Wake field generation and nonlinear evolution in a magnetized electron-positron-ion plasma

P.K. Shukla, G. Brodin, M. Marklund and Lennart Stenflo

N.B.: When citing this work, cite the original article.

Original Publication:

http://dx.doi.org/10.1063/1.2970098

Copyright: American Institute of Physics

http://www.aip.org/

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-43396
Wake field generation and nonlinear evolution in a magnetized electron-positron-ion plasma

P. K. Shukla, G. Brodin, M. Marklund, and L. Stenflo
Department of Physics, Umeå University, SE-90187 Umeå, Sweden

(Received 12 May 2008; accepted 24 July 2008; published online 13 August 2008)

The nonlinear propagation of a circularly polarized electromagnetic (CPEM) wave in a strongly magnetized electron-positron-ion plasma is investigated. Two coupled equations describing the interaction between a high-frequency CPEM wave and the low-frequency electrostatic wake field are derived. It is found that the generation of the wake fields partly depends on the presence of the ion species and the external magnetic field. The wake field generation in turn leads to deceleration and frequency down conversion of the electromagnetic pulse. © 2008 American Institute of Physics. [DOI: 10.1063/1.2970098]

I. INTRODUCTION

Electron-positron (pair) plasmas are composed of electrons and positrons, which have the same mass and opposite charge. Such pair plasmas appeared in the early Universe, and are frequently encountered in bipolar outflows (jets) in active-galactic nuclei, in microquasars, in pulsar magnetospheres, in magnetars, in cosmological gamma ray fireballs, in solar flares, and at the center of our galaxy. Multiterawatt and petawatt laser pulses interacting with solid density matters can create pair plasmas. Collliding electromagnetic pulses also generate pairs from vacuum. The pair plasmas at the surface of fast rotating neutron stars and magnetars are held in strong magnetic fields, while superstrong magnetic fields can be created in intense laser-plasma interaction experiments. Accordingly, the understanding of collective phenomena in strongly magnetized pair plasmas has been a topic of significant interest. Specifically, it is to be noted that in a magnetized pair plasma, we have new wave modes whose counterparts do not exist in an electron-ion magnetoplasma. Furthermore, both astrophysical and laboratory plasmas contain a fraction of ions besides the electrons and positrons. In such environments, the linear and nonlinear wave propagation characteristics of the electrostatic and electromagnetic modes are modified.

In this paper, we consider the nonlinear propagation of magnetic field-aligned circularly polarized electromagnetic (CPEM) waves in a strongly magnetized electron-positron-ion (e-p-i) plasma. It is shown that the ponderomotive force of the CPEM waves can excite electrostatic plasma wakefields. Our manuscript is organized in the following fashion. In Sec. II we discuss the linear dispersion relation, the group velocity, and the group dispersion for the magnetic field-aligned CPEM waves in an e-p-i magnetoplasma. Section III considers the nonlinear interactions between finite amplitude CPEM waves and electrostatic plasma oscillations (EPOs), and presents the coupled equations. Nonlinearities associated with the electron and positron mass variations, as well as with the CPEM ponderomotive force, are incorporated in the dynamical equations for the modulated CPEM waves and the driven EPOs. Section IV presents the conservation laws for nonlinearly coupled CPEM and EPO waves, and discusses the excitation of wakefields. Section V contains a brief summary of our investigation.

II. THE LINEAR DISPERSION RELATION

We consider a magnetized quasineutral e-p-i plasma. At equilibrium, we have \(n_{\text{e0}} = n_{\text{i0}} = n_{\text{p0}} \), where \(n_{\text{j0}} \) is the unperturbed number density of the particle species \(j \) (\(j = \text{e} \) for the electrons, \(i \) for the ions, and \(p \) for the positrons). The external magnetic field is \(B_0 = B_0 \hat{z} \), where \(B_0 \) is the strength of the magnetic field and \(\hat{z} \) is the unit vector along the \(z \) axis in a Cartesian coordinate system. For a right-hand circularly polarized electromagnetic (RCPEM) wave propagating along \(\hat{z} \) with frequency \(\omega > \omega_{\text{cp}} = (4 \pi n_{\text{e0}} e^2 / m) \), we have the dispersion relation \(\frac{k^2 c^2}{\omega^2} = 1 - \frac{\omega_{\text{pe}}^2}{\omega (\omega + \omega_{\text{cp}})} - \frac{\omega_{\text{pp}}^2}{\omega (\omega + \omega_{\text{ip}})} \), where \(k \) is the wave number, \(\omega \) is the speed of light in vacuum, \(\omega_{\text{cp}} = (4 \pi n_{\text{e0}} e^2 / m) \) with \(j = e, p \) is the plasma frequency, \(\omega_{\text{pe}} = -eB_0 / mc = -\omega_{\text{cp}} \) is the electron gyrofrequency, \(\omega_{\text{ip}} = eB_0 / mp \) is the ion gyrofrequency, and \(m \) is the electron/positron mass (Refs. 34 and 37). In the limit of a strong background magnetic field, i.e., \(\omega \approx \omega_{\text{cp}} \), we can simplify Eq. (1) to obtain...
velocity where \(q \) is the charge and \(c \) is the speed of light. From Eq. (2) we obtain the group velocity,

\[
v_g = \frac{kc^2}{\omega + \Omega^2_{pe}/2\omega_{cp}},
\]

and the group velocity dispersion \(v_g' = dv_g/dk = (1 - v_g^2/c^2) \). In the limit \(k c \gg \omega_{pe}^2/\omega_{cp} \), we obtain

\[
v_g = c \left[1 - \frac{1}{2} \left(\frac{\Omega^2_{pe}}{2\omega_{cp}^2c^2} \right)^2 \right],
\]

\(v_g' = \Omega^2_{pe}/4\omega_{pe}^2k^2c \), and we have neglected the root with negative sign of the group velocity. Thus, in this limit the RCPEM waves propagate with a speed close to \(c \).

III. NONLINEAR COUPLED EQUATIONS

Next, we consider a modulated nonlinear CPEM wave \(\omega (k) \), where the ponderomotive force induces slowly \(\partial / \partial t \) varying electrostatic oscillations. We still assume that the motion is fast enough for the ions to be immobile. The evolution equation for the perpendicular vector potential amplitude \(A \) in the Coulomb gauge can then be written as

\[
i \left(\frac{\partial}{\partial t} + v_g \frac{\partial}{\partial z} \right) A + \frac{1}{2} v_g' A^2 \left(\sum_{j=e,p} \omega_{pj}^2 \right) v_g^2
\]

\[
\times \left[n_j^0 + \frac{kv_j}{\omega_c} c \right] \frac{e^2 \omega^3 |A|^2}{\omega_c^2 n_j^0 (\omega_c + \omega_j)^3} \right] = 0,
\]

where \(v_g \) is the group velocity, \(v_g' \) is the group velocity dispersion, and \(n_j \) is the density fluctuation of species \(j \). The electrostatic perturbations are described by the density fluctuation \(n_j \), the longitudinal velocity \(v_j^l \), and the electric field in the Coulomb gauge can then be written as

\[
\frac{\partial n_j}{\partial t} + n_j \frac{\partial v_j^l}{\partial z} = 0,
\]

the momentum equation

\[
m \frac{\partial v_j^l}{\partial t} = -q_j F_j - q_j \frac{\partial \phi}{\partial z} n_j \frac{\partial n_j}{\partial z},
\]

and the Poisson equation

\[
\frac{\partial^2 \phi}{\partial z^2} = 4\pi e (n_{e1} - n_{p1}),
\]

where \(q = -e \) for the electrons, \(q = e \) for the positrons, and \(T_j \) is the temperature. Here \(q_j F_j \) denotes the CPEM ponderomotive force, which can be written as

\[
q_j F_j = \frac{e^2 \omega}{m(\omega + \omega_j)} c \left[\frac{\partial}{\partial z} + \frac{kw_j}{\omega(\omega + \omega_j)} \right] |A|^2.
\]

where \(\omega_{pj} = q_j B_0/mc \).

Equations (6) and (7) can be combined to obtain
\[i \left(\frac{\partial}{\partial t} + v_s \frac{\partial}{\partial z} \right) A + \frac{1}{2} \zeta \frac{\partial^2 A}{\partial \zeta^2} + \omega \frac{\zeta}{\omega_{cp}^2} \left[e \left(\Omega_1^2 + \frac{2 \omega_{cp}^2 \omega}{\omega_{cp}} \right) \phi A \right. \\
\left. - \sum_{\epsilon, p} \frac{e^2 \omega^2 \omega_{cp}^2}{m c^4 \omega_{cp}^2} \left(\frac{v_s^2}{c^2} - \frac{2 \omega}{\omega_{cp}} \right) |A|^2 \right] = 0. \quad (15) \]

Those equations are particularly relevant for pulsar and magnetar atmospheres, with their extremely large magnetic fields. In Sec. IV we shall consider some properties of Eqs. (14) and (15).

IV. CONSERVATION LAWS

In a coordinate system moving with the group velocity and with suitable normalizations \([i.e., \xi = \omega_{cp}(z - v_s t)/c, \text{etc.}] \), Eqs. (14) and (15) can be put into the generic forms

\[\frac{\partial A}{\partial \tau} + \frac{\partial^2 A}{\partial \xi^2} = -A(\Phi - \alpha |A|^2), \quad (16) \]

\[\frac{\partial^2 \Phi}{\partial \xi^2} + \Phi = |A|^2, \quad (17) \]

where \(\alpha \) is a constant that determines the relative importance of the self-nonlinearity, and in our case is given by

\[\alpha = \frac{\omega_{cp}^2}{\Omega_1^2 + 2 \omega_{cp}^2 \omega / \omega_{cp}}. \quad (18) \]

Various aspects of the coupled system of this type have been studied by Refs. 40–42. Following the presentation in Ref. 40, we refer to the low-frequency field \(\Phi \) as the wakefield. The equation system (16) and (17) can be derived from a variational principle. Introducing the Lagrangian density

\[\mathcal{L} = \frac{1}{2} \left(A^* \frac{\partial A}{\partial \tau} - A \frac{\partial A^*}{\partial \tau} \right) + \frac{1}{2} \left(\frac{\partial A}{\partial \xi} \right)^2 + \frac{1}{2} \alpha |A|^4 + \frac{1}{2} \left(\frac{\partial \Phi}{\partial \xi} \right)^2, \]

\[- \frac{\Phi^2}{2} + |A|^2 \Phi, \quad (19) \]

where the action functional is \(\int \mathcal{L} \Phi (A, A^*) d\xi d\tau, \) we obtain Eqs. (16) and (17) by varying \(\Phi \) and \(A^* \) and minimizing the action as usual. The system has three conservation laws,

\[\frac{d}{d\tau} \int\limits_{-\infty}^{\infty} |A|^2 d\xi = 0, \quad (20) \]

\[\frac{d}{d\tau} \int\limits_{-\infty}^{\infty} \left(\frac{\partial A}{\partial \xi} \right)^2 - \frac{\alpha}{2} |A|^4 - |A|^2 \Phi \right) d\xi = 0, \quad (21) \]

\[\frac{d}{d\tau} \int\limits_{-\infty}^{\infty} \frac{\zeta}{\zeta} \left(\frac{\partial A}{\partial \xi} A^* - \frac{\partial A^*}{\partial \xi} A \right) = W_\Phi |A|^2, \quad (22) \]

where \(W_\Phi = (1/2) [\Phi^2 + (\partial \Phi / \partial \xi)^2]. \) Within the framework of the WKB approximation, \(\int\limits_{-\infty}^{\infty} |A|^2 d\xi \) is proportional to the number of high-frequency quanta \(N, \) and thus Eq. (20) describes the conservation of \(N. \) Using a quantum mechanical analog, the process of wakefield generation can thus be viewed as a parametric process where a high-frequency quantum with frequency \(\omega \) decays into a low-frequency quantum \(\Omega \) and another high-frequency quantum with frequency \(\omega - \Omega, \) conserving the total number of high-frequency quanta. Furthermore, Eq. (21) is the conservation equation for the Hamiltonian. Although Eq. (22) does not look like a conservation law, it actually describes the conservation of energy. To see this, it is convenient to choose the positions \(\xi_{\pm} \) before and after the pulse passage, respectively. For this choice we note that the left-hand side of Eq. (22) is proportional to \(d/d\tau \int\limits_{-\infty}^{\infty} |A|^2 d\xi \int\limits_{-\infty}^{\infty} |A|^2 d\xi = \delta \Delta \omega d\tau. \) Furthermore, since \(N \) is conserved, \(d\Delta \omega / d\tau \) is proportional to the high-frequency energy decay rate. Finally, the difference in \(W_0 \) before and after the pulse passage is proportional to the energy transfer rate to the wake field. Thus we deduce that Eq. (22) implies energy conservation.

V. SUMMARY AND CONCLUSIONS

To summarize, we have considered the nonlinear interactions between magnetic field-aligned CPEM waves and electrostatic plasma oscillations (EPOs) in a pair-ion magnetoplasma. It is found that the EPOs are generated by the ponderomotive force of the CPEM waves only if either the ions or the external magnetic field in a pair-ion plasma are present. The present nonlinear wave-wave interactions provide the possibility of CPEM pulse localization and the generation of wakefields. Localized EM pulses, in association with wakefields, can be identified in observations from astrophysical settings as well as from next generation intense laser-solid plasma experiments where pairs and ions appear simultaneously.

ACKNOWLEDGMENTS

This research was partially supported by the Swedish Research Council (VR).
