3.4.2 Learning

The problem of concern related to learning (alternatively calibration or training)
is to, with support from a limited set of observations, chose from a given set of
candidate model functions f(x,w),w ∈W the one that best estimates the desired
response y. The set of available observations {xk, yk}Nk=1 is hereafter referred to
as the set of training data. A loss-function is defined to measure the degree of
miss-fit made by each candidate function and the aim is to find the candidate
rendering the lowest overall loss [37]. Different loss functions relate to different
pattern recognition procedures. A quadratic loss function on the difference be-
tween desired output and model output is normally used while making regressions
(see chapter 5)

L(yk, f(xk,w)) = (yk − f(xk,w))2 (3.13)

The pattern recognition techniques that are able to learn from empirical data
are often categorized in terms of being parametric vs. non-parametric, supervised
vs. unsupervised [3]:

Parametric: Parametric techniques are based on the assumption that the sen-
sor system generates data following a known statistical probability distribu-
tion. The aim of an parametric approaches is to estimate the parameters, or
statistics, that defines the assumed probability distribution. A majority of
the parametric techniques assume that the data follow a Gaussian (normal)
distribution.

Non-parametric: Non-parametric techniques do not assume any specific proba-
bility distribution of the data and can hence be used in cases that are more
general.
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Supervised: In supervised learning, a “teacher” provide the desired outputs for
each observation, {yk,xk}Nk=1, and the training algorithm seeks the setting
that generates the smallest loss, comparing the model’s actual output with
the desired.

Unsupervised: In unsupervised learning there is no teacher but the algorithm
analyses observations only {xk}Nk=1. The aim is to find a setting that is
optimal according to criterions implicitly or explicitly defined within the
algorithm.

3.4.3 Generalization

The training error is the magnitude, or the frequency, of the errors made by a
model during the training session. The generalization error is the magnitude, or
the frequency, of the errors made by the same model function when it is applied
onto observations it has not seen before. The practical usefulness of a model is
essentially determined by its ability to yield a low generalization error.

The ability to generalize is foremost influenced by three interdependent factors:
the complexity of the problem (i), the complexity of the model architecture (ii),
and the number of representative observations available for training (iii).

The balance between the complexity of the problem and the architecture of
the model should be given careful consideration. By architecture is meant the
structure of the predefined functions f(·,w), w ∈ W that the learning algorithm
chooses from during the learning phase. For relatively easy problems, it might be
sufficient to rely on linear models and to choose from the set of linear functions
defined by

f(x,w) = w1x1 + w2x2 + · · ·+ wnxn = xw (3.14)

Linear models are easy to handle, both computationally and analytically, but
are sometimes not capable of capturing the structure of the studied problem. Non-
linear functions, like the ones used for constructing single-layered neural- networks
(see page38)

f(x,w) =
M∑

j=1

(1 + exp(axwj))−1 (3.15)

are better suited for describing complex non-linear relations, but are also more
demanding to handle.

Is it then a good idea to strive for the most complex model that can be handled?
Unfortunately, it is not so! Complex models tend to require a larger number
of observations to be trained properly and are more prone to overfitting . An
overfitted model adapts too hard to the particular set of observations used for
the learning task. The model thus sacrifices proper approximation of the general
behavior in pursuit of making the smallest possible error on the unique “prints”
contained in trainingdata due to random processes such as noise. Consequently,
the training error of an overfitted model is typically very low, but the generalization
error is higher than necessary. The goal is to match the complexity of the model
with the complexity of the problem, making the model capable to describe the
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Figure 3.3: An illustration on the impact of model complexity. There are two pop-
ulations, circles and squares, which normally fall within two separate regions. Due to
noise and other unpredictable processes, observations occasionally fall outside these re-
gions. To draw a line is too simplistic and cannot separate the populations ( ). An
overly complex curve is capable of separating all observations contained in the set of
training data, even those that are un-normal. For other sets of data, containing similar
but not identical observations, the overly complex curve might fit poorly and might even
separate normal observation in a false manner ( ). A sufficiently complex model is
balanced to the complexity of the problem and capable of separating the normal pro-
cesses, but unable to separate un-normal observations. Thereby, the balanced model has
a higher generalization ability and yields a good overall performance on future unseen
observations( ).

general functional relationship, but incapable of learning the unique “prints” of
the particular set of data, see Figure 3.3.

3.4.4 Validation

The process in which it is estimated if a model generalizes well and has a complex-
ity balanced to the problem at hand is known as validation. Validation is typically
performed using trainingdata to establish models with increasing degrees of com-
plexity. The average error yielded by each of the models on a set of validation
data, the validation error is calculated and put in a graph. At a certain point in
the graph, when the complexity of the model starts to out-balance the complexity
of the problem, the error starts to increase again after an initial phase of decrease,
see Figure 3.4. Good practice is to settle on the model complexity generating the
lowest average error of validation.

Producing sets for training and validation

The set of observations used to validate a model should ideally come from rele-
vant sessions carried out ‘in-field’. A model that passes a proper validation made
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Figure 3.4: An illustration on the influence model complexity typically has on the
average training- and validation error respectively.

with such data has a good chance to be robust to both expected and unexpected
conditions of the application and stands a good chance to be useful in practice.

In reality, a single set of data is many times all that is available and it must
hence be used both for training and validation. Several approaches have been
suggested for partitioning a pool of samples into representative subsets such that
all partitions captures the functional relationship of the problem but has indepen-
dently attached contributions from errors and disturbances. Random sampling, in
which observations are randomly split into sub-sets, is a popular technique because
of its simplicity and because the statistical distribution of the subsets follows the
statistical distribution of the entire set [38]. The retrieval of a large pool of sam-
ples suitable for random sampling might still be a too costly and time-consuming
procedure. To partition an already small data set into even smaller subsets of
training- and validation-data degrades the performance and the reliability of the
training procedure even further and is therefore not recommendable. To make the
best out of such a situation it is then better to use refined validation protocols
based on re-sampling techniques. Bootstrap [39] and cross validation (CV) [40] are
techniques commonly used to deal with the outlined problem.



4
Classification

Classification is to sort observations into labeled classes. The aim is to find a
classifier implementing a decision rule that can be used to assign class labels to
unknown observations. As before, let xk represent an n-dimensional observation
of an sample belonging to a particular, but unknown, class or category . Let ci
represent the label of that class. The classifiers output, ŷk, is a discrete valued
variable providing a guess on the correct labeling. There are q different classes
represented in the class library , so the guess can take on any of q possible values.
Formally, the task of a classifier can now be described as finding a mapping,

ŷ = f(x)
f : Rn → C, C = {c1, c2, . . . , cq} (4.1)

A common representation of f(·) is to define a set of discriminant functions

gi(x), i = 1, . . . , q (4.2)

and define f(·) as [26]

f(x) = ci if gi(x) > gj(x), for all i 6= j (4.3)

See Figure 4.1 for an illustration.
The chance of succeeding with a classification task depends on many factors,

among which the variability between observations within classes compared to the
variability between classes is one example. Altogether, the information contained
in the observations {xk}Nk=1 is rarely sufficient to make a foolproof mapping and
there will always be a risk of making miss-classifications. Therefore, probability
measures are often integrated into the design of classifiers and the objective is to
find the classifier yielding the lowest probability of making miss-classification.
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Figure 4.1: Classification using discriminants

4.1 Bayesian decision theory

Bayesian decision theory is a fundamental statistical approach to the problem of
classification. The theory is extensive and contains important strategies for making
classifications. A brief overview will be given here.

The main idea is to assign an observation xk to the class being most likely,

f(x) = ci if p(ci|x) > p(cj |x), for all i 6= j (4.4)

and a crucial part of Bayesian classification is to determine the the a posteriori
probability1 p(ci|x), i. e. the probability of the state of nature being ci given the
knowledge provided by the observation x. The a posteriori is sometimes hard to
learn directly, but a reformulation can be made using Bayes formula,

p(cj |x) =
p(x|cj)p(cj)∑q
i=1 p(x|ci)p(ci)

=
p(x|cj)p(cj)

p(x)
(4.5)

in which the a priori2 probability p(ck), the unconditional probability p(x), and
class conditional probability p(x|ck) are used instead.

It is implicitly understood that the reason for categorizing samples is to use
the gained information to make decisions about what actions to take. To take
an action can be associated with a certain cost. Taking a wrong action is costly
and taking the right action is not. With this in mind, a loss function λ(αi|cj)
is introduced describing the cost associated with taking action αi if the state of
nature is cj . For a given observation, it is then possible to estimate the conditional
risk of taking action αi,

R(αi|x) =
q∑

j=1

λ(αi|cj)p(cj |x) (4.6)

1‘a posteriori’ denotes knowledge once the outcome of the observation is taken into account
2‘a priori’ means knowledge present before a particular observation is made
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Figure 4.2: An observation with unknown class-membership (F) is being classified with
the k-NN algorithm (k = 5). It is decided that the sample must belong to the ©-class.

and from there also define a decision rule suggesting taking the action minimizing
the overall risk.

take action αi if R(αi|x) < R(αj |x) for all i 6= j (4.7)

The minimum overall risk is called the Bayes risk and is the best performance that
can be achieved [26].

Many classification algorithms make use of Bayesian decision theory trying
to estimate class-conditional densities from data. Traditionally, the densities are
estimated either by assuming special parameterized functional forms, such as as-
suming multivariate normality, or by using non-parametric approaches. In between
these two traditional approaches come mixture models (see e. g. [41]), in which
very general functional forms with an adaptive number of parameters are used.

4.2 k-Nearest Neighbors

k-Nearest Neighbors (k-NN) is a simple non-parametric technique that has found
wide use in practice [41, 42]. The classification of a sample, here encoded as xi,
is made by placing the center of a hyper-sphere in the position of xi and expand
the sphere until k of the nearest training samples are contained within. The
unknown sample can thereafter be classified according to a majority vote of the
class-memberships of the k nearest neighbors, see Figure 4.2.

The algorithm might appear “rough” but can in fact be seen as a non-parametric
probability density estimator being plugged-in into a Bayes classifier. Suppose the
training data contain Nk samples in class ck and N samples in total. Let V de-
note the volume of the sphere encompassing the k nearest training samples. Out
of these k nearest neighbors kk of them belongs to class ck. The class conditional
density, the unconditional density, and the priors can now be approximated as (see
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e. g. [43] for details)

p(x|ck) =
kk
NkV

(4.8)

p(x) =
k

NV
(4.9)

p(ck) =
Nk
N

(4.10)

All of the above put together in Bayes formula (eq. 4.5) gives

P (ck|x) =
kk
k

(4.11)

and it is readily seen that we should assign sample xi to the class for which the
ratio kk/k is the largest.

Sophisticated variants of the k-NN strategy can be found in literature, among
which many try to alleviate for the disadvantage that the native algorithm requires
that all training samples are stored in memory.

4.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), also known as Fishers Discriminant Function,
originally evolved as a geometric approach. Loaning the original contributor’s own
words [44]:

“When two or more populations have been measured in several charac-
ters, x1, . . . , xn, special interest attaches to certain linear functions of
the measurements by which the populations are best discriminated.”

In binary classification, where observations are classified to either of two possi-
ble classes {c1, c2}, LDA seeks a projection w in which the projected means of the
classes are maximally separated. To account for variability in data, separation is
not measured in the standard Euclidian norm but with the Mahalanobis distance.
The Mahalanobis distance differs from the Euclidean distance in that it takes into
account the correlations of the data and is invariant to the scale of the measure-
ments [45]. The objective boils down to finding the projection w maximizing the
ratio

J(w) =
wTSBw
wTSWw

(4.12)

where SW and SB are the estimated between- and within- class covariance matri-
ces [24]

SB = (x̄2 − x̄1)T (x̄2 − x̄1) (4.13)

SW =
2∑

j=1

∑

i∈cj

(xi − x̄j)T (xi − x̄j) (4.14)
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and x̄j is the mean of all observations belonging to cj .
The solution for max J(w) can be solved as a generalized eigenvalue prob-

lem [26]. The problem can be generalized and used also in scenarios where multiple
classes are considered [43, 26, 24].

Strictly, LDA is not a classifier but a supervised feature extraction technique.
Assuming samples are to be classified to any of several populations having Gaus-
sian distributions and equal covariance, then LDA can however be turned into a
classifier based on the principles of Bayes. The decision rule can be set to [24].

f(x) = ci if wT(x− x̄i)2 < wT(x− x̄j)2, for all i 6= j (4.15)

Looking at LDA as a pure feature extractor, and comparing it with PCA,
then it can be said that PCA extracts the most representative features while LDA
extract the ones most discriminatory. LDA has a tendency to over-fit in small-
sample-size problems while PCA is more robust to such tendencies [46].

4.4 Support Vector Machines

Support Vector Machines (SVM) are a family of learning methods invented during
the 90ties [47]. In its basic setting, SVM considers the problem of binary classi-
fication between two separable classes. It is possible to extend this setting and
handle non-separable classes, multi-class problems, and the problem of regression,
see e. g. [37, 27, 26].

Fundamentally, the SVM maps input data vectors xk into a high dimensional
feature space Zd through some non-linear mapping

zk = ϕ(xk) (4.16)

In feature space, a linear decision boundary is constructed in form of a hyper-plane.

wT
0 z + b0 = 0 (4.17)

Once the boundary is established, observations with an unknown class-membership
can be classified in accordance to which side of the boundary their respective
feature vectors zk.

The decision boundary is established from training data by the principle of
maximum margin separation. The margin of separation can be thought of as the
margin being created when two parallel hyper-planes are inserted in between the
classes and then being pushed-up against each respective class, see Figure 4.3.
The decision boundary is, per definition, the hyper-plane falling precisely in the
middle of the margin.

Intuitively, good class separation and low generalization error is achieved when
the margin can be made large. From principles in statistical learning theory, it
shows that the generalization error of any classifier is bounded from above by
a measure known as the guaranteed risk. The guaranteed risk depends on two
terms; (i) the training error-rate, and (ii) a term that depends on the number of
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Figure 4.3: Support vector classification. If a margin is inserted between observations
from two different populations and the margin is expanded as much as possible, then the
observations falling on the edge of the margin are the support vectors. The mid-line of
the margin can be used as a decision boundary.

observations available for training and the capacity3 of the classifier. While many
methods only aim at minimizing the first term of training error-rate, SVM puts
zero value on this term and minimizes the second term. As a consequence, an
SVM provides good generalization properties although everything has been learnt
from observations and nothing has been assumed about probability distributions
etc. This property is unique to SVM [27].

Considering the practical aspects of SVMs, to find the widest margin of sep-
aration is a quadratic programming problem [48] solved efficiently with numerical
methods. The problem at hand is to find the optimal solution to

max
argα

Q(α) =
N∑

i=1

αi −
1
2

N∑

i=1

N∑

j=1

αiαjcicjzizTj (4.18)

subject to

αi > 0, ∀i and
N∑

i=1

αici = 0

where ck is a class label taking values {+1,−1} depending on whether zk belongs
to one of the classes or the other. Once the optimal solution αo is found, the
decision boundary can be set to

w0 =
N∑

i=1

αoi cizi (4.19)

3more precicely on the classifiers VC-dimension, see e. g. [27]
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Table 4.1: Some commonly used kernel functions satisfying the necessary requirements
indicated in text.

Name Kernel Function, K(xi,xj)=

polynomial (γxixTj + 1)d

radial basis e−γ‖xi−xj‖2

gaussian radial basis e−
‖xi−xj‖

2

2σ2

sigmoid tanh(κxixTj + c)

Details on the writings above and on how to come to their solutions can be found
elsewhere, e. g. in [27, 37, 48]. It turns out, although not seen from this descrip-
tion, that for the optimal solution the αo-values take non-zero values only for
those feature vectors z(s) falling exactly on the edge of the margin. The optimal
decision boundary is hence upheld by a only a subset of the vectors contained in
the training data. These vectors are called support vectors, see Figure 4.3. Note
that the support vectors are those observations in trainingdata that are closest to
the competing class and as such they are the ones hardest to classify. With this in
mind, it is natural to see why SVM:s pay prime focus on these while setting the
decision boundary.

On behalf of the non-linear mapping (eq. 4.16), the linear decision boundary
constructed in feature space is non-linear in input space, and can potentially sep-
arate very complex scatter formations. Normally, problems risk to be introduced
when making non-linear mappings to high dimensional feature spaces. It has been
observed, though, that for constructing the linear decision boundary in feature
space explicit mapping can be avoided by the introduction of the kernel trick.
The kernel trick, first introduced by Aizerman et al. [49], transforms any linear
algorithm that solely depends on dot products between vectors into a non-linear
counterpart. This is seen from Mercer’s theorem, see e. g. [27, 37], stating that any
continuous, symmetric, positive semi-definite kernel function K(xi,xj) represents
the dot product of a possibly high-dimensional and non-linear function ϕ(x),

K(xi,xj) = ϕ(xi) · ϕ(xj) (4.20)

As an example, the dot products between feature vectors in eq. 4.18 becomes

zTi zj = ϕ(xi) · ϕ(xj) = K(xi,xj) = (γxTi xj + 1)d (4.21)

where the polynomial kernel, see Table 4.1, was used at the far right hand. Note
that the kernel functions themselves do not define the non-linear mapping from
input- to feature- space, but are merely explicit writings of dot-products of the
implicitly defined mapping ϕ(xi). It can be noted that the non-linear functions
generating a Gaussian radial basis kernel are infinitely-dimensional [27].

In summary, SVMs are supervised learning methods that map data into high
dimensional feature spaces. In feature space, a linear decision boundary is con-
structed, rendering a non-linear counterpart in original input space. The boundary
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is entirely defined by support vectors, a subset of the vectors contained in train-
ing data. The support vector machine can provide good generalization properties
although no problem-domain knowledge is given and everything must be learned
from training examples only.



5
Regression

The term regression describe techniques used for the modeling of one or several
continuous response variables1 as a function of one or several continuous observa-
tions2. Regression techniques are often applied to map complex sensor responses
to some quantitative property of the analyzed sample, like its concentration for an
example.

Following previous terminology, the task given is to find a model f(x,w) that
can map observations xk to a corresponding quantity yk making the smallest
possible error. A quadratic loss function

L(y , f(X ,w)) = (y − f(X ,w))2 (5.1)

on the difference between desired output and model output is normally used as
error measure. The objective of regression becomes to find the parameter vector
w yielding the minimum sum of error over the range of observations {xk, yk}Nk=1

available for training

min
arg w

N∑

k=1

(yk − f(xk,w))2 (5.2)

This is the basis for all least squares-procedures.

1also known as dependent variable
2also known as independent- or explanatory variables
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5.1 Linear Regression Techniques

A classic regression model is introduced by assuming a linear dependence between
the observation xk and the target property yk

f(x,w) = w1x1 + w2x2 + · · ·+ wnxn = wx (5.3)

whereby the least squares approach becomes to minimize

min
arg w

N∑

k=1

(yk −wxk)2 (5.4)

The minimum solution can be found using the normal equations3. In matrix
notation the solution reads

w =
XTy
XTX

(5.5)

If needed, it is straightforward to simultaneously handle several independent y-
variables, whereby y and w above becomes Y and W instead. This is Multiple
Linear Regression (MLR).

A shortcoming with this rather straightforward approach emerges when the
variables within the observations {xk}Nk=1 are mutually correlated and not inde-
pendent. Then, the matrix inverse (XTX)−1 becomes ill-conditioned or might not
even exist. The problem can be circumvented by deriving suitable features from
input data and use the features as input to the regression model.

5.1.1 Principal Component Regression

The technique Principal Component Regression (PCR) avoids ill-conditioned ma-
trix inversions by applying a PCA on X-data. Due to the properties of PCA,
the principal components give a good representation of the original data and are
moreover de-correlated. The procedure is to replace the original X-data with the
PCA score values T and apply an MLR on these instead. Since the score vectors
are orthogonal, the matrix inverse (TTT)−1 is well conditioned.

5.1.2 Partial Least Squares. . . or Projection to Latent Structures

Partial Least Squares (PLS), originally developed by H. Wold during the 70ies, is a
method to solve linear least squares problems. The method has been widely used
within chemometrics and lately also within the chemical sensor community [50].
Originally, the method was described as a heuristic method but has thereafter been
given a statistical analysis [51]. Since introduction, PLS has evolved and nowadays
constitutes a toolbox of related methods (see e. g. [52]).

In similarity to PCR, PLS avoids collinear X -data through a subspace pro-
jection. The assumption using PLS is that the system or process under study is
influenced by just a few underlying hidden variables. These variables are known

3derivation of the normal equations should be found in any textbook on linear algebra
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as latent variables(LV’s) or latent structures. Hopefully, the LV’s are concealed
within the space X ∈ Rn spanned by the sensor responses and the objective is find
a smaller subspace spanning just the LV’s. Practically, the objective is to find a
subspace of X that has high covariance with Y .

Assuming there are c different LV’s to extract, then the linear combination
that potentially defines their subspace is written as

t = Wx (T = WX) (5.6)

where Wc×n is a matrix of weights. The tn×1 vectors are known as X -scores and
are estimates of the LV’s, or their rotation. The X -scores are, when multiplied by
the loadings pn×1 a good summary of the original X -space

X = PT + E (5.7)

where E is a small residual. The X -scores are also a good predictors of Y -space

Y = CT + F (5.8)

where F is a small residual and Cm×c is a weight matrix. In similarity to eq. 5.7,
the weights together with a set of related Y -scores u can be used to give a good
summary of Y -space

Y = CU + G (5.9)

where G is a small residual.
A combination of eq. 5.6 and eq. 5.8 finally gives

Y = CT + F = CWX + F = {B = CW} = BX + F (5.10)

To run the necessary calculations, the NIPALS algorithm (see Algorithm 1) is
mostly used. The algorithm (see e. g. [53, 54]) is an iterative procedure in which
each step aim at satisfying the maximization

max[cov(t,u)]2 (5.11)

Algorithm 1: The NIPLS algorithm

Input: X and Y
Output: W, P, C and U
while a validation indicate that more components can be extracted do

Get a starting vector u0, usually one of the columns in Y;
repeat until convergence

wi = XTui
uTi ui

;

norm wi to ||wi|| = 1 (optional);
Calculate X-scores: ti = Xwi;

Calculate Y-weights: ci = YT ti
tTi ti

;

Update Y-scores: ui = Yci
cTi ci

;

Calculate relative change in t: ∆t =
||t(i−1)−ti||

ti|| ;

until ∆t < ε , ε ≈ 10−6;
Deflate the present components from X and Y:

p = XT t
tT t

;

X = X− tpT ;
Y = Y − tcT ;

end
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(a) Nervous neuron: Stimuli from other
neurons are, via the dendrites, propagated
to the cell nucleus. The nucleus responds
to the pattern of signals and transmits,
through the axon, an electrical impulse to
the interconnecting neurons

(b) Artificial neuron: The inputs signals
are multiplied by individual weights and
thereafter summed together. The weighted
sum passes through a function, mostly non-
linear, and the output of the neuron is
thereby calculated. The neuron adapts by
updating the weight coefficients.

Figure 5.1: An illustration on the conceptual similarity between nervous and artificial
neurons.

5.2 Artificial Neural Networks

Linear models are not capable to describe strong non-linear input-to-output re-
lations accurately. If such a situation is at hand, non-linear modeling techniques
are suitable to use. Artificial Neural Network (ANN) is the collective name of a
family of biologically inspired techniques capable of handling non-linear behaviors.
The ideas behind ANN’s will be reviewed below, primarily since they represent
an important category of non-linear modeling techniques, but partly due to their
inspiring character. Other alternatives for non-linear modeling include support
vector regression [37] and various counterparts of classic linear techniques, such as
e. g. non-linear PLS.

It is easy get to inspired by human brain’s capability of processing information.
Physicists tell us that the basic building block of nervous tissue is the neuron cell,
illustrated in Figure 5.1(a). Signals are sensed by the dendrons of a neuron leading
them via electrical impulses to the cell nucleus. The nucleus responds to the pat-
tern of signals by transmitting an electrical impulse through the axon. The axon
terminal is interconnected to other neurons, through their dendrites. In this way,
massive neural networks are grown in the brain. The average human brain (1350 g)
contains about 85 billion neurons [55]. An organism learns by strengthening and
weakening interneuron connections (dendrites and axons), causing suppressions of
certain patterns of nerve impulses and an amplification of others [27, 56].

Inspired by the structure of nervous brain-matter, scientists have been tickled
to mimic brain functionality by the implementation of artificial neural networks.
A descriptive description on neural networks has been made by Aleksander and
Morton [27]
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Figure 5.2: Artificial Neural Network; A layer of input nodes is cross-connected to a
single or a series of hidden layers. The hidden layers consist of artificial neurons having
the outputs of the previous layer as their inputs. Their own outputs are feed forward to
the proceeding layer. The last layer consists of output nodes.

“A (artificial) neural network is a massively parallel distributed proces-
sor made up of simple processing units, which has a natural propensity
for storing experimental knowledge and making it available for use. It
resembles the brain in two respects. (i) Knowledge is acquired by the
network from its environment through a learning process.(ii) Interneu-
ron connection strengths, known as synaptic weights, are used to store
the acquired knowledge”

In practice, the nodes are the basic building blocks of an ANN and represent the
digitalized versions of the biological neurons, see Figure 5.1(b). The inputs of the
nodes are multiplied by individual weights and summed together. The summary
signal is passed through a function, mostly non-linear, whereby the output of the
node is calculated. The nodes are structured into interconnected layers forming
small networks, see Figure 5.2. Viewing the network as an entity, input vectors
xk can be fed into, and propagated through, the network to produce an output
vector ŷk. By adjusting the weights w of the neurons (which corresponds to
strengthening and weakening the biological interneuron connections), the network
can learn to produce the desired output for a given input.

The learning can be formulated as an optimization problem with the goal of
finding the parameters w that minimize the difference between the network’s ac-
tual output and the desired. Basic numerical optimization techniques, such as
the gradient decent approach, can be used in the search for an optimum, although
slightly more advanced procedures like the Levenberg-Marquardt method are com-
monly used in practice [27, 48]. A difficulty with using ANN is that the function
to optimize easily gets complicated which results in a high risk of getting stuck
in one of many local optima and thereby miss the global minimum. If configured
correctly, an ANN network has the ability to make highly complex and non-linear
input to output mappings. The networks can adapt themselves to the given data
and to changes in the data structure [27, 23].
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The criticism toward neural networks point to that relatively large data sets
are mostly required training the network correctly [57]. There is risk in adapting
the network to hard to data (overfitting), which results in poor generalization
properties. It is also meant that an ANN cannot be interpreted in depth [57] and
that the input–output mappings are of a “black-box” nature. However, most of
the well known neural network configurations are implicitly equivalent or similar
to classical statistical approaches [23] and it has been said that

“...neural networks are statistics for amateurs...”

A good overview of artificial neural networks and statistical inference has been
written by Howard Hua Yang et al. [58]
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Source Separation

Source separation problems are those in which several signals have been mixed
together and the objective is to find means to sort out the original source signals
from the mixed signals.

Blind source separation is to conduct source separation without information
(or with very little information) about the source signals or the mixing process.
Blind source separation is thus a more difficult than regular source separation, but
also more interesting due to its applicability to many practical problems.

6.1 Introduction

A classical illustration to the blind source separation problem is the “cocktail
party problem”. In the cocktail party problem, a number of people are talking
simultaneously in a room (like at a cocktail party), and one is trying to follow
one of the discussions. The human brain can handle this sort of source separation
problem elegantly, yet it turns out to be a difficult problem to solve technically by
means of data analysis and signal processing.

A technical setting for the problem will now be given. Consider a situation
in which a number of source signals are transmitted by some sources. Denote
the source signals si(t). Assume there are a number of sensors or receivers which
each registers a signal, here by denoted xj(t). There is a mixing process caus-
ing crossover effects from transmission to reception, so that each received sensor
signal is a mixture of source signals. In the cocktail party problem, each speech
represents a source signal. The sensor signals could be represented by a number
of microphones that have been placed out in the room. Let us say there are three
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sources and three sensors, whereby the scene mathematically can be expressed as

x1(t) = a11s1(t) + a12s2(t) + a13s3(t) (6.1)
x2(t) = a21s1(t) + a22s2(t) + a23s3(t)
x3(t) = a31s1(t) + a32s2(t) + a33s3(t)

In the model above, it has been assumed that the mixing process is linear and al-
lows to be represented by linear weights aij determined from the different positions
of the microphones relative to the positions of the guests.

The questioned considered next is how to estimate the unknown source signals
si(t) from the observed sensor signals xj(t).

6.2 Blind Source Separation

The signal model above (eq. 6.1) can easily be extended to include more sensors
and sources. In matrix notation the signal model becomes

X (t) = AS (t) (6.2)

where X is an n-dimensional vector representing the sensor signals, S is an m-
dimensional vector representing the blind source signals, and An×m is a mixing
matrix representing the linear mixing process.

If the mixing matrix A is known, it is a quick operation to find its inverse1

and extract the mixed sources from the sensor signals.

S (t) = A−1X (t) (6.3)

On the other hand, the problem is considerably more difficult to solve if A is
unknown. The problem of blind source separation (BSS) is to analyze a set of ob-
servable sensor signals and find an unmixing matrix Wm×n estimating the inverse
A−1. Once found, the blind sources could be estimated by making the calculations

Ŝ (t) = WX (t) (6.4)

Since nothing is known about the sources, or the mixing process, some assump-
tions must be made to aid in the search for the unmixing matrix W. A common
approach is to assume the source signals have a definable regularity or are non-
redundant in some meaning. For example, the signals may be assumed mutually
statistically independent or decorrelated. Blind source separation thus separates
a set of sensor signals into a set of other signals, such as e. g. the redundancy
between the new signals is minimized.

6.3 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical technique for revealing
hidden latent variables in measurements and signals [33]. It is sometimes seen as

1Assumed that the mixing matrix A is invertible
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an extension to PCA, able to extract features PCA, per definition, cannot find.
The technique will be briefly presented here due to its close association with blind
source separation problems.

ICA is defined as the problem to find a linear transformation, given by W,
such that the signals zi(t) below are as statistically independent as possible.

z1(t) = w11x1(t) + w12x2(t) + w13x3(t) (6.5)
z2(t) = w21x1(t) + w22x2(t) + w23x3(t)
z3(t) = w31x1(t) + w32x2(t) + w33x3(t)

It can be shown that the problem is well defined and can theoretically be solved
if the hidden sources si(t) are non-Gaussian [33]. If this assumption holds, the
signals zi(t) can be made statistically independent and equal the hidden source
signals si(t).

6.3.1 Estimating statistical independence

An important part of ICA is to find an appropriate method to estimate statistical
independence. Statistically independent random variables are uncorrelated, but
uncorrelated variables are not necessarily independent. For that reason, methods
finding un-correlated linear combinations, like PCA, are not sufficiently effective.
A range of different estimation methods have been suggested in the literature. A
very brief introduction to some of these will be presented below.

Measure of non-Gaussianity

The central limit theorem, a fundamental result in probability theory, tells that
the distribution of sums of random variables tends toward a Gaussian distribution.
A sum of two independent variables is thus more Gaussian than the two terms
separately. To split up a mixture of sources, one strategy is to find the matrix W
that maximizes the non-Gaussianity of the zi variables. The kurtosis is a term
from statistics and measures the “peakedness” of a probability distribution. It is
defined as

kurt(z) = E{z4} − 3(E{z2})2 (6.6)

The kurtosis is zero for for Gaussian variables and non-Gaussianity is typically
measured by the absolute value of the kurtosis [33].

Another usable measure of non-Gaussianity is the entropy . Entropy is an
information-theoretic concept (see e. g. [27, 26]) and can be interpreted as the
degree of information that is provided by making an observation of a random vari-
able. The more “random”, or unstructured, the variable is, the higher entropy. A
Gaussian variable has the largest entropy among all random variables and entropy
can hence be used to estimate non-Gaussianity.

Minimization of mutual information

Mutual Information (MI) is yet another concept from information theory (see e. g.
[27, 26]). Basically, MI expresses the reduction of uncertainty of one variable, z1,
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due to the knowledge of the other, z2. In other words, it is a measure on the
amount of information that is shared between two of more variables. Statistically
independent variables share no information and there is consequently no mutual
information between them. From this result the strategy follows to find the linear
combination (eq. 6.5) minimizing the mutual information between the zi signals.

Calculating the estimates

A practically important aspect of ICA is to find means to compute the needed
calculations numerically. The estimates of statistical independence are non-linear
functions and cannot be expressed using linear algebra. To find the maximum in-
dependence between variables hence risk to become a cumbersome task. Numerical
optimization algorithms are therefore an integral part of ICA. The basic approach
is to resort to some classical approach like gradient decent [48], but methods have
been described that are particularly tailored to fit the structure of ICA problems.
One such method is the FastICA algorithm [59, 60].

6.4 An alternative solution

ICA uses statistical dependence to find linear combinations of the observed signals
that minimize the redundancy between the set of extracted signals. Alternative
approaches exist, where one is to use autocovariance [59].

Sensor signals are mostly time signals with a smooth time structure. A simple
measure on time structure is the linear autocovariance. For a time signal x(t), the
autocovariance is defined as

cxτ = cov(x(t), x(t− τ)) (6.7)

where τ is a time-lag constant. Considering multidimensional signals x(t), the
time-lagged covariance matrix is defined as

Cx
τ = E{x(t),x(t− τ)} (6.8)

Note that the autocovariance of a signal xi(t) can be found as the ith diagonal
element of the time lagged covariance matrix.

To find a linear combination maximizing time structure of the resulting signals,
while simultaneously minimizing the time structure between signals, is equivalent
to making all off-diagonal elements of the time-lagged covariance matrix zero, and
the diagonal elements as large as possible. This problem is perfectly solved with
canonical correlation analysis (see section 3.3.2, page 20) if the set of time-lagged
data X(t− τ) is used as Y-data, i. e.

CCA(X(t), X(t− τ)) → U(t) = ATX(t) (6.9)

where U(t) serve as estimates of the source signals and A is the corresponding
demixing matrix (compare to eq. 3.8). It is possible to extend the approach by
e. g. considering multiple time-lags {τ1, τ2, . . .} simultaneously. This will not be
done here.
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A few notes are in place commenting on the difference between the CCA ap-
proach and ICA. ICA analyses random variables and does not consider the struc-
ture between consecutive samples. ICA is a general and powerful method, but if a
time structure exists, ICA will not exploit it as the CCA-approach does. Further,
ICA cannot separate Gaussian signals, so in cases where the signals are Gaussian
but correlated over time, the autocovariance approach is an important alternative.
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7
Drift Counteraction and

Calibration Transfer

The modeling techniques presented in this thesis adopt the principle that by learn-
ing from a set of observations, it is possible to generalize and apply the gained
knowledge to other, previously unseen, observations. The fundamental assump-
tion that needs to be made while using such a principle is that the characteristics
of the sensors remains stable throughout learning and throughout utilization.

As discussed earlier, the characteristics of a sensor may suffer from changes
induced by drift (section 2.3.2) or reproducibility issues (section 2.3.3). If so, the
critically important assumption on stability might become violated which may
result in loss of performance and in an increased risk of making misinterpretations
of data.

This chapter introduces techniques counteracting for effects caused by drift and
irreproducibility. Two terms will be introduced; drift counteraction and calibra-
tion transfer. In loose terms, drift counteraction can be seen as counteraction of
gradual temporal changes. Calibration transfer can be seen as the counteraction
of spatially induced changes, e. g. between different sensor systems. In practice,
the terms and thereto-related techniques are overlapping.

7.1 Overview

To organize and overview different strategies for counteraction, this thesis identifies
three different ‘dimensions’ along which different approaches can be sorted. The
dimensions are: effort (i), where (ii) and when (iii).

The efforts needed to counteract for unwanted changes is of practical im-
portance. Counteraction procedures which autonomically identify changes and

47
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(a) The model as established
from data x ∈ X0

(b) pre-processing of data

(c) post-processing of model output

(d) model adaptation

Figure 7.1: The different approaches for drift counteraction and calibration transfer.

take appropriate action constitute the ultimate scenario. In worst case, the com-
plete pattern recognition system must regularly be re-modeled by hand and from
scratch. Many procedures need to invoke recalibration measurements in order to
identify malicious changes. These measurements are often made on predefined
and well-known reference samples. Unfortunately, reference samples tend to be
logistically difficult to handle and from a practical viewpoint, it is more convenient
if well known but otherwise arbitrary samples can be used instead. In either case,
the goal is to run as few and simple recalibration measurements as possible and to
re-use the information contained within the original model as much as possible.

A second distinction between counteraction methods relates to where the coun-
teraction is applied, see Figure 8.2. Some methods apply a pre-processing that
counteracts for deficiencies in sensor data before it is analyzed by the pattern
recognizer. Here, sensor signals can be corrected as a joint group (multivariate
approach) or one by one (univariate approach). Another approach is to let the
pattern recognizer process the deficient sensor data and then post-process the out-
come. A third alternative is to counteract in the process by properly adjusting the
main model.

The third dimension of categorization involves when it is determined on how to
counteract. Some methods try to find features unaffected by drift, whereby only
an initial assessment is made. Adaptive methods for drift counteraction continu-
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Figure 7.2: In systems where a baseline is available, the response relative to the (drift-
ing) baseline might be a parameter that is insensitive to drift.

ously update the counteraction model. Time-discrete updates of the counteraction
model made at certain intervals are the strategy used by calibration transfer algo-
rithms and by many drift counteraction procedures.

7.2 Counteraction Procedures. . . some examples

The numbers of techniques for drift counteraction and calibration transfer are rare
compared to the wealth of techniques described to solve the classical problems of
e. g. classification and regression. Within the field of sensor signal processing, the
methods described below are frequently being refereed to.

7.2.1 Drift-free parameters

One approach to drift counteraction is to identify features within the data that
are insensitive to drift. In some regards, the Component Correction algorithm,
described later, is such a method. Another example is to utilize the baseline of a
signal, if such is available. If the base-line response is also affected by drift, the
sample response relative to the base-line response might be a parameter free from
drift, see Figure 7.2. In effect, this latter example makes a variant of the additive
drift correction.

7.2.2 Additive drift correction

An easy-to-use univariate recalibration method, running on reference samples, has
been described by Fryder et al. [61]. The method, known as additive drift compen-
sation, assumes that drift makes an additive component d(t) that is independent
from the response component s(y) of the sensor, i. e.

x(y, t) = s(y) + d(t) (7.1)

A master reference is constructed at time t0 by recording the reading x0
r while

measuring on the reference sample yr,

x0
r = x(yr, t0) = s(yr) + d(t0) (7.2)
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Similar reference readings are then made at time tk and the difference is calculated

∆dk = xkr − x0
r = d(tk)− d(t0) (7.3)

Within a period shortly after time tk it can be assumed that the approximation
d(t) ≈ d(tk) is just. The drift counteracted sensor signal x(y, t)′ can then be
calculated as

x(y, t)′ = x(y, t)−∆d = s(y) + d(t)− d(tk) + d(t0) ≈ s(y, t) + d(t0) (7.4)

The calculation above transforms the sensor signal back to its state at t0, making
it possible to apply data acquired approximately at t = tk to a model established
from data acquired at t0.

7.2.3 Multiplicative drift correction

Multiplicative Drift Correction [62, 63] assumes multiplicative drift, i. e. where drift
affects not the bias but the sensitivity of the sensor

x(y, t) = s(y)d(t) (7.5)

In a fashion similar to additive drift correction, drift quotients are calculated
comparing the magnitude of the master and the kth reference response

qk =
x0
r

xkr
(7.6)

Corrections are then made according to

x(y, t)′ = gkx(y, t) =
x0
r

xkr
s(y)d(t) ≈ s(y)d(t0) (7.7)

Applicable to both additive- and multiplicative drift correction, it may be
preferable to gather a time-series of {∆k,∆k+1, . . .} or {qk, qk+1, . . .} values. By
fitting a curve to the time-series, such a procedure makes it possible to use in-
terpolation to calculate correction factors to use in between adjacent reference
measurements.

7.2.4 Component Correction

Component Correction (CC) [64] is a multivariate technique taking all sensors into
account simultaneously (An example on the use of component correction can be
seen in Figure 7.3). Two different versions of the algorithm has been suggested,
one based on PCA and the other based on PLS. Here the PCA version will be
described.

The CC-algorithm runs in two phases. The first phase uses PCA to analyze
reference samples that have been measured over time and thereby are affected
by drift. Except from noise, drift is the only source of variation within the set
of references and the first loading vector pr describes its main direction. In the
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Figure 7.3: Component Correction on different gas mixtures as measured by a drifting
sensor system. The top figure shows a PCA plot prior to CC. The “tails” are caused by
drift and it can be seen in the bottom figure that these are efficiently removed by CC.
(T. Artursson et al. , Journal of Chemometrics, 14(2000),pp711-723. Copyright John Wiley & Sons
Limited. Reproduced with permission.)

second phase, data is corrected by removing all variations along the drift direction.
Algebraically, this is achieved by projecting data on the drift direction, rendering
the score vector

t = Xpr (7.8)

Data is then corrected through subtraction of the bilinear expression tpTr , whereby
the final expression yields

X′ = X− tpTr (7.9)

Note that the CC-algorithm is a reference sample method due to its fist phase.
It also runs according to the principle of identifying and exploiting drift free fea-
tures. Component Correction assumes that all samples, including the references,
drift in the same direction. It is also assumed that no “important” information
is found along the drift direction, because if so this information will be removed
also. Non-linear drift can be counteracted to some extent by extracting and re-
moving more directions. Purely non-linear techniques might be used when severe
non-linear drift is experienced. See for instance [65] where ANN:s are used as a
direct method for calibration via references.

7.2.5 Self adapting models

Data analysis procedures have been described that are able to self-adapt and
thereby automatically counteract for drift. Such models require minimum of in-
teraction and are beneficial to use on-line and in mass-market applications. A
downside with self-adaptation is the risk that the model adapts to, and hence
suppresses, the useful information. This might occur e. g. in cases where both the
samples and the sensor system change systematically over time.

Self organizing systems based on SOM (section 3.3.2) have been described
and used for adaptive drift rejection purposes [66, 67]. The basic idea is to place
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a SOM-net in response space and assign the different net-nodes to the different
classes of the samples. While in use it is then possible to slightly adapt the network
to follow the changing sensor responses and the distribution of incoming samples.
The different nodes retain their assigned labels, although they move in space,
and new samples can be classified according to which nodes that are the closest
neighbor. Further development on this theme has been made in which multiple
SOM:s were used to track one class each [68].



8
Summary of Work

This chapter will try to picture the environment from where this thesis evolved.
The projects from which data has been captured will be introduced and a back-
ground will be given to the the work eventually leading to the papers included in
this thesis.

8.1 The research environment

The work preceding this thesis has mostly been conducted at S-SENCE (see be-
low) and the Department of Applied Physics, Linköpings University. The de-
partment has tradition in gas sensing and thereto dedicated sensors, such as e. g.
the MISFET. During the nineties, there was a growing interest in chemical sen-
sor arrays, which resulted in the development of an electronic nose and later the
electronic tongue. During this era, in 1995 to be precise, The Swedish Sensor
Centre (S-SENCE) was launched (it then settled in 2005). S-SENCE was a cen-
ter of excellence dedicated to bio- and chemical sensing. The motive for starting
the center was to create an environment in which academic research could fertil-
ize with commercial interest to bring forward an interesting development of bio-
and chemical- sensing applications. The members of the center were the Gov-
ernmental Agency for Innovation Systems, Linköping University (on behalf of the
department of Applied Physics), and a selection of companies finding advanced
sensor systems interesting and useful. S-SENCE was sub-divided into three dif-
ferent sensing areas: gas sensing, liquid phase sensing, and bio sensing. A fourth
group, the data evaluation group, supported the other groups in data evaluations
and signal processing issues. The respondent of this thesis was part of the data
evaluation group.

53
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During his time at S-SENCE, many valuable insights were given to the respon-
dent through cooperation with the industry. Aside from the work at academia,
the respondent was also able to take a short leave and work for a company com-
mercializing gas sensor systems. Under this period, practical work related to the
academic research was on hold. Nevertheless, many valuable experiences were
made and gave, in retrospect, the respondent an emphasized view on practical
difficulties related to the current field of research.

8.2 Paper I

Facilities like schools, small industries, offices, and households are quite commonly
equipped with moderately sized boilers for heat production. The combustion in
such boilers is often inefficient, producing flues with high levels of carbon monox-
ides, hydrocarbons (HC) and produces ashes containing unburned charcoal. Effi-
cient control of the combustion would gain the environment and render a better
fuel economy, but would on the other hand require proper on-line monitoring of the
boiler. Legalizations and popular opinion have forced through combustion control
systems at larger plants, but the technology is not transferable to small-scaled
boilers. The hope is that small and cost effective sensors, in near future, can be
used to control systems for small- and medium-scaled boilers.

From the viewpoint of Applied Physics, the suggested application offers an
opportunity to contribute with sensor devices operating in harsh environments and
under elevated temperatures. The main focus has been to develop and evaluate
field effect devices based on silicon carbide. Compared to silicon, silicon carbide is
more chemically inert and has a wider band-gap, which in theory makes it more
appropriate considering the given conditions [11]. Much work has been done trying
to evaluate and refine the ideas [17, 18]. Important work has also been done for
the automotive industries, a closely related field of application. The aim here is
to develop alternatives to lambda-sonds and sensors for car exhaust monitoring.

Prologue

Prior to the respondents engagement for research, the department had initiated
collaborations with the Swedish power- and heat producer ‘Vattenfall’ and experi-
ments had been run on a 100 MW boiler located in Nyköping, Sweden. All details
regarding the experimental setup and the achieved results are reported in [17]. The
boiler was used for generating power and heat to local households and industries.
The experimental setting was based on a high temperature electronic nose (HTe-
nose) specially developed for harsh environments. The HTe-nose consisted of three
MISiCFET sensors, nine metal-oxide sensors and a linear lambda sensor [17].

The outcome of the experiment was promising. By using PCA it was possible to
identify clusters in sensor data that could be related to different operating modes
of the boiler. An attempt was made to model for CO concentration in the flues
under normal operating conditions by using the PLS algorithm. The constructed
model performed well with training data, but less satisfactorily with data measured
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14 days and 39 days after establishment of the model. It was suggested that the
observed model degradation was due to drift of the chemical sensor array.

The respondent engaged into the project and wanted to contribute to it by
making further improvements on the data analysis procedures. As drift had been
pointed out as an issue to be dealt with, attempts were now made to identify and
counteract for its effects. The experimental data that had been recorded did not,
due to practical limitations, include reference samples made on controlled samples.
By that, there were no natural means to identify and track effects possibly caused
by drift. At this stage, the taken approach was to replace the missing reference
samples with pseudo-references to be found within the available data.

To identify a limited sub-set of samples that could play the role as pseudo-
references, the following strategy was implemented. In parallel to each sensor
array measurement, the experimental setup included measurements made with
accurate laboratory equipment to track CO2, O2, NOx and HC. The instrumental
measurements were analyzed with PCA. Within a 2-dimensional PCA-plot, a small
and dense region of samples with even temporal distribution could be identified.
Assuming that the instruments gave reliable drift stable results, samples falling
within the defined region was selected to represent the pseudo references.

Sensor array measurements made on the identified pseudo references were now
studied. Unfortunately, a PCA analysis of the sensor readings did result in any
distinguishable patterns or trends that could be related to systematic changes such
as drift. A component correction [64] procedure was also applied, using the pseudo-
references, but no improvement was achieved. By now it was concluded that drift
was either not present or not detectable with the used methods. The work was
important, providing insight to the application, but did not contain enough essence
to bear a publication on its own. In retrospect, the pseudo reference method may
present little novelty, but should be well worth to practice in applications requiring
drift compensation.

Work directly related to the paper

A deficiency with the experiments run in Nyköping was that they were run with the
boiler in operational production, which resulted in a dataset with little variation.
It was believed that a wider coverage of operating conditions would make a better
dataset for modeling. The department was now able to initiate a collaboration with
the commercial research institute ‘Termiska Processer’(TPS), Studsvik. TPS could
offer a 200kW boiler being used for experimental purposes only. This opened up
for experiments with vivid alteration of settings, enabling the combustion process
to run under a wide span of conditions. An experimental setup similar to the one
used in Nyköping was used and experiments were run for 4 days, resulting in data
with a relatively wide and evenly distributed span of sensor responses. As before,
the main objective of the project was to find means to measure the composition
of flue gases. This time, the prioritized targets were CO, HC and O2.

The respondent wanted to engage into the project and make a contribution
devoted to data analysis issues. The following reasoning defined the outline of the
data-analysis related sub-project: Flue gas is a composition of e. g. CO, HC and
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O2. Each sensor in the sensor array is non-selective (see section 2.4) and respond
to a spectra of specimens present in the flue. Since each sensor is unique in its
response characteristics, each signal represents a unique mixture of the contribu-
tions given by the specimens in the flue gas. The objective of the data analysis
must be to find means to demix the mixed signals as to get the contribution from
each specimen.

Blind Source Separation techniques (see chapter 6) suit very nicely into the
outlined objective and the foremost choice was to evaluate the experimental data
using an ICA algorithm (see section 6.3). Unfortunately, the result of ICA was
poor, possibly due to strong Gaussian processes within the analyzed signals. An-
other BSS approach, based on the principle of using second order statistics and
auto-correlation (see section 6.4), was therefore used instead. The latter approach
was able to predict the target gases quite well. The work, included as Paper I in
this thesis, was reported in a scientific journal.

Epilogue

During the progress of the work presented above, the respondent got interested in
how to proceed with the control and monitoring of boiler combustion processes.
Techniques on statistical process monitoring and statistical process control were
studied. Such techniques are often based on PCA, PLS etc and have been ap-
plied into various process industries. The respondent made some trials on data
already collected. Tests were also made to split-up time-continuous data, like on-
line boiler measurements, into different time-scales and then process each scale
separately. The separation was made using wavelet techniques. Unfortunately,
the explorations did never pay-off and, at the time, no threads could be identified
that were promising enough to support a detailed study. In retrospect, this is
certainly an interesting field in which more can be done. One of the difficulties
moving into this field is to get hold on resources that enable a supply of relevant
data to study.

8.3 Paper II

Due to experiences gained through collaborations with Vattenfall and TPS, it
became interesting to better understand the response characteristics of the MISiC-
FET devices being used. A study was initiated and experiments were run in a
controlled laboratory environment. The purpose of the study was to examine in
which way a set of MISiCFET devices responded to different mixtures of HC, CO
and O2. The respondent did not take part in the experimental work, but became
engaged in the exploration of the retained datasets.

Work directly related to the paper

It was soon discovered that the tested sensors were cross sensitive (see section 2.4)
to CO and O2. Different models were constructed aiming at describing the cross-
sensitive response patterns mathematically. At that time, the respondent had
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recently been on a leave, working for a commercial company developing gas sen-
sor systems. The leave gave insights into many commercialization aspects of the
sensor development and the respondent decided to make attempts to utilize the
mathematical models to tackle the problem of calibration transfer (see chapter 7).
From the derived models, it was possible to parameterize sensor- to-sensor dif-
ferences. An idea evolved to use these parameters as ‘data-sheets’ describing the
characteristics of each sensor. Potentially, the data-sheets were easy to distribute
and yet contained information making it possible to compare the characteristics
of different sensors. A calibration transfer procedure was suggested that empha-
sized ease of handling and applicability to large scaled sensor production. The
work resulted in a manuscript submitted to a scientific journal. The manuscript
is enclosed in this thesis as paper II.

Comments on the work

In retrospect, the respondent recognizes that the suggested approach is merely
a first suggestion to the quest of finding an acceptable strategy for large scale
calibration transfer. To find a simple but powerful method is a very difficult task
and, to the respondents awareness, no similar work has been published directly
trying to tackle these kind of problems. Therefore, the suggested approach makes
a justifiable contribution to the field, brings up the encountered problems to the
surface, and invites to further development.

8.4 Paper III

As indicated in chapter 2, the Scanning Light Pulse Technique is a technique
providing means to evaluate different sensor configurations conveniently, without
having to physically produce test sensors. Scientists at the department of Applied
Physics were, and still are, active within the field of SLPT research and devel-
opment. During informal discussions, the respondent and the SLPT scientists
saw an opportunity to make a joint effort in combining the SLPT technique with
multivariate data analysis procedures. Ideas were refined and it was settled that
an interesting approach would be to support SLPT with techniques for variable
selection. The strongpoint of such a combined approach would be that poten-
tial sensor candidates could be screened and a sensor array could be optimally
configured for a predetermined application, without having to physically produce,
assemble, and evaluate sensors for test purposes. An experimental plan was set
up and measurements were made.

Work directly related to the paper

In SLPT, a surface is prepared with non-uniform properties. Under exposure of
predetermined test gases, the surface is scanned in x× y discrete positions render-
ing a set of x×y variables. Due to the geometric relationship between the scanned
positions, and due to the smoothness of the non-uniform surface, each variable
is closely related to its neighbors. The first intention of the respondent was to
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construct an algorithm that accounted for the geometric structure and selected
interesting regions rather than interesting positions (=variables). The procedure
was to place Gaussian-shaped kernels on the response images. Each kernel rep-
resented the region it covered and its use was to give a local weighted summary
response. The number of kernels, their position, their shape, and their orienta-
tion was to be optimized in such a way that the joint response from all kernels
together carried as much information on the test gases as possible. The search
for optimum was made with genetic algorithms, a special regimen of optimization
procedures. As it turned out, the kernel based optimization problem did not solve
easily. For each run, the optimization procedure found a new local minima and
the respondent was unable to get consistent results.

To resort from the discovered difficulties, the kernel approach was abandoned
and a more standard variable selection method using forward selection was im-
plemented. The alternative approach was successful and resulted in a manuscript
submitted to a scientific journal. The manuscript is included in this thesis as
paper III.

8.5 Paper IV

As one of the last engagements as a Ph.D-student, the respondent was given the
chance to run a project at the Swedish Defence Research Agency. The outcome of
that work resulted in a manuscript included in this thesis as paper IV.

To assemble sensors into distributed networks is a topic gaining interest. Se-
curity related applications such as perimeter- and area surveillance are often men-
tioned. Other applications such as e. g. pollution- and municipal water distribution
monitoring have been suggested.

The Swedish Defence Research Agency takes part in the development of dis-
tributed sensor systems. In 2003, a field campaign was made in which a network of
acoustic and seismic sensors were distributed in a small geographic area, covering
a road segment. Different types of vehicles were then let to drive along the road
segment while recordings were made. The main objective of the campaign was to
illustrate and study problems related to area surveillance. Interesting sub-tasks
included to study and evaluate techniques able to track and identify vehicles.

Work directly related to the paper

The respondent was given access to the described field campaign data. At start,
no particular aim was set and time was spent on basic exploration. Previously,
successful tracking of passing vehicles had been made using the received acoustic
signals. Successful classification of passing vehicles had also been demonstrated,
by using the received spectral signatures as input to an support vector machine
classifier. Classification on vehicles in an environment where multiple vehicles
passes simultaneously had not been studied before, though, and the respondent
started to study the problem. Techniques for blind source separation were stud-
ied and judged against each other. After initial testing, it was decided that a
combination of spatial beam-forming and an ICA based blind source separation of
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frequency domain signals was the appropriate method. A thorough evaluation of
the method showed promising results and indicated its practical usefulness. De-
tails on the study can be found in the manuscript enclosed as Paper IV in this
thesis.

8.6 Additional work and results

During the course of the work leading to the presented papers, many additional
ideas have been tried. Some of these have been abandoned and others have been
put aside as interesting seeds to let grow at other occasions. A pair of these ideas
will be presented here as additional work and results.

8.6.1 Analysis of impedance spectroscopy data

Electrochemical impedance spectroscopy is a powerful tool for evaluating chemical
and physical processes in solutions and in solids. The respondent has participated
in a project in which the purpose was to use the technique to measure soot and
diesel contamination in engine oils. The final result, in which an ordinary PLS
algorithm was used to predict the degree of contamination from impedance spectra,
is reported in [69].

To evaluate the impedance spectra, attempts were first made to parameterize
the data instead of using the raw measurements as basis for further data analysis.
Impedance is an electromagnetical property and each electrochemical impedance
spectra should, to some extent, be comparable to the spectra generated by an
equivalent electrical circuit of resistors, coils and capacitors. The respondent and
collaborators studied the possibility to develop a method to find the equivalent
circuit that best matched an impedance spectroscopy measurement and then use
the equivalent circuit to parameterize the data. If successful, such parametrization
would increase the physical interpretability of the analyzed sample, would possibly
increase measurement robustness, and would compress the dataset. A similar ap-
proach, using a fixed model of two exponential decay functions, has been described
and applied to compress electronic tongue data [70]. To not constrict to a fixed
model, system identification theory and filter theory were studied and various op-
timization procedures were evaluated. Unfortunately, no approach could be found
that gave better interpretability or performance, as compared to a simple PLS
model on raw data. The equivalent circuitry idea was abandoned. Additionally,
an approach using Orthogonal-PLS [71] was tested and showed to perform well.
However, the main focus of the project was never meant to be onto advanced signal
processing and it was decided to use the more well known PLS algorithm as basis
when publishing the study.

8.6.2 Tangent Distance

Tangent distance classification, introduced by Simard et al. , is a methodology
originating from the application of handwritten character recognition [72]. The
tangent distance implements the idea to make methods invariant to definable
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(a) normal (b) scaled (c) rotated (d) skewed

Figure 8.1: In handwritten character recognition, a classifier should be able to see
through certain characterizable alterations and properly compare characters being writ-
ten with a different size, rotation, skewness etc to the “normal” character contained
within the class library.

changes of the analyzed observations xk. In character recognition, the concept
is used to make classifiers insensitive to alterations in e. g. the scale, rotation or
skewness of written letters, see Figure 8.1. This can be achieved by implementing
a similarity measure being invariant to a set of predefined transformations. Con-
sider dt(x,y) as the similarity measure between the vectors x,y and define e. g. a
scaling transform as

Lα : x 7→ x + αx (8.1)

With this setting, the similarity measure must not change upon changes in α, that
is

∂

∂α
dt(x + αx,y) = 0 (8.2)

The described ideas were adopted by the respondent and fitted into a PCA-
algorithm specially suited for a voltametric electronic tongue (section 2.5.5). Such
a device consists of a number of electrodes upon which voltage pulse-forms are ap-
plied and currents are registered and used as measurements. The current amplifi-
cation of each electrode can sometimes be considered as a parameter that changes
over time and the goal was to find a PCA decomposition that was invariant to
these changes.

Considering an electronic tongue with four electrodes, variations in electrode
amplification can be modeled by the transform

Lα : x = [xa xb xc xd] 7→ [xa xb xc xd] + [αaxa αbxb αcxc αdxd] (8.3)

Inserting the transform into the score vector decomposition t = xP gives

t = xP 7→ t = [xa xb xc xd]P + [αaxa αbxb αcxc αdxd]P (8.4)

To have score vectors that are invariant to changes in amplification it requires that

∂t
∂αi

= 0 for i = {a, b, c, d} (8.5)

The adapted PCA algorithm tries to find the subspace (through the loading vectors
in P) minimizing the sum of squared residuals (see eq. 3.6, page 19), constrained
to that the derivatives of eq. 8.5 are as small as possible.
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(a) ordinary PCA (b) modified PCA

Figure 8.2: Fruit juice measurements made with an electronic tongue. The figures
shows a comparison of ordinary PCA and a PCA approach modified to stand invariant
to electrode changes giving rise to variations in the degree of current amplification. The
figure indicate that the modified approach yield less scattered scores and that the four
sub-sets of data that are included are more tightly gatehered (most easily seen for the
�-samples)

The approach was tested on measurements made on various fruit juices and
preliminary result indicated that suggested adaptation could give slight improve-
ments, see Figure 8.2.

8.7 Final comments on the conducted work

This final chapter of the thesis has presented the background to the four main
contributions of paper I–IV and thereto also summarized the work behind some
additional results. It is now time to conclude by providing a general perspective
on the graduate studies leading to the thesis.

Initially, during the first time as a graduate student, the respondent felt that
every discovered article and technique was ingenious and great ideas evolved on
how to apply the described algorithms to his current projects. It was soon discov-
ered, however, that many obstacles were in between the respondents vision and
reality. Most of the times, the obstacles were related to practical difficulties and
due to the fact that data was taken from live applications.

In live applications, it is difficult to gain control over environmental factors.
There are restrictions in testing various operating conditions, and there are limi-
tations in how to make measurements. The captured data is noisy and contains
errors. The sensors sometimes run under harsh conditions and occasionally break
down during operation. It must be presumed that drift is present within the data.
Poor precision of the reference instrumentation and time-lags between sensor data
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and reference data are factors that must be considered. In summary, much time
must be spent on organizing data, to learn its characteristics, and to counteract
for defects and malfunctioning equipment. Even if counteractions are made, there
is a high probability that data will be colored by deficiencies in the application. Is
it then worth to work with data captured under live conditions? It depends! Small
ideal datasets, perhaps artificially generated, are good for learning properties of
new algorithms etc. When it comes to test whether chemical sensors are useable
in an application, tests on real data probably give results that are more reliable.
Personally, the respondent has found it more interesting to work on real data, due
to its closer relation to useful and foreseeable applications.

As time passed, and as a consequence of experiencing the difficulties described
above, the respondent started to grew an interest in how to handle practical lim-
itations. It was realized that learning the mathematics of a method is one thing,
and learning to understand under which circumstances it can be used and how
to take proper preparatory actions is another. In later work, the reader can per-
haps discern a better awareness of the respondent to issues related to putting data
analysis procedures into practice.

In conclusion, hope is that the work leading to this thesis contributes with
useful suggestions on how to apply data analysis procedures to applications (pa-
per I), how to make the integration of chemical sensors into applications efficient
(paper II and paper III), and how to improve the performance of an algorithm by
first counteracting for artifacts raised by the application (paper IV).
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[17] L. Unéus, T. Artursson, M. Mattson, P. Ljung, R. Wigren, P. Mårtensson, M. Holm-
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