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Quasi-Maximum-Likelihood Multiple-Symbol
Differential Detection for the Time-Varying

Rayleigh Fading Channel

Zheng Ma, Pingzhi Fan, Erik G. Larsson, and Bahram Honary

Abstract

The maximum-likelihood multiple-symbol differential detector (ML-MSDDps better bit-error-rate (BER)
performance than many other detectors for differential modulatiorfortimately, the computational complexity
of ML-MSDD quickly becomes prohibitive as the observation window sireng. While low-complexity MSDD
algorithms for the time-invariant Rayleigh fading channel have beesidered before, there is a need for low-
complexity MSDD algorithms for general time-varying Rayleigh fading rofes. In this paper, a polynomial-
time complexity approach called semi-definite relaxation (SDR) is employexth@ve differential detection with
near maximum-likelihood (ML) performance. The proposed SDR iguasimum-likelihood (QML) multiple-symbol
differential detection (SDR-QML-MSDD) is efficient in that its complexity islynomial in the observation window
size, even in the worst case, while it exhibits almost the same perfoare@n®L-MSDD does.

I. INTRODUCTION

Multiple-symbol differential detection (MSDD) has beesdissed as a way of improving performance relative to
the standard differential detector for differential phabét keying (DPSK). One concern with MSDD is detection
complexity at the receiver. Generally, performance impsowhen increasing the length of the observation window
N. However brute-force MSDD quickly becomes computatignaihfeasible as thebservation window size N
grows [1].

Some suboptimum approaches to MSDD tolerate a certain mpeaftce loss to achieve reduced complexity.
Among them, [2] proposed an ML-MSDD algorithm with a comgigxof O(N log, N) per block of N symbols.
However it only works well for the additive white Gaussiarisgo(AWGN) channel and the timievariant Rayleigh
fading channel. Another method is decision-feedback wifféal detection (DF-DD) [3] which is attractive because
its complexity is linear inN and the method is able to work over the more general timeivguiRayleigh fading
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channel, however, it achieves suboptimum performanceerBefe [4] proposed to use the sphere decoder (SD) for
multiple-symbol differential detection (hereafter reést to as SD-MSDD) and it was shown that it could approach
the performance of ML-MSDD. However, the complexity of thghere decoder (SD) is exponential ¥ under
relevant circumstances [5].

ML-MSDD essentially requires solving an integer-consteai least-squares problem of the same type as
encountered in multiple-input multiple-output (MIMO) éetion [6]. In this letter, we propose a detection approach
for MSDD based on semi-definite relaxation (SDR) [7]. Theulésg method has polynomial complexity iN and

good performance.

Il. SYSTEM MODEL

Let (-)*, ()T, (¥ and&{-} denote (componentwise) complex conjugate, transposenikian transpose, and
expectation, respectively. We assume a flat Rayleigh fadivannel where the received signals are corrupted by
additive noise and fading. For differential QPSK (DQPSK)dulation, at timer, two bits are Gray mapped to
a quaternary data-carrying differential symhgl which is taken from the QPSK signal constellation &t
{e7?™m/4 m =0,1,...,3}. Let the initial transmitted symbol b& = e/™/%. The transmitted symbdl, is encoded

by the differential encoding relatiof,. = v, 5,_;. At the receiver, the received sample at timés
rr = h7—§7— +n, (1)

where h, is the fading coefficient at time andn, ~ N(0,0?) is a sample of AWGN with variance?. For
differential detectionj; is unknown to both the transmitter and the receiver.

With MSDD, the receiver uses blocks 8f consecutively received samples = [PNt—N11,-,"n¢e| T to perform
ML detection of N transmitted symbols; £ [3Nt-N+1,-- 8N 7. N is referred to as the observation window
size. The ML detector for MSDD is given by [4]

ML = argmin{rf?@,'r}. 2
S

where®,.,. £ E{rrf |3} € CN*N 5 CNxL,

IIl. M ULTIPLE-SYMBOL DIFFERENTIAL DETECTION USINGSEMI-DEFINITE PROGRAMMING

To simplify notation, from now on we omit the time indexand the block index. We usez; to denote theth
component of the vectat. For the derivation of the SDR-MSDD for QPSK signals, it isrsmgonvenient to write
3; = Ey(a;+b;-j), whereE, is a scalar which normalizes the average energy per symioatwla,;, b; € {—1,1}
whose values are determined by the corresponding phasgs 8fnce E, is a constant scalar which would not
affect the main point of our results, it is omitted as well fire following description. Let Dia@:) be the diagonal
matrix with the elements of the vectar on the main diagonal and Idty be the N x N identity matrix. Note

that ®,.,. in (2) can be written a®,., = Diag(3)GDiag(5*) andG £ £{hh'"} + 02Iy, G € CN*V, and define
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Q 2 Diag(r){G~'}*Diag(r)* € CV*V. Hence we have
ML

s = argmin 37 Qs 3)
S

To avoid using complex-valued matrices, the ML detectiordetld3) can be transformed to real-valued notation

by writing
. T
e 0y o Q8 @
where ) )
5 — R(3) ceRVX1 Q= 9‘{(~Q) _j<~ ) c R2Nx2N
3(3) IQ) RQ)

Thens is a vector of lengt2 N x 1 and its components, , so, ..., say € {—1,+1}.
The formulation in (4) is aBoolean QP problem. We next derive the semi-definite relaxation dete@ince

sTQs = Tracdss” Q), problem (4) is equivalent to

min Tracg.SQ)

st.S=ssT e RPN g, =1, i=1,..2N. (5)

The constraintS = ss” indicates thatS is symmetric, positive semi-definite (PSD) and of rank 1.0Rxm (5) is
a nonconvex optimization problem owing to the constraint ss”. However, if the rank-1 constraint is removed

from (5), then the following relaxed problem is obtained:

min Trac€.SQ)

where S = 0 means thatS is symmetric and PSD. Equation (6) is a semi-definite relaradf (4) and it is a
semi-definite programming (SDP) problem that is convex ahichvcan be efficiently solved. The most common
algorithms for solving SDP problems are interior points moells, whose computational complexities are polynomial
in the problem size [8].

Due to the removal of the rank-1 constraint, the solutionhef 8DR problem (6) is &N x 2N matrix S which
is not a solution to the original problem (5). The final aim dRE-QML-MSDD is to obtain a vectog which
solves (5) at least approximately. To achieve this, we perfa so-called randomization procedure to findrom
S. There are three basic ways to perform randomization: gmmlnding quantization, eigenvalue decomposition
and Cholesky factorization. We choose to perform the rarigmiion by first computing the Cholesky factorization
[7] of S: S = VVT. We then generate a vecter which is uniformly distributed over the N-dimensional unit
sphere. The components of the vector sign(Vu) whose values are larger th@nare set tol, and the rest are
set to—1. To obtain a more accurate approximation, we perform ther@bandomization procedure 20 times and

choose thes which minimizes the objective function in (4).
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IV. SIMULATION RESULTS

To verify the effectiveness of SDR detection, we performesimaulation with the same parameter set as was
used in [4]. The system uses DQPSK modulation and the chénttet widely used Clarke’s fading model with the
maximum normalized fading bandwidii;T" = 0.03. The channel also introduces AWGN. A BER verdig/ N,
performance comparison between SD-MSDD and SDR-QML-MSByiven in Fig. 1. The Schnorr-Euchner
sphere decoder with infinite initial radius was used to obthe sphere decoding results [4]. The search radius for
SD-MSDD was chosen sufficiently large such that ML estimatéound inside the sphere with high probability.
The performance of the coherent detector is also plotted r@feaence. Two cases have been simulaféd= 6
and N = 10. The performance improves with increasidg as expected. The performance difference between
SD-MSDD and SDR-QML-MSDD is marginal. Note that SD-MSDD finthe maximum-likelihood solution and
therefore its performance is a lower bound on the performari@ny algorithm. It is clear that SDR-QML-MSDD
can approach this lower bound very closely.

Since both SD-MSDD and SDR-QML-MSDD have similar performgnit is interesting to compare their
complexity. We measured the complexity by counting theltatamber of floating point operations (FLOPS)
required by the detection process by performing independent simulation trials. Two types of complexiyerage
complexity and worst-case complexity, are given in Fig. 2. It can be observed that SD-MSDD geneltadis less
average complexity than the SDR-QML-MSDD and that it becommre efficient as thé, /N, increases. The
worst-case complexity is evaluated by picking the 1% uppeacentile of the measured FLOPS. This indicates
that SD-MSDD has much higher complexity than SDR-QML-MSDDthe low E;, /Ny regime. For SDR-QML-
MSDD, there is no big difference between average complexity worst-case complexity, which implies that the
complexity of SDR-QML-MSDD does not vary much between d#f# instances of the problem. Taken together,
SDR-QML-MSDD is superior to SD-MSDD in terms of worst-cagemplexity.

V. CONCLUSION

By using semi-definite programming methods, multiple-sghdifferential detection can be performed with low
worst-case complexity and negligible performance losatikal to maximume-likelihood. We proposed a specific
algorithm for doing this and demonstrated its effectivene® simulations on a time-varying Rayleigh fading

channel.
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Figures caption list

Fig. 1 BER versust, /N, for DQPSK and Rayleigh fading witB ;7" = 0.03.

Fig. 2 Average and worst-case complexity comparison of SINR--MSDD and SD-MSDD forN = 10.

January 19, 2010 DRAFT



BER

10 | —— DQPSK, N=6, SD-MSDD AR

i =+ DQPSK, N=10, SD-MSDD N
 —e— DQPSK, N=6, SDR-QML-MSDD :
| =6 DQPSK, N=10, SDR-QML-MSDD
| == DQPSK, Coherent Detection

-5 I i i i I

10

10 15 20 25 30 35 40
Ey/No (dB)

Fig. 1. BER versuss, /Ny for DQPSK and Rayleigh fading witt ;7" = 0.03.
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Fig. 2. Average and worst-case complexity comparison of SDR-®MSDD and SD-MSDD forN = 10.
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