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It is well-known in the physics community that the Copenhagen in-
terpretation of quantum mechanics is very different from the Bohm
interpretation. Usually, a local realistic model is thought to be even
further from these two, as in its purest form it cannot even yield the
probabilities from quantum mechanics by the Bell theorem. Neverthe-
less, by utilizing the “efficiency loophole” such a model can mimic the
quantum probabilities, and more importantly, in this paper it is shown
that it is possible to interpret this latter kind of local realistic model
such that it contains elements of reality as found in the Bohm interpre-
tation, while retaining the complementarity present in the Copenhagen
interpretation.
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1. INTRODUCTION

The Copenhagen interpretation [1-4] and the Bohm interpretation [5-7]
are fundamentally different. The former speaks about “wave function”
and measurement setup as description of Nature, in which a funda-
mental property is complementarity; a measurement setup to measure
the position of a system makes the very concept of momentum for the
same system meaningless. The latter, on the other hand, is a realistic
description where the two concepts position and momentum are valid
simultaneously, and the quantum properties arise from a “quantum
potential” which is affected by the measurement setup. It would seem
that these interpretations are too far apart for it to be possible to unite
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the two, except for the underlying quantum formalism. In this paper
an attempt is made to find an interpretation that contains elements of
both, and to do this we will need to look into the probability theory of
the two interpretations to see in which way the two differ. The prob-
ability theory of local realistic models will also be looked into, and it
will be shown that such models where effects of lowered detector effi-
ciency are included may be viewed as containing elements from both
the above interpretations (a discussion of lowered visibility is omitted
for reasons of brevity). Although there are many subtle issues to be
discussed in this context, the present discussion will have to be limited
to probability theory, to allow a transparent presentation.

Probabilities and expectation values are obtained in quantum
mechanics in a fashion fundamentally different from standard Kol-
mogorovian probability theory, and only the basics will be mentioned
here, using the spin of an electron as an example. There is of course
no problem in extending the treatment. In quantum mechanics, a sys-
tem is described by a normalized vector |¢), the “quantum state”, in
a Hilbert space ‘H, the space of all states. An object that has a certain
property «, e.g., “the electron has spin up along the z-axis”, corre-
sponds to a vector that lies in the subspace H, associated with that
property, while an object not having the property corresponds to a
vector in the orthogonal complement H} of that subspace. Formally,
an object for which |¢) lies in H, has P(«) = 1, whereas when [¢) lies
in H, P(a) = 0. More generally, the probability of the system having
the property « is calculated as the inner product of the vector |¢) and
its projection onto H,, normally denoted

P(a) = (y|Wa|v), (1)

where W, is the projection operator onto H,.

To include measurement results in our quantum description, let
us look at our example, where spin up would correspond to the value
a = h/2 of a certain magnetic moment associated with the electron.
This measurement on an electron can yield two results: A = +h/2,
and these values are encoded into the measurement operator

R

- h o~ -
= +-W, - =W 2
A=45Wo - S5 2)

More generally, for a set of different outcomes «; and their correspond-
ing measurement outcomes @,

A= ZaiWai. (3)
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It is therefore important to know the eigenvalues of our measurement
operator; they encode the possible measurement results!. The expec-
tation value of the measurement results is given by

E(A) = Zaip(ai) = a(W|Wa,lv) = (w|Alv). (4)

1

Let us compare the description above with Kolmogorovian prob-
ability theory, to see the differences. In this description, the prop-
erties of the system are represented by a “sample” which encodes a
pre-required existence of the properties of the system. This sample is
represented as a point A in a sample space A. An object that has a
certain property « (e.g., “the electron has spin up along the z-axis”)
would in this description have a sample lying in A,, the subset of all
samples corresponding to this property, whereas a system not having
the property would have a sample lying in the complement set AS. In
probability theory such a subset is called an “event”, and on the collec-
tion of all events F (a collection of sets) we have a probability measure
P, allowing us to calculate the probability as

Pla) = /A ap (5)

Again, we introduce measurement results into the formalism.
Here, they are encoded into random variables (RV:s) which are func-
tions from the sample space into (e.g.) the real numbers. In our case,
the measurement result A is described by a RV (see Fig. 1)

+h/2, if A€ A,,
A(N) = 6
) {—h/2, if X e AS. (©)

In the general case, A is
AN) = a;, if X € Ay, (7)

and, given this, the expectation value is

E(A) = aP(o) = Zai/ dP = / A(N)dP. (8)

9 i Aoy A

The formal differences between quantum mechanics and Kolmogoro-
vian probability theory are visible here; compare (1) with (5) and (4)
with (8).

More generally, it is important to know the spectrum of our operator. For
simplicity, it is here assumed that {a;} is finite and that all a; are different.
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A +h/2

—h/2

Fig. 1. A random variable (RV) is a function, which maps points in the
sample space into (e.g.) the real numbers, or as in our example one of
the two points £h/2.

2. THE COPENHAGEN AND BOHM
INTERPRETATIONS

To illuminate the differences between the two mentioned interpreta-
tions, the system used as an example above will be extended from the
spin of one electron into a system consisting of two electrons with total
spin 0, in the spirit of Bohm’s version of the EPR paradox as used in
the Bell inequality [8-11]. The example contains three devices; a source
and two detectors, all separated at a great (space-like) distance. The
source emits a pair of electrons in a state of total spin 0, one moving
towards each detector. Each detector can be used to measure the spin
of an electron along any direction we choose, labeled a at one detec-
tor and b at the other, while their results will be labeled A and B,
resp.. The total spin O of the electron pair implies that if a = b, the

spin measurement results obey A = —B. Having set the stage, we
may now return to the question at hand; the relation between the two
interpretations.

The Copenhagen interpretation takes the stand that the studied
object has no properties but its quantum description (“wave-function” )
until we have made a measurement. Granted, the probability of the
object having a certain property is given by quantum mechanics, but
the property itself does not exist until we measure it. For example, a
statement like “This electron has spin up along the z-axis” is very much
dependent upon the measurement device used. A measurement device
constructed to discern electrons with spin up along the z-axis from
other electrons is needed to ascertain any validity of the statement. If
the measurement device measures e.g. the spin along the y-axis, the
electron cannot be said to have the property spin up or down along
the z-azxis. The statement is neither true nor untrue, it is meaning-
less, because in this interpretation, spin along perpendicular axes are
complementary; if one is measured, the other is undefined.

We have a description allowing us to calculate probabilities (1)
and expectation values (4), but there is no probability space or prob-
ability measure in the Kolmogorovian sense. When the measurement
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is made?, there emerges a probabilistic description: a sample space, a
probability measure, and two RVs. Notable is that if we were to make
a different measurement, we would get a completely different sample
space with a completely different probability measure and completely
different RVs. This is where complementarity emerges in the proba-
bilistic description; A, P, A, and B change completely for different
experimental setups.

I: The Copenhagen interpretation?:

Given a and b, there exists a probabilistic description
(A, F, P) with

A:A— th/2, B:A— +h/2.

The description does not exist unless a and b are given.

In the Bohm interpretation, on the other hand, an object indeed
possesses properties which have well-defined values; elements of real-
ity. In our example, the statement “This electron has spin up along a
certain axis” is either true or untrue; it is always a meaningful state-
ment. These properties follow the laws of ordinary mechanics with the
modification that the behavior is affected by an additional potential, a
quantum potential originating in the quantum description. It perme-
ates the whole system, causing it to behave in classically unexpected
ways, and the potential is much dependent on the measurement setup
we have chosen; for different setups, the potential is different. Two
different measurement devices designed to measure spin along differ-
ent axes would yield different quantum potentials, causing the object’s
properties to behave differently. This in itself is not strange, but what
may seem strange is that changes in the measurement setup affects the
quantum potential instantaneously throughout the system, and thus,

2If preferred, one could say that the probabilistic description appears when the
measurement device is chosen.

3 Another way of describing this is known as quantum probability (see e.g. [12]),
which would in the notation presented here be

I’: Quantum probability
There always exist probabilistic descriptions
(A(a,b), F(a,b), Py(ap)) for all setups with

A(a,b): A(a,b) — +h/2, B(a,b): A(a,b) — £h/2.

A probabilistic description always exists, but different experimental settings are
difficult to compare, because there is no common probability space to compare the
results in. Furthermore, the description changes abruptly even for small changes of
the parameters a and b. In this paper the concept of realism is taken to contain
less dramatic changes.
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a change of the setting a changes the quantum potential at the second
site instantaneously, so that the result B is affected.

The Bohm interpretation says that the object does have a def-
inite value of the property, but it is part of an ensemble in which the
values may be different; probabilities and expectations are given by
(1) and (4)*. Here the probablhstlc description always exists, but the
Bohm interpretation is nonlocal as the result at one detector (e g., B)
is affected by both settings a and b.

II: The Bohm interpretation:

There always exists a probabilistic description (A, F, P)
with

A(a,b): A — +h/2, B(a,b): A — £h/2.

In this way the two key pieces of these two interpretations are
exhibited: Complementarity in the Copenhagen interpretation by the
change in the probabilistic description; Realism in the Bohm interpre-
tation by the permanent existence of one such description.

3. LOCAL REALISM

Both the above interpretations contain a seeming nonlocality, in the
Copenhagen interpretation as the collapse of the wave function at mea-
surement, and in the Bohm interpretation as the instantaneous reaction
in the quantum potential to changes in the measurement setup. Even
though there is no superluminal information or energy transfer induced
by this [13], the very hint of a superluminal influence has motivated
a search for a local realistic model that describes the process in ques-
tion. It is well known that the Bell inequality [10, 11] proves such a
construction impossible in the case of ideal detectors. In the case of
nonideal detectors as found in experiments [14-17], such a construction
is not excluded [18, 19] but quite possible [20-22] and one may ask
where such constructions fit in to the interpretational considerations
presented above.

In the case of lowered efficiency, there are in principle three pos-
sible “measurement results”: +£h/2 and “no detection”. The previous
description of RVs is modified in this case so that the RV A is defined
on a certain subset of A [19] (see Fig. 2):

A: Ay — th/2. 9)

If one asks what A(A) is, there can be three possible results: +7/2
if A isin A, and “undefined” for other A:is. The efficiency 7 is the
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A +h/2

A'undefined —h/2

Fig. 2. A random variable which is only defined on a subset A4 of the
full sample space A; here the efficiency is less than 1.

probability of getting a result, e.g., n = P(A4).

In our example, a local probabilistic model would state that the
result at one detector A only depends on the setting a at that detector
and the sample A, which also means that the definition-set of A(a) only
depends on a (As(a)). We have

ITIa: Local realistic interpretation:

There always exists a probabilistic description (A,F, P)
with

A(a): As(a) — +h/2, B(b):Ag(b) — th/2.

This is a probabilistic description which includes elements of re-
ality in the spirit of the Bohm interpretation; one probabilistic descrip-
tion of what the result will (or will not) be. However, the ensemble
changes upon change of our detector settings, which from the point
of view of a measurement is visible as a change in the probabilistic
description as in the Copenhagen interpretation; the sample set of a
measurement (Aa, say) changes with the setting of a. This is where
complementarity arises in this interpretation.

The probability of the event « is the many-experiment limit of
the ratio of a-events to the total number of events. Since the unde-
tected events are just that; all we see is events having their sample in
Aa(a), the probability measure to use on the obtained data is then the
restriction of the measure P to the set As(a):

P(O( M AA(a))
P(Aa(a))

In a two-particle experiment, i.e., when correlating results from
both detectors, single events are quite naturally discarded as mea-
surement errors. The remaining results come from a smaller subset

Py ,w(@) = P(o]As(a)) = (10)

4To clarify, these two interpretations agree on the formulas (1) and (4), and
when the object is described by a vector that lies entirely in some H,,, also the
Copenhagen interpretation agrees that the relevant property exists.
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+h/2

Fig. 3. A two-particle experiment in this description.

in the sample space, the subset where both A and B are defined:
Aap(a,b) = As(a) N Ap(b) (see Fig. 3). We then have

ITIb: Local realistic interpretation (cont.):
For two-particle experiments, the product is

A(a)B(b) : Ayp(a,b) — £h%/4.

Our sample space is now restricted to Asp(a,b), which again
changes when the settings change. Our probability measure is also
affected by this, changing with the settings. The probability measure
to use here is

PAAB(a>b)(a) = P(a|AAB(a’b))' (11)

There is a seeming introduction of nonlocality in IIIb because of the
presence of both parameters in the set Asp(a,b); this is only appar-
ently so, since the result and detection in, say, the A experiment only
depends on a. Only because we restrict our resulting data to events
where both A and B are defined does the apparent nonlocality in IIIb
appear. The models that have been constructed to mimic the quantum
statistics fit well into this picture [20-22].

4. CONCLUSIONS

In conclusion, local realistic models may yield the correlations by quan-
tum mechanics by using the “efficiency loophole” in the Bell inequality,
or more accurately, using a changing ensemble, and an interpretation
of this is presented here which is consistent with both the Copenhagen
and the Bohm interpretations. It is worth mentioning that the discus-
sion in this paper assumes that the quantum-mechanical predictions
are correct, but that the efficiency problem is fundamental rather than
due to inexact measurements. There is a widespread belief that the
detector efficiency problem is only of minor importance, soon to be
solved by our experimental efforts. J. S. Bell puts it as follows:
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[4

‘... if you can demonstrate that quantum mechanics im-
poses some limit on the degree to which the ideal experi-
ment can be approached, I will be very interested. 1 will
also be very surprised! Experimental colleagues have told
me that optical photon counters could be made as efficient
as we like if size and expense are unlimited.”[23]

There is yet no two-particle experiment which successfully exceeds the
current, efficiency bound [18, 19], but the subject is currently under
very active research, both theoretically and experimentally.
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