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Road geometry estimation and vehicle tracking using a single track model

Christian Lundquist and Thomas B. Schön
Division of Automatic Control

Linköping University
SE-581 83 Linköping, Sweden

Email: {lundquist, schon}@isy.liu.se

Abstract— This paper is concerned with the, by now rather
well studied, problem of integrated road geometry estimation
and vehicle tracking. The main differences to the existing
approaches are that we make use of an improved host vehicle
model and a new dynamic model for the road. The problem
is posed within a standard sensor fusion framework, allowing
us to make good use of the available sensor information. The
performance of the solution is evaluated using measurements
from real and relevant traffic environments from public roads
in Sweden. The experiments indicates that the gain in using the
extended host vehicle model is most prominent when driving
on country roads without any vehicles in front.

I. INTRODUCTION

We are concerned with the, by now rather well studied,
problem of automotive sensor fusion. More specifically, we
consider the problem of integrated road geometry estimation
and vehicle tracking making use of an improved host vehicle
model. The overall aim in the present paper is to extend the
existing results to a more complete treatment of the problem
by making better use of the available information.

In order to facilitate a systematic treatment of this problem
we need dynamical models for the host vehicle, the road and
the leading vehicles. These models are by now rather well
understood. However, in studying sensor fusion problems
this information tends not to be used as much as it could.
Dynamic vehicle modelling is a research field in itself and
a solid treatment can be found in for example [13], [16].
The leading vehicles can be successfully modelled using
the geometrical constraints and their derivatives w.r.t. time.
Finally, dynamic models describing the road are rather well
treated, see e.g., [4]–[6]. The resulting state-space model,
including host vehicle, road and leading vehicles, can then
be written in the form

xt+1 = f(xt, ut) + wt, (1a)
yt = h(xt, ut) + et, (1b)

where xt denotes the state vector, ut denotes the input signal,
wt denotes the process noise, yt denotes the measurements
and et denotes the measurement noise. Once we have derived
a model in the form (1) the problem has been transformed
into a standard nonlinear estimation problem. This problem
has been extensively studied within the control and the target
tracking communities for many different application areas.
There are many different ways to solve it, including the
popular Extended Kalman Filter (EKF), the particle filter
and the Unscented Kalman Filter (UKF), see e.g., [1], [12]
for more information on this topic.

As mentioned above, the problem studied in this paper is
by no means new, see e.g., [4], [5] for some early work
without using the motion of the leading vehicles. These
papers are still very interesting reading and contain much
of the underlying ideas that are being used today. It is

also interesting to note that the importance of sensor fusion
was stressed already in these early papers. The next step
in the development was to introduce a radar sensor as
well. The idea was that the motion of the leading vehicles
reveals information about the road geometry [9], [10], [21].
Hence, if the leading vehicles can be accurately tracked, their
motion can be used to improve the road geometry estimates,
computed using only information about the host vehicle
motion and information about the road inferred from a vision
sensor. This idea has been further refined and developed
in [6], [8], [19]. However, the dynamic model describing the
host vehicle used in all of these later works were significantly
simplified as compared to the one used in [3]–[5]. It consists
of 2 states, the distance from the host vehicle to the white
lane and the heading (yaw) angle of the host vehicle. Hence,
it does not contain any information about the host vehicles
velocity vector. Information of this kind is included in the
host vehicle model employed in the present paper.

The main contribution of this work is to pose and solve
a sensor fusion problem that makes use of the information
from all the available sensors. This is achieved by unifying
the ideas in the above referenced papers. The host vehicle
is modelled in more detail, it bears most similarity to the
model used in [4], [5]. Furthermore, we include the motion
of the leading vehicles, using the idea introduced in [21]. The
resulting sensor fusion problem provides a rather systematic
treatment of the information from the sensors measuring the
host vehicle motion (inertial sensors, steering wheel sensors
and wheel speed sensors) and the sensors measuring the
vehicle surroundings (vision and radar).

It is also shown how the suggested sensor fusion approach
performs in practise, by evaluating it using measurements
from real and relevant traffic environments from public roads
in Sweden.

II. DYNAMIC MODELS

In this section we will derive the differential equations
describing the motion of the host vehicle (Section II-B), the
road (Section II-C) and the leading vehicles (Section II-D),
also referred to as targets. However, before we embark on
deriving these equations we introduce the overall geometry
and some notation in Section II-A.

A. Geometry and Notation
The coordinate frames describing the host vehicle and one
leading vehicle are defined in Fig. 1. The inertial reference
frame is denoted by R and its origin is O, the other frames
are denoted by Li, with origin in Pi. P1 and P2 are attached
to the rear and front wheel axle of the host vehicle, respec-
tively. P3 is used to describe the road and P4 is located in the
center of gravity (CoG) for the host vehicle. Furthermore,
LSn is associated to the observed leading vehicle n, with
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Fig. 1. Coordinate frames describing the host vehicle and one leading
vehicle Tn.

PSn at the sensor of the host vehicle. Finally, LTn is also
associated with the observed leading vehicle n, but its origin
PTn is located at the leading vehicle.

B. Host Vehicle
We will only be concerned with the host vehicle motion
during normal driving situations and not at the wheel-track
adhesion limit. This implies that the single track model [16]
is sufficient for the present purposes. The geometry of the
single track model with slip angles is shown in Fig. 2. It
is here worth to point out that the velocity vector of the
host vehicle is typically not in the same direction as the
longitudinal axis of the host vehicle. Instead the vehicle
will move along a path at an angle β with the longitudinal
direction of the vehicle. This angle β is referred to as the
float angle [17] or vehicle body side slip angle [13].

The slip angle αi is defined as the angle between the
central axis of the wheel and the path along which the wheel
moves. The phenomenon of side slip is mainly due to the
lateral elasticity of the tire. For reasonably small slip angles,
at maximum 3 deg, it is a good approximation to assume
that the lateral friction force of the tire Fi is proportional to
the slip angle,

Fi = Cαiαi. (2)

The parameter Cαi is called cornering stiffness and describes
the cornering behaviour of the tire. A deeper analysis of
slip angles can be found in e.g., [16]. Furthermore, the
front wheel angle δF , i.e. the angle between the longitudinal
direction of the front wheel and the longitudinal axis of the
host vehicle, is defined as

δF , ϕ2 − ϕ1. (3)

Following this introduction to the host vehicle geometry
we are now ready to give an expression of the host vehicle’s
velocity vector, resolved in the inertial frame R,

ẋR
P4O = vx cos (ϕ1 + β), (4a)

ẏR
P4O = vx sin (ϕ1 + β), (4b)
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Fig. 2. Illustration of the geometry for the single track model, describing
the motion of the host vehicle. The host vehicle velocity vector vx is
defined from the CoG and its angle to the longitudinal axis of the vehicle is
denoted by β, referred to as the float angle or vehicle body side slip angle.
Furthermore, the slip angles are referred to as αf and αr . The front wheel
angle is denoted by δF and the current radius is denoted by ρ.

which is governed by the yaw angle ϕ1 and the float angle
β. Hence, in order to find the state-space model we are
looking for, we need the differential equations describing
the evolution of these angles over time. These equations are
well-known from the literature, see e.g., [13], hence we give
them here without derivation

ϕ̈1 = −ϕ̇1
Cαf (l1 − l4)

2 cos δF + Cαrl
2
4

Jvx
+

(l1 − l4)Cαf tan δF

J

+ β
(−(l1 − l4)Cαf cos δF + l4Cαr)

J
, (5)

β̇ = β
−Cαf cos δF − Cαr − v̇xm

mvx
+

Cαf sin δF

mvx

− ϕ̇1

(
1 +

Cαf (l1 − l4) cos δF − Cαrl4
v2

xm

)
, (6)

where m denotes the mass of the vehicle and J denotes the
moment of inertia of the vehicle about its vertical axis in the
center of gravity.

C. Road
The essential component in describing the road geometry is
the curvature c, which is defined as the curvature of the white
line to the left of the host vehicle. An overall description of
the road geometry is given in Fig. 3. In order to model the
road curvature we introduce the road coordinate frame L3,
with its origin P3 on the white line to the left of the host
vehicle, with xL1 = l2. This implies that the frame L3 is
moving with the x-axis of the host vehicle. The angle of the
L3 frame ϕ3 is defined as the tangent of the road in xL3 = 0,
see Fig. 4. This implies that ϕ3 is defined as

ϕ3 , ϕ1 + δr, (7)

where δr is the angle between the tangent of the road
curvature and the longitudinal axis of the host vehicle, i.e.,

δr = β + δR. (8)

Here, δR is the angle between the host vehicles direction
of motion (velocity vector) and the road curvature tangent.
Hence, inserting (8) into (7) we have

ϕ3 = ϕ1 + β + δR. (9)

Furthermore, the road curvature c is typically parameterized
according to

c(xc) = c0 + c1xc, (10)
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Fig. 3. Relations between the leading vehicles Tn, the host vehicle and
the road. The distance between the host vehicle path and the white lane to
its left (where the road curvature is defined) is l3. The lane width is W .

y

x

R

O

1
c

ρ

dl3

W

duR du

ϕ3
ϕ1 + β

dϕ3 dϕ
1 + dβ

Fig. 4. Representation of the road curvature c0, the radius of the (driven)
path ρ and the angles δR = ϕ3 − (ϕ1 + β). The lane width is W .

where xc is the position along the road in a road aligned co-
ordinate frame. Furthermore, c0 describes the local curvature
at the host vehicle position and c1 is the distance derivative
(hence, the rate of change) of c0. It is common to make use
of a road aligned coordinate frame in deriving an estimator
for the road geometry, a good overview of this approach
is given in [6]. However, we will make use of a Cartesian
coordinate frame. A good polynomial approximation of the
shape of the road curvature is given by

yL3 =
c0

2
(xL3)2 +

c1

6
(xL3)3, (11)

see e.g., [4], [6]. The following dynamic model is often used
for the road

ċ0 = vxc1, ċ1 = 0, (12)

which in discrete time can be interpreted as a velocity
dependent integration of white noise. It is interesting to note
that (12) reflects the way in which roads are commonly
built [4]. However, we will now derive a new dynamic model
for the road that makes use of the road geometry introduced
above.

1) Road Angle: Assume that duR is a part of the road
curvature or an arc of the road circle with the angle dϕ3,
see Fig. 4. A segment of the road circle can be described as

duR =
1
c0

· dϕ3, (13)

which after division with the differential w.r.t. time dt is
given by

duR

dt
=

1
c0

· dϕ3

dt
, vx =

1
c0

· ϕ̇3, (14)

where we have assumed that duR

dt = vx cos δR ≈ vx. Re-
ordering the equation and using the derivative of (9) to
substitute ϕ3 yields

δ̇R = c0vx − (ϕ̇1 + β̇). (15)

A similar relation has been used in [4], [14].
2) Road Curvature: Differentiating (15) w.r.t. time gives

δ̈R = ċ0vx + c0v̇x − ϕ̈1 − β̈, (16)

from which we have

ċ0 =
δ̈R + ϕ̈1 + β̈ − c0v̇x

vx
. (17)

Assume δ̈R = 0, inserting ϕ̈1 which was given in (5), and
differentiating β̇, from (6), w.r.t. time yields

ċ0 =
1

(Jm2vx)4

(
C2

αr(J + l24m)(−ϕ̇1l4 + βvx)

+ C2
αf (J + (l1 − l4)

2m)(ϕ̇1(l1 − l4) + (β − δF )vx)

+ CαrJm(−3ϕ̇1v̇xl4 + 3βv̇xvx + ϕ̇1v
2
x)

+ v̇xJm2vx(2βv̇x + vx(ϕ̇1 − c0vx))

+ Cαf (Cαr(J + l4(−l1 + l4)m)(ϕ̇1l1 − 2ϕ̇1l4 + 2βvx − δF vx)

+ Jm(3ϕ̇1v̇x(l1 − l4) + (3β − 2δF )v̇xvx + (δ̇F + ϕ̇1)v
2
x))

)
(18)

3) Distance Between the Host Vehicle Path and the White
Line: Assume a small arc du of the circumference describing
the host vehicle’s curvature, see Fig. 4. The angle between
the host vehicle and the road is δR, thus

dl3 = du sin δR, l̇3 = vx sin δR. (19)

D. Leading Vehicles
1) Geometric Constraints: The leading vehicles are also

referred to as targets Tn. The coordinate frame LTn moving
with target n is located in PTn, as we saw in Fig. 3. It is
assumed that the leading vehicles are driving on the road.
More specifically, it is assumed that they are following the
road curvature and thus that their heading is the same as the
tangent of the road.

For each target Tn, there exists a coordinate frame LSn,
with its origin PSn at the position of the sensor. Hence, the
origin is the same for all targets, but the coordinate frames
have different angles ϕSn. This angle, as well as the distance
lSn, depend on the targets position in space. From Fig. 3 it
is clear that,

xR
P4O + (l2 − l4) cos ϕ1 + lSn cos ϕSn − xR

PT nO = 0, (20a)

yR
P4O + (l2 − l4) sin ϕ1 + lSn sin ϕSn − yR

PT nO = 0. (20b)

Let us now define the relative angle to the leading vehicle,

δSn , ϕSn − ϕ1. (21)



The road shape was described by (11) in the road frame
L3, where the x-axis is in the longitudinal direction of the
vehicle. Differentiating (11) w.r.t. xL3 results in

dyL3

dxL3
= c0x

L3 +
c1

(
xL3

)2

2
. (22)

The Cartesian x-coordinate of the leading vehicle PTn in the
L3-frame is:

xL3
PT nP3

= xL1
PT nP1

− l2 = lSn
cos δSn

cos δr
. (23)

This gives us the angle of the leading vehicle relative to the
road at P3,

δTn = ϕTn − ϕ3 = arctan
dyL3

dxL3
for xL3 = xL3

PT nP3
(24)

which is not absolutely correct, since the leading vehicle
must not drive directly on the road line. However, it is
sufficient for our purposes.

2) Kinematic Constraints: The target Tn is assumed to
have zero lateral velocity, i.e.,ẏLSn = 0. Furthermore, using
the geometry of Fig. 1 we have

−ẋR
PT nO sinϕSn + ẏR

PT nO cos ϕSn = 0. (25)

3) Angle: The host vehicles velocity vector is applied in
its CoG P4. The derivative of (20) is used together with (4)
and (25) to get an expression for the derivative of the relative
angle to the leading vehicle w.r.t. time

δ̇Sn = − ϕ̇1(l2 − l4) cos δSn + vx sin(β − δSn)
lSn

− ϕ̇1 (26)

III. RESULTING SENSOR FUSION PROBLEM

The resulting state-space model is divided into three parts,
one for the host vehicle, one for the road and one for the
leading vehicles, referred to as H , R and T , respectively.
In the final state-space model the three parts are augmented,
resulting in a state vector of dimension 6 + 4 · (Number of
leading vehicles). Hence, the state vector varies with time,
depending on the number of leading vehicles that we are
currently tracking.

A. Dynamic Motion Model
We will in this section briefly summarize the dynamic motion
models previously derived in Section II. The host vehicle
model is described by the following states,

xH = (ϕ̇1 β l3)
T

, (27)

i.e., the yaw rate, the float angle and the distance from the
left lane marking. The corresponding differential equations
were given in (5), (6) and (19), respectively.

The states describing the road xR are the road curvature
at the host vehicle position c0, the angle between the host
vehicles direction of motion and the road curvature tangent
δR and the width of the road W , i.e.,

xR = (c0 δR W )T
. (28)

The differential equations for c0 and δR were given in (18)
and (15), respectively. When it comes to the width of the
current lane W , we simply make use of

Ẇ = 0, (29)

motivated by the fact that W does not change as fast as the
other variables.

The states defining the targets are the azimuth angle δSn
,

the lateral position lTn of the target, the distance between
the target and the host vehicle lSn and the relative velocity
between the target and the host vehicle l̇Sn. This gives the
following state vector for a leading vehicle

xT =
(
δSn lTn l̇Sn lSn

)T
(30)

The derivative of the azimuth angle was given in (26). It is
assumed that the leading vehicles lateral velocity is small,
implying that l̇Tn = 0 is a good assumption. Furthermore, it
can be assumed that the leading vehicle accelerates similar
to the host vehicle, thus l̈Sn = 0 (compare with e.g., [6]).

Furthermore, the steering wheel angle δF and the host ve-
hicle longitudinal velocity vx are modelled as input signals,

ut = (δF vx)T
. (31)

B. Measurement Equations
The measurement equation describes how the state variables
relate to the measurements, i.e., it describes how the mea-
surements enters the estimator. Recall that subscript m is
used to denote measurements. Let us start by introducing the
measurements relating directly to the host vehicle motion, by
defining

y1 =
(
Ψ̇ aL4

y,m

)T
, (32)

where Ψ̇ and aCoG
y,m are the measured yaw rate and the

measured lateral acceleration, respectively. They are both
measured with the host vehicles inertial sensor in the center
of gravity. In order to find the corresponding measurement
equation we start by observing that the host vehicle’s lateral
acceleration in the CoG is

aL4
y = vx(ϕ̇ + β̇) + v̇xβ. (33)

Combining this expression with the centrifugal force and
assuming v̇xβ = 0 yields

aL4
y = vx(ϕ̇ + β̇) = β

−Cαf − Cαr −mv̇x

m

+ ϕ̇1
−Cαf (l1 − l4) + Cαrl4

mvx
+

Cαf

m
δF (34)

Hence the measurement equations corresponding to (32) are
given by

h1 =

(
ϕ̇1

β
−Cαf−Cαr−mv̇x

m
+ ϕ̇1

−Cαf (l1−l4)+Cαrl4
mvx

+
Cαf

m
δF

)
(35)

The vision system provides measurements of the road
geometry and the host vehicle position on the road according
to

y2 = (c0,m δr,m Wm l3,m)T (36)

and the corresponding measurement equations are given by

h2 = (c0 (δR + β) W l3)
T . (37)

In order to include measurements of a leading vehicle we
require that it is seen both by the radar and the vision system.
The corresponding measurement vector is

y3 =
(
δSn,m l̇Sn,m lSn,m

)T
. (38)



Since these are the state variable the measurement equation
is obviously h3 =

(
δSn l̇Sn lSn

)T
. Finally, we have

to introduce a nontrivial artificial measurement equation in
order to reduce the drift in lTn, and to introduce a further
constraint on the road curvature. The measurement equation,
which is derived from Fig. 3 is given by

h4 =
c0(lSn cos δSn)2

2
+

lTn

cos δTn
+l3+lSn(δR+β) cos δSn, (39)

and the corresponding measurement is simply

y4 = lSn,m sin(δSn,m). (40)

This might seem a bit ad hoc at first. However, the validity
of the approach has recently been justified in the literature,
see e.g., [20].

C. Estimator
The state-space model derived in the previous section is
nonlinear and it is given in continuous time, whereas the
measurements are in discrete time. The filtered estimates
x̂t|t are computed with an EKF. In order to do this we will
first linearize and discretize the state-space model. This is
a standard situation and a solid account of the underlying
theory concerning this can be found in e.g., [11], [18].

The discretization is performed using the standard forward
Euler method, resulting in xt+T = xt + Tf(xt, ut) =
g(xt, ut), where T denotes the sample time. Now, at each
time step the nonlinear state-space model is linearized by
evaluating the Jacobian (i.e., the partial derivatives) of the
g(xt, ut)-matrix at the current estimate x̂t|t. It is worth
noting that this Jacobian is straightforwardly computed off-
line using symbolic software, such as MATHEMATICA.

The leading vehicles are estimated using rather standard
techniques from target tracking, such as nearest neighbour
data association and track counters in order to decide when
to stop tracking a certain vehicle, etc. These are all important
parts of the system we have implemented. However, since
these techniques are rather standard we simply refer to the
general treatments given in e.g., [1], [2].

IV. EXPERIMENTS AND RESULTS

The experiments presented in this section are based on
measurements acquired on public roads in Sweden during
normal traffic circumstances. The host vehicle was equipped
with radar and vision systems, measuring the distances and
angles to the leading vehicles (targets). Information about the
host vehicle motion, such as the steering wheel angle, yaw
rate, etc. where acquired directly from the CAN bus. A more
detailed description of the results and the method in general
is provided in the accompanying technical report [15].

A. Road Curvature Estimation
The road curvature estimation using the sensor fusion ap-
proach shown in this paper is compared to a similar ap-
proach, thoroughly described in [6]. We refer to them as
fusion 1 and fusion 2, respectively. Important differences
between the two approaches are that in fusion 1 we model
the float angle β and make use of more information about
the host vehicle motion. Furthermore, in fusion 2, the road
is modelled according to (12) and a road aligned coordinate
frame is used.

The curvature estimate ĉ0 from the two sensor fusion
approaches are compared to the estimate from the opti-
cal lane recognition (OLR) alone and a reference value

(computed off-line using [7]). A typical result of this is
shown in Fig. 5. The data stems from a country road, which
explains the curvature values. It can be seen that the estimates
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Fig. 5. Results from the two fusion approaches (solid black and gray lines)
and the OLR (dotted line), showing the curvature estimate ĉ0. As can be
seen the curvature estimation can be improved by taking the other vehicles
(gray line) and the host vehicle’s driven curvature in account (solid black
line). The dashed line is the reference curvature.

from the sensor fusion approaches gives better results than
using the OLR alone, as was expected. The OLR estimate
is rather noisy compared to the fused estimates. This is
not surprising, since the pure OLR has less information.
A second measurement sequence, acquired on a highway
with two parallel lanes shows approximately the same result.
To get a more aggregate view of the performance, we give
the root mean square error (RMSE) for longer measurement
sequences in Table I. Both fusion approaches improves the
road curvature estimate by making use of the information
about the leading vehicles, that is available from the radar
and the vision systems. However, since we are interested
in the curvature estimate also when there are no leading
vehicles in front of the host vehicle this case will be studied
as well. It is straightforward to study this case, it is just
a matter of not providing the measurements of the leading
vehicles to the algorithms. In Table I the RMSE values are
provided for a few different scenarios. It is interesting to see
that the advantage of fusion 1, which uses a more accurate
host vehicle model, in comparison to fusion 2 is particularly
noticeable when driving alone on a country road. The reason
for this is first of all that there are no leading vehicles that
could aid the fusion algorithm. Furthermore, the fact that we
are driving on a rather curvy road implies that any additional
information will help improving the curvature estimate. Here,
the additional information is the improved host vehicle model
used in fusion 1. The highway is rather straight and as

TABLE I
COMPARISON OF THE RMSE VALUES FOR THE TWO FUSION

APPROACHES AND THE PURE MEASUREMENT (OLR) FOR TWO LONGER

MEASUREMENT SEQUENCE ON PUBLIC ROADS. NOTE THAT ALL RMSE
VALUES SHOULD BE MULTIPLIED BY 10−3 .

· 10−3 Highway Country road
Time 15 min 9 min
OLR 0.152 0.541
Leading vehicles yes no yes no
Fusion 1 (this paper) 0.111 0.138 0.260 0.387
Fusion 2 (method from [6]) 0.126 0.143 0.266 0.499



expected not much accuracy could be gained in using an
improved dynamic vehicle model.

B. Leading Vehicle Tracking
A common problem with these road estimation methods is
that it is hard to distinguish between the case when the lead-
ing vehicle is entering a curve and the case when the leading
vehicle is performing a lane change. With the approach in
this paper the information about the host vehicle motion, the
OLR and the leading vehicles is weighted together in order
to form an estimate of the road curvature. Fig. 6 shows an
example from a situation on a three lane highway, where one
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Fig. 6. Illustration of the lateral movement over time of the leading
vehicle lTn driving on a highway with three lanes, where the leading vehicle
changes lane. The estimate from our fusion approach is given by the solid
black lines and the raw measurement signal is shown by the solid gray line.
The dashed lines shows the lane markings. In this example the distance to
the leading vehicle is 65 m, see Fig. 7.

of the leading vehicles changes lane. The fusion approach in
this paper produces an estimate of the lateral position of the
leading vehicle which seems reasonably, but there is a time
delay present in the estimate. To get a better understanding
of this situation, one of the images acquired during the lane
change is shown in Fig. 7.

For straight roads with several leading vehicles no differ-
ence between this and the second fusion approach mentioned
above could be seen. This can be explained by the other
leading vehicles, which stay in there lane and stabilizes the
road geometry estimation.

V. CONCLUSIONS

We have presented a new formulation for the well studied
problem of integrated road geometry estimation and vehicle
tracking. The main differences to the existing approaches
are that we have introduced a new dynamic model for the
road and we make use of an improved host vehicle model.

Fig. 7. Camera view for the situation in Fig. 6 during the lane change.
The distance to the leading vehicle is approximately 65 m.

The results obtained using measurements from real traffic
situations clearly indicates that the gain in using the extended
host vehicle model is most prominent when driving on
country roads without any vehicles in front.
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Engineering, Linköping University, Sweden, Tech. Rep. LiTH-ISY-R-
2844, Mar. 2008.

[16] M. Mitschke and H. Wallentowitz, Dynamik der Kraftfahrzeuge,
4th ed. Berlin, Heidelberg: Springer, 2004.

[17] Robert Bosch, GmbH., Ed., Automotive Handbook, 6th ed. SAE
Society of Automotive Engineers, 2004.

[18] W. J. Rugh, Linear System Theory, 2nd ed., ser. Information and
system sciences series. Upper Saddle River, NJ, USA: Prentice Hall,
1996.

[19] T. B. Schön, A. Eidehall, and F. Gustafsson, “Lane departure detection
for improved road geometry estimation,” in Proceedings of the IEEE
Intelligent Vehicle Symposium (IV), Tokyo, Japan, Jun. 2006, pp. 546–
551.

[20] B. O. S. Teixeira, J. Chandrasekar, L. A. B. Torres, L. A. Aguirre,
and D. S. Bernstein, “State estimation for equality-constrained linear
systems,” in Proceedings of the 46th Conference on Decision and
Control (CDC), New Orleans, LA, USA, Dec. 2007, pp. 6220–6225.

[21] Z. Zomotor and U. Franke, “Sensor fusion for improved vision
based lane recognition and object tracking with range-finders,” in
Proceedings of IEEE Conference on Intelligent Transportation System,
Boston, MA, USA, Nov. 1997, pp. 595–600.


	Road Geometry Estimation and Vehicle Tracking using a Single Track Model-TitlePage.pdf
	FULLTEXT01 (3)

