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Abstract

We present a novel local descriptor for range data that

can describe one or more planes or lines in a local region.

It is possible to recover the geometry of the described lo-

cal region and extract the size, position and orientation of

each local plane or line-like structure from the descriptor.

This gives the descriptor a property that other popular lo-

cal descriptors for range data, such as spin images or point

signatures, does not have. The estimation of the descriptor

is dependant on estimation of surface normals but does not

depend on the specific normal estimation method used. It is

shown that is possible to extract how many planar surface

regions the descriptor represents and that this could be used

as a point-of-interest detector.

1. Introduction

Analysis of local image properties in 2D images have a

long history, and a large variety of properties and estima-

tion methods have been presented over the last two or three

decades. Investigated properties include local orientation,

phase, frequency and curvature [2, 7, 12, 8] etc. The esti-

mation of such properties is related to detection of points-

of-interest [13, 19, 21]. In the last decade, local descrip-

tors [24, 17, 1, 20, 15] have seen much interest, mostly due

to its success in recognition [17, 20] and similar areas such

as pose estimation [15, 30, 31].

In the case of sparse 3D data, which describes points in

a scene, e.g., produced by active range sensors or methods

based on motion or base-line stereo, similar methods for de-

scribing local features have been developed. A very coarse

division could be into model-free and model-based descrip-

tors. The general approach for the model-free descriptors

is based on detecting planar surfaces or other geometrical

primitives to which a reference direction can be related, thus

achieving rotation invariance. Once the reference direction

has been established a descriptor, not bound by a mathe-

matical model is extracted [16, 3, 27]. When it comes to

the model-based descriptors the previous work is a bit more

diverse. Some are a bit more global [18] using bigger parts

of the object and then relating them to each other on a sym-

bolic level [5, 6]. This is closely related to the area of range

data segmentation which saw much exploration in the 80s

and 90s, see e.g., [32, 14] etc. Some related research is sim-

ilar to the local image properties for 2D images in that they

describe local properties such as curvature [29, 28].

In this paper we propose a representation / descriptor of

the local region around each point in the data set. This de-

scriptor can be analyzed in order to determine if the point

is on a planar surface or close to or on an edge or a cor-

ner. Furthermore, in each of these cases the representation

can be further analyzed to provide explicit descriptions of

the parameters of the plane, or planes which meet in the

edge or corner. We call this novel representation the scene

tensor and it can be seen as an extension to the orientation

tensor, [2, 11, 7]. The orientation tensor is a representaion

of local orientation, but it has its shortcomings since it only

describes orientation of a single hyperplanee. We will here

describe a way of extending the orientation tensor so that it

can contain more information. To be able to store more in-

formation than what is possible with the orientation tensor

we wanted to

• Raise the order of the tensor above second order

• Use projective geometry.

Each of the steps have been investigated separately previ-

ously but the combination of them seems new. Results on

the first point can be found in [26] and the use of projective

geometry in tensors has been published in [25]. In this pre-

sentation we are mostly interested in the form of represen-

tation rather than the ways of estimating it. Even-though,

ways of estimation are presented to show that the represen-

tation works as described. We have previously shown it to

work in 2D [23, 31].

In the remaining part of this paper we will first try to mo-

tivate the development of the scene tensor. Following this



we will, in section 3, introduce some concepts from pro-

jective geometry, which is one of the building blocks in the

construction of the representation. In section 4.1 and 4.2,

we then show how points and planes can be represented in

terms of symmetric matrices or tensors on projective spaces.

These are then combined into the final representation in sec-

tion 4.3 which also discusses overall structure and analysis

of the representation. The final part of the theory, given in

section 4.4, discusses how to analyse a specific tensor to

find the geometric information it represents. Where as the

presented representation can describe both plane and line-

like structures this paper focuses on the plane-like struc-

tures.

2 Motivation

Recent developments in vision research, [9, 10], sug-

gest that a future successful cognitive vision system will be

dependent on effective information representations. Hav-

ing many different representations for different descriptors

could present a problem when designing a learning structure

for a system where you want to be able to handle all those

descriptors. As a result of this, we wanted to design a rep-

resentation that can handle complex features, i.e. features

that are combinations of other lower-level features. Having

a representation that is the same for many combinations of

local structures goes a way to achieve this. We might not

have come all the way but nonetheless a new representation

scheme has been developed.

Furthermore, a representation of this type could also

play a role in managing the so-called bootstrapping prob-

lem where a robot with no knowledge of the outside world

could use general descriptions of it to determine how it can

interact with it to learn about various objects. If explicit 3D

shape descriptors are available, the grasping and picking-up

parts of this problem can be significantly reduced [4].

3 Points and hyperplanes

A point x ∈ R
n is said to lie in a hyperplane described

by the vector l = ‖l‖̂l, l ∈ R
n, if

xT l̂ = l1 x1 + . . . + ln xn = ‖l‖ (1)

with xi and li being components of the vectors x and l̂.

Given a vector representation of a point x ∈ R
n we can

extend this to projective space by the homogeneous repre-

sentation

xH =

(

x0

x

)

(2)

where the real number x0 6= 0. The choice of x0 can be said

to influence how large a change in the data that is needed

for the vector xH to change in a significant way. We can

also extend the representation of the plane by l into a dual

homogeneous form by

lH =

(

−‖l‖

l0 l̂

)

(3)

where l0 just as x0 can not equal zero and lH ∈ R
n+1.

If x0 and l0 were chosen to be equal to one, equation 1

would turn into

xT
H lH = −‖l‖ + xT l̂ = 0 (4)

If however x0 and l0 were chosen to be some other non-

zero real number we need to define the scalar product of the

space by

G =

(

l0 0T

0 x0I

)

(5)

so that equation 4 would be expressed as

xT
HGlH = xT

H

(

l0 0T

0 x0I

)

lH = x0 l0 (xT l̂ − ‖l‖). (6)

The reason for calling the representation in equation 2 and

equation 3 for ordinary and dual homogeneous form is that

they actually lie in separate spaces. The only implication

of this that we have to be wary of in this paper is that if we

change the coordinate system of the space of xH we have to

change the space of lH in the “opposite way”. Let’s say that

we transformed xH by the transformation Hx, we would

then need to transform lH by

Hl = G−1H−T
x G (7)

where −T is the inverse and transpose. It should be noted

that in a homogeneous format, ordinary or dual alike, mul-

tiplication with a non-zero scalar does not change the in-

formation that the vector carries. It is always a simple task

to get the original xH or lH since the scalars x0 and l0 are

assumed to be known and can be used for normalization.

4 Scene tensor in theory

We will in this paper use matrices to represent tensors.

The tensor product will be marked as ⊗ and can be thought

of as an outer product between vectors representing tensors.

4.1 Second order contra-variant tensor

The second order contra-variant tensor, denoted S20 for

its two contra-variant indexes and zero co-variant ones, is

defined as

S20 = w xH ⊗ xH = w xH xT
H (8)



where w ≥ 0 is some scalar used as a weight. The descrip-

tor found in equation 8 only describes one point and in its

null-space we find information on all hyperplanes passing

through that point. To make the descriptor more interesting

we need to integrate information in a local region R around

a point p according to

SR
20(p) =

∑

i∈R(p)

w(i) xH(i) xT
H(i) (9)

where w this time is a weighting function. This results in

that the range of SR
20 has a higher dimensionality than the

range of S20. Looking at the result of equation 9

SR
20 = k

(

x2
0 x0x

T
c

x0xc C + xcx
T
c ,

)

(10)

where k is some constant, we can interpret its matrix form

as being made up of weighted means, xc, of the points

x ∈ R and of the covariance C for the same points. The

null-space holds information on all planes going through

the points in the tensor. The last operation must have de-

creased the dimensionality of the null-space since the range

has increased. Therefore the set of possible planes passing

through all points in SR
20 must be smaller than for S20. In

the following we will use the designation S20 for SR
20.

4.2 Second order co-variant tensor

The second order co-variant tensor is denoted S02 and is

related to the orientation tensor as it describes orientation.

It is defined and calculated as

S02 = w lH ⊗ lH = w lH [lH ]T (11)

with w being some weight. The difference to the orienta-

tion tensor is that lH holds information on position as well

as orientation, whereas in the orientation tensor, only infor-

mation on orientation is contained. This tensor has been

described in [25]. Similarly to the S20 tensor, S02 holds in-

formation on hyperplanes. However S02 does this by keep-

ing the normal l̂ for the plane and the orthogonal distance

‖l‖ to the plane in its range. In the null-space of S02 infor-

mation on all points that lie within this plane can be found.

With matrix notation S02 is expressed as

S02 = w

(

‖l‖2 −l0 ‖l‖ l̂

−l0 ‖l‖ l̂ l20 l̂ l̂T

)

(12)

Integration over a region is not so easily interpreted in

form of weighted means and covariances as for the S20 ten-

sor. However if a number of hyperplanes are within a region

that is integrated over we will end up with a S02 tensor of

the form

S02 = w1 lH1 ⊗ lH1 + w2 lH2 ⊗ lH2 + . . . (13)

where wi are some weights. We see that the range of S02

spans the space where the corresponding hyperplanes lie

and that the null-space of S02 is the set of all points xH

which lie in all of the hyperplanes lHi .

4.3 Fourth order tensor

If, at a point p, we have an estimate of S20(p) and one

of S02(p) we can combine these into a fourth order tensor

by

S22(p) = S20(p) ⊗ S02(p) (14)

Since S20 holds information of where and S02 of what, it

should be clear that S22 holds information on both the hy-

perplanes position and orientation. By reshaping the second

order tensors to vectors we can again represent the fourth

order tensor by a matrix according to

S22(p) = S20(p) ST
02(p). (15)

In section 2 we mentioned that the fourth order tensor

should be capable of holding information on several fea-

tures. To realize this property of S22 we have to integrate

over a local region R

SR
22(p) =

∑

i∈R(p)

w(i) S20(i) ST
02(i) (16)

which we assume to contain a number of different hyper-

planes present. If there are k different hyperplanes within

the region R with corresponding S20 and S02 descriptors

we would have

SR
22 =

∑

k

wk S20,k ⊗ S02,k =
∑

k

wk S22,k, (17)

i.e., a summation of different fourth order tensors each rep-

resenting one hyperplane. In the following we will denote

SR
22 found in equation 16 and equation 17 by S22, i.e. we

will assume that an integration in a local region has taken

place.

4.4 Analysis of S22

One base property for the idea behind the fourth order

tensor can be expressed in the following way. First, if we

have a sum like

S22 =

n
∑

i

kiS20,iS
T
02,i =

n
∑

i

kiS22,i (18)

for some ki, where both sets {S20,i} and {S02,i} are lin-

early independent, the rank of S22 should be n. If however



say S02,i is linearly dependent for k = 1 and k = 2 the sum

should be

S22 =
n
∑

i

kiS20,iS
T
02,i =

(k1S20,1 + k2S20,2)S
T
02,1 +

n
∑

i>2

kiS20,1S
T
02,1 (19)

and the rank of S22 should be n − 1.

If we have the case that both the sets {S20,i} and {S02,i}
are orthogonal we could by using the singular value decom-

position retrieve the second order tensors that make up S22.

However, if they are not perpendicular a singular value de-

composition will not suffice to give us the original second

order tensors in the local neighborhood. Using the assump-

tion that the co-variant tensor S02 is of rank 1, methods

for analysis have been developed, implemented and tested.

There is one analysis method for when the rank of S22 is 2

and one for when it is 3. The analysis methods tries to find

weights with which it can recombine the singular values and

singular vectors to form the original S22,i in equation 18.

When these weights are found it is possible to extract the

second order tensors that made up the S22 that was anal-

ysed. The analysis stage is mainly done to evaluate that the

fourth order tensors hold information on what they should.

For technical documentation of the analysis the reader is re-

ferred to [22].

5 Understanding the representation

If we look at the two second order tensors described in

section 4.1 and section 4.2 we find that they will have dif-

ferent ranks depending on the underlying geometrical struc-

ture. Moreover the rank of S22 is dependent on the number

of geometrical entities described by S20 and S02 that has

been added to it, see section 4.3. In this section there is

a short discussion on the topic of rank for both the second

order tensors and for the fourth order tensor since this will

probably be of help in understanding the tensor representa-

tion.

5.1 Rank for S20

For the second order contra-variant tensor, S20, a few

examples of rank are given in table 1. In the table above

the single line we have equivalence between the interpreta-

tion and rank, i.e. this is how we have decided to interpret

the rank. Below the single line there is only implication

from left to right. This is due to that there can be many dif-

ferent shapes that give the same rank. The S20 tensor can

have a maximum of rank 4 in the 3D case, however when

it has rank 4 it is no longer possible to use the information

Shape of local region Rank of C Rank of S20

Point 0 1

Line 1 2

Plane 2 3

2 parallel lines 2 3

Cylinder (curved part) 3 4

2 non-parallel planes 3 4

Table 1. Examples of rank for S20

Shape of local region Rank of D Rank of S02

Point 3 3

Line 2 2

Plane 1 1

2 parallel lines 2 3

Cylinder (curved part) 2 3

2 non-parallel planes (=line) 2 2

Table 2. Examples of rank for S02

since there are several shapes that could have resulted in

rank 4. Basically the more directions in the local neighbor-

hood there is information in, the higher rank the S20 tensor

gets. An example of what happens when you add two S20

tensors is the following. Consider one tensor for a line in 3D

space and then an other tensor for a line going in an other

direction. The underlying information that has been added

up in the respective tensors covariance part, equation 10,

does in their combined local neighborhood exist in two di-

rections. If these two tensors representing the lines were

added the new tensor would end up with the same rank as

for a full plane-like shape in the data.

5.2 Rank for S02

For the second order co-variant tensor a few examples of

rank for some geometrical structures are given in table 2,

where D refers to l20 l̂ l̂T in equation 12. In this table equiv-

alence and implication works the same way as for table 1.

Two example cases for the S02 tensor can be seen in fig-

ure 1. In the left of figure 1 we see an example for the case

of a plane. We see that all normals l̂ are the same. Moreover

the perpendicular distance ‖l‖ is the same for all positions

on the plane. Therefore lH has no variation in any of its el-

ements which gives that S02 has a rank of 1 after it has been

integrated over such a region.

In the right of figure 1 we have the case that the local

neighborhood is a curved part of a cylinder. In this case the

normals l̂ all vary within one plane in 3D space, i.e. in a 2

dimensional sub-space of R
3, so D has a rank of 2. In this

case however, ‖l‖ can vary freely so lH can vary in at least

a 3 dimensional sub-space of R
4 but there is still a vector v
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Figure 1. Examples for rank of S02.

which is perpendicular to l̂ for all planes on the surface of

the cylinder. This gives that

S02

(

0
v

)

= (
∑

i

lHi lH
T

i )

(

0
v

)

= 0, (20)

i.e. S02 still has a null-space, so the rank of S02 is a maxi-

mum of 3 in this case.

5.3 Rank for S22

A complication when it comes to the scene tensor in 3D

as compared to in 2D is that both the line and plane case,

of what S20,k and S02,k in equation 17 can represent, do

exist. We do not know what happens to the rank of S22 if

S22 is made up of a combination of S22 rank 1 tensors for

the line case and S22 rank 1 tensors for the plane case. As

mentioned in section 4.4 the analysis function implemented

assumes that S02,k is of rank 1, i.e. that it represents a plane.

Due to this and that planes are the most common geomet-

rical structure found in sparse 3D data we will only experi-

ment with the plane case in this work. In this case the rank

should equal the number of different planes that are present

in the local neighborhood where S22 was estimated.

5.4 Rank measure

If we have good rank measures for rank 2 and 3, we

could use non maximum suppression to find peaks which

would give us a crude point-of-interest detector. Even-

though some other kind of POI-detector would be prefer-

able due to heavy computational load, the analysis men-

tioned in section 4.4 and detailed in [22] still needs to know

the rank of the matrix to be analyzed. A measure of rank

that is used in many of the steps to be presented was de-

rived from the properties trace, determinant and norm for a

3 × 3 matrix. We do however apply this rank measurement

to larger matrices also by, at each p, inserting the singular

values σ1 ≥ σ2 ≥ σ3 from the SVD of the matrix to be

analyzed into the following expressions:

c1 =
9 d − 4 q t + t3

3 d − 3 q t + t3
c2 =

−9 d + q t

3 d − 3 q t + t3

c3 =
3 d

3 d − 3 q t + t3
(21)

where

t = σ1 + σ2 + σ3 d = σ1 σ2 σ3

q = σ1 σ2 + σ2 σ3 + σ3 σ1 (22)

By defining the measures ck in this way, we get

• c1 = 1, c2 = 0, c3 = 0 if σ2 = σ3 = 0.

• c1 = 0, c2 = 1, c3 = 0 if σ1 = σ2 and σ3 = 0.

• c1 = 0, c2 = 0, c3 = 1 if σ1 = σ2 = σ3.

with the additional property that c1 + c2 + c3 = 1 which

means that ck can be used as a measure of confidence of

rank k.

6 Estimation methods

Estimation of the scene tensor from range data is mainly

about estimating S02. It could therefore be said that it ba-

sically is about estimation of normals for a local surface

patch. Here we present one method that has been imple-

mented and tested. The estimation of the representation of

the local neighborhood as described in equation 10 is done

by applying the following steps at each point p in the range

image:

1. Form the vector xH = (x0 x y z)T from the

range data, where x0 is a suitably chosen constant.

2. Compute S20(p) = xHxT
H in every point p.

We now have an estimate of S20 at each point p that is not

integrated over a local region.To compute S02 using poly-

nomial expansion [7]:

1. Set the signal model to a linear one

ĝ = a0 + a1x + a2y (23)

and solve

ǫ = |z − ĝ| (24)

by methods detailed in [7] for every point p.

2. At all points p form

l =
1

β





a2

−a1

−β



 (25)



where β is the mean of the difference of neighboring

x and y coordinates in x(p). Or in other words, β is

a measure of the dynamic range per pixel step in the x

and y directions of the data. Use l to in turn form

T = κ l̂ l̂T (26)

where l̂ is a normalized version of the vector l and κ is

a constant given by the norm of the l vectors.

3. It then follows from equation 1 that

T x = κ l̂ l̂T x = κ l̂ ‖l‖ = κ l (27)

which means that we can compute κ l = T x

4. From this follows directly that we can compute

κ‖l‖2 = xT T x.

5. We now have all the elements necessary for the matrix

S02 according to

S02 = κ

(

−‖l‖2 −l0 lT

−l0 l l20 l̂ l̂T

)

(28)

where l0 is a suitable chosen constant.

The estimation of the representation of the local neighbor-

hood, as described in equation 16, is then computed as a

variant of equation 16

S22(p) =
∑

i∈R(p)

w(i)

ǫ(i)
S20(i) ST

02(i) (29)

where ǫ(p) is the residual when trying to fit a plane to the

local region, see [7].

7 Experiments

Presenting results for such a high-dimensional descriptor

as the scene tensor is a problem. This chapter will depend

heavily on images to show the results.

7.1 Used range data

For the range data experiments two different inputs were

used. The first one is data scanned with an industrial laser-

based range sensor. The scan is not calibrated and we do

not have ground truth. It is therefore not possible to give

any numbers on the exactness of the tensor representation

in respect to some parameters, e.g. in respect to extracted

angles. It is however possible to use it to get a feel for how

well the representation and estimation works by overlaying

results in images. The second input used in this section was

a synthetic version of the well-known “blox” image. The

synthetic image was rendered with OpenGL and the depth

buffer was extracted and used as range data. For the x and

y values we generated data so that they were of the same

dynamic range as the depth component.

(a) Rank 2 detected. (b) Rank 3 detected.

Figure 2. Detected points of interest.

Figure 3. Information from rank 2 tensors.

7.2 Information extraction

We have selected the tensors that were detected by the

POI-detection method in section 5.4 and then analysed them

to find out what they represent. In figure 3 and figure 4

we have used the extracted information to overlay the range

scan of the miniature house with vector graphics where a

base (disc), and a line is drawn to show the planes, normals

and positions that were extracted from each tensor. In fig-

ure 3 each tensor detected in figure 2(a) has resulted in two

base/normal pairs and in figure 4 each tensor detected in

figure 2(b) has resulted in three such base/normal pairs.

7.3 Detecting the wrong rank

An interesting question to answer is what would happen

if we detected the wrong rank and used that wrong rank as

input to the analysis function. An example of miss-detected

rank can be seen in figure 5. In figure 5 a few points of in-

terest from figure 2(a) have been analyzed with the rank 3



Figure 4. Information from rank 3 tensors.

analysis method and a few points from figure 2(b) have been

analyzed with the method for rank 2 analysis. One such case

would be if we detected a too low rank. It would mean an-

alyzing a tensor that represents more local properties than

we try to extract, e.g. trying to extract only 2 patches from

a rank 3 tensor. Experiments on this has showed that the

extracted information contains one plane that is almost cor-

rect. The “correct” plane usually has some small errors. The

other extracted plane seems to be an average of the other

two planes. The other case would be to try to extract more

features from one tensor than it represents, e.g. extract 3

planes from a rank 2 tensor. In this case the correct infor-

mation is extracted, sometimes with small errors, and one

additional plane is also extracted. The additional plane is

usually very close in position to one of the correct planes.

The orientation for the additional plane does however seem

to vary quite much.

7.4 Noise tests

To test how much the information extracted from tensors

change due to noise we will use the depth buffer of the syn-

thetic version of the “blox” image as input and add Gaussian

noise to it. Gaussian noise was added to the z-component

of the data and the signal to noise ratio for the data in dB is

defined by the function

SNR = 10 log
σ2

signal

σ2
noise

(30)

where σ is the standard deviation. The angle between

ground truth normals and normals estimated from noisy

data was calculated by an ordinary scalar product. The aver-

age of the errors for the normals for each noise level and for

each estimation method is presented in table 3 for the rank

2 and rank 3 cases. The angles in the tables are in degrees.

Figure 5. Using wrong rank.

SNR: 2 15 30 44 inf
Rank

2 4.5 4.7 4.7 4.6 4.1

3 9.4 9.3 8.1 7.0 6.0

Table 3. Errors for noise test.

8 Conclusions and future work

We have shown that the representation works in 3D when

used together with range data, and that the local geometri-

cal properties are recoverable. There is however still some

work to be done. To be able to use the descriptor in object

recognition it needs to be invariant to rotation. This could

probably be achieved in the same way as in [16, 3, 27].

A faster POI-detector should also be used. More research

should be directed towards exploring the description of line-

like structures as well as the mix between them.
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