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Abstract

Cognitive radio is a new concept of reusing licensed spectrum in an un-
licensed manner. Cognitive radio is motivated by recent measurements of
spectrum utilization, showing unused resources in frequency, time and space.
The spectrum must be sensed to detect primary user signals, in order to al-
low cognitive radios in a primary system. In this thesis we study some topics
in spectrum sensing for cognitive radio.

The fundamental problem of spectrum sensing is to discriminate samples
that contain only noise from samples that contain a very weak signal embed-
ded in noise. We derive detectors that exploit known structures of the signal,
for the cases of an OFDM modulated signal and an orthogonal space-time
block coded signal. We derive optimal detectors, in the Neyman-Pearson
sense, for a few different cases when all parameters are known. Moreover we
study detection when the parameters, such as noise variance, are unknown.
We propose solutions the problem of unknown parameters.

We also study system aspects of cognitive radio. More specifically, we inves-
tigate spectrum reuse of geographical spectrum holes in a frequency planned
primary network. System performance is measured in terms of the achiev-
able rate for the cognitive radio system. Simulation results show that a
substantial sum-rate could be achieved if the cognitive radios communicate
over small distances. However, the spectrum hole gets saturated quite fast,
due to interference caused by the cognitive radios.
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Chapter A

Overview of Spectrum

Sensing for Cognitive Radio

In the last decades, there has been an enormous increase of wireless com-
munication systems. The usage of frequency bands, or spectrum, is strictly
regulated, and allocated to specific communication techniques. The vast
majority of frequency bands are allocated to licensed users, which are also
steered by standards. There are a number of organizations working on stan-
dards for frequency allocation, for example the International Telecommuni-
cation Union (ITU), the European Telecommunications Standards Institute
(ETSI) and the European Conference of Postal and Telecommunications
Administrations (CEPT).

Spectrum is a scarce resource, and licensed spectrum is intended to be used
only by the spectrum owners. Various measurements of spectrum utilization,
have shown unused resources in frequency, time and space [3, 4]. Cognitive
radio is a new concept of reusing licensed spectrum in an unlicensed manner
[1, 2]. The unused resources are often referred to as spectrum holes or white
spaces. These spectrum holes could be reused by cognitive radios, sometimes
called secondary users. There might be geographical positions where some
frequency bands are allocated to a primary user system, but not currently
used. These geographical spectrum holes could be employed by secondary
users as shown in Figure 1. There might also be certain time intervals for
which the primary system does not use the licensed spectrum, as shown
in Figure 2. These time domain spectrum holes could also potentially be
employed by secondary users.

3



4 Chapter A. Overview of Spectrum Sensing for Cognitive Radio

Figure 1: Example of geographical spectrum holes.

The introduction of cognitive radios will inevitably create increased inter-
ference and thus degrade the quality of service of the primary system. The
impact on the primary system, for example in terms of increased interfer-
ence, must be kept at a minimal level. To keep the impact at an acceptable
level, secondary users must sense the spectrum to detect whether it is avail-
able or not. Secondary users must be able to detect very weak primary user
signals [5, 6, 7]. Spectrum sensing is one of the most essential components
of cognitive radio.

In the following we will present some topics in spectrum sensing for cog-
nitive radio, that have been of great interest in recent research. We will
highlight some fundamental problems and present techniques for signal de-
tection. First we set up a model for signal detection. Then we present one of
the most basic detectors, the energy detector. We will also give some funda-
mental limits for detection. Furthermore, we show some examples of feature
detectors, that exploit knowledge about the signal to be detected. We show
the concept of cooperative detection, and finally we provide a summary of
the contributions of the thesis.
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Figure 2: Example of time domain spectrum holes.

1 Model

As a preliminary, we set up the model for signal detection. Consider a time-
continuous signal X (t). We wish to express the time-continuous signal in
a discrete vector representation over a finite time interval. In general, the
signal can be expressed by a basis expansion

X (t) =

N∑

i=1

xiφi(t),

where φi(t) are basis functions. Then the signal X (t) can be represented
by the vector x , (x1x2 . . . xN )T . The basis representation could be for
example a Fourier series, where the basis functions are complex exponential
functions, or conventional uniform sampling, where the basis functions are
sinc functions. In the sequel we assume that all signals are represented in
a basis by a vector, for example by sampling the time-continuous signal.
Assume that y is a received vector of length N , that consists of a signal plus
noise. That is

y = x + w,
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where x is a signal vector, and w is a noise vector. The noise w is assumed
to be i.i.d. zero-mean circularly symmetric complex Gaussian with variance
σ2. That is, w ∼ CN(0, σ2I).

We wish to detect whether there is a signal present or not. That is, we want
to discriminate between the following two hypotheses:

H0 : y = w,

H1 : y = x + w.
(1)

The optimal Neyman-Pearson test is to compare the log-likelihood ratio to
a threshold. That is

Λ , log

(
P (y|H1)

P (y|H0)

)
H1

≷
H0

η.

Clearly, the log-likelihood ratio depends on the distribution of the signal to
be detected.

2 Energy Detection

Initially we will present one of the simplest signal models, for which the
optimal detector is the energy detector [8]. We assume that the signal to
be detected does not have any known structure that could be used for de-
tection. Thus, we assume that the signal is also zero-mean circularly sym-
metric complex Gaussian x ∼ CN(0, γ2I). Then, y|H0 ∼ CN(0, σ2I) and
y|H1 ∼ CN(0, (σ2 + γ2)I). The log-likelihood ratio is

log

(
P (y|H1)

P (y|H0)

)
= log




1
πN (σ2+γ2)N exp(− ‖y‖2

σ2+γ2 )

1
πNσ2N exp(−‖y‖2

σ2 )




By removing all constants that are independent of the received vector y, we
obtain the optimal Neyman-Pearson test

Λe , ‖y‖2 =

N−1∑

i=0

|yi|2
H1

≷
H0

ηe. (2)

Hence, the optimal detector, in the Neyman-Pearson sense, is in this case the
energy detector also known as radiometer [8]. In essence the energy detector
measures the received energy during a finite time interval, and compares it
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to a predetermined threshold. The performance of the energy detector is
well known, cf. [9], and can be written in closed form. The probability of
false alarm PFA is given by

PFA , Pr(Λe > ηe|H0) = Pr(
Λe

σ2/2
>

ηe

σ2/2
|H0) = 1 − Fχ2

2N

(
2ηe

σ2

)
,

where Fχ2
2N

(·) denotes the cumulative distribution function of χ2-distributed
random variable with 2N degrees of freedom. Thus, given a false alarm
probability, we can derive the threshold η from

ηe = F−1
χ2

2N

(1 − PFA)
σ2

2
. (3)

The probability of detection is given by

PD , Pr (Λe > ηe|H1) = 1 − Fχ2
2N

(
2ηe

σ2 + γ2

)
.

The energy detector is universal in the sense that it can detect any type of
signal, and does not require any knowledge about the signal to be detected.
On the other hand, for the same reason it does not exploit any potentially
available knowledge about the signal. Moreover, the noise power needs to
be known to set the decision threshold (3).

3 Fundamental Limits on Detection

Cognitive radios must be able to detect very weak primary user signals [5].
However, there are some fundamental limits for detection in low SNR. For
example, to set the decision threshold of the energy detector (3), the noise
variance σ2 must be known. If the knowledge of the noise variance is im-
perfect, clearly the threshold will be erroneous. It is well known that the
performance of the energy detector quickly deteriorates if the noise variance
is imperfectly known (cf. [6, 10]). Due to uncertainties in the model as-
sumptions, robust detection is impossible below a certain SNR level, known
as the SNR wall [10, 11]. It was shown in [10] that errors in the noise power
assumption introduces SNR walls to any moment-based detector. This was
further extended in [11] to any model uncertainties, such as assuming per-
fect white and stationary noise, flat fading, ideal filters and infinite precision
A/D converters. These results hold for detectors with imperfect assump-
tions. However, it is possible to circumvent, or at least mitigate the problem
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of SNR walls by taking the imperfections into account. For example, it was
shown in [11] that noise calibration improves the detector robustness. Ex-
ploiting some known features of the signal to be detected can also improve
the detector performance and robustness.

4 Feature Detection

If the signal to be detected is perfectly known, the optimal detector is a
matched filter (cf. [9]). In practice the signal is never perfectly known,
but there is some knowledge about the signal. It is usually known what
kind of primary users that are to be detected, and the transmitted signals
are to some extent determined by standards and regulations. Thus, some
features of the signal to be detected are usually known. In the following, we
will describe some detectors exploiting known features of the signal, both to
improve performance and to circumvent the problem of model uncertainties,
for example imperfectly known noise variance.

4.1 Cyclostationarity

Most man-made signals show periodic patterns related to symbol rate, chip
rate, channel code or cyclic prefix, that can be appropriately modeled as a
cyclostationary random process [12]. Define the autocorrelation function of
the continuous-time stochastic process X (t) as

R(t, T ) , E [X (t+ T/2)X ∗(t− T/2)] .

A continuous-time stochastic process X (t) is said to be almost second-order
cyclostationary if its autocorrelation function is almost periodic in t (cf.
[12, 13, 14]). Hence, the autocorrelation function R(t, T ) is almost periodic,
and can be expressed by a Fourier series

R(t+ T/2, t − T/2) =
∑

α

Rα(T )ej2παt,

where the sum is over integer multiples of fundamental frequencies and their
sums and differences. That is, if there are multiple sources of periodicity, the
autocorrelation function contains sums of periodic functions with possibly
incommensurate periods. That is, the periodicity can for example be caused
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by the symbol rate which yields a fundamental period T1, and the chip
rate which yields a fundamental period T2, where T1/T2 is not necessarily a
rational number. The Fourier coefficients depend on the time lag T and are
given by

Rα(T ) = lim
T0→∞

1

T0

∫ T0/2

−T0/2
R(t+ T/2, t− T/2)e−j2παtdt. (4)

The limit in (4) allows for multiple incommensurate periods. If there is
only one fundamental frequency (and integer multiples thereof), the limit
can be omitted. The Fourier coefficients Rα(T ) are also known as the cyclic
autocorrelation function with cyclic frequency α. For α = 0 it reduces to
the conventional autocorrelation function. The process X (t) is said to be
(almost) cyclostationary if there exists an α such that Rα(T ) > 0. The
Fourier transform of the cyclic autocorrelation function is

Sα(f) ,
∫ ∞

−∞
Rα(T )e−j2πfT dT,

and is called the cyclic spectral density function. For α = 0 it reduces
to the conventional power spectral density function. For α 6= 0, Sα(f) is
the density of correlation between spectral components at the frequencies
f + α/2 and f − α/2. Knowing some of these cyclic characteristics of a
signal, one can construct detectors that exploit the cyclostationarity of the
signal [15, 13, 14, 16, 17] and benefit from the spectral correlation. Note
that the inherent cyclostationarity property appears both in the cyclic auto-
correlation function Rα(T ) and in the cyclic spectral density function Sα(f).
Thus, detection of the cyclostationarity can be performed both in the time
domain, and in the frequency domain.

There has been a huge interest in detection of OFDM signals recently. One
reason is that many of the current and future technologies for wireless com-
munication, such as WiFi, WiMAX, LTE and DVB-T, use OFDM signalling.
Therefore it is reasonable to assume that cognitive radios must be able to
detect OFDM signals. Another reason is that OFDM signals exhibit well
known spectral correlation properties [18]. The IEEE 802.22 WRAN stan-
dard is intended for cognitive radio-based reuse of spectrum that is allocated
to digital TV broadcasts. Cyclostationarity-based detectors for detection of
the OFDM-based digital TV-signals for the IEEE 802.22 WRAN standard
were proposed e.g. in [19, 20]. Another cyclostationary-based detector of
OFDM-signals based on multiple cyclic frequencies was proposed in [21]. We
will return to the detection of OFDM signals in Section 4.2.
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4.2 Autocorrelation

Many communication signals contain redundancy, introduced for example to
facilitate synchronization, by channel coding or to circumvent intersymbol
interference. This redundancy occurs as non-zero average autocorrelation
at some time lag T . For example, consider an OFDM signal with a cyclic
prefix of length Nc and informative data of length Nd. Then, the average
autocorrelation of the OFDM signal is non-zero at time lag Nd, owing to
the fact that some of the data is repeated in the cyclic prefix of each OFDM
symbol. In the sequel of this section we assume that the signal is an OFDM
signal, although the described detectors are valid for all signals that show a
non-zero average autocorrelation at some known time lag. Assume that the
signal x contains N , K(Nc +Nd) +Nd samples. As a preparation, let

ri , y∗i yi+Nd
, i = 0, . . . ,K ∗ (Nc +Nd) − 1

Furthermore, we know that if E [ri] 6= 0, then E
[
ri+k(Nc+Nd)

]
6= 0, k =

1, . . . ,K − 1, and analogously if E [ri] = 0, then E
[
ri+k(Nc+Nd)

]
= 0. That

is, ri and ri+k(Nc+Nd) will have identical statistics, and be independent (since
the noise and signals are independent). Thus, we define

Ri ,
1

K

K−1∑

k=0

ri+k(Nc+Nd), i = 0, . . . ,Nc +Nd − 1.

A detector that exploits the autocorrelation property of OFDM signals was
proposed in [22]. The detector of [22] uses the test statistic

max
τ∈{0,...,Nc+Nd−1}

∣∣∣∣∣

τ+Nc−1∑

i=τ

ri

∣∣∣∣∣ . (5)

The variable τ can be viewed as the synchronization mismatch, or equiv-
alently the time when the first sample is observed. The statistic (5) only
takes one OFDM symbol at a time into account. A slight generalization of
this test statistic, that uses the whole signal and not only one symbol, is to
sum the variables Ri instead of ri. Then, the test is

Λmax ac , max
τ∈{0,...,Nc+Nd−1}

∣∣∣∣∣

τ+Nc−1∑

i=τ

Ri

∣∣∣∣∣
H1

≷
H0

ηmax ac.

Another autocorrelation-based detector was proposed in [23]. This detector
uses the empirical mean of the autocorrelation normalized by the received
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power, as test statistic. More precisely, the test proposed in [23] is

Λac ,
1

N−Nd

∑N−Nd−1
i=0 Re(ri)

β̂2

H1

≷
H0

ηac,

where

β̂2 ,
1

2N

N−1∑

i=0

|xi|2.

The detector proposed in [22] requires knowledge about the noise variance
to set the decision threshold, while the detector proposed in [23] does not
require any knowledge about the noise variance.

4.3 Covariance Matrix Eigenvalues

Assume that the signal x can be written as

x = Gs,

where G is an N ×L matrix, and s is an L× 1 vector. Furthermore, assume
that x is highly correlated. That is N > L, and therefore G has low rank.
This is the case for example in a typical MIMO system [24], or for an OFDM
signal. Assume, that the signal s is zero-mean Gaussian. More specifically
s ∼ CN(0, γ2I). Then, the hypothesis test (1) can be written

H0 : y ∼ CN
(
0, σ2I

)
,

H1 : y ∼ CN
(
0, γ2GGH + σ2I

)
.

(6)

Let Q be the covariance matrix of the received vector y, Q , E
[
yyH

]
.

Then, under H0, all eigenvalues of Q are equal to σ2. However, under
H1 the eigenvalues of Q are equal to δi + σ2, i = 0, . . . ,N − 1, where δi
are the eigenvalues of γ2GGH . Since G has low rank, there will be some
δi = 0. Thus, if we sort the eigenvalues of Q in descending order, the smallest
eigenvalues are equal to σ2 (when δi = 0) and the larger ones are equal to
δi + σ2 > σ2. Detectors exploiting this property were proposed in [24, 25],
and will be briefly described in the following.

Consider M vectors ym received in a sequence. Define the sample covariance
matrix

Q̂ ,
1

K

M−1∑

m=0

ymyHm.
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Let λi, i = 0, . . . ,N − 1, be the eigenvalues of Q̂. There are two eigenvalue-
based detectors proposed in [24]. The first detector uses the ratio of the
largest eigenvalue to the smallest eigenvalue, and compares it to a threshold.
That is, the test statistic of the first proposal of [24] is

maxi λi
minj λj

. (7)

The second detector proposed in [24] uses the ratio of the average eigenvalue
to the smallest eigenvalue. That is

1
N

∑N−1
i=0 λi

minj λj
.

These eigenvalue-based detectors were shown to perform well when the signal
to be detected is highly correlated.

It was shown in [25], that the generalized likelihood ratio (GLR) for the
hypothesis test (6) when all parameters (σ2, γ2 and G) are completely un-
known, is

1
N

∑N−1
i=0 λi

(∏N−1
j=0 λj

)1/N
. (8)

This test is equivalent to the sphericity test of [26]. The sphericity test of
[26] decides if the covariance matrix of a multivariate normal distribution
is proportional to the identity matrix, or equivalently if all the eigenvalues
of the sample covariance matrix are equal or not. The GLR detector (8)
and the max/min-ratio detector (7) were compared in [25]. Simulations of
a MIMO system where the number of transmit antennas was larger than
the number of receive antennas, and the signal was assumed to be Gaussian,
showed that the max/min-ratio (7) performs almost as well as the GLR (8).

5 Cooperative Detection

One way of reducing the receiver sensitivity requirements is by using cooper-
ative sensing. The concept of cooperative sensing is to use multiple sensors
and combine their measurements to one common decision. This is in essence
a way of getting diversity gains.
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5.1 Soft Combining

Assume that there are M sensors. Then, the hypothesis test (1) becomes

H0 : ym = wm, m = 0, . . . ,M − 1,

H1 : ym = xm + wm, m = 0, . . . ,M − 1.

Assume that the received signals at all sensors are independent. Let z =(
yT0 yT1 . . .y

T
M−1

)T
. Then, the log-likelihood ratio is

Λcoop , log

(
P (z|H1)

P (z|H0)

)
= log

(
M−1∏

m=0

P (ym|H1)

P (ym|H0)

)

=

M−1∑

m=0

log

(
P (ym|H1)

P (ym|H0)

)
=

M−1∑

m=0

Λ(m),

(9)

where Λ(m) , log
(
P (ym|H1)
P (ym|H0)

)
is the log-likelihood ratio for the mth sensor.

That is, if the received signals for all sensors are independent, the optimal
fusion rule is to sum the log-likelihood ratios.

Consider the case when the noise vectors wm are independent, such that
wm ∼ CN(0, σ2

mI), and the signal vectors xm are independent, such that
xm ∼ CN(0, γ2

mI). Then, the log-likelihood ratio (9) is written

Λce =

M−1∑

m=0

log




1
πN (σ2

m+γ2
m)N exp(− ‖ym‖2

σ2
m+γ2

m

)

1
πNσ2N

m

exp(−‖ym‖2

σ2
m

)




Removing all constants that are independent of z yields

Λce =

M−1∑

m=0

‖ym‖2 γ2
m

σ2
m (σ2

m + γ2
m)
. (10)

The statistic ‖ym‖2 is the soft decision from an energy detector at the mth
sensor, as shown in (2). Thus, the optimal cooperative detection scheme
is to use energy detection for the individual sensors, and combine the soft
decisions by the weighted sum (10). This result was also shown in [27], for the
case when σ2

m = 1, and thus γ2
m is equivalent to the SNR experienced by the

mth sensor. Clearly, if both the noise power and signal power are equal for
all sensors, we can ignore the weight factor and just sum the soft decisions.
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The cooperative gain under that assumption was analyzed in [28]. It was
shown in [28], that correlation between the sensors severely decreases the
cooperation gain. The main source of correlation between users is shadow
fading. Multipath fading is uncorrelated at very small distances, on the
scale of half a wavelength, and can easily be avoided. Hence the correlation
is mainly distance dependent, and the cooperation gains are limited by the
distance separation of the cognitive users. From a detection perspective a
large distance separation between users is desired. However, if cognitive
users should be able to communicate without disturbing the primary system
they must be sufficiently near to one another. Thus, there is a distance trade
off between detection performance and cognitive communication. The effect
of untrusted users was also analyzed. The conclusion of [28] is that if one
out of M sensors is untrustworthy, the sensitivity of each individual sensor
must be as good as that achieved with M trusted users.

5.2 Hard Combining

So far we have considered optimal cooperative detection. That is, all users
transmit soft decisions to a fusion center, which combines the soft values to
one common decision. This is equivalent to the case where the fusion center
has access to the received data for all sensors, and performs optimal detection
based on all data. This requires potentially a huge amount of data to be
transmitted to the fusion center. The other extreme case of cooperative
detection is that each sensor takes its own decision, and transmits only a
binary value to the fusion center. Then, the fusion center combines the hard
decisions to one common decision.

In the following we will describe the AND, OR, and voting rules (cf. [29])
for combining of hard decisions. Assume that the individual statistics Λ(m)

are quantized to one bit, such that Λ(m) = 0, 1 is the hard decision from the
mth sensor. Here, 1 means that a signal is detected and 0 means that the
channel is available.

The AND rule decides that a signal is detected if all sensors have detected
a signal. That is, the cooperative test using the AND rule decides on H1 if

M−1∑

m=0

Λ(m) = M.
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The OR rule decides on signal presence if any of the sensors reports signal
detection. Hence, for the OR rule the cooperative test decides on H1 if

M−1∑

m=0

Λ(m) ≥ 1.

Finally, the voting rule decides that a signal is present if at least C of the
M sensors have detected a signal, for 1 ≤ C ≤M . The test decides on H1 if

M−1∑

m=0

Λ(m) ≥ C.

Taking a majority decision is a special case of the voting rule, for C = M/2.
The AND-logic and the OR-logic are clearly also special cases of the voting
rule for C = M and C = 1 respectively.

6 Contributions of the Thesis

The major part of the thesis concerns topics in spectrum sensing, whereas
the last paper studies system aspects of cognitive radio. Brief summaries of
the included papers are given in the following.

Paper A: A Bayesian Approach to Spectrum Sensing, Denoising
and Anomaly Detection

Published at the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2009.

This paper deals with the problem of discriminating samples that contain
only noise from samples that contain a signal embedded in noise. The focus
is on the case when the variance of the noise is unknown. We derive the
optimal soft decision detector using a Bayesian approach. The complexity
of this optimal detector grows exponentially with the number of observations
and as a remedy, we propose a number of approximations to it. The problem
under study is a fundamental one and it has applications in signal denoising,
anomaly detection, and spectrum sensing for cognitive radio. We illustrate
the results in the context of the latter.
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Paper B: On the Optimal K-term Approximation of a Sparse Pa-
rameter Vector MMSE Estimate

Published at the IEEE Workshop on Statistical Signal Processing (SSP),
2009.

This paper considers approximations of marginalization sums that arise in
Bayesian inference problems. Optimal approximations of such marginaliza-
tion sums, using a fixed number of terms, are analyzed for a simple model.
The model under study is motivated by recent studies of linear regression
problems with sparse parameter vectors, and of the problem of discriminat-
ing signal-plus-noise samples from noise-only samples. It is shown that for
the model under study, if only one term is retained in the marginalization
sum, then this term should be the one with the largest a posteriori proba-
bility. By contrast, if more than one (but not all) terms are to be retained,
then these should generally not be the ones corresponding to the components
with largest a posteriori probabilities.

Paper C: Optimal and Near-Optimal Spectrum Sensing of OFDM
Signals in Known and Unknown Noise

Submitted in parts to the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2010.

We consider spectrum sensing of OFDM signals. The main concerns are
the two cases of completely known, or completely unknown, noise power
and signal power. For the case of completely known noise power and signal
power, we derive the optimal Neyman-Pearson detector from first principles.
The optimal detector exploits the inherent correlation of the OFDM signal,
incurred by the repetition of data in the cyclic prefix. We compare the
optimal detector to the energy detector numerically. We show that the
energy detector is near-optimal (within 1 dB SNR) when the noise variance
is known. Thus, when the noise power is known, no substantial gain can be
achieved by using any other detector than the energy detector.

For the case of completely unknown noise power and signal power, we pro-
pose a GLRT detector based on the correlation of the OFDM signal. The
proposed detector exploits the known structure of the signal, and does not
require any knowledge of the noise power or the signal power. The GLRT
detector is compared to other state-of-the-art OFDM detectors, and shown
to improve detection performance with 5 dB SNR in relevant cases.
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Paper D: Spectrum Sensing of Orthogonal Space-Time Block Coded
Signals with Multiple Receive Antennas

Submitted to the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2010.

We consider detection of signals encoded with orthogonal space-time block
codes (OSTBC), using multiple receive antennas. Such signals contain re-
dundancy and they have a specific structure, that can be exploited for detec-
tion. We derive the optimal detector, in the Neyman-Pearson sense, when
all parameters are known. We also consider unknown noise variance, signal
variance and channel coefficients. We propose a number of GLRT based de-
tectors for the different cases, that exploit the redundancy structure of the
OSTBC signal. We also propose an eigenvalue-based detector for the case
when all parameters are unknown. The proposed detectors are compared to
the energy detector. We show that when only the noise variance is known,
there is no gain in exploiting the structure of the OSTBC. However, when
the noise variance is unknown there can be a significant gain.

Paper E: Capacity Considerations for Uncoordinated Communi-
cation in Geographical Spectrum Holes

Published in ELSEVIER Physical Communications, 2009.

Cognitive radio is a new concept of reusing licensed spectrum in an unli-
censed manner. The motivation for cognitive radio is various measurements
of spectrum utilization, that generally show unused resources in frequency,
time and space. These ”spectrum holes” could be exploited by cognitive
radios. Some studies suggest that the spectrum is extremely underutilized,
and that these spectrum holes could provide ten times the capacity of all
existing wireless devices together. The spectrum could be reused either dur-
ing time periods where the primary system is not active, or in geographical
positions where the primary system is not operating. In this paper, we deal
primarily with the concept of geographical reuse, in a frequency-planned pri-
mary network. We perform an analysis of the potential for communication
in a geographical spectrum hole, and in particular the achievable sum-rate
for a secondary network, to some order of magnitude.

Simulation results show that a substantial sum-rate could be achieved if the
secondary users communicate over small distances. For a small number of
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secondary links, the sum-rate increases linearly with the number of links.
However, the spectrum hole gets saturated quite fast, due to interference
caused by the secondary users. A spectrum hole may look large, but it
disappears as soon as someone starts using it.
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