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Quasi-Maximum-Likelihood Multiple-Symbol

Differential Detection for the Time-Varying

Rayleigh Fading Channel
Zheng Ma, Pingzhi Fan, Erik G. Larsson, and Bahram Honary

Abstract

The maximum-likelihood multiple-symbol differential detector (ML-MSDD)has better bit-error-rate (BER)

performance than many other detectors for differential modulation. Unfortunately, the computational complexity

of ML-MSDD quickly becomes prohibitive as the observation window size grows. While low-complexity MSDD

algorithms for the time-invariant Rayleigh fading channel have been considered before, there is a need for low-

complexity MSDD algorithms for general time-varying Rayleigh fading channels. In this paper, a polynomial-

time complexity approach called semi-definite relaxation (SDR) is employed toachieve differential detection with

near maximum-likelihood (ML) performance. The proposed SDR quasi-maximum-likelihood (QML) multiple-symbol

differential detection (SDR-QML-MSDD) is efficient in that its complexity is polynomial in the observation window

size, even in the worst case, while it exhibits almost the same performance as ML-MSDD does.

I. I NTRODUCTION

Multiple-symbol differential detection (MSDD) has been discussed as a way of improving performance relative to

the standard differential detector for differential phase-shift keying (DPSK). One concern with MSDD is detection

complexity at the receiver. Generally, performance improves when increasing the length of the observation window

N . However brute-force MSDD quickly becomes computationally unfeasible as theobservation window size N

grows [1].

Some suboptimum approaches to MSDD tolerate a certain performance loss to achieve reduced complexity.

Among them, [2] proposed an ML-MSDD algorithm with a complexity of O(N log2 N) per block ofN symbols.

However it only works well for the additive white Gaussian noise (AWGN) channel and the time-invariant Rayleigh

fading channel. Another method is decision-feedback differential detection (DF-DD) [3] which is attractive because

its complexity is linear inN and the method is able to work over the more general time-varying Rayleigh fading
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channel, however, it achieves suboptimum performance. Reference [4] proposed to use the sphere decoder (SD) for

multiple-symbol differential detection (hereafter referred to as SD-MSDD) and it was shown that it could approach

the performance of ML-MSDD. However, the complexity of the sphere decoder (SD) is exponential inN under

relevant circumstances [5].

ML-MSDD essentially requires solving an integer-constrained least-squares problem of the same type as

encountered in multiple-input multiple-output (MIMO) detection [6]. In this letter, we propose a detection approach

for MSDD based on semi-definite relaxation (SDR) [7]. The resulting method has polynomial complexity inN and

good performance.

II. SYSTEM MODEL

Let (·)∗, (·)T , (·)H and E{·} denote (componentwise) complex conjugate, transpose, Hermitian transpose, and

expectation, respectively. We assume a flat Rayleigh fadingchannel where the received signals are corrupted by

additive noise and fading. For differential QPSK (DQPSK) modulation, at timeτ , two bits are Gray mapped to

a quaternary data-carrying differential symbolvτ which is taken from the QPSK signal constellation setV ,

{ej2πm/4, m = 0, 1, ..., 3}. Let the initial transmitted symbol bẽs0 = ejπ/4. The transmitted symbol̃sτ is encoded

by the differential encoding relatioñsτ = vτ s̃τ−1. At the receiver, the received sample at timeτ is

rτ = hτ s̃τ + nτ (1)

where hτ is the fading coefficient at timeτ and nτ ∼ N(0, σ2) is a sample of AWGN with varianceσ2. For

differential detection,hτ is unknown to both the transmitter and the receiver.

With MSDD, the receiver uses blocks ofN consecutively received samplesrt , [rNt−N+1, ..., rNt]
T to perform

ML detection ofN transmitted symbols̃st , [s̃Nt−N+1, ..., s̃Nt]
T . N is referred to as the observation window

size. The ML detector for MSDD is given by [4]

s̃ML = arg min
s̃

{rH
Θ

−1
rr r}. (2)

whereΘrr , E{rrH |s̃} ∈ C
N×N , s̃ ∈ C

N×1.

III. M ULTIPLE-SYMBOL DIFFERENTIAL DETECTION USINGSEMI-DEFINITE PROGRAMMING

To simplify notation, from now on we omit the time indexτ and the block indext. We usexi to denote theith

component of the vectorx. For the derivation of the SDR-MSDD for QPSK signals, it is more convenient to write

s̃i = Ev(ai +bi ·j), whereEv is a scalar which normalizes the average energy per symbol to1 andai, bi ∈ {−1, 1}

whose values are determined by the corresponding phases ofs̃i. SinceEv is a constant scalar which would not

affect the main point of our results, it is omitted as well in the following description. Let Diag(x) be the diagonal

matrix with the elements of the vectorx on the main diagonal and letIN be theN × N identity matrix. Note

thatΘrr in (2) can be written asΘrr = Diag(s̃)GDiag(s̃∗) andG , E{hhH}+ σ2IN , G ∈ C
N×N , and define
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Q̃ , Diag(r){G−1}∗Diag(r)∗ ∈ C
N×N . Hence we have

s̃ML = arg min
s̃

s̃HQ̃s̃ (3)

To avoid using complex-valued matrices, the ML detection model (3) can be transformed to real-valued notation

by writing

min
s∈{−1,+1}2N

sT Qs (4)

where

s =





R(s̃)

I(s̃)



 ∈ R
2N×1, Q =





R(Q̃) −I(Q̃)

I(Q̃) R(Q̃)



 ∈ R
2N×2N

Thens is a vector of length2N × 1 and its componentss1, s2, ..., s2N ∈ {−1,+1}.

The formulation in (4) is aBoolean QP problem. We next derive the semi-definite relaxation detector. Since

sT Qs = Trace(ssT Q), problem (4) is equivalent to

min Trace(SQ)

s.t.S = ssT ∈ R
2N×2N , Sii = 1, i = 1, ..., 2N. (5)

The constraintS = ssT indicates thatS is symmetric, positive semi-definite (PSD) and of rank 1. Problem (5) is

a nonconvex optimization problem owing to the constraintS = ssT . However, if the rank-1 constraint is removed

from (5), then the following relaxed problem is obtained:

min Trace(SQ)

s.t.S � 0, Sii = 1, i = 1, ..., 2N. (6)

whereS � 0 means thatS is symmetric and PSD. Equation (6) is a semi-definite relaxation of (4) and it is a

semi-definite programming (SDP) problem that is convex and which can be efficiently solved. The most common

algorithms for solving SDP problems are interior points methods, whose computational complexities are polynomial

in the problem size [8].

Due to the removal of the rank-1 constraint, the solution of the SDR problem (6) is a2N × 2N matrix S which

is not a solution to the original problem (5). The final aim of SDR-QML-MSDD is to obtain a vector̂s which

solves (5) at least approximately. To achieve this, we perform a so-called randomization procedure to finds from

S. There are three basic ways to perform randomization: simple rounding quantization, eigenvalue decomposition

and Cholesky factorization. We choose to perform the randomization by first computing the Cholesky factorization

[7] of S: S = V V T . We then generate a vectoru which is uniformly distributed over the2N -dimensional unit

sphere. The components of the vectorŝ = sign(V u) whose values are larger than0 are set to1, and the rest are

set to−1. To obtain a more accurate approximation, we perform the above randomization procedure 20 times and

choose thês which minimizes the objective function in (4).

January 19, 2010 DRAFT



4

IV. SIMULATION RESULTS

To verify the effectiveness of SDR detection, we performed asimulation with the same parameter set as was

used in [4]. The system uses DQPSK modulation and the channelis the widely used Clarke’s fading model with the

maximum normalized fading bandwidthBfT = 0.03. The channel also introduces AWGN. A BER versusEb/N0

performance comparison between SD-MSDD and SDR-QML-MSDD is given in Fig. 1. The Schnorr-Euchner

sphere decoder with infinite initial radius was used to obtain the sphere decoding results [4]. The search radius for

SD-MSDD was chosen sufficiently large such that ML estimate is found inside the sphere with high probability.

The performance of the coherent detector is also plotted as areference. Two cases have been simulated,N = 6

and N = 10. The performance improves with increasingN , as expected. The performance difference between

SD-MSDD and SDR-QML-MSDD is marginal. Note that SD-MSDD finds the maximum-likelihood solution and

therefore its performance is a lower bound on the performance of any algorithm. It is clear that SDR-QML-MSDD

can approach this lower bound very closely.

Since both SD-MSDD and SDR-QML-MSDD have similar performance, it is interesting to compare their

complexity. We measured the complexity by counting the total number of floating point operations (FLOPS)

required by the detection process by performing106 independent simulation trials. Two types of complexity,average

complexity and worst-case complexity, are given in Fig. 2. It can be observed that SD-MSDD generally has less

average complexity than the SDR-QML-MSDD and that it becomes more efficient as theEb/N0 increases. The

worst-case complexity is evaluated by picking the 1% upper percentile of the measured FLOPS. This indicates

that SD-MSDD has much higher complexity than SDR-QML-MSDD in the low Eb/N0 regime. For SDR-QML-

MSDD, there is no big difference between average complexityand worst-case complexity, which implies that the

complexity of SDR-QML-MSDD does not vary much between different instances of the problem. Taken together,

SDR-QML-MSDD is superior to SD-MSDD in terms of worst-case complexity.

V. CONCLUSION

By using semi-definite programming methods, multiple-symbol differential detection can be performed with low

worst-case complexity and negligible performance loss relative to maximum-likelihood. We proposed a specific

algorithm for doing this and demonstrated its effectiveness via simulations on a time-varying Rayleigh fading

channel.
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Figures caption list

Fig. 1 BER versusEb/N0 for DQPSK and Rayleigh fading withBfT = 0.03.

Fig. 2 Average and worst-case complexity comparison of SDR-QML-MSDD and SD-MSDD forN = 10.
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Fig. 1. BER versusEb/N0 for DQPSK and Rayleigh fading withBf T = 0.03.
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Fig. 2. Average and worst-case complexity comparison of SDR-QML-MSDD and SD-MSDD forN = 10.
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