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Solving a minimum-power Covering Problem with
Overlap Constraint for Cellular Network Design

Lei Chen ∗ Di Yuan

Department of Science and Technology, Linköping Institute of Technology,
SE-601 74, Sweden

Tel: +46 11363496, Fax: +46 11363170

Abstract

We consider a type of covering problem in cellular networks. Given the locations of base
stations, the problem amounts to determining cell coverage at minimum cost in terms of the
power usage. Overlap between adjacent cells is required in order to support handover. The
problem we consider is NP -hard. We present integer linear models and study the strengths
of their continuous relaxations. Preprocessing is used to reduce problem size and tighten
the models. Moreover, we design a tabu search algorithm for finding near-optimal solu-
tions effectively and time-efficiently. We report computational results for both synthesized
instances and networks originating from real planning scenarios. The results show that one
of the integer models leads to tight bounds, and the tabu search algorithm generates high-
quality solutions for large instances in short computing time.

Key words: OR in telecommunications, Cellular networks, Covering, Integer
programming, Tabu search

1 Introduction

Mobile cellular communications comprise an important application area of operational
research (OR). A well-studied problem type in the area is channel assignment in sec-
ond generation (2G) networks [1]. A recent development of OR in 2G networks is the
integration of channel assignment and base station location [22]. At present, there is a
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rapid deployment of third generation (3G) and beyond-3G cellular networks, for which
the planning process does not involve channel assignment, but other types of design de-
cisions [6,7,12]. One important planning task in 3G and beyond-3G networks is radio
coverage. We consider a type of covering problem arising in this application context.
Given the locations of base stations and the cell antenna directions, the problem is to
determine the coverage area of every cell, such that the target service area is completely
covered. The coverage area of a cell is determined by the amount of power allocated
to a control signal for broadcasting presence of service. A natural performance metric
is the total power allocated to these service-coverage signals. Less power for coverage
reduces interference, and increases the power left for transmitting user data. Minimum-
power covering tends to minimize also the overlap between cells. Whereas excessive
cell overlap should be avoided as it results in high interference, some amount of over-
lap between a cell and its neighboring cells is required for supporting the handover
operation when users move from one cell to another. Moreover, coverage overlap is a
necessary condition for the so called soft and softer handover states, in which a user is
simultaneously connected to two or more cells. For these reasons, it is vital to incor-
porate, in addition to coverage, overlap as a constraint for pairs of cells between which
users are expected to roam.

The problem we consider comes up once the locations of base stations and antennas
are known. Base station location in 3G networks has been studied in a number of ref-
erences. Mathematical programming models as well as heuristic algorithms have been
proposed by, for example, Amaldi et al. [2,3], Matar and Schmeink [16], and Zhang
et al. [23], and Zhang et al. [24]. Eisenblätter et al. [5,6] present integer models and
solution methods for optimization of both base station location and antenna configu-
ration. The planning objectives considered in these references are network deployment
cost and performance. The latter is typically represented by the average cell load. The
trade-off between infrastructure cost and profit has been dealt with by integer program-
ming by Kalvenes [15]. In [18], Olinick and Rosenberger approached this trade-off by
a stochastic optimization model to take into account demand uncertainty.

Another type of planning problem is topology optimization for interconnecting nodes
at various levels of the system hierarchy in the radio access network. Jüttner et al. [11]
applied a meta heuristic for optimizing the interconnection between two node types, and
a branch and bound method for solving a special case of the problem. A branch and cut
algorithm has been developed by Fischetti et al. [8] to solve the problem of optimally
forming a multi-level star topology to interconnect several types of nodes.

The research in this paper deals with power optimization for coverage planning. For 3G
networks, a common practice of setting power for coverage has been the uniform strat-
egy, i.e., to reserve a roughly constant amount (typically 10-15% of the total cell power)
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to the coverage signal in all cells. A number of previous studies (e.g., [9,20,21]) have
shown, however, that the strategy may be inefficient. Adopting a non-uniform power
allocation and optimizing its amount can yield considerable power savings as well as
better load balancing between cells. The problem studied in this paper is motivated by
these findings. Whereas power saving may not be a crucial aspect in earlier 3G systems
implementing power control (that is, the power to serve each user is dynamically ad-
justed to make the signal quality stay at a desired level), it is of great significance in
beyond-3G networks, such as high speed downlink packet access (HSDPA) that targets
mobile Internet data. Because HSDPA does not use power control, any power saving on
the control channels, in particular the one used for coverage, will make more resource
available to serving user traffic and thereby improving data throughput. Indeed, in [10],
Geerdes observed that for HSDPA, it is best to allocate as much user power as possible
in order to maximize the performance.

Optimization of the power of the coverage signals has been addressed in [20,21]. The
objectives are power consumption and load balancing. Joint optimization of power and
antenna tilt has been investigated in [9,19]. However, the problems studied in these
works do not address sufficient overlap between adjacent cells using explicit constraints.
One issue that arises with non-uniform coverage power is handover performance, as well
as soft handover consideration in earlier 3G systems. (Soft handover does not apply to
HSDPA.) Under uniform power, it is relatively simple to predict handover (and soft
handover) performance. More care on handover is needed for non-uniform coverage
power, because cell shape becomes more irregular, and because power minimization
has a tendency of shrinking cell size. As overlap is a necessary condition for handover
and soft handover, its treatment in coverage planning, which is a key aspect of our work,
becomes essential.

The work in the paper falls into the research domain of OR applications. The paper
targets modeling and solving a type of covering problem that is of relevance in mo-
bile telecommunications, and the approach is to develop mathematical programming
models and solution algorithms. Similar to many classical set covering problems, the
problem considered in this paper is NP -hard. We formulate the problem using inte-
ger linear models, and study the strengths of their continuous relaxations. Preprocess-
ing techniques are used for reducing problem size and tightening the models. To deal
with large-scale problem instances, we develop a tabu search algorithm, aimed at find-
ing near-optimal solutions time-efficiently. We develop a neighborhood that effectively
deals with the constraints of coverage and cell overlap. We apply the integer linear
models and the tabu search algorithm to synthesized network instances and instances
originating from real planning cases for large cities. The experiments show that the
models can be used to compute optimal or near-optimal solutions for instances of up
to moderate size. For large-scale instances, the tabu search algorithm is able to provide
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high-quality solutions using short computing time.

In a network planning context, the optimization problem we consider may have to be
solved many times for one network. In particular, the overlap levels are expected to be
set initially by engineering expertise in network planning. Simulation can be used to
assess in detail the handover performance of the optimized coverage pattern. Based on
the results of simulation, the overlap parameters in the problem may have to be adjusted.
Thus it is vital to be able to obtain time-efficiently optimal or near-optimal solutions to
coverage planning.

The remainder of the paper is organized as follows. In Section 2 we discuss the appli-
cation context and introduce some notation. The optimization problem is formalized in
Section 3. In Section 4 we present two integer linear models, and compare the strengths
of their continuous relaxations. Section 5 addresses preprocessing. The tabu search algo-
rithm is detailed in Section 6. We report experimental results in Section 7. Conclusions
are provided in Section 8.

2 Definitions

A cellular network consists of a set of radio base stations. A base station has one or
several (typically three) cells, each has its own radio antenna. Every cell uses a broadcast
channel, referred to as the common pilot channel, to announce the presence of the cell
and its service. A mobile terminal is able to access the network only if it can detect at
least one pilot channel signal, of which the ratio between the received signal strength and
the interference is above a threshold. If a mobile terminal is covered by multiple cells,
the common pilot channel facilitates cell selection. Typically, the terminal is attached
to the cell having the strongest pilot channel signal. Factors that determine the strength
of a received pilot signal include transmit power, attenuation factor between the cell
antenna and the mobile phone, as well as antenna gain factors. From a network planning
standpoint, the parameter that can be used for adjusting cell coverage is the amount of
transmit power allocated to the common pilot channel.

Let C = {1, . . . , C} denote the set of cells. The service area is represented by a large set
of test points, denoted by J = {1, . . . , J}. The (minimum) amount of power required
to cover test point j ∈ J by cell i ∈ C is denoted by Pij . The value depends on, among
other factors, the signal propagation condition. We refer to [19,20] for the derivation of
the power parameter. We use Ji to denote the set of test points that can be potentially
covered by cell i, and let Ji = |Ji|. To present the mathematical models, it is useful to
denote the same information from the viewpoint of test points: We define Cj as the set
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of potentially covering cells of j, and let Cj = |Cj|.

To facilitate handover, coverage overlap requirement is defined for cells being geo-
graphically adjacent. The overlap requirement is of relevance for any two adjacent cells
where some amount of handover between the two cells is expected to take place. Let
Jih = Ji ∩ Jh, and Jih = |Jih|. For two adjacent cells i and h, the overlap requirement
specifies, within the area given by Jih, the minimum amount to be covered by both cells.
The overlap is measured in the number of test points. We denote by dih the minimum
number of points that must be covered by both i and h. As signal attenuation increases
at least quadratically in distance, minimization of power subject to overlap of two cells
means that overlap tends to occur somewhere around the middle of the two base stations.
Overlap is not needed if two cells are adjacent but do not have users moving between
(e.g., due to obstacles). Generally speaking, the overlap requirement is specified by a
set D containing unordered pairs of cells, and a positive integer dih for each (i, h) ∈ D.
In Figure 1, some of the concepts that have been introduced thus far are illustrated.

i h

Ji Jh

Jih

j (i, h ∈ Cj)

Pij Phj

Test point

Figure 1. An illustration of some of the concepts in the optimization framework.

Denote by Fi : Ji �→ {1, . . . , Ji} a bijection such that the sequence Pi,Fi(1), Pi,Fi(2), . . . ,
Pi,Fi(Ji) is monotonously non-decreasing. Ties, if any, are broken arbitrarily. In other
words, we sort Pij, j ∈ Ji in ascending order. For convenience, we introduce i(j) as a
short-hand notation when i and Fi(j) are together used as subscripts. Hence Pi(j) is not
the power required to cover test point j, but that for covering the jth test point in the
sorted sequence. We use F ′

i to denote the inverse of Fi, i.e., F ′
i (j) gives the position of

test point j ∈ Ji in the sorted power sequence of cell i.

3 The Optimization Problem

The optimization problem we intend to solve amounts to minimizing the power needed
to cover the service area and to satisfy the overlap requirements. We refer to the problem
as minimum-power covering with overlap (MPCO). A formal definition is given below.

[MPCO] Find a minimum-sum vector p = (p1, p2, . . . , pC), where pi ∈ [Pi(1), Pi(Ji)],
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i ∈ C, such that for all j ∈ J , set {i ∈ Cj : pi ≥ Pij} �= ∅, and for all (i, h) ∈ D,
|{j ∈ Jih : pi ≥ Pij ∧ ph ≥ Phj}| ≥ dih.

Problem MPCO differs from classical minimum-cost set covering [4] in several aspects.
First, for every cell, the covering elements (power levels) have a structure. Specifically,
the number of ground set elements (test points) covered by a cell grows successively
by cell power. Second, since every cell has to be assigned one of the possible power
levels, there is a generalized upper bound (multiple choice) constraint per cell. The
third difference is the presence of the overlap constraints. Moreover, the pair-wise cell
overlap constraints in MPCO differ from the constraints in the set multicover problem.
MPCO is however similar to many covering problems in terms of NP -hardness.

Proposition 1 MPCO is NP -hard.

We provide a sketch of a proof that reduces minimum-cost set covering to MPCO where
D = ∅. In the reduction, every covering element corresponds to a cell, and each ground
set element of the set covering problem is a test point of MPCO. The MPCO instance
has C additional dummy test points. Every cell has two possible power levels. The first
level covers a dummy test point that can be covered by the cell only. The second level
covers the ground set elements in the set covering instance. The power of the first level
is same in all cells. The second power levels are the covering costs in set covering. The
two instances have equivalent sets of feasible solutions. For any two peering solutions,
the objective function values differ by a constant, and the proposition follows.

4 Mathematical Models

We present two integer linear models for MPCO. We define the following sets of vari-
ables for the first model of MPCO (denoted by F1). Note that the definition of the
x-variables follows from the observation that we can restrict the domain of the power
of cell i (i ∈ C) to the discrete set {Pi(1), Pi(2), . . . , Pi(Ji)}. This approach leads to a
stronger LP relaxation than representing power using continuous variables.

xij =

⎧⎪⎨
⎪⎩

1 if the power of cell i equals Pij ,

0 otherwise.

sih
j =

⎧⎪⎨
⎪⎩

1 if test point j is covered by both cell i and cell h,

0 otherwise.
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[F1] min
∑
i∈C

∑
j∈Ji

Pijxij

s. t.
∑
i∈Cj

Ji∑

k=F ′
i (j)

xi(k) ≥ 1, j ∈ J , (1)

∑
j∈Ji

xij = 1, i ∈ C, (2)

Ji∑

k=F ′
i (j)

xi(k) +
Jh∑

k=F ′
h
(j)

xh(k) = sih
j + 1, (i, h) ∈ D, j ∈ Jih : Cj = {i, h}, (3)

Ji∑

k=F ′
i (j)

xi(k) +
Jh∑

k=F ′
h
(j)

xh(k) ≥ 2sih
j , (i, h) ∈ D, j ∈ Jih : {i, h} ⊂ Cj , (4)

∑
j∈Jih

sih
j ≥ dih, (i, h) ∈ D, (5)

xij ∈ {0, 1}, i ∈ C, j ∈ Ji, (6)

sih
j ∈ {0, 1}, (i, h) ∈ D, j ∈ Jih. (7)

Constraint sets (1) and (2) ensure, respectively, that all test points are covered and that
exactly one of the candidate power levels is selected in every cell. Note that (2) applies
also to the case where the power parameters of a cell have the same value for multiple
test points. These points appear consecutively in the sorted sequence. If the optimal cell
power is equal to that for covering these points, then there is always an optimal solution
in which the highest index level among them is set to one. Constraints (3) and (4), state
the condition that sih

j can be one only if both cells i and h cover j. Constraint (4) is a
general formulation of the condition. If, however, cells i and h are the only two possible
covering cells of j, then (3) applies. From the LP relaxation standpoint, (3) is clearly
stronger than (4) for test points with two potentially covering cells. For test points in
(3), (1) can be removed. In addition, the s-variables in (3) can be eliminated by variable
substitution. For clarity, however, we keep these s-variables in the model. The last set
of constraints (5) specifies required overlap.

We derive a less straightforward but more effective model F2 by further processing
of data. Consider (i, h) ∈ D and � ∈ {2, . . . , Ji}, for which the corresponding test
point Fi(�) ∈ Jih. Suppose that the power of cell i is at level � − 1 in the sorted
power sequence, i.e., the power is Pi(�−1) and cell i covers test points in Jih requir-
ing power lower than Pi(�). Let Jih(i�−1) denote this set of test points, i.e., Jih(i�−1) =
{j ∈ Jih : Pij ≤ Pi(�−1)}. We define parameter L(i�−1, h) ∈ {1, . . . , Jh} to repre-
sent the minimum power of cell h that can meet the coverage and overlap constraints
for test points in Jih, provided that cell i uses level � − 1. The value of L(i�−1, h) =
max{Lc(i�−1, h), Lo(i�−1, h)}, which are defined as follows.
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• Coverage. If there exist test points for which i and h are the only two possible cov-
ering cells, and not all of them are covered by cell i at level � − 1, then Lc(i�−1, h) is
the smallest number in {1, . . . , Jh} for which the power of h, Ph(Lc(i�−1,h)), covers all
the remaining test points. Otherwise Lc(i�−1, h) = 1.

• Overlap. If |Jih(i�−1)| < dih, then power level Pi(�−1), as well as all levels below it,
are infeasible in cell i. In this case we set Lo(i�−1, h) = Jh+1. Suppose |Jih(i�−1)| ≥
dih. Parameter Lo(i�−1, h) is defined as the smallest number in {1, . . . , Jh}, such that
the corresponding power Ph(Lo(i�−1,h)) covers at least dih test points.

i h

6 = 2 , j > 2 j �= 6

Jih={1,..., 12}

dih = 4
C C ,

Figure 2. An illustration of the derivation of the second model.

An illustration of the definition of parameter L(i�−1, h) is provided in Figure 2 using a
small example. The bars and dots show the candidate power levels and the potential set
of test points subject to overlap, respectively. Parameter L(i�−1, h) for various �-values
is represented by the lines with arrows.

For (i, h) ∈ D, the domain of possible power levels of cell h is constrained by inequal-
ity xi(�−1) ≤ ∑Jh

k=L(i�−1,h) xh(k), with the convention that the right-hand side is zero if
L(i�−1, h) = Jh + 1. Next, we observe that the left-hand side of the inequality can be
strengthened by taking the sum over all x-variables of cell i for which the power levels
are less than or equal to Pi(�−1), because we have to select exactly one power level for
every cell, and L(i�1−1, h) ≥ L(i�2−1, h) if �1 ≤ �2. We arrive at the following model.

[F2] min
∑
i∈C

∑
j∈Ji

Pijxij

s. t. (1),
�−1∑
k=1

xi(k) ≤
Jh∑

k=L(i�−1,h)

xh(k), (i, h) ∈ D, � ∈ {2, . . . , Ji} : Fi(�) ∈ Jih, (8)

xij ∈ {0, 1}, i ∈ C, j ∈ Ji.
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The sufficiency of constraints (8) for the overlap requirements can be realized from the
following analysis. Consider a solution of F2, and suppose it is not feasible to MPCO.
Because of (1), the infeasibility must be due to insufficient overlap. Then there exists
(i, h) ∈ D, � ∈ {1, . . . , Ji}, and m ∈ {1, . . . , Jh}, for which xi(�) = xh(m) = 1,
xi(k) = 0 for all k > � and xh(k) = 0 for all k > m, and |{j ∈ Jih : Pij ≤ Pi(�)} ∩ {j ∈
Jih : Phj ≤ Ph(m)}| < dih. Let �̄ be the first number in the sequence � + 1, . . . , Ji,
such that Fi(�̄) ∈ Jih. Such �̄ exists as the overlap requirement for (i, h) is not satisfied.
For constraint (8) defined for �̄, its left-hand side is at least one. Moreover, parame-
ter L(i�̄−1, h) > m by definition. Thus the right-hand side of (8) equals zero, i.e., the
constraint is violated. Hence the correctness of F2.

F2 does not use (2). This constraint set is clearly necessary for the correctness of F1.
For F2, they have impact on the space of feasible solutions, but are redundant at both
integer optimum and LP optimum, as stated in the proposition below.

Proposition 2 Constraint set (2) is redundant at the integer optimum and the LP opti-
mum of F2.

Proof We show the redundancy of (2) for defining the LP optimum only. The same re-
sult for integer optimum can be shown similarly. Denote by x̄i(k), i ∈ C, k ∈ {1, . . . , Ji}
an optimal solution to the LP relaxation of F2. Suppose that

∑Ji
k=1 x̄i(k) > 1 for some

i ∈ C. We modify this solution as follows. For each cell i with
∑Ji

k=1 x̄i(k) > 1, let �
denote the smallest number in {1, . . . , Ji} such that x̄i(�) > 0, x̄i(k) = 0, ∀k < �. Thus∑Ji

k=� x̄i(k) > 1. We change the value of x̄i(�) to zero if
∑Ji

k>� x̄i(k) ≥ 1; otherwise we
set its value to 1 − ∑Ji

k>� x̄i(k). After the modification,
∑Ji

k=1 x̄i(k) ≤ 1, i ∈ C. That the
modification does not affect the feasibility of x̄ in (1) is obvious. Since no variable has
its value increased, x̄ also satisfies (8) for which no value modification has been made
to the right-hand side. Consider a constraint of (8) in which the right-hand side has been
reduced, and suppose that the variable with value modified is x̄h(m). If L(i�−1, h) > m,
then the constraint remains satisfied. Suppose L(i�−1, h) ≤ m. In this case the right-
hand side of (8) equals one, whereas its left-hand side is at most one. Therefore (8)
is satisfied. In conclusion, the modified x̄ is feasible in F2 and has a better objective
function value, which leads to a contradiction, and the proposition follows. �

For two cells i and h with overlap requirement, we obtain two groups of constraints of
(8) by considering the both ordered pairs (i, h) and (h, i). In F2, only one of them is
needed. This suffices also for the continuous relaxation, in the sense that including the
second group of constraints does not strengthen the relaxation.

Proposition 3 In the LP relaxation of F2, a solution satisfying (8), defined for (i, h) ∈
D, also satisfies the corresponding constraints defined for (h, i).
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Proof Consider pair (h, i), m ∈ {2, . . . , Jh} and Fh(m) ∈ Jih. Let � = L(hm−1, i)−1.
Suppose L(i�−1, h) ≤ m − 1. Then both coverage and overlap are satisfied for the set
of test point for which i and h are two only two potentially covering cells, if the two
power levels are �−1 and m−1, respectively. This implies L(hm−1, i) ≤ �−1, leading
to a contradiction. Therefore L(i�−1, h) ≥ m. Utilizing this observation, (8) for pair
(i, h), and Proposition 2, we obtain the inequality

∑Ji

k=L(hm−1,i) xi(k) = 1−∑�−1
k=1 xi(k) ≥

1 − ∑Jh
k=m xh(k) =

∑m−1
k=1 xh(k) This inequality is the constraint of (8) for pair (h, i) and

power level m of cell h, and the Proposition follows. �

Model F2 is not only more compact but also stronger than F1 in LP bound. The next
proposition establishes this result.

Proposition 4 The bound provided by the LP relaxation of F2 is greater than or equal
to that of the LP relaxation of F1.

Proof See Appendix A.

Numerically, F2 is typically strictly better than F1 in LP bound. Our experiments in
Section 7 show that the difference between the bounds is quite significant.

5 Preprocessing

We can apply preprocessing to MPCO to reduce problem size. First, we use the simple
observation that there are typically some test points having only one possible covering
cell. Such test points impose lower bounds on cell power. We obtain another lower
bound by overlap consideration, since for cell pair (i, h) ∈ D, the power of each of the
two cells must cover at least dih test points in Jih. Let �i denote the maximum of the
two derived power levels. For both F1 and F2, we can delete all power levels below
�i, i ∈ C, as well as all test points j ∈ J for which |Cj | = 1. Moreover, if |Cj | > 1
and j is covered by at least one cell i with power Pi(�i), the coverage constraint (1)
can be deleted. Removal of the coverage constraint applies also to any test point j with
|Cj | = 2, because coverage is imposed by (3) in F1 and (8) in F2.

For F1, consider cell i and any test point j that is covered by power Pi(�i) and not deleted
in the previous step. Consider another cell h having j ∈ Jh and an overlap requirement
with i. If Ph(�h) covers j, we can delete the s-variable and reduce dih by one. Otherwise
we check if sih

j is defined by constraint (4). If so, we can strengthen the constraint by
replacing it with sih

j =
∑Jh

k=F ′
h
(j) xh(k). Clearly, these reduction and strengthening tests

should be performed for all (i, h) ∈ D and test points covered by Pi(�i) or Ph(�h).
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6 Tabu Search

To deal with large-scale instances of MPCO, we design a tabu search (TS) algorithm
[13], aimed at finding high-quality solutions within short computing time. The basic
ingredients of TS are a local search procedure and a memory mechanism. Local search
applies a neighborhood structure to iteratively generate and evaluate a sequence of solu-
tions. Replacing the current solution with one in the neighborhood is called a move. The
memory mechanism, implemented by means of a tabu list, aims at preventing cycling
(i.e., revisiting solutions that have been considered earlier in the search) and thereby
avoid getting stuck in local optima. To design an effective and time-efficient TS algo-
rithm for MPCO, the neighborhood and the content of the tabu list should exploit the
structure of the coverage and overlap constraints.

We say that a feasible solution of MPCO is non-lowerable, if decreasing the power
level of any single cell by one step makes the solution infeasible. The optimum of
MPCO is obviously non-lowerable. We define a neighborhood such that the TS algo-
rithm generates a sequence of non-lowerable solutions. For convenience, we denote a
solution of MPCO by indices of the sorted power levels of cells, in form of a vector
k = (ki, k2, . . . , ki, . . . , kC), i.e., the power of cell i is Pi(ki), i ∈ C.

Given a non-lowerable solution k, we have observed that the strategy of increasing the
power of a cell in order to allow for reducing power in some other cells does not lead
to an effective neighborhood. Consider increasing the power of cell i. This may enable
power reduction in cells of which the current power levels are defined by test points that
may be potentially covered by i, i.e., {h ∈ C : Fk(kh) ∈ Jih}. A necessary condition
for power reduction in a cell h in this set is to set the power level of cell i to at least
F ′

i (Fh(kh)). However, the condition is not sufficient, because there may exist overlap
constraint between cell h and some other cell, for which the constraint is currently active
for test point Fh(kh). Indeed, cell i may already cover Fh(kh) at the current level ki.
Hence there is no guarantee that increasing the power of one cell will always lead to
a power reduction of some other cell. In our TS algorithm, we define a more effective
and convenient move by considering power adjustment in the reverse way. First, we
reduce the power of one cell i by one step so the solution becomes infeasible. In step
two, the power of one or several cells are increased to re-establish feasibility. Note that
infeasibility after the first step is either because of coverage or overlap, but not both.
In the former case, we increase the power of a cell h ∈ CFi(ki) to F ′

h(Fi(ki)), whereas
in the latter case the power of cells, for which the overlap constraint with i is violated,
are increased by the minimum necessary amount to give sufficient overlap. There is
no explicit restriction on how much power may be increased; this is determined by the
amount necessary to restore either coverage or overlap. In addition, several cells may
have to perform a jump in their power levels at the same time. This fact contributes to
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(1) N (k) = ∅;
(2) for all i ∈ C
(3) k′ = k; k′

i = ki − 1; j = Fi(ki);
(4) if Cj(k

′) = 0
(5) for all h ∈ Cj \ {i}
(6) k′

h = F ′
h(j);

(7) for all m ∈ C
(8) n = Fm(k′

m);
(9) while Cn(k′) ≥ 2 and (Jmr(k

′) > dmr or F ′
r(n) > k′

r, r ∈ Dm)
(10) k′

m = k′
m − 1;

(11) N (k) = N (k) ∪ {k′};
(12) k′

h = kh;
(13) else
(14) for all h ∈ Di : Jih(k

′) = dih − 1
(15) while Jih(k

′) = dih − 1
(16) k′

h = k′
h + 1;

(17) for all m ∈ C
(18) n = Fm(k′

m);
(19) while Cn(k′) ≥ 2 and (Jmr(k

′) > dmr or F ′
r(n) > k′

r, r ∈ Dm)
(20) k′

m = k′
m − 1;

(21) N (k) = N (k) ∪ {k′};
(22) return N (k);

Figure 3. The procedure of generating neighboring solutions in TS.

the effectiveness in exploring the solution space. Power increase in step two may enable
power reduction in some cells other than i. Thus in the third and last step we decrease
the power of these cells, arriving at another non-lowerable solution.

Figure 3 gives a formal description of generating the neighborhood N (k) of k. Note
that the description emphasizes on clarity rather than efficiency of implementation. In
the description, Cj(k

′) and Jih(k
′) denote the number of cells covering test point j and

the number of test points covered by both i and h, respectively, in solution vector k ′.
Moreover, Di denotes the set of cells having overlap requirement with i. The first step
of a move is carried out in line 3. If this leads to an uncovered test point (line 4), the
power of potential cells covering the point is increased (lines 5–6), otherwise power is
increased in cells for which the overlap constraint is violated (lines 14–16). The last
step of a move to ensure a non-lowerable solution is carried out in lines 7–10 or in lines
17–20. Note that Figure 3 does not specify the order of cells in which power reduction is
performed in the last step of a move. Varying the order may result in different solutions.
In our implementation, the order is randomized in every iteration.

The second step of a move involves restoring either coverage or overlap. The former may
result in multiple neighbors (lines 4–12), whereas the latter (lines 14–21) always defines
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a single neighbor. Let Ni denote the number of cells that may potentially overlap with
cell i. The total number of neighbors, at maximum, is

∑
i∈C Ni. In cellular networks,

Ni is typically defined by cells that are geographically adjacent to i, and in real-life
networks this number tends to be a constant in average. Consequently the size of the TS
neighborhood grows linearly in the number of cells.

In every iteration, the TS algorithm generates all the solutions in the neighborhood.
Neighboring solutions having tabu status are excluded, except for those yielding a total
power better than the best known solution, i.e., the aspiration criterion. Whenever this
criterion does not apply, the algorithm moves to the non-tabu solution with minimum
total power. The content of the tabu list consists in cell and power indices. Once a move
is made, cells and their power levels involved in the move are marked as tabu. A solution
has the tabu status if any cell and its power level in the solution are present in the list.

We consider two approaches for obtaining an initial solution in TS. The first approach
starts by setting the power levels of all cells to their maximum values. For a randomly
chosen cell, the power is reduced to the level such that any further reduction will violate
either a coverage or overlap constraint. Next, one of the remaining cells is randomly
selected, and its power is decreased as much as possible. This is repeated until all cells
have been considered. The second approach is to utilize the LP optimum of model F2.
In this approach, the initial solution is constructed by setting the power level of each cell
to the highest level for which the corresponding x-variable is strictly positive at the LP
optimum. The resulting solution, for which both the coverage and overlap requirements
are clearly satisfied, serves as the starting point of TS.

There are several possibilities to refine the basic TS algorithm, such as diversification
[13]. We have implemented and tested a diversification scheme. The resulting improve-
ment is however very marginal. The numerical results in the next section show that our
TS algorithm is able to find close-optimal solutions without having to incorporate any
intricate mechanism for refinement. This is a strength of TS as a meta-heuristic. To
obtain satisfactory results from TS, an effective neighborhood is crucial, and the exper-
iments show that our design of the neighborhood structure is successful in this regard.

7 Computational Experiments

We report experimental results for two groups of networks. The first group contains
synthesized networks N1–N5. The second group is formed by three networks R1–R3
originating from real-life planning scenarios. R1 is a small downtown cellular network.
Networks R2 and R3, provided by the EU MOMENTUM project [17], represent two
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network planning cases for the city of Berlin and Lisbon, respectively. Statistics of the
networks are shown in Table 1. For each network, the table displays the numbers of
cells, test points, and pairs of cells having overlap requirement. We introduce overlap
requirement for any cell pair for which the potential overlap is above a threshold. The
threshold is chosen such that the resulting number of cell pairs with overlap requirement
is approximately equal to the average number of pairs of cells being geographically ad-
jacent. Column “Service Area” shows the size of the service area. Every test point repre-
sents a small square area for which signal propagation is considered uniform. This area
size represented by each point is shown in column “Resolution”. For each cell, we mea-
sure its potential size by the number of test points covered under maximum power. The
last three columns present, respectively, the minimum, maximum, and average values
of potential coverage over cells.

Table 1
Network statistics.

Network Cells Test points Pairs Service area [m2] Resolution [m2] Potential coverage

C J |D| Min Max Ave.

N1 42 2708 162 2400 × 2000 40 × 40 25 287 156

N2 70 5029 248 2880 × 2800 40 × 40 21 366 194

N3 140 9409 548 4000 × 4000 40 × 40 20 535 278

N4 203 19088 954 5600 × 5600 40 × 40 15 992 504

N5 255 21678 1250 6000 × 6000 40 × 40 17 972 495

R1 60 1375 202 1280 × 1800 40 × 40 3 68 36

R2 148 22500 568 7500 × 7500 50 × 50 29 1439 734

R3 140 62500 442 5000 × 5000 20 × 20 57 5538 2798

For each network, we consider two levels of overlap, defined by setting dih/Jih = 10%
and 20%, respectively, for all pairs (i, h) ∈ D, leading to a total of 16 instances. In the
subsequent text, subscripts are added to network names to indicate overlap level.

We first solve MPCO by applying CPLEX 10.1 [14] to the two integer linear models F1
and F2, with a time limit of one hour. In addition to examining to what extent MPCO
can be solved to optimality using the two models, we numerically study the strengths
of their continuous relaxations. These experiments have been conducted on a computer
with a dual core CPU at 2.4 GHz and 7 GB RAM.

In the next set of experiments, we apply our TS algorithm. TS stops either because a
maximum iteration limit of 2000 is reached, or if the best solution found is not improved
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in 300 consecutive iterations, whichever becomes satisfied first. The length of the tabu
list equals 25. We remark that this particular length value is not crucial to algorithm
performance. The TS algorithm is run on a notebook with a dual core CPU at 2.0 GHz.

Table 2
Computational results of F1 and F2. (Objective values have unit Watt, and times are in seconds.)

Network F1 F2

LP ILP LP ILP

Value Time Value Time Value Time Value Time

N110 31.1 1.1 [33.7, 35.4] limit 35.4 0.2 35.4 0.9

N210 54.9 4.6 [57.2, 58.3] limit 58.0 0.5 58.1 2.3

N310 110.3 17.5 [116.6, 122.7] limit 120.2 1.4 120.2 9.3

N410 174.7 150.8 [180.9, -] limit 203.2 8.2 203.6 279.0

N510 215.7 79.8 [226.2, -] limit 239.4 6.1 240.2 236.0

R110 38.8 0.1 44.1 4.8 44.1 0.1 44.1 0.1

R210 125.1 2337.5 [125.7, -] limit 162.5 56.3 162.6 785.5

R310 – – – – – – – –

N120 31.5 1.1 [34.8, 36.9] limit 36.8 0.2 36.8 0.7

N220 55.7 3.2 [59.1, 60.6] limit 60.2 0.4 60.2 1.2

N320 112.3 12.8 [119.7, 126.2] limit 120.2 1.3 123.7 6.1

N420 178.4 236.7 [189.6, -] limit 215.7 9.0 216.1 147.2

N520 220.1 145.0 [233.3, 3620.4] limit 249.5 5.6 250.1 80.0

R120 39.7 0.1 45.3 3.09 45.3 0.1 45.3 0.1

R220 126.7 148.0 [130.3, -] limit 179.7 18.9 179.9 583.9

R320 – – – – – – – –

In Table 2 we summarize the results of solving F1 and F2. For each instance, the table
displays the objective function values obtained from solving the integer models and
their LP relaxations, and the solution times. The objective function value is given in
Watt (W). We use “limit” to denote that the time limit is reached. If a model can not
be solved to integer optimality within the time limit, we present the interval formed by
the best lower bound and the best integer solution found. We use “–” to denote that no
solution is obtained because of excessive memory requirement. Note that the models of
R3 have approximately three times more numbers of variables and constraints than those
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of R2. For R3, the solver process acquired almost 98% of the RAM (without producing
any result), before the process got killed by the operating system.

F1 is clearly outperformed by F2. The former leads to integer optimum for one net-
work only, and for some instances it does not enable any feasible solution at all within
the time limit. The latter delivers integer optimum for all but one network. We note that
for network R1, for which optimum is found using both models, the solution time of F2
is orders of magnitude shorter. Moreover, the continuous relaxation of F2 yields much
sharper bounds than that of F1. The tight bounds of F2 contribute to its performance in
obtaining integer optimum, and in some cases the integrality gap of F2 is zero. In con-
clusion, exploiting the problem structure results in significant improvement in solving
MPCO efficiently. However, for network R3 (the city of Lisbon), none of the models
is able to deliver solutions. This fact justifies the use of heuristics for large-scale in-
stances of MPCO. A further observation is that the solution time (of both models) tends
to decrease when the overlap requirement grows from 10% to 20%. This is because
higher overlap requirement restricts the set of feasible power settings more stringently,
resulting in a higher number of power levels that are discarded due to infeasibility.

In Table 3 we report two sets of results for the TS algorithm. The table shows the so-
lution value (in Watt), computing time (excluding that needed for the initial solutions),
the number of iterations, and the relative gap to optimum. When initial solutions are
derived by solving LP, “*” denotes cases where the LP optimum is also integer opti-
mal. The sign “–” denotes that results are not available either because integer optimum
or LP optimum is not known. We observe a maximum gap of 3.4%. For the two types
of initial solutions, the average gaps are 1.4% and 0.6%, respectively. The computa-
tional effort required by the algorithm is moderate. Thus the proposed TS algorithm is
a promising approach to deal with large-scale instances. Starting from the LP solution
does enable TS to find better results. However, as this scheme requires the LP solution
prior to running TS, the overall computing time is longer.

In Figure 4 we use the optimal solutions of MPCO to illustrate and compare the two cell
overlap levels for network R2 (city of Berlin). The small dots represent the locations of
the base station sites. The cells are represented by short lines showing the directions of
the cell antennas. For each test point, its color denotes the number of cells covering it.
From the figure, we observe that the overlap does have a form that facilitates handover
between cells. If two cell antennas are co-located at the same site, the overlap has a beam
shape, and its direction is somewhere between the directions of the two antennas. For
two geographically adjacent cells of different sites, the overlap appears in some region
between the two sites. When the overlap level requirement goes from 10% to 20%, the
overlap regions become more continuous, and there is a clear increment in the number
of test points being covered by more than two cells.
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Table 3
Computational results of TS. (Objective values have unit Watt, and times are in seconds.)

Network Initial solution: heuristic Initial solution: LP

Value Time Iter. Gap (%) Value Time Iter. Gap (%)

N110 35.6 0.7 354 0.8 * * * *

N210 58.6 2.3 379 0.8 58.2 1.9 305 0.2

N310 122.4 19.6 872 1.8 120.3 15.8 719 0.1

N410 207.4 25.4 382 1.8 204.2 31.2 466 0.3

N510 242.5 69.2 590 1.0 241.8 94.1 780 0.7

R110 44.2 0.6 575 0.1 * * * *

R210 167.3 36.4 596 2.9 163.3 30.4 464 0.4

R310 131.5 291.6 1057 – – – – –

N120 37.0 0.6 318 0.6 * * * *

N220 60.8 3.6 775 1.0 * * * *

N320 126.5 7.0 351 2.3 123.8 7.1 364 0.1

N420 220.4 20.8 380 2.0 216.4 20.4 362 0.1

N520 252.1 37.8 375 0.8 251.1 57.4 553 0.4

R120 45.4 0.3 314 0.3 * * * *

R220 185.9 19.2 455 3.4 185.4 38.5 931 3.1

R320 141.3 201.6 969 – – – – –

8 Conclusions

We have studied a type of covering problem with application in cellular network design,
where cell overlap is necessary for enabling handover of users between cells. We have
developed two integer linear programming models that differ in the level of exploiting
problem structure. Comparisons of the two models have been conducted both theo-
retically and numerically. In addition, we have presented and evaluated a tabu search
algorithm. The computational experiments show that our second integer linear model
performs very well in delivering sharp lower bounds as well as optimal solutions to in-
stances up to medium size, and the tabu search algorithm is a promising approach for
obtaining close-to-optimal solutions using little computing time.

One interesting line of further research is to extend the current work to a version of the
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Figure 4. An illustration of cell overlap in the solutions for network R2 (Berlin).

problem where the power is restricted to a relatively small number of possible levels.
This problem version becomes of relevance as an approximation of the general problem
considered in this paper, or in case a quantization has been performed in calculating
the power. If power is confined to a small discrete set, many test points are expected
to have the same power value; such test points may be clustered together. Thus one re-
search topic is the development of stronger preprocessing schemes and faster solution
approaches that are tailored to this specific problem version. A second topic is to investi-
gate whether or not the power restriction will open up a polynomial time approximation.
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A Proof of Proposition 4

To avoid a proof of excessive length, we assume that the bijection Fi is unique for
all i ∈ C. The proof can be extended to the general case, although it would require
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additional technical details.

Before moving into the proof itself, we sketch the underlying idea. We introduce J 2
ih to

denote the set of points in Jih having i and h as the only two possible covering cells,
that is, J 2

ih = {j ∈ Jih : Cj = {i, h}}. Let the LP optimum of F2 be x̄, we define,
following (3)–(4), s̄ih

j =
∑Ji

k=F ′
i (j)

x̄i(k) +
∑Jh

k=F ′
h
(j) x̄h(k) − 1, (i, h) ∈ D, j ∈ J 2

ih, and

s̄ih
j = 1/2(

∑Ji

k=F ′
i (j)

x̄i(k) +
∑Jh

k=F ′
h
(j) x̄h(k)), (i, h) ∈ D, j ∈ Jih \J 2

ih. We then show that
s̄ satisfies the overlap requirement (5). Note that, for each j ∈ Jih, there is a constraint
of (8) defined for j = Fi(�), cf. Figure 2. Due to Proposition 2, the left-hand side equals
1 − ∑Ji

k=� x̄i(k), resulting in the following inequality.

Ji∑
k=�

x̄i(k) +
Jh∑

k=L(i�−1,h)

x̄h(k) ≥ 1 (A.1)

Suppose we define all the s-variables by (4). This gives in fact a model that is valid
but weaker than F1. In this case, we can simply take, among the points in Jih, the first
dih points in the sorted sequence of cell i. For each point, the first term of (A.1) equals
one. Take the dih points defined correspondingly for cell h. Next, observe that each sum
of (A.1) for these points appears exactly once in (5), and the proposition follows. The
proof is more complicated if (3) is present. In the proof, we first consider the pairs of
power levels defined by (A.1) for the remaining Jih − dih points of cell i. Applying
(A.1) directly does not give a proof, because there may exist one or several �′ �= �, with
L(i�′−1, h) = L(i�−1, h), requiring the use of a sum in (5) more than once (cf. Figure 2).
However, note that (A.1) remains valid for a power level lower than � for i, or a power
level lower than L(i�−1, h) for h. We therefore modify the pairs of power levels in this
direction, and show the existence of a sequence of modifications, such that each sum of
(A.1) for the modified levels is used no more than once in the left-hand side of (5).

We start the proof by some preparation. Consider any (i, h) ∈ D. Let j1
i , j

2
i , . . . , j

Jih
i

be the sequence of test points in Jih, such that their positions in the sorted power se-
quence of cell i, F ′

i (j
1
i ), F ′

i (j
2
i ), . . . , F

′
i (j

Jih
i ), is monotonously increasing. For cell h,

order the same test points in a similar manner, and denote the resulting sequence by
j1
h, j

2
h, . . . , j

Jih
h . For any k ∈ {dih + 1, . . . , Jih}, parameter L(iF ′

i (j
k
i )−1, h) defined for

constraint (8) clearly corresponds to a power level of cell h for covering one of the
points in Jih, i.e., L(iF ′

i (j
k
i )−1, h) = F ′

h(j
m
h ), where m is an integer between dih and Jih.

To simplify the notation, we use L(jk
i , h) to replace L(iF ′

i (j
k
i )−1, h) in the remainder of

the proof.
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We introduce a set A = {(jk
i , Fh(L(jk

i , h))), k = dih + 1, . . . , Jih} ⊆ Jih × Jih. Each
element (j, aj) ∈ A is referred to as an association because it associates one test point
j ∈ Jih to another test point aj ∈ Jih. Test points j and aj may coincide. There are
Jih − dih elements in A. The lemma below states some properties of A.

Lemma 5

(1) For any jk
i , k ∈ {dih + 1 . . . , Jih}, there is exactly one element (j, aj) ∈ A where

j = jk
i .

(2) For any jk
i , k ∈ {dih + 2 . . . , Jih}, and dih + 1 ≤ t < k, F ′

h(ajt
i
) ≥ F ′

h(ajk
i
).

(3) For any (j, aj) ∈ A where j ∈ J 2
ih and there are m test points in J 2

ih requiring
power greater than or equal to Pij in cell i, F ′

h(aj) ≥ F ′
h(j

dih+m
h ).

(4) For any k ∈ {dih + 1, . . . , Jih} for which jk
h ∈ J 2

ih, if there are m test points in
J 2

ih requiring power greater than or equal to Ph,jk
h

in cell h, then the number of

elements (j, aj) ∈ A where F ′
h(aj) ≥ F ′

h(j
k
h) is at least m.

Proof The first property follows immediately from the construction of A. The second
property is simply a reformulation of L(j t

i , h) ≥ L(jk
i , h) for any two points jk

i and
jt
i where t < k. Consider the third claimed property, and assume that its condition is

satisfied. Suppose cell i uses a power level strictly lower than F ′
i (j). Then there are

m test points in Jih that have to be covered by cell h. Moreover, these points cannot
contribute to overlap between cells i and h. Consequently cell h must additionally cover
at least dih other points in Jih to satisfy the overlap requirement. Hence L(j, h) used to
define constraint (8) for point j must correspond to a power level of cell h allowing for
covering dih + m points in Jih, and the result follows.

To prove the last property, we assume, without any loss of generality, that the m test
points in J 2

ih requiring power greater than or equal to Ph,jk
h

in cell h are jk
h, jk+1

h , . . . ,

jk+t−1
h , jk+t

h , . . . , jk+m−1
h , among which the first t points (0 ≤ t ≤ min{m, dih}) in this

sequence are in the set {j1
i , . . . , j

dih
i }. Parameters L(jk+t

i , h), . . . , L(jk+m−1
i , h) are all

greater than or equal to F ′
h(j

k
h), because these parameters must ensure that cell h can

cover jk+t
h , . . . , jk+m−1

h . Hence the m−t elements in set A defined for j = jk+t
h , . . . , j =

jk+m−1
h all satisfy the property. Next, suppose cell i uses level F ′

i (j
dih
i ), and hence covers

exactly dih test points in Jih. If the power level used by cell h is strictly below F ′
h(j

k
h),

than the overlap is at most dih − t, because jk
h , jk+1

h , . . . , jk+t−1
h are covered by cell i but

not cell h. We follow the sequence of points jdih+1
i , jdih+2

i , . . . , jJih
i one by one, until

we encounter a test point, say jr
i , such that jr

i /∈ {jk+t
h , . . . , jk+m−1

h }. At this stage, the
maximum possible overlap is dih − t, and thus L(jr

i , h) ≥ F ′
h(j

k
h). Point jr

i must exist
because both sequences j1

i , j
2
i , . . . , j

Jih
i and j1

h, j
2
h, . . . , j

Jih
h are of the same length. We

can continue following the sequence, and repeat the same argument for exactly t test
points, for which the associations satisfy the property. These t elements, together with
the m − t elements discussed earlier, complete the proof. �

20



We define a second set of association G ⊆ Jih × Jih. The next lemma concerns the
existence of G with the specified properties.

Lemma 6 There exists a set of associations G ⊆ Jih × Jih satisfying the following
properties.

I. For any jk
i , k ∈ {dih + 1 . . . , Jih} and jk

i ∈ J 2
ih, there is exactly one element

(j, gj) ∈ G where j = jk
i and F ′

h(gj) ≥ F ′
h(j

dih
h ) + 1.

II. For any jk
i , k ∈ {dih + 1 . . . , Jih}, F ′

h(ajk
i
) ≥ F ′

h(gjk
i
).

III. For any jk
h , k ∈ {dih + 1 . . . , Jih − 1} and jk

h ∈ J 2
ih, there is at least one element

(j, gj) in G where gj = jk
h .

IV. For any jk
h , k ∈ {dih + 1 . . . , Jih − 1}, there is at most one element (j, gj) in G

where j ∈ J 2
ih and gj = jk

h.

Proof We start by setting G = A. That G satisfies Property I follows directly from
Properties 1 and 3 in Lemma 5. Set G also satisfies Property II by equality. For conve-
nience, we use a set M of points referred to as marked (see below). Initially M = ∅. If
G does not satisfy Property III, we make some modifications to its elements, resulting
in the fulfillment of the property. We start from jdih+1

h , and consider the sequence of test
points jdih+1

h , jdih+2
h , . . . , jJih

h . Let jk
h be the first point not satisfying Property III, i.e.,

jk
h ∈ J 2

ih and G does not contain any element (j, gj) where gj = jk
h. Consider sequence

jJih
i , jJih−1

i , . . . , and let jr
i be the first point for which F ′

h(gjr
i
) > F ′

h(j
k
h). (The inequality

is strict because no point is currently associated with jk
h .) We set gjr

i
= jk

h , i.e., replace
the element (jr

i , gjr
i
) ∈ G with (jr

i , j
k
h), and mark jr

i by setting M = M ∪ {jr
i }. We

then repeat the procedure for the next point in jk+1
h , . . . , jJih

h not satisfying Property III,
until this property holds for G.

We show that the above update procedure is always feasible. Assume that the update is
gjr

i
= jk

h . Later, we need to find another point j r̃
i because Property III is not satisfied for

j k̃
h . As the procedure treats jdih+1

h , jdih+2
h , . . . , jJih

h in the given order, F ′
h(j

k̃
h) > F ′

h(j
k
h).

Moreover, F ′
h(gjr

i
) = F ′

h(j
k
h). Therefore j r̃

i �= jr
i . As a result, a point in jJih

i , . . . , jdih+1
i

can be selected and marked at most once as jr
i in the update procedure, i.e., jr

i will not
be used for a later update (which will break again Property III at jk

h). So once Property
III becomes satisfied at jk

h , it will remain satisfied for jk
h in all subsequent updates.

Moreover, as long as there is a point jk
h for which Property III does not hold, we can

always find the point jr
i . The reason is that G initially satisfies Property 4 in Lemma 5,

and the updates will not change this property of G.

The above procedure will obviously not cause G to violate Properties I-II. Next, we show
that Property 2 in Lemma 5 holds after the updating procedure. This property is satisfied
by G before the procedure starts. Consider the first update made for point jk

h , and the
update is to set gjr

i
= jk

h . We only need to examine the property for jr
i and another
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arbitrary point jq
i in jdih+1

i , . . . , jJih
i , because the update will not affect the property

for other pairs of points. Assume q > r. In this case F ′
h(gjq

i
) < F ′

h(j
k
h), as otherwise jr

i

would not have been chosen. After the update F ′
h(gjr

i
) = F ′

h(j
k
h), so the property remains

satisfied for jr
i and jq

i . Consider the case q < r, and thus F ′
h(gjq

i
) ≥ F ′

h(gjr
i
) > F ′

h(j
k
h)

before the update. The update changes the second inequality to equality, and hence the
first inequality remains valid. Therefore Property 2 is satisfied after the update. The
same argument applies to the subsequent updates, and the result follows.

Consider Property 3 in Lemma 5. We can immediately conclude that the property is
satisfied by any point j ∈ J 2

ih if j /∈ M, because gj is not changed. If j ∈ J 2
ih ∩ M,

the property may not hold. In this case we make the observation that Property IV is
satisfied for gj . This is because any point in jdih+1

i , . . . , jJih
i is marked at most once, and

the points in jdih+1
h , . . . , jJih

h causing updates and marking are all different.

To summarize, the new G has Properties I-III, and Properties 1, 2, and 4. Moreover,
if a point j in J 2

ih does not satisfy Property 3, then gj will satisfy Property IV. If
Property IV does not hold for G, we make some further modifications, without chang-
ing the fulfillment of Properties I-III. Note that violation of Property IV means that
there are at least two points jk

i , jr
i ∈ J 2

ih, such that gjk
i

= gjr
i
. We process points

jJih
i , jJih−1

i , . . . , jdih+1
i in the given order, and stop when we encounter a point jk

i ∈ J 2
ih,

for which there exists another point jr
i ∈ J 2

ih, r < k, and gjk
i

= gjr
i

= jt
h. We find a

point jq
h in jdih+1

h , jdih+2
h , . . . , jt−1

h , with the condition that there does not exist any ele-
ment (j, gj) ∈ G where j ∈ J 2

ih and gj = jq
h. We update G by setting gjk

i
= jq

h. This is
repeated until Property IV becomes valid for G.

We show the existence of point jq
h as follows. Because Property IV is not satisfied at

gjk
i

= gjr
i

= jt
h, none of jk

i and jr
i is in set M, and consequently Property 3 is satisfied

at both jk
i and jr

i . Let m− 1 be the number of test points in J 2
ih requiring power strictly

greater than Pi,jk
i

in cell i, then sequence jdih+1
h , jdih+2

h , . . . , jt−1
h contains at least m

points. Among them, at most m−1 are associated with the m−1 points in J 2
ih requiring

power strictly greater than Pi,jk
i

in cell i. Moreover, because of Property 2, none of the

points in jdih+1
h , jdih+2

h , . . . , jt−1
h is associated with any j k̃

i where dih + 1 ≤ k̃ < k. Thus
there is at least one point that can be chosen as jq

h. After the update for jk
i , Property 3

is clearly still valid for all points in ({jk−1
i , jk−2

i , . . . , jdih+1
i } ∩ J 2

ih) \ M. Moreover,
Property 2 remains satisfied for any pair of these points. Therefore we can repeat the
aforementioned update as long as Property IV does not hold at some point. Once an
update is made for jk

i , subsequent updates will not alter this property at gjk
i

because of
the criterion used for selecting jq

h. Furthermore, the updates will obviously not affect
Properties I-III. Hence eventually G will satisfy Properties I-IV. �
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We are ready to prove Proposition 4. Solution (x̄, s̄), as defined at the beginning of the
proof, clearly satisfies (1), (2), (3), and (4). For (5), the left-hand side is as follows.

∑
j∈Jih

s̄ih
j =

∑

j∈J 2
ih

(
Ji∑

k=F ′
i (j)

x̄i(k) +
Jh∑

k=F ′
h
(j)

x̄h(k)) +
1

2

∑

j∈Jih\J 2
ih

(
Ji∑

k=F ′
i (j)

x̄i(k) +
Jh∑

k=F ′
h
(j)

x̄h(k))

− |J 2
ih| (A.2)

We construct a subset Gs ⊆ G. First, we add, for each jk
i ∈ J 2

ih where dih ≤ k ≤ Jih,
the unique element (jk

i , gjk
i
) ∈ G to Gs. The existence of the element and its uniqueness

follow from Properties I and IV. Next, for each jk
h ∈ J 2

ih, where dih + 1 ≤ k ≤ Jih and
no association (j, gj) ∈ G with gj = jk

h has been added to Gs in the first step, we choose
one association (j, gj) ∈ G where gj = jk

h , and add it to Gs. The existence of such an
element follows from Property III. If there are several associations with gj = jk

h , any of
them can be chosen. Several observations follow from the construction of Gs. First, each
test point jk

i ∈ J 2
ih with dih + 1 ≤ k ≤ Jih appears exactly once as j in one element

(j, gj) ∈ Gs. Second, each test point jk
h ∈ J 2

ih with dih + 1 ≤ k ≤ Jih appears exactly
once as gj in one element (j, gj) ∈ Gs. Third, for any two elements (j1, gj1) ∈ Gs and
(j2, gj2) ∈ Gs, j1 �= j2 and gj1 �= gj2 . Fourth, for all (j, gj) ∈ Gs, either j ∈ J 2

ih, or
gj ∈ J 2

ih, or both. For any (j, gj) ∈ Gs, (A.2) contains, within its parentheses, each
of

∑Ji

k=F ′
i (j)

x̄i(k) and
∑Jh

k=F ′
h
(gj)

x̄h(k) exactly once. By Property II, constraint (8) and
Proposition 2, we obtain the following inequality for any (j, gj) ∈ Gs.

Ji∑

k=F ′
i (j)

x̄i(k) +
Jh∑

k=F ′
h
(gj)

x̄h(k) ≥
Ji∑

k=F ′
i (j)

x̄i(k) +
Jh∑

k=F ′
h
(aj )

x̄h(k) (A.3)

=
Ji∑

k=F ′
i (j)

x̄i(k) +
Jh∑

k=L(j,h)

x̄h(k) (A.4)

≥
Ji∑

k=F ′
i (j)

x̄i(k) +
F ′

i (j)−1∑
k=1

x̄i(k) (A.5)

= 1

The next observation is F ′
i (j) ≥ dih + 1 and F ′

h(gj) ≥ dih + 1 for any (j, gj) ∈ Gs.
And it follows from the construction of constraint (8) that

∑Ji

k=F ′
i (j

m
i ) x̄i(k) = 1 and

∑Jh

k=F ′
h
(jm

h
) x̄h(k) = 1 for all m, 1 ≤ m ≤ dih. Clearly, each of these sums appears exactly
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once within the parentheses of (A.2). For Gs, let n, ni, and nh denote the numbers of
elements for which j ∈ J 2

ih and gj ∈ J 2
ih, j ∈ J 2

ih and gj /∈ J 2
ih, and j /∈ J 2

ih and
gj ∈ J 2

ih, respectively. From the observations, we obtain the following inequality that
completes the proof.

(A.2) ≥ n +
1

2
ni +

1

2
nh + (|J 2

ih| − n − ni) + (|J 2
ih| − n − nh)

+
1

2
(dih − (|J 2

ih| − n − ni)) +
1

2
(dih − (|J 2

ih| − n − nh)) − |J 2
ih| = dih

(A.6)
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